Speak to your Parser: Interactive Text-to-SQL with Natural Language Feedback

Authors: Ahmed Elgohary, Saghar Hosseini, Ahmed Hassan Awadallah Presenter: Lixian Liu

Background

• Text-to-SQL semantic parsing system: Focusing on parsing natural language utterances into an executable SQL queries

Background - Interactive Semantic Parsing

Find all the locations whose names contain the word "film"

Semantic Parsing

SELECT Address FROM LOCATIONS WHERE Location_Name LIKE '%film%'

Address is wrong. I want the name of the locations

SELECT Location_Name FROM LOCATIONS WHERE Location_Name LIKE '%film%'

Background - Interactive Semantic Parsing

- To enable this form of interaction, the system must:
- (I) explain the produced SQL,
- (2) allow for human response, and

(3) utilize the feedback and original question to come up with a more correct interpretation.

Contributions

- I) define the task of SQL parse correction with natural language feedback
- 2) create a framework for explaining SQL parse in natural language
- 3) construct SPLASH (Semantic Parsing with Language Assistance from Humans): a new dataset
- 4) establish several **baseline** models

Task

 SQL parse correction with natural language feedback

Question:

Find all the locations whose names contain the word "film"

Predicted Parse:

SELECT Address FROM LOCATIONS WHERE Location Name LIKE '%film%'

Feedback:

Address is wrong. I want the name of the locations

Gold Parse:

SELECT Location_Name FROMLOCATIONS WHERE Location_Name LIKE '%film%'

Schema:

Location_ID	Location_Name	Address	Other_Details
-------------	---------------	---------	---------------

Pipeline:

- I) (Utterance, Incorrect SQL)
- 2) Explaining SQL
- 3) Crowdsourcing feedback

- I) Utterance and Incorrect SQL
- Spider Dataset (Questions, Gold Parse)
- I. Larger in scale
- 2. Requires inducing parses of complex query structures **Seq2Struct**: Parser (Incorrect SQL)
- I. Neural parser with grammar-based decoder
- 2. Train on $X 3 \rightarrow 3183$ pairs of ply it to the remaining questions and incorrect SQL se

- I) Utterance and Incorrect SQL
- Seq2Struct: Parser (Incorrect SQL)

Use 2nd top prediction (difference in probability between the top and 2nd top is below 0.2) to add additional 1192 pairs to the dataset

- 2) Explaining SQL
- Explain the incorrect generated SQL in a way that humans who are not proficient in SQL can understand

- 2) Explaining SQL
- Template-based approach
- 57 templates cover 85% of Spider queries

SQL:				
SELECT id, name from browser GROUP BY id ORDER BY COUNT(*) DESC				
Template:				
SELECT _cols_ from _table_ Group BY_col_ ORDER BY _aggrcol_				
Explanation:				

Step 1: Find the number of rows of each value of id in browser table.

Step 2: Find id, name of browser table with largest value in the results of step 1.

- 3) Crowdsourcing Feedback
 - Internal crowdsourcing platform
 - I0 annotators participated
 - Limit the maximum feedback length to 15 tokens

Question:

Find the name and salary of instructors who are advisors of the students from the Math department.

Steps:

find the name, salary of instructor table for which dept_name equals Math

Tables with example values:

instructor

ID	name	dept_name	salary
65931	Pimenta	Cybernetics	79866.95
28400	Atanassov	Statistics	84982.92

C11		0		•
31	LU	c	ш	L
	-	_	_	-

ID	name	dept_name	tot_cred
32245	Saariluoma	Statistics	12
79589	Schopp	Elec. Eng.	104

Feedback:

□ All steps are correct

the students, not the instructors, should be from the Math department

3) Dataset Summary

- 9,314 questions-feedback paris
- 962 from Spider development set as the test set
- Hold 10% of the remaining set as the dev set

Number of	Train	Dev	Test
Examples	7,481	871	962
Databases	111	9	20
Uniq. Questions	2,775	290	506
Uniq. Wrong Parses	2,840	383	325
Uniq. Gold Parses	1,781	305	194
Uniq. Feedbacks	7,350	860	948
Feedback tokens (Avg.)	13.9	13.8	13.1

- Study the characteristics of
- I) The mistakes made by the parser
- 2) The natural language feedback from annotators

• Error Characteristics

Figure 4: A histogram of the distance between the gold and the predicted SQL.

