CS 245 - Fall 2012

Assignment 5

Due December 3, at 23:55,
in the CS 245 drop box assigned to your tutorial section

Attach this page as a cover page on your submission

Surname:	
Personal name:	
ID \#:	
Mark:	

The availability of the marked papers will be posted on the class web site.

Question 1 (30pt)

Let t_{i} be a term of the form $s(\cdots s(0) \cdots)$ that represents a natural number n_{i} written in unary (e.g., $s(s(s(0)))$ represents the number 3$)$.

- Form a set of clauses Σ such that $\Sigma \vdash \operatorname{TIMES}\left(t_{1}, t_{2}, t_{3}\right)$ whenever $n_{1} \cdot n_{2}=n_{3}$;
- Show a resolution refutation of $\operatorname{TIMES}(s(s(0), s(0), s(s(0))))$ w.r.t. Σ from above;
- Is the set of terms $\left\{f\left(t_{1}, t_{2}, t_{3}\right) \mid n_{1} \cdot n_{2}=n_{3}\right\}$ recursive?

For the first two parts you may use the clauses that define PLUS given in class.
Question 2 (10pt)
Let P be a ternary predicate symbol. Show that if $\forall x \cdot \forall y \cdot \exists z \cdot P(x, y, z)$ is satisfiable then also $\forall x . \forall y . P(x, y, f(x, y))$ is satisfiable.

Question 3 (20pt)
Let Λ be a non-empty finite alphabet (set of symbols). Show that
(a) the set Λ^{*} of all finite strings over Λ is countable; and
(b) the set of all countably-infinite sequences of symbols from Λ is not countable.

Question 4 (10pt; 10pt bonus)
Show that satisfiability of first order formulæ is undecidable.
For extra 10pt bonus show that satisfiability of first order formulæ is not recursively enumerable.

