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PERFECT PARALLEL REPETITION

THEOREM FOR QUANTUM XOR PROOF

SYSTEMS
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Abstract. We consider a class of two-prover interactive proof systems
where each prover returns a single bit to the verifier and the verifier’s
verdict is a function of the XOR of the two bits received. We show
that, when the provers are allowed to coordinate their behavior using
a shared entangled quantum state, a perfect parallel repetition theorem
holds in the following sense. The prover’s optimal success probability for
simultaneously playing a collection of XOR proof systems is exactly the
product of the individual optimal success probabilities. This property
is remarkable in view of the fact that, in the classical case (where the
provers can only utilize classical information), it does not hold. The
theorem is proved by analyzing parities of XOR proof systems using
semidefinite programming techniques, which we then relate to parallel
repetitions of XOR games via Fourier analysis.
Keywords. Quantum computing, interactive proof systems, parallel
repetition.
Subject classification. 81P68, 68Q10.

1. Introduction and summary of results

The theory of interactive proof systems has played an important role in the
development of computational complexity and cryptography. Also, the impact
of quantum information on the theory of interactive proof systems has been
shown to have interesting consequences [18, 23]. In [5] a variant of the model
of interactive proof system was introduced where there are two provers who
have unlimited computational power subject to the condition that they cannot
communicate between themselves once the execution of the protocol starts.
This model is sufficiently powerful to characterize NEXP [1].

Our present focus is on XOR interactive proof systems, which are based on
XOR games. For a predicate f : S×T → {0, 1} and a probability distribution π
on S × T , define the XOR game G = (f, π) operationally as follows.
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◦ The Verifier selects a pair of questions (s, t) ∈ S × T according to distri-
bution π.

◦ The Verifier sends one question to each prover: s to prover Alice and t
to prover Bob (who are forbidden from communicating with each other
once the game starts).

◦ Each prover sends a bit back to the Verifier: a from Alice and b from
Bob.

◦ The Verifier accepts if and only if a⊕ b = f(s, t).

A definition that is essentially equivalent to this1 appears in [8]. In the classi-
cal version, the provers have unlimited computing power, but are restricted to
possessing classical information; in the quantum version, the provers may pos-
sess qubits whose joint state is entangled. In both versions, the communication
between the provers and the verifier is classical.

An XOR interactive proof system (with soundness probability s and com-
pleteness probability c > s) for a language L associates an XOR game with
every input string x, such that:

◦ Sx and Tx consist of strings of length polynomial in |x|, πx can be sampled
in time polynomial in |x|, and fx can be computed in time polynomial
in |x|.

◦ If x ∈ L then the maximum acceptance probability over prover’s strate-
gies is at least c.

◦ If x �∈ L then the maximum acceptance probability over prover’s strate-
gies is at most s.

In [8] it is pointed out that results in [4,16] imply that, in the case of clas-
sical provers, these proof systems have sufficient expressive power to recognize
every language in NEXP (with soundness probability s = 11/16 + ε and com-
pleteness probability c = 12/16−ε, for arbitrarily small ε > 0). Thus, although
these proof systems appear restrictive, they can recognize any language that
an unrestricted multi-prover interactive proof system can. Moreover, in [9, 25]
it is shown that any language recognized by a quantum XOR proof system is in

1Except that degeneracies are allowed, where for some (s, t) pairs, the Verifier is allowed
to accept or reject independently of the value of a ⊕ b. All results quoted here apply to
nondegenerate games.
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EXP. Thus, assuming EXP �= NEXP, quantum entanglement strictly weakens
the expressive power of XOR proof systems.

Returning to XOR games, quantum physicists have, in a sense, been study-
ing them since the 1960s, when John Bell introduced his celebrated results
that are now known as Bell inequality violations [3]. An example is the CHSH
game, named after the authors of [7]. In this game, S = T = {0, 1}, π is the
unform distribution on S×T , and f(s, t) = s∧ t. It is well known that, for the
CHSH game, the best possible classical strategy succeeds with probability 3/4,
whereas the best possible quantum strategy succeeds with higher probability
of (1 + 1/

√
2)/2 ≈ 0.85 [7, 21].