78%+ within a distance of 3 or less

Figure 5: A histogram of different SQL keywords appearing in edits (between the gold and predicted SQL) and their distribution across edit types (replace, insert or delete).

Questions that require a join is harder and more error prone

• Feedback Characteristics (sample 200 examples)

Complete Feedback: [81.5%]

Question:Show the types of schools that have two schools.Pred. SQL:SELECT TYPE FROM school GROUP BY TYPE HAVING count (*) >= 2Feedback:You should not use greater than.

Partial Feedback: [13.5%]

Question:What are the names of all races held between 2009 and 2011?Pred. SQL:SELECT country FROM circuits WHERE lat BETWEEN 2009 AND 2011Feedback:You should use races table.

Paraphrase Feedback: [5.0%]

Question:	What zip codes have a station with a max temperature greater than or equal to 80			
	and when did it reach that temperature?			
Pred. SQL:	SELECT zip_code FROM weather WHERE min_temperature_f			
	> 80 OR min_sea_level_pressure_inches > 80			
Feedback:	Find date, zip code whose max temperature f greater than or equals 80.			

• Feedback Characteristics (sample 200 examples)

Feedback Type	%	Example
Information		
- Missing	13%	I also need the number of different services
- Wrong	36%	Return capacity in place of height
- Unnecessary	4%	No need to return email address
Conditions		
- Missing	10%	ensure they are FDA approved
- Wrong	19%	need to filter on open year not register year
- Unnecessary	7%	return results for all majors
Aggregation	6%	I wanted the smallest ones not the largest
Order/Uniq	5%	only return unique values

Baselines

• Handcrafted re-ranking with feedback

Initial parse: select first_name, last_name from students

Candidate parse: select first_name from teachers

Diff: {last_name, students, teachers} Feedback: use teachers instead of students Assign score 2 / 3 to this candidate parse

Baselines

• Seq2Struct + Feedback

Appending the feedback to the question for each training example in SPLASH

Note: Seq2Struct + Feedback does not use the mispredicted parses

Baselines

• EditSQL + Feedback

SOTA model for conversational text-to-SQL

Initial parse: SELECT Address FROM LOCATIONS WHERE Location_Name LIKE '%film%'

EditSQL ----- Utterance & Feedback

Correct parse: SELECT Location_Name FROMLOCATIONS WHERE Location_Name LIKE '%film%'

Baselines - Results

Correction Accuracy:

the percentage of the testing examples that are correct

	Exact Match Accuracy (%)	
Baseline	Correction	End-to-End
Without Feedback		
\Rightarrow Seq2Struct	N/A	41.30
\Rightarrow Re-ranking: Uniform	2.39	42.48
\Rightarrow Re-ranking: Parser score	11.26	46.86
\Rightarrow Re-ranking: Second Best	11.85	47.15
With Feedback		
\Rightarrow Re-ranking: Handcrafted	16.63	49.51
\Rightarrow Seq2Struct+Feedback	13.72	48.08
\Rightarrow EditSQL+Feedback	25.16	53.73
Re-ranking Upper Bound	36.38	59.27
Estimated Human Accuracy	81.50	81.57

Conclusions

- I. Introduce the task of SQL parse correction using natural language feedback
- 2. Compare baseline models and show that natural language feedback is effective for correcting parses
- 3. But still SOTA models struggle to solve the task

Future Work

- I. Explore improving the correction models
- 2. Leveraging logs of natural language feedback to improve text-to-SQL parsers
- 3. Expanding the dataset to include multiple turns of correction

Thank you ! Questions?