Performance Comparison of Uniprocessor
and Multiprocessor Web Server
Architectures

by

Ashif S. Harji

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2010

© Ashif S. Harji 2010






I hereby declare that | am the sole author of this thesis. iBhastrue copy of the thesis, including any
required final revisions, as accepted by my examiners.

| understand that my thesis may be made electronicallyadailto the public.






Abstract

This thesis examines web-server architectures for stadikleads on both uniprocessor and multi-
processor systems to determine the key factors affectieig performance. The architectures examined
are event-driveniierver) and pipeline (WatPipe). As well, a thread-per-eation (Knot) architecture
is examined for the uniprocessor system. Various workl@adstested to determine their effect on the
performance of the servers. Significant effort is made toena fair comparison among the servers. For
example, all the servers are implemented in C or CH, andastipgndfile and edge-triggeredpoll. The
existing servers, Knot angserver, are extended as necessary, and the new pipelirex;séfatPipe, is
implemented usingiserver as its initial code base. Each web server is also timddtermine its best
configuration for a specific workload, which is shown to beicai to achieve best server performance.
Finally, the server experiments are verified to ensure eapbkrforming within reasonable standards.

The performance of the various architectures is examinedwmiprocessor system. Three workloads
are examined: no disk-1/0, moderate disk-1/0O and heavy-u8k These three workloads highlight the
differences among the architectures. As expected, theiexpets show the amount of disk 1/O is the most
significant factor in determining throughput, and oncedhiermemory pressure, the memory footprint of
the server is the crucial performance factor. The peak tirput differs by only 9-13% among the best
servers of each architecture across the various worklo&dsthermore, the appropriate configuration
parameters for best performance varied based on workloallha single server performed the best for
all workloads. The results show the event-driven and pagetiervers have equivalent throughput when
there is moderate or no disk-1/0. The only difference is miyithe heavy disk-1/0 experiments where
WatPipe’s smaller memory footprint for its blocking sergawve it a performance advantage. The Knot
server has 9% lower throughput for no disk-1/0 and moderste ldO and 13% lower for heavy disk-1/O,
showing the extra overheads incurred by thread-per-caiomeservers, but still having performance close
to the other server architectures. An unexpected resuibistiocking sockets withendfile outperforms
non-blocking sockets witkendfile when there is heavy disk-1/0 because of more efficient disksx

Next, the performance of the various architectures is emathbn a multiprocessor system. Knot
is excluded from the experiments as its underlying threlachty, Capriccio, only supports uniprocessor
execution. For these experiments, it is shown that pantitgpthe system so that server processes, subnets
and requests are handled by the same CPU is necessary teeablyh throughput. Both N-copy and
new hybrid versions of the uniprocessor servers, extenuledifgport partitioning, are tested. While the
N-copy servers performed the best, new hybrid versionseéévers also performed well. These hybrid
servers have throughput within 2% of the N-copy servers fiat benefits over N-copy such as a smaller
memory footprint and a shared address-space. For muldpsoc systems, it is shown that once the system
becomes disk bound, the throughput of the servers is datlgtreduced. To maximize performance on a
multiprocessor, high disk throughput and lots of memoryemsential.
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Chapter 1

Introduction

One of the biggest problems for many Internet companiesaisisiity. With social networking and cloud
computing growing in popularity, not only is more user-getted content moving online, ever larger
online user-communities are placing increased demand®pulgr web-sites. For example, Facebbok
serves over 600,000 unique images a second. Deliveringdhtent to a growing user base presents many
scalability problems. While additional hardware is neaeg$o handle the increased loads, correspond-
ingly advanced servers are required to utilize this hardvaad manage the increased loads. These servers
must be able to handle high throughput and support a largbauaf concurrent connections. Fundamen-
tally, web servers are a key component through which mudhrret traffic flows. Another recent change
is the shift to parallel processors (multi-threaded, racdtie, multiprocessor) even on low-end commodity
hardware. This hardware has the potential to reduce the euoflserver machines necessary for large
commercial sites, reducing power footprints and mainteaamosts. However, this shift is forcing appli-
cations to become multi-threaded to take advantage of tredlg@lehardware. Little research has focused
on examining web-server architectures for static conteninalltiprocessors. The assumption is exist-
ing server architectures that incorporate threading shecdle and perform similarly on multiprocessors.
However, previous work has shown this assumption to be [EBle