Following [8], for an XOR game G, define its classical value ωc(G) as the
maximum possible success probability achievable by a classical strategy. Simi-
larly, define its quantum value ωq(G) as the maximum possible success proba-
bility achievable by a quantum strategy.

1.1. Taking the sum of XOR games. For any two XOR games G1 =
(f1, π1) and G2 = (f2, π2), define their sum (modulo 2) as the XOR game

(1.1) G1 ⊕G2 = (f1 ⊕ f2, π1 × π2) .

In this game, the verifier begins by choosing questions ((s1, t1), (s2, t2)) ∈ (S1×
T1)× (S2×T2) according to the product distribution π1×π2, sending (s1, s2) to
Alice and (t1, t2) to Bob. Alice and Bob then win if and only if their respective
outputs, a and b, satisfy a⊕ b = f1(s1, t1) ⊕ f2(s2, t2).

A simple way for Alice and Bob (who may or may not share entanglement)
to play G1 ⊕G2 is to optimally play G1 and G2 separately, producing outputs
a1, b1 for G1 and a2, b2 for G2, and then to output a = a1 ⊕ a2 and b =
b1 ⊕ b2 respectively. It is straightforward to calculate that the above method
for playing G1 ⊕G2 succeeds with probability

ω(G1)ω(G2) +
(
1 − ω(G1)

)(
1 − ω(G2)

)
.(1.2)

Is this the optimal way to play G1 ⊕G2?
The answer is no for classical strategies. To see why this is so, note that,

using this approach for the XOR game CHSH ⊕ CHSH, produces a success
probability of 5/8. A better strategy is for Alice to output a = s1 ∧ s2 and Bob
to output b = t1 ∧ t2. It is straightforward to verify that this latter strategy
succeeds with probability 3/4.

Our first result is that the answer is yes for quantum strategies.
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Theorem 1.3 (Additivity). For any two XOR games G1 and G2 an optimal
quantum strategy for playing G1⊕G2 is for Alice and Bob to optimally play G1

and G2 separately, producing outputs a1, b1 for G1 and a2, b2 for G2, and then
to output a = a1 ⊕ a2 and b = b1 ⊕ b2.

The proof of Theorem 1.3 uses a known characterization of quantum strate-
gies for individual XOR games as semidefinite programs. Section 2 contains
the proof.

1.2. Parallel repetition of XOR games. For any sequence of XOR games
G1 =(f1, π1), . . . , Gn = (fn, πn), define their conjunction, denoted by ∧n

j=1Gj ,
as follows. The verifier chooses questions ((s1, t1), . . . , (sn, tn)) ∈ (S1 × T1) ×
· · · × (Sn × Tn) according to the product distribution π1 × · · · × πn, and
sends (s1, . . . , sn) to Alice and (t1, . . . , tn) to Bob. Alice and Bob output bits
a1, . . . , an and b1, . . . , bn, respectively, and win if and only if their outputs simul-
taneously satisfy these n conditions: a1⊕b1 = f1(s1, t1), . . . , an⊕bn = fn(sn, tn).
(Note that ∧n

j=1Gj is not itself an XOR game for n > 1.)
One way for Alice and Bob to play ∧n

j=1Gj is to independently play each
game optimally. This succeeds with probability

∏n
j=1 ω(Gj). Is this the optimal

way to play ∧n
j=1Gj?

The answer is no for classical strategies. It is shown in [2] that2 ωc(CHSH ∧
CHSH ) = 10/16 > 9/16 = ωc(CHSH )ωc(CHSH ).

Our second result is that the answer is yes for quantum strategies.

Theorem 1.4 (Parallel repetition). For any XOR games G1, . . . , Gn, we have
that ωq(∧n

j=1Gj) =
∏n

j=1 ωq(Gj).

This is a quantum version of Raz’s parallel repetition theorem [20] for the
restricted class of XOR games. We call it a perfect parallel repetition theorem
because the probabilities are multiplicative in the exact sense (as opposed to an
asymptotic sense, as in [20]). The proof of Theorem 1.4 is based on Theorem 1.3
combined with Fourier analysis techniques for boolean functions. Section 3
contains the proof.

