RECOVERY TECHNIQUES FOR IN-MEMORY DATABASE

06/29/2022

CS 848 Modern Database Systems

Presenter: Anuradha Kulkarni

Agenda

- What is IMDB (In-memory database)?
- Architecture
- MMDB Recovery
- Transaction logging
- Consistent checkpointing
- Analysis of the recovery techniques

What is IMDB / MMDB?

- AKA Main Memory Database
- Data resides permanently in the main physical memory unlike conventional database system
- Better performance as data is accessed directly in memory.
- It is becoming feasible to store larger and larger databases in memory [2].

Main Memory Database Recovery

- What is effective and efficient database recovery?
- After crash, **recovery manager** must ensure that:
 - Unfinished transactions will not have their actions reflected in database (atomicity)
 - Completed transactions will have their modifications written in database, even if they have not flushed to the secondary memory (Durability)
- There are two buffer manager page replacement policies:
- **Steal approach:** Buffer manager protocol allows flushing dirty pages to secondary storage before the transaction commitment.
- **No-force approach:** Pages of committed transactions do not need to be flushed at commit time.

Transaction Logging

- AKA Command Logging
- Transaction's logic is written to the log rather than the transaction's operations
- Each transaction must be a predefined stored procedure
- The log records the stored procedure identifier of a transaction and its corresponding query parameters
- Very lightweight and needs only one record to store entire transaction. Hence, less overhead of transaction processing
- However, it can slow down recovery process because it needs to "replay" the transaction again
- It uses steal approach i.e. transaction can be logged before execution begins instead of executing the transaction and waiting for the log data to flush

Transaction Logging in Action

- **Step 1:** Log of the invocations are held in the memory
- **Step 2:** At the set interval the logs are physically written to the disks
- **Step 3:** At broader interval, the server initiates the snapshot.
- **Step 4:** Command logging process truncate the log keeping only a record of procedure invocations since the last snapshot

MATHEMATICS

Transaction Logging Recovery in Action

- In reverse, when it is time to "replay" the logs, database is started and the server nodes establish a quorum.
- Servers restore the most recent snapshot. Then they replay all of the transactions in the log since that snapshot

Fig. 4 Transaction logging recovery

Consistent Checkpointing

- A snapshot is a materialized database state in a specific instant of time
- Each checkpoint record is stored on the log asynchronously
- Reduces recovery time since loading data from the snapshot into memory is less costly than performing logical log operations
- **Definition (In-Memory Consistent Snapshot):** Let D be an update intensive in-memory database. A consistent snapshot is a consistent state of D at a particular time-in-point, which should satisfy following two constraints:
 - **Read Constraint:** Clients should be able to read the latest data items
 - Update Constraint: Any data item in the snapshot should not be overwritten i.e. snapshot must be read-only

Consistent Checkpointing Algorithms

- An in-memory consistent snapshot algorithm for update-intensive applications must fulfil the following requirements:
 - Consistent and Full Snapshots: No dirty and incremental backups
 - Lock-free and Copy-Optimized: No synchronous operations
 - Low latency and no Latency spikes
 - Small memory footprint
- Snapshot Algorithm Framework:
 - 1: Client::Read(index);
 - 2: Client::Write(index,newValue);
 - 3: Snapshotter::Trigger();
 - 4: Snapshotter::TakeSnapshot();
 - 5: Snapshotter::TraverseSnapshot();

Naïve Algorithm

Transactions Data to be Updated Period < 0, 13 > P_1 T_1 < 2, 16 >, < 3, 17 > T_2 T_3 < 0, 23 > P_2 T_4 < 1, 14 >, < 4, 18 > \overline{D} D23 13

P2

P1

Copy On Update Algorithm

D	\overline{D}	\overline{D}_{b}
3	3	0
4	4	0
6	6	0
7	7	0
8	8	0
5	5	0
	t_0	

	D	\overline{D}	\overline{D}_{b}
	13	3	0
	4	4	0
	16	6	0
	17	7	0
	8	8	0
	5	5	0
_		t_1	