In order to achieve high performance, it is reasonable tospeeialized, highly-tuned servers for
various types of traffic. Specifically, a reasonable desigio iuse a separate server to handle static con-
tent [29,(31], possibly off-site, for example, at Amazorf 8 Akama?. Even for general web-servers,
efficiently handling static content frees up resources tbeotypes of traffic. Static content is an im-
portant aspect of web traffic, in fact, much user-generatedent is static. This thesis examines various

Lhttp://www.facebook.com
2http://aws.amazon.com/s3/
Shttp://www.akamai.com



CHAPTER 1. INTRODUCTION

web-server architectures for static workloads on bothnaiegssor and multiprocessor systems. The goal
of the thesis is to identify the key factors affecting thefpamance of web servers.

Much research has focused on different architectures fbrsgevers serving static contefi][7] B4, 57,
E3,[81]. This work has led to a number of improvements in dpegaystems and web-server implemen-
tations; e.g., zero-copy transfer and user-level thrdadriies that scale to thousands of threads. While
comparisons have been performed as various improvementsdeeeloped, a fair comparison of the dif-
ferent architectures based on the current state-of-thfsaweb servers, across a number of workloads,
has not been performed. Therefore, the first objective af tieésis is to undertake such a comparison.
The comparison begins by analysing the performance of oogasor servers, which can then be used as
a baseline for examining the performance of multiprocessohitectures. The second objective of this
thesis is to extend the uniprocessor servers to performamadl multiprocessor and to compare their per-
formance across two different workloads. Given the unipssor servers as a baseline, the approach of
running multiple copies of a uniprocessor ser{el [62] ishtberchmark used to evaluate the performance
of the extended servers.

1.1 Contributions

The contributions of this thesis are:

e A new pipeline server, WatPipe, is implemented. Its pertomoe is comparable to the other servers
examined for in-memory workloads and it has better perforweaor disk-bound workloads. As
well, an existing thread library, Capriccio, is extendedhva new non-blockingendfile implemen-
tation.

e WatPipe and shared-SYMPED, an event-driven architecane extended for multiprocessor ex-
ecution, including support for partitioning of proceskesghel-threads, subnets and CPUs. These
extensions allow versions of these server to achieve padioce comparable to N-copy on multi-
processors.

¢ Significant effort has been undertaken to make the serveesrasstent as possible to ensure the
comparison among the servers is fair. Contrary to previoagkwit is shown that performance
differences between state-of-the-art implementationthefvarious server-architectures is small
given a level playing-field. In fact, the experiments in thedis show architecture is most important
as it relates to the memory footprint of the servers, wheretieememory pressure.

e An important result in the thesis is that non-blockiswndfile is better when there is no disk 1/O or
moderate disk I/O, and blockirggndfile is better when the server is disk bound. Once the workload

2



1.2. THESIS OUTLINE

is disk bound, the blocking version of a server performsaoéktan the corresponding non-blocking
server despite having a larger memory footprint becauseetéibdisk efficiency due to different
file-access patterns. The exception is the blocking sh@MdPED servers in the multiprocessor
experiments, where their memory footprint is too large atieg the benefit.

e Through extensive experiments across a range of paramieterghown that proper tuning is critical
to achieve best server performance and that no single tathiggves the best performance for all
workloads.

e Insight is provided into the work behind the thesis. Lesseasned are presented with respect
to implementing, debugging and performing a large numbgresformance experiments on web
servers.