1.3. Comparison with other work. There is no known parallel repetition
theorem along the lines of [20] for quantum games (where the players share
entanglement). As far as we know, our results represent the first progress in

2After posing this question about ωc(CHSH ∧ CHSH ), the answer was first shown to us
by S. Aaronson, who independently discovered the classical protocol and then found the prior
result in [2].
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this direction. Recently, Holenstein [17] gave a simplified proof of the parallel
repetition theorem that applies to classical and no-signalling strategies. Neither
of these cases capture quantum strategies for XOR games (for example, every
XOR game has value 1 in the no-signaling model).

For games other than XOR games, the question of parallel repetition re-
mains open. Watrous [24] has shown that, there is a binary game (that is not
an XOR game) for which ωq(G) = ωq(G ∧ G) = 2/3, as in the classical case.
For completeness, this is shown in Appendix A. This implies that a perfect
parallel repetition property does not automatically apply to quantum games.

For a broad class of games, Feige and Lovász [13] define quantities that
are relaxations – and hence upper bounds – of their classical values, and show
that one of these quantities satisfies a parallel repetition property analogous
to Theorem 1.4. For any XOR game G, the Feige–Lovász relaxations of its
classical value are equal to the quantum value of G. Although this was also
noted previously [11,12], for completeness, an explicit proof of this is shown in
Appendix B. It is important to note that, for general games, the relationship
between their quantum values and the Feige–Lovász relaxations of their clas-
sical values are not understood. As far as we know, neither quantity bounds
the other for general games. However, using the fact that they are equivalent
for XOR games combined with our Theorem 1.4, we deduce (in Appendix B)
that, whenever G1, . . . , Gn are XOR games, the quantum value of ∧n

j=1Gj co-
incides with its associated Feige–Lovász relaxations. (Note that this does not
reduce our Theorem 1.4 to the results in [13], since we invoke Theorem 1.4 to
deduce that the quantum value and the Feige–Lovász relaxations are the same
for ∧n

j=1Gj .)

2. Proof of the additivity theorem

In this section we prove Theorem 1.3, which is stated in Section 1.1.
It is convenient to define the quantum bias of an XOR game as εq(G) =

2ωq(G) − 1. Then, due to (1.2), to prove Theorem 1.3, it suffices to show that
εq(G1 ⊕G2) = εq(G1)εq(G2).

Since Alice and Bob can independently play games G1 and G2 optimally
and then take the parity of their outputs as their outputs for G1 ⊕ G2, we
immediately have the following.

Proposition 2.1. For two XOR games G1 and G2, εq(G1 ⊕ G2) ≥
εq(G1)εq(G2).

The nontrivial part of the proof is the reverse inequality.
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A quantum strategy for an XOR game consists of a bipartite quantum state
|ψ〉 shared by Alice and Bob, a set of observables Xs (s ∈ S) corresponding
to Alice’s part of the quantum state, and a set of observables Yt (t ∈ T )
corresponding to Bob’s part of the state. The bias achieved by this strategy is
given by ∑

s,t

π(s, t)(−1)f(s,t) 〈ψ|Xs ⊗ Yt|ψ〉 .

We make use of a vector characterization of XOR games due to [22] (also
pointed out in [8]), which is a consequence of the following.

Theorem 2.2 ([8, 22]). Let S and T be finite sets, and let |ψ〉 be a pure quan-
tum state with support on a bipartite Hilbert space H = A ⊗ B such that
dim(A) = dim(B) = n. For each s ∈ S and t ∈ T , let Xs and Yt be observ-
ables on A and B with eigenvalues ±1 respectively. Then there exists real unit
vectors xs and yt in R

2n2
such that

〈ψ|Xs ⊗ Yt|ψ〉 = xs · yt ,

for all s ∈ S and t ∈ T .
Conversely, suppose that S and T are finite sets, and xs and yt are unit

vectors in R
N for each s ∈ S and t ∈ T . Let A and B be Hilbert space of

dimension 2�N/2�, H = A ⊗ B and |ψ〉 be a maximally entangled state on H.
Then there exists observables Xs and Yt with eigenvalues ±1, on A and B
respectively, such that

〈ψ|Xs ⊗ Yt|ψ〉 = xs · yt ,

for all s ∈ S and t ∈ T .

