
Assignment 1
Prefix Key Compression

For Assignment 1, you will be implementing prefix key compression for B+ Trees in the PostgreSQL
engine. Prefix key compression will be described in class, and is described in section 10.8.1 of your text book.
For this assignment, you are only asked to modify a single file, nbinsert.c. To grade your assignment, we
will compile PostgreSQL with your modifications, and test the result for correctness.

1 Implementing Prefix Key Compression

For this assignment, you will be editing the bt prefixKeyCompress function in the file

src/backend/access/nbtree/nbtinsert.c

in the PostgreSQL source code. You should not need to modify any other functions for this project. We
have modified the standard version of nbtinsert.c to include a skeleton of your solution.

We are making life simpler by looking at a special case: single-column indexes of SQL type text (Post-
greSQL ’s variable-length string data type). The compression logic in bt prefixKeyCompress is invoked
only in this special case. For any other index key configuration, the code you write should simply not get
called. Certainly the system should never crash on other index configurations.

In general, when a B+-tree leaf node split takes place, half of the data entries on the original node are
moved onto a new “righthand” node - this happens in a routine called bt split in nbtinsert.c, which
you should examine. The smallest entry in the resulting righthand node, which would ordinarily be copied
up unchanged to the parent node during split, will have its key prefix-compressed before the copy occurs.
PostgreSQL stashes a version of the resulting compressed key in a special slot on the original page (the
so-called “high key” mentioned in the comments in bt split, which is maintained for concurrency control
reasons that will are of no concern for this assignment. The compression is done by a routine we call
bt prefixKeyCompress. The arguments to bt prefixKeyCompress are:

Relation rel: a data structure representing the actual index file, which is of type Relation.

BTItem lowItem: the highest index key remaining on the original (left) leaf page after the split, i.e. the key
that immediately precedes, in alphabetical order, the one being compressed.

BTItem highItem: a fresh copy of the lowest index key on the new rightmost node, which we can prefix-
compress before it gets copied up.

We have given you skeleton code in bt PrefixKeyCompress that extracts the actual text for the keys
from the BTItem data structures for lowItem and highItem (which include both a key and a pointer) to
eventually generate two corresponding C char * pointers, lowp and highp. Given these, you need to do
three things:

1. Figure out how much you can truncate the string pointed to by highp by comparing it to the string
pointed to by lowp. The length of the truncated string should be just long enough to distinguish the
two.

2. Update the length field of the highText structure to set it to the length you computed in the previous
step. See the comments in the code about including 4 bytes for the vl len space.

3. Set the toReturn variable to the absolute difference in the length of the high key, pre- and post-
compression.

1



As background, you should read through the code where bt PrefixKeyCompress is called, and generally
poke around in nbtinsert.c. You can look for comments that say “CS448” to find things we added to
nbtinsert.c to support prefix key compression and debugging. We have also provided code to output the
contents of the B+-tree as text:

btdump(Relation r): takes a B+-tree Relation structure, and outputs its pages in whatever order they
physically appear in the file. This is available for you to call from the debugger, e.g. by typing
print btdump(rel) from a breakpoint in bt prefixKeyCompress. Be aware that it generates a lot
of output.

btdumppage(Relation r, Buffer buf): is the inner loop of btdump that prints a particular index page
from the buffer pool.

We have also put a call to btdumppage() into the routine bt insertonpg() in nbtinsert.c, so that you
can see the effects of your compression as internal index keys are generated and inserted. (If you want to call
btdumppage from the debugger, you first have to pin your page into the buffer pool via the ReadBuffer()

function; see the code for btdump for details.)

2 Deliverables

Please submit a single file: nbtinsert.c. Submit the file using the submit command, like this:

submit cs448 a1 .

Don’t forget the dot (which refers to the current directory) at the end of this command. Make sure that the
file nbtinsert.c is in the current directory before executing the submit command.

3 Grading

We will test your code on its ability to compress keys. We will also check to see that your index still works
properly. You can verify these properties yourself by creating a table and an index, and loading some data
into your database. The combination of debug messages from bt prefixKeyCompress and output from
bt dumppage should help you validate your implementation.

We have provided some sample data for you to experiment with. You are, of course, free to use your own
sample data as well. To load our data, first use createdb to create a database (refer to the PostgreSQL
setup instructions for more details). To create and load the index, launch psql on your database and execute
the following commands:

CREATE TABLE dict (id int4, word text);
CREATE INDEX dictix on dict(word);
COPY dict FROM ’/u/cs448/public/a1/words.txt’ WITH DELIMITER AS ’ ’;

Note that there’s a space between the single quotes at the end of the COPY command. If you are working on
your own machine, you can download a copy of words.txt using the link on the course web page.

You will see a lot of debugging output. You can examine the debugging output there to see the index
page dumps, and any key compression that is happening.

Important note: There are 3 lines in the bt prefixKeyCompress() routine that must remain un-
changed in order for the autograder to evaluate your code. They are clearly marked in the code. Be sure
not to modify or delete them.

2