1.2 Thesis Outline

The thesis is organized as follows. Chapler 2 covers thegpagkd material for the thesis and the related
work. ChaptefI3 compares the performance of several wefesarchitectures on a uniprocessor across
three workloads, from in-memory to disk bound. The architexs tested include thread-per-connection,
SYMPED, shared-SYMPED and pipeline. Each server is run Wiiticking and non-blockingendfile

and a version of the thread-per-connection server, usgiitgwith an application file-cache, is also tested.
The performance of the servers are also profiled and analysedderstand their differences. These
experiments establish a baseline for multiprocessor @rpets. Chaptdr4 compares the performance of
several web-server architectures on a multiprocessosadwo workloads, in-memory and disk bound.
The architectures tested include SYMPED, shared-SYMPEDVsatPipe. Both an N-copy version of
the server and a version of the server extended for execatia multiprocessor are tested. Again, the
servers are run with blocking and non-blockisgndfile and then profiled and analysed to understand
the performance differences. Chagdier 5 relates some ok#s®ms learned based on the experience of
implementing, debugging and performing a large number pégrents on the web servers in the thesis.
Chaptefb contains the conclusion and future work.






Chapter 2

Background and Related Work

A variety of architectures for building web servers haverbpmposed and implemented. These servers
have become increasingly sophisticated to deal with a latgaeber of concurrent connections while
achieving high throughput. In addition to evolving serveghitectures, operating-system facilities have
been examined and extensions proposed to improve schlagificiency and ease of programming. This
chapter examines this work.

2.1 Handling an HTTP Request

Before looking at complex server-architectures, it is ustf understand how a server handles an HTTP
request. Processing a typical static HTTP-request by &seonsists of several steps, see Fidurk 2.1. The
server begins by accepting a connection request from a.clfierce a connection is established, an HTTP
request is read from a socket. For a static request, therssaeches for the requested file and a response
is sent to the client. Assuming the request is successfyladof this response the file is read from disk
and sent over the network to the client. If the connectioreisigtent, the server reads a new request from
the client. If there are no new requests, the connectiorosed and a new connection is accepted. This
description is simplified as it does not consider file cachies potential need to send the file in blocks,
etc.

Handling a single request can involve a number of delayd) asdransmission latencies and band-
width limitations. Given these delays, the time to handigpéchl request can be measured in secofilds [9].
Therefore, a server needs to handle many requests simulisige For a high-performance server to
process thousands of requests a second, the server mudele afficiently handle thousands of simul-
taneous connections. The web-server architectures egdrimirthis thesis each have a different approach

5
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Client Client Client
persistent A
’ ’ |
Accept Read Process Write Close
File

Figure 2.1: Server-side processing of an HTTP connection

to dealing with a large number of simultaneous connections.

2.2 Server Architectures

There are several different server architectures apmgpfor high-performance web-servers. As well,
there are a number of criteria upon which to evaluate thewarserver architectures. For this thesis, the
most important criteria is throughput, both at peak andraféuration. Throughput is selected because
it is a common performance metric used in a large body of ptsviwork, allowing the results in the
thesis to be compared to this work. A well-designed serveulshdegrade gracefully after saturation,
maintaining high throughput. As a consequence of the waddaised in this thesis, a server must support
a large number of connections to achieve high throughpudlithhal criteria affecting throughput include
scalability, latency, memory footprint and contentionpeeding on the workload being tested. Finally,
while ease of programming and debugging are important,dheyot considered in this thesis because all
the servers examined are complex.

Traditionally, a web server is classified based on how it lkengotentially-blocking network-1/O.
In order to achieve high throughput, a server must be ablat&sléave the processing of thousands of
simultaneous connections. For network 1/O, it is possibléake advantage of the non-blocking socket
operations available on Unix-like operating-systems.hiiocking semantics, the calling thread blocks
until all the data associated with the call has been buffereécansmitted by the kernel. With non-blocking
semantics, only the portion of data that can be immediateffeted in the kernel is transmitted to the
client. Then, the calling thread continues and can attempehd the remaining untransmitted data at a
later time. Combining non-blocking operations with an evgolling mechanism likaelect or poll allows
the server to interleave processing of thousands of simedias connections. This architecture is referred
to as an event-driven server.
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Another method for dealing with potentially blocking netk/O is to use threads. In this approach,
if a user-thread blocks waiting on a call, other unblocke#dls can execute. In the simple case, each
thread only processes a single connection at a time, cédiltedd-per-connection, so thousands of threads
may be required. Context-switching among the threads alfawthe implicit interleaving of thousands
of simultaneous connections. This architecture is refetoeas a threaded server.