Using Theorem 2.2, we can characterize Alice and Bob’s quantum strategies
by a choice of unit vectors {xs}s∈S and {yt}t∈T . Using this characterization,
the bias becomes

(2.3) εq(G) = max
{xs},{yt}

∑

s,t

π(s, t)(−1)f(s,t) xs · yt .

The cost matrix for the XOR game G is defined as the matrix A with entries
As,t = π(s, t)(−1)f(s,t).

Note that any matrix A, with the provision that the absolute values of
the entries sum to 1, is the cost matrix of an XOR game. If G1 and G2 are
XOR games with cost matrices A1 and A2 respectively, then the cost matrix
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of G1 ⊕ G2 is A1 ⊗ A2. Also, for 0 ≤ λ ≤ 1, define the convex combination
λG1 + (1 − λ)G2 to be the XOR game with cost matrix

(
0 λA1

(1 − λ)A2 0

)
.

This convex combination can be interpreted as the game where, with proba-
bility λ, game G1 is played and, with probability 1 − λ, game G2 is played
(and Alice and Bob are informed about which game is occurring). Also, for a
game G with cost matrix A, define GT to be the game with cost matrix AT .
In other words, Alice and Bob switch places to play GT . The next proposition
summarizes some simple facts.

Proposition 2.4.

(i) εq(G1 ⊕G2) = εq(G2 ⊕G1) and εq(G) = εq(G
T ).

(ii) For all 0 ≤ λ ≤ 1,

εq

(
λG1 + (1 − λ)G2

)
= λεq(G1) + (1 − λ) εq(G2)

and

G1⊕
(
λG2 + (1 − λ)G3

)
= λ(G1⊕G2) + (1 − λ)(G1⊕G3) .

The bias of a quantum XOR game may be stated as a semidefinite program-
ming problem (SDP). We refer to Boyd and Vandenberghe [6] for a detailed
introduction to semidefinite programming. For cost matrix A, the bias is equiv-
alent to the objective value of problem

(2.5) max Tr
(
ATUT

1 U2

)
: diag

(
UT

1 U1

)
= diag

(
UT

2 U2

)
= ē ,

where {xs} and {yt} appear as the columns of U1 and U2 respectively. Here
diag(M) denotes the column vector of diagonal entries of the matrix M , and ē
is the column vector (1, . . . , 1)T . We begin by considering the game 1

2
G+ 1

2
GT ,

whose cost matrix

B =

(
0 1

2
A

1
2
AT 0

)

has useful structural properties, one of them being that it is symmetric. Propo-
sition 2.4 implies that εq(

1
2
G + 1

2
GT ) = εq(G). This enables us to express the

value of game G in terms of the SDP (PB) defined by

max Tr(BX) : diag(X) = ē, X � 0 .
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The notation X � Y means that the matrix X − Y lies in the cone of positive
semidefinite matrices. That (PB) is equivalent to problem (2.5) follows from
the fact that a semidefinite matrix X can be written as (U1, U2)

T (U1, U2) for
some matrices U1 and U2.

To show that an optimal solution for (PB) exists, we can examine the
Lagrange–Slater dual of (PB). The dual, denoted by (DB), is defined as

min (x, y)ē : Δ(x, y) � B ,

where Δ(x, y) denotes the diagonal matrix with entries given by the (row)
vectors x, y. Both (PB) and (DB) have Slater points – that is, feasible points
in the interior of the semidefinite cone. Explicitly, the identity matrix is a
Slater point for (PB), and ē is a Slater point for (DB). Therefore, by the strong
duality theorem, the optimal values of (PB) and (DB) are the same and both
problems have optimal solutions attaining this value.

The next lemma establishes the upper bound for the game (1
2
G1 + 1

2
GT

1 ) ⊕
(1

2
G2 + 1

2
GT

2 ) (which we will show afterwards has the same bias as G1 ⊕G2).

Lemma 2.6. If G1 and G2 are XOR games, then

εq

((
1

2
G1 +

1

2
GT

1

)
⊕
(

1

2
G2 +

1

2
GT

2

))
≤ εq(G1)εq(G2) .