	Period	Transactions	Data to be Updated
I	P_1	T_1	< 0, 13 >
		T_2	< 2, 16 >, < 3, 17 >
I	P_2	T_3	< 0,23 >
		T_4	< 1, 14 >, < 4, 18 >

Zigzag Algorithm

D	\overline{D}	\overline{D}_{br}	\overline{D}_{bw}
3	3	0	1
4	4	0	1
6	6	0	1
7	7	0	1
8	8	0	1
5	5	0	0
	-		
D	\overline{D} t_0	\overline{D}_{br}	\overline{D}_{bw}
D 3	\overline{D} t_0 13	\overline{D}_{br}	\overline{D}_{bw}
D 3 4	$\frac{\overline{D}}{13}$	$\begin{array}{c} \overline{D}_{br} \\ 1 \\ 0 \end{array}$	D O 1
D 3 4 6	$ \frac{\overline{D}}{13} $ $ \frac{4}{16} $	$ \begin{array}{c} \overline{D}_{br} \\ 1 \\ 0 \\ 1 \end{array} $	D O 1 O
D 3 4 6 7	\overline{D} 13 4 16 17	$ \begin{array}{c} \overline{D}_{br} \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $	D 0 1 0 0
D 3 4 6 7 8	\overline{D} 13 4 16 17 8	$ \begin{array}{c} \overline{D}_{br} \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{array} $	D 0 1 0 1 0 1

D	\overline{D}	\overline{D}_{br}	\overline{D}_{bw}
3	13	1	1
4	4	0	1
6	16	1	1
7	17	1	1
8	8	0	1
5	5	0	1
	1	t .	
D	\overline{D}	\overline{D}_{br}	\overline{D}_{bw}
D 23	\overline{D} 3	\overline{D}_{br}	\overline{D}_{bw}
D 23 4	D 3 14	\overline{D}_{br} 0 1	D O 1
D 23 4 6	D 3 14 6	$\begin{array}{c} \overline{D}_{br} \\ \hline 0 \\ 1 \\ 1 \\ 1 \end{array}$	D O 1 O
D 23 4 6 7	D 3 14 6 7	$ \begin{array}{c} \overline{D}_{br} \\ \hline 0 \\ 1 \\ \hline 1 \\ 1 \end{array} $	D 0 1 0 0
D 23 4 6 7 8	D 3 14 6 7 18	D _{br} 0 1 1 1 1 1	D O 1 O 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D 23 4 6 7 8 5	D 3 14 6 7 18 5	D _{br} 0 1 1 1 1 0	D 0 1 0 1 0 1 1 1 1 1 1 1 1 1

Period	Transactions	Data to be Updated
P_1	T_1	< 0, 13 >
	T_2	< 2, 16 >, < 3, 17 >
P_2	T_3	< 0, 23 >
	T_4	< 1, 14 >, < 4, 18 >

 t_2 Recovery Techniques for In-memory database

Ping-Pong Algorithm

-		<u>D</u>	u	Ī	d
	3		0	3	1
	4		0	4	1
	6		0	6	1
	7		0	7	1
	8		0	8	1
	5		0	5	1
			t_0		

D	D	d	\overline{L}	\overline{u}
13	13	1		0
4	4	0		0
16	16	1		0
17	17	1		0
8	8	0		0
5	5	0		0
		t_2		

D	\overline{D}	u	\overline{L}	\overline{D}_d		
13	13	1	3	0		
4	4	0	4	0		
16	16	1	6	0		
17	17	1	7	0		
8	8	0	8	0		
5	5	0	5	0		
		t_1				

D	D	d	Ē	\overline{D}_u
23	13	0	23	1
14	4	0	14	1
16	16	0		0
17	17	0		0
18	8	0	18	1
5	5	0		0
		t_3		35