There has been much debate over whether an event-driventmeaded architecture is bettéd [3,
20,33, [2B[Th]. The argument is event-driven programs tengetdifficult to understand because of
complicated control flow and threaded programs tend to halkdeserrors and are difficult to debug. A
number of libraries have been developed to make eventrdpvegramming easier, e.dibeel [I3] and
libasync [Ed]. Simplifying programming with threads is an area cothgereceiving a lot of attention but
it is a difficult problem and no solution has been found. Utifioately, this simple classification of server
architectures is both inadequate and misleading.

In addition to blocking network-1/0O, disk I/O can cause Iimg. Asynchronous I/O (AlO) mech-
anisms exist for some file operations, but performancesatisystem-calls likesendfile have no AIO
equivalent. Therefore, all server architectures must eynpbme form of threading to mitigate the ef-
fects of blocking disk-1/O. Furthermore, over the past decahere has been a paradigm shift within
hardware architecture from faster processors (more MHpgatallel processors (multi-threaded, multi-
core, multiprocessor) because physical limits in CPU speebpower/cooling are being reached. This
change is having a ubiquitous effect on the design of all modeftware towards some form of concur-
rency. As well, servers traditionally labelled as threaddxd also involve events. Depending on the type
of threading, the event-handling mechanisms are in thehlibrary, the language run-time library or
embedded in the operating-system kernel. Taking a holi#iw of the entire architecture, including ap-
plication, libraries and operating system, all server idéctures must incorporate both threads and events
to maximize performance. There has been some researchniagyating event-driven and threaded pro-
gramming BE2DAT3Z62]. While all the servers examinedhis thesis use some combination of
event-driven and threaded programming, they do not use tggsroaches.

The following different web-server architectures haverbgeposed and implemented.

2.2.1 Event-Driven Architecture

Single-Process Event-DriveiSPED architecture[[44] is a common approach to implementing b we
server, withuserver [1] and Zeud®3] as examples of high-performancel8kRé&b-servers. In this ap-
proach, a single process (kernel thread) services muttgpieections in various stages of processing using
non-blocking I/0, see Figufe Z.2[a). In the figure, conmerstiare represented By and rounded rectan-
gles represent tasks/threads/processes. Data struenwede the current status of each connection. An
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Figure 2.2: SPED and AMPED server

event mechanism such select or poll is called to determine which connections are currently abkelor
writable. For each outstanding event, an appropriate dvamdler is invoked to process that event with-
out causing the server to block. For example, depending etyjie of the event, a new connection may
be accepted, a new HTTP request may be read or some data maittba w the socket. Once all the
outstanding events are handled, the process is repeateccoffiplexity of implementing a SPED server
comes from the management required to concurrently proamegamaintain many partially completed
connections in differing states with only a single threaah{plex finite-state machine).

An interesting extension to this strategy, proposed by @raand MosbergeE1 6] and further inves-
tigated by Brechet al. [[[3], is multiaccept, i.e., to accept multiple connections when the event mashan
indicates that a listening socket is readable. Callingept multiple times amortizes the overhead of
the event-mechanism system-call by establishing multiplenections after each poll. This strategy is
employed by theiserver.

One major disadvantage of the SPED architecture is thakiplpaue to disk 1/O significantly de-
creases performandg]44]. Since SPED only involves a spgleess containing one kernel thread, block-
ing disk-1/0 suspends the entire server until the I/O comnesleBased on profilingiserver spends a large
portion of time 1/0-blocked on disk-bound workloads. As $PE single threaded, it cannot take advan-
tage of overlapping CPU execution and disk 1/O, nor can i¢ tatvantage of multiple CPUs. A natural
extension to this approach is to run several copies of a SP&bsegrver. This approach is called N-copy
and was proposed by Zeldovieh al. [B2]. Not only can this strategy take advantage of multipRUS,
but it can also be used to deal with blocking I/0. The key ig thaltiple server-copies are needed per
CPU, so when one process blocks due to blocking I/O, anotioseeps is usually available to run. As each

8
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copy is independent, there is no need for mutual-exclusymhronization at the application level; at the
kernel level, sharing may