Proof. Let G1 and G2 be two games with cost matrices A1 and A2, respec-
tively, and let

B1 =

(
0 1

2
A1

1
2
AT

1 0

)
and B2 =

(
0 1

2
A2

1
2
AT

2 0

)
.(2.7)

Let (x1, y1) and (x2, y2) be optimal solutions to (DB1) and (DB2), respectively,
which implies Δ(xi, yi) − Bi � 0 and εq(Gi) = (xi, yi)ē, for i = 1, 2. It suffices
to show that (x1, y1) ⊗ (x2, y2) is a solution to (DB1⊗B2), since B1 ⊗ B2 is the
cost matrix of (1

2
G1 + 1

2
GT

1 )⊕(1
2
G2 + 1

2
GT

2 ). Note that, for arbitrary B1 and B2,
Δ(x1, y1) � B1 and Δ(x2, y2) � B2 does not imply that Δ(x1, y1)⊗Δ(x2, y2) �
B1 ⊗ B2 (a simple counterexample is when Δ(x1, y1) = Δ(x2, y2) = 0 and
B1 = B2 = −I). We make use of the structure of B1 and B2 arising from (2.7).
For each i, Δ(xi, yi) − Bi � 0 implies that, for all (row) vectors u, v,

0 ≤
(
u v

)(
Δ(xi) −1

2
Ai

−1
2
AT

i Δ(yi)

)(
uT

vT

)

=

(
u −v )( Δ(xi) +1

2
Ai

+1
2
AT

i Δ(yi)

)(
uT

−vT

)
,
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which in turn implies that Δ (xi, yi) +Bi � 0 also holds. Therefore,

(
Δ(x1, y1) − B1

)⊗ (Δ(x2, y2) +B2

) � 0 and
(
Δ(x1, y1) +B1

)⊗ (Δ(x2, y2) −B2

) � 0 ,

which, by averaging, yields

Δ(x1, y1) ⊗ Δ(x2, y2) − B1 ⊗ B2 � 0 .

Therefore, (x1, y1) ⊗ (x2, y2) is a feasible point in the dual (DB1⊗B2), which
obtains the objective value εq(G1)εq(G2), which implies the lemma. �

Now we may complete the proof of Theorem 1.3. Using Proposition 2.1 for
line (2.8), Lemma 2.6 for line (2.9) and Proposition 2.4 and some easy algebra
for the rest we can derive the following

εq (G1 ⊕G2)

≥ εq (G1) εq (G2)
(2.8)

≥ εq

((
1

2
G1 +

1

2
GT

1

)
⊕
(

1

2
G2 +

1

2
GT

2

))(2.9)

= εq

(
1

4
(G1 ⊕G2) +

1

4
(G1 ⊕GT

2 ) +
1

4
(GT

1 ⊕G2) +
1

4
(GT

1 ⊕GT
2 )

)

= εq

(
1

2

[
1

2
(G1 ⊕G2) +

1

2
(G1 ⊕GT

2 )

]
+

1

2

[
1

2
(G1 ⊕G2) +

1

2
(G1 ⊕GT

2 )

]T
)

=
1

2
εq (G1 ⊕G2) +

1

2
εq

(
G1 ⊕GT

2

)
.

Therefore εq(G1⊕G2) ≥ εq(G1⊕GT
2 ). By symmetry, εq(G1⊕GT

2 ) ≥ εq(G1⊕G2),
as well, which means that all of the above inequalities must be equalities. This
completes the proof of Theorem 1.3.

3. Parallel repetition theorem

In this section we prove Theorem 1.4, which is stated in Section 1.2.

We begin with the following simple probabilistic lemma.
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Lemma 3.1. For any sequence of binary random variables X1, X2, . . . , Xn,

1

2n

∑

M⊆[n]

E
[
(−1)⊕j∈M Xj

]
= Pr[X1 . . . Xn = 0 . . . 0] .