														\sim		
Hourglass /	Algo	rithr	n			pD								pD		
		pU	D	\overline{D}_{b1}		\overline{D}_{b2}	-	\overline{D}_{br}	(pU	D	\overline{D}_{b1}	\overline{D}	\overline{D}_{b2}	\overline{D}_{b}	r
			3	0	3	1		1		U	13	1	3	0	0	
7:		•	4	0	4	1		1			4	0	4	0	1	
Zigzag (bit array +	y mark	ing)	6	0	6	1		1			16	1	6	0	0	
Ping-Pong (P	ointer	S	7	0	7	1		1			17	1	7	0	0	
swappin	iy <i>)</i>		8	0	8	1		1			8	0	8	0	1	
			5	0	5	1		1			5	0	5	0	1	
			t_0				_		-				t_1	·		
				pU		nD					pU					
pD	D	\overline{D}_{b1}	\overline{D}	\overline{D}_{b2}	\overline{D}_{br}		<u>Х</u>	D	\overline{D}_{b1}	\overline{D}	\overline{D}_{b2}	\overline{D}_{bi}	r			
	13	1	3	0	0			13	0	23	1	1				
	4	0	4	0	1			4	0	14	1	1				
	16	1	6	0	0			16	0	6	1	0				
	17	1	7	0	0			17	0	7	1	0				
	8	0	8	0	1			8	0	18	1	1				
	5	0	5	0	1			5	0	5	1	1				UNIVERS
			t_2							t_3	3		 PA	GE 15	332	

Comparison of Snapshot Algorithms

- Fork is a standard method in many industrial IMDBs
- In theory, Piggyback outperforms the rest in all metrics
- 2× memory consumptions of HG and PB are only for the abstract array model (Static memory allocation). This can be reduced further using dynamic memory allocation technique
- Comparison of algorithms in different metrics; "(*)" represents the drawback

Algorithms	Average latency	Latency Spike	Snapshot time complexity	Max throughput	Is full Snapshot	Max memory footprint
Naïve Snapshot	low	(*) high	(*) O(n)	Low	Yes	2×
Copy-On-Update	(*) high	(*) middle	(*) O(n)	Middle	Yes	2×
Zigzag	middle	(*) middle	(*) O(n)	Middle	Yes	2×
Ping-Pong	(*) high	almost none	O(1)	Low	No	(*) 3×
Hourglass	low	almost none	O(1)	High	No	2×
Piggyback	low	almost none	O(1)	High	Yes	2×

FACULTY OF

Summary

- Proposed the need for MMDB recovery
- Various MMDB recovery techniques
- An emphasis on working of transaction logging and recovery
- Analyzed, compared and evaluated consistent snapshot algorithms
- Demonstrated better tradeoffs among latency, throughput, complexity and scalability

FACULTY OF

MATHEMATICS

References

- [1] L. Li, G. Wang, G. Wu, Y. Yuan, L. Chen and X. Lian, "A Comparative Study of Consistent Snapshot Algorithms for Main-Memory Database Systems," in IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 2, pp. 316-330, 1 Feb. 2021, DOI: 10.1109/TKDE.2019.2930987.
- [2] Faerber, Frans & Kemper, Alfons & Larson, Per-Åke & Levandoski, Justin & Neumann, Tjomas &
 Pavlo, Andrew. (2017). Main Memory Database Systems. Foundations and Trends in Databases.
 8. 1-130. 10.1561/190000058.
- [3] Brayner, Angelo & Magalhães, Arlino & Monteiro, José. (2021). Main Memory Database Recovery: A Survey. ACM Computing Surveys. 54. 1-36. 10.1145/3442197.

THANK YOU!

UNIVERSITY OF WATERLOO

FACULTY OF MATHEMATICS

Our greatest impact happens together.

Recovery Techniques for In-memory database

PAGE 21