CS 245 — Fall 2012 Assignment 2

Due October 17, at 23:55,

in the CS 245 drop box assigned to your tutorial section

Attach this page as a cover page on your submission

Surname:	Circle time/room of your tutorial for re- turn of your paper, or "do not return":
Personal name:	TUT 103: 11:30-12:20F in MC 4042
	TUT 104: 03:30-04:20F in MC 4042
ID #:	TUT 105: 04:30-05:20F in MC 4042
	TUT 106: 02:30-03:20M in OPT 309
	TUT 101: 03:30-04:20M in MC 4042
Mark: Marker:	TUT 102: 04:30-05:20M in MC 4042
	do not return in tutorial

Question 1 (20pt)

Show that all axioms of the Hilbert proof system H, namely axioms given by the following axiom schemes,

$$\begin{array}{l} \alpha \to (\beta \to \alpha), \\ (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)), \text{ and} \\ (\neg \alpha \to \neg \beta) \to (\beta \to \alpha) \end{array}$$

are valid formulæ (tautologies).

Question 2 (27pt)

Prove, by giving an explicit proof in the Hilbert system, the following:

(a) $\{\neg q\} \vdash_H (p \to q) \to \neg p$

(b)
$$\vdash_H ((\neg p) \to p) \to p$$

(c)
$$\vdash_H p \to (\neg \neg p)$$

Question 3 (30pt) Prove the "law of substituting equivalent formula for equivalent formula", namely that for every pair of logically equivalent formulæ ψ_1 , ψ_2 , an arbitrary formula φ , and an atomic proposition p, we have

$$\models \theta_1(\varphi)$$
 if and only if $\models \theta_2(\varphi)$,

where $\theta_1 = \{p \mapsto \psi_1\}$ and $\theta_2 = \{p \mapsto \psi_2\}.$

Question 4 (23pt) Show that given formulæ ψ_1 and ψ_2 such that $\vdash_H \psi_1 \to \psi_2$, an arbitrary formula φ , and a set of formulæ Σ the following holds:

if
$$\Sigma \cup \{\psi_2\} \vdash_H \varphi$$
 then $\Sigma \cup \{\psi_1\} \vdash_H \varphi$.