CS 245 — Fall 2012 Assignment 4

Due November 19, at 23:55,

in the CS 245 drop box assigned to your tutorial section

Attach this page as a cover page on your submission

Circle time/room of your tutorial for re- turn of your paper, or "do not return":
TUT 103: 11:30-12:20F in MC 4042
TUT 104: 03:30-04:20F in MC 4042
TUT 105: 04:30-05:20F in MC 4042
TUT 106: 02:30-03:20M in OPT 309
TUT 101: 03:30-04:20M in MC 4042
TUT 102: 04:30-05:20M in MC 4042
do not return in tutorial

Question 1 (20pt) Without using the soundness and completeness theorems, prove the following statements:

- (a) $\models \varphi \rightarrow \forall x.\varphi$ for all well-formed first-order formulae φ for which $x \notin FV(\varphi)$,
- (b) $\not\models \varphi \to \forall x.\varphi$ in general.

Question 2 (20pt)

- (a) Show that if $\models \varphi \rightarrow \psi$ then $\models (\forall x.\varphi) \rightarrow (\forall x.\psi)$.
- (b) Show that $\{\varphi \to \psi\} \not\models (\forall x.\varphi) \to (\forall x.\psi).$

Question 3 (25pt) Formally prove $\vdash (\forall x.\varphi) \rightarrow (\exists x.\varphi)$.

Question 4 (35pt) Let G = (V, E) be a graph, where V is a set of vertices and E is a set of (directed) edges. A set $C \subseteq V$ is a *vertex cover* of G if for every edge $(a, b) \in E$, either $a \in C$ or $b \in C$. The size of a vertex cover is its number of vertices.

Each individual graph gives an interpretation whose the universe (domain) is the set of vertices and R denotes the edge relation. A first-order sentence that uses a single binary predicate symbol R can (be taken to) describe a property of a graph.

- (a) Write down a first order sentence that defines the set of all interpretations I in which the graph defined by R^{I} has a vertex cover of size 2;
- (b) Write down a first order sentence that defines the set of all interpretations I in which the graph defined by R^{I} does not have a finite vertex cover; and
- (c) Prove that the set of all interpretations that do have a finite vertex cover is not definable;

all in a first order language that contains binary predicate symbol R.