Proof. By the linearity of expectation,

1

2n

∑

M⊆[n]

E
[
(−1)⊕j∈M Xj

]
= E

[
1

2n

∑

M⊆[n]

(−1)⊕j∈MXj

]

= E

[ n∏

j=1

(
1 + (−1)Xj

2

) ]

= Pr [X1 . . .Xn = 0 . . . 0] ,

where the last equality follows from the fact that

n∏

j=1

(
1 + (−1)Xj

) �= 0

only if X1 . . . Xn = 0 . . . 0. �

We introduce the following terminology. For any strategy S (classical or
quantum) for any game G, define ω(S, G) as the success probability of strat-
egy S on game G. Similarly, define the corresponding bias as ε(S, G) =
2ω(S, G) − 1.

Now let S be any protocol for the game ∧n
j=1Gj . For each M ⊆ [n], define

the protocol SM (for the game ⊕j∈MGj) as follows.

1. Run protocol S, yielding a1, . . . , an for Alice and b1, . . . , bn for Bob.

2. Alice outputs ⊕j∈Maj and Bob outputs ⊕j∈Mbj .

Lemma 3.2.

1

2n

∑

M⊆[n]

ε(SM ,⊕j∈MGj) = ω(S,∧n
j=1Gj) .

Proof. For all j ∈ [n], define Xj = aj ⊕ bj ⊕ fj(sj , tj). Then, for all M ⊆
[n], we have E[(−1)⊕j∈M Xj ] = ε(SM ,⊕j∈MGj), and Pr[X1 . . .Xn = 0 . . . 0] =
ω(S,∧n

j=1Gj). The result now follows from Lemma 3.1. �
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Corollary 3.3.

(3.4) ωc(∧n
j=1Gj) ≤ 1

2n

∑

M⊆[n]

εc(⊕j∈MGj)

and

(3.5) ωq(∧n
j=1Gj) ≤ 1

2n

∑

M⊆[n]

εq(⊕j∈MGj) .

Now, to complete the proof of Theorem 1.4, using Theorem 1.3, we have

1

2n

∑

M⊆[n]

εq(⊕j∈MGj) =
1

2n

∑

M⊆[n]

∏

j∈M

εq(Gj)

=

n∏

j=1

(
1 + εq(Gj)

2

)

=
n∏

j=1

ωq(Gj) .(3.6)

Combining this with (3.5), we deduce ωq(∧n
j=1Gj) =

∏n
j=1 ωq(Gj), which com-

pletes the proof of Theorem 1.4.

Comments. Although (3.5) is used to prove a tight upper bound on
ωq(∧n

j=1Gj), (3.4) cannot be used to obtain a tight upper bound on ωc(∧n
j=1Gj)

for general XOR games. This is because εc(CHSH ) = εc(CHSH ⊕ CHSH ) =
1/2 and it can be shown that εc(CHSH ⊕CHSH ⊕CHSH ) = 5/16. Therefore,
for G1 = G2 = G3 = CHSH , the right side of (3.4) is 1

8

∑
M⊆[3] εc(⊕j∈MGj) =

34.5/64, whereas ωc(∧3
j=1Gj) must be expressible as an integer divided by 64

(in fact3, ωc(∧3
j=1Gj) = 31/64).
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A. Perfect parallel repetition fails for non-XOR binary
games

In this appendix, we give the unpublished proof due to Watrous [24] that
there is a binary game G (that is not an XOR game) for which ωq(G) =
ωq(G ∧ G) = 2/3. The game used was originally proposed by Fortnow, Feige
and Lovász [13, 14], who showed that ωc(G) = ωc(G ∧G) = 2/3.

The game has binary questions (S = T = {0, 1}) and binary answers (A =
B = {0, 1}). The operation of the game is as follows. The Verifier selects a
pair of questions (s, t) uniformly from {(0, 0), (0, 1), (1, 0)} and sends s and t
to Alice and Bob, respectively. Then the Verifier accepts the answers, a from
Alice and b from Bob, if and only if s ∨ a �= t ∨ b.

Consider a quantum strategy for this game, where |φ〉 is the shared en-
tanglement, Alice’s behavior is determined by the observables A0 and A1, and
Bob’s behavior is determined by the observables B0 and B1. On input (s, t),
Alice computes a by measuring with respect to As, and Bob computes b by
measuring with respect to Bt. It is straightforward to deduce that the bias of
this strategy is

(A.1)

〈
ψ

∣
∣∣
∣

(
−1

3
A0B0 +

1

3
A0 +

1

3
B0

)∣∣∣
∣ψ
〉

(curiously, the bias does not depend on A1 or B1). Once A0 and B0 are deter-
mined, the optimal bias is the largest eigenvalue of M , where M = −1

3
A0B0 +

1
3
A0+

1
3
B0. Since M2 = −2

3
M+ 1

3
I, this eigenvalue λ must satisfy λ2 = −2

3
λ+ 1

3
,

which implies that λ = 1/3 or λ = −1. This implies that ωq(G) ≤ 2/3. Com-
bining this with the fact that 2/3 = ωc(G∧G) ≤ ωq(G∧G) ≤ ωq(G), we obtain
ωq(G ∧G) = ωq(G) = 2/3.
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B. Connections with other relaxations of classical game
values

In this appendix, we show that, whenever G1, . . . , Gn are XOR games, the quan-
tum value of ∧n

j=1Gj coincides with its associated Feige–Lovász relaxations [13].
(It should be noted that this does not reduce our Theorem 1.4 to the results
in [13], since we invoke Theorem 1.4 to deduce that the quantum value and the
Feige–Lovász relaxations are the same.)

In [13] it is shown that computing the classical value of a game is equivalent
to optimizing a quadratic programming problem. In the same paper, Feige and
Lovász considered two relaxations for the quadratic programming problem. For
any game G, the optimum value of the first relaxation (given by Eqns. (5)–(9)
in [13]) is denoted by σ(G) and the optimum value of the second relaxation
(given by Eqns. (12)–(17) in [13]) is denoted by σ̄(G). The feasible region
of the first relaxation is subset of the feasible region of second relaxation, so
σ(G) ≤ σ̄(G). For the sake of completeness, we write both the SDPs given
in [13] for the special case of XOR games.

First, let C be the matrix with entries C(s,a),(t,b) = π(s, t)V (a, b|s, t), and

let Ĉ be the symmetric matrix

Ĉ =
1

2

(
0 C
CT 0

)
.

The following two SDPs are relaxations of the classical value of an XOR
game, as given in [13], with optimum value σ(G) and σ̄(G), respectively:

σ(G) = max Tr(ĈP )

subject to
∑

a∈{0,1}

∑

b∈{0,1}
P(s,a),(t,b) = 1 , ∀s, t ∈ S ∪ T ,(B.1)

P(s,a),(t,b) ≥ 0 , ∀s, t ∈ S ∪ T, a, b ∈ {0, 1} ,(B.2)

P � 0 ,

and

σ̄(G) = max Tr(ĈP )

subject to
∑

a∈{0,1}

∑

b∈{0,1}
|P(s,a),(t,b)| ≤ 1 , ∀s, t ∈ S or s, t ∈ T ,(B.3)

P(s,a),(t,b) ≥ 0 , ∀s ∈ S, t ∈ T, a, b ∈ {0, 1} ,(B.4)

P � 0 .
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We have the following theorem.

Theorem B.5. For any XOR game G, ωq(G) = σ(G) = σ̄(G).

Proof. Let G be an XOR game. From [13] we know that σ(G) ≤ σ̄(G).
We will first show that ωq(G) ≤ σ(G). For this, assume an optimal strategy
for G. By Theorem 2.2, we can assume that |ψ〉 is a maximally entangled state.
Now let the optimal quantum strategy for G be described by the POVMs
{Ma

s }a∈{0,1}, {N b
t }b∈{0,1}, where s ∈ S and t ∈ T , along with the state |ψ〉.

Define

xa
s =

{
(Ma

s ⊗ I)|ψ〉 s ∈ S

(I ⊗Na
s )|ψ〉 s ∈ T .

Let P̂(s,a),(t,b) = xa
s ·xb

t , so P̂ � 0. It is easy to check that (B.1) holds, using the
fact that M0

s +M1
s = I and N0

t + N1
t = I. For positive semidefinite matrices

like Ma
s and N b

t we have that

〈ψ|Ma
s ⊗N b

t |ψ〉 ≥ 0 .

Since |ψ〉 = 1√
d

∑d
k=1 |k〉|k〉 is a maximally entangled state, we also have

〈ψ|I ⊗Na
sN

b
t |ψ〉 =

1

d
Tr
(
(Na

sN
b
t )

T
) ≥ 0

〈ψ|Ma
sM

b
t ⊗ I|ψ〉 =

1

d
Tr(Ma

sM
b
t ) ≥ 0 .

Therefore P̂(s,a),(t,b) ≥ 0 for all s, t ∈ S ∪ T and a, b ∈ {0, 1} and hence (B.2)
holds. With this formulation, we can turn an optimal quantum strategy for G
(on a maximally entangled state |ψ〉) into a feasible solution of (5)–(9) in [13]
with same objective value. Hence, ωq(G) ≤ σ(G).

Now, we will show that σ̄(G) ≤ ωq(G). Assume an optimal solution P̄ for
(12)–(17) in [13]. Since, P̄ is a positive semidefinite matrix, we can find vectors
xa

s , for s ∈ S, a ∈ {0, 1} and yb
t , for t ∈ T , b ∈ {0, 1}, such that

P̄(s,a),(t,b) =

⎧
⎪⎨

⎪⎩

xa
s · xb

t s, t ∈ S

ya
s · yb

t s, t ∈ T

xa
s · yb

t s ∈ S, t ∈ T .

We can view {xa
s}a∈{0,1} as Alice’s collection of vectors for each question s ∈ S

and {yb
t}b∈{0,1} as Bob’s collection of vectors for each question t ∈ T . From

(B.3), ∑

a,b∈{0,1}
|xa

s · xb
s| ≤ 1
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which implies ∣
∣∣
∣
∣

∑

a,b∈{0,1}
xa

s · xb
s

∣
∣∣
∣
∣
=

∥
∥∥
∥
∥

∑

a∈{0,1}
xa

s

∥
∥∥
∥
∥

2

≤ 1 .

Therefore,
∑

a∈{0,1} x
a
s lie in a unit ball. By similar argument,

∑
b∈{0,1} y

b
t also

lie in a unit ball. Define xs := x0
s − x1

s and yt := y0
t − y1

t . Now,

(B.6)

⎛

⎝
∑

a∈{0,1}
xa

s

⎞

⎠ .

⎛

⎝
∑

b∈{0,1}
yb

t

⎞

⎠ = x0
s · y0

t + x1
s · y1

t + x0
s · y1

t + x1
s · y0

t ≤ 1

and we have

(B.7) xs.yt = x0
s · y0

t + x1
s · y1

t − x0
s · y1

t − x1
s · y0

t .

Therefore x0
s ·y0

t +x1
s ·y1

t ≤ 1−(x0
s ·y1

t +x1
s ·y0

t ) and xs ·yt ≤ 1−2(x0
s ·y1

t +x1
s ·y0

t ),
which implies

(B.8) x0
s · y1

t + x1
s · y0

t ≤ (1 − xs · yt)

2
.

Similarly, x0
s ·y1

t +x1
s ·y0

t ≤ 1−(x0
s ·y0

t +x1
s ·y1

t ) and xs ·yt ≥ 2(x0
s ·y0

t +x1
s ·y1

t )−1,
which implies

(B.9) x0
s · y0

t + x1
s · y1

t ≤ (1 + xs · yt)

2
.

From (B.8) and (B.9), σ̄(G) is upper bounded by

∑

s,t

π(s, t)
1

2

{
(1 + xs · yt) if the correct answer is 0

(1 − xs · yt) if the correct answer is 1 ,

which is at most ωq(G) (see Proposition 5.7 in [8]). Hence, σ̄(G) ≤ ωq(G). �

In [13], it is also shown that the second relaxation is multiplicative but the
first relaxation is not. Combining our Theorem 1.4 and the multiplicativity
of σ̄, we can deduce the following.

Proposition B.10. For any XOR games G1, . . . , Gn,

ωq(∧n
i=1Gi) = σ(∧n

i=1Gi) = σ̄(∧n
i=1Gi) .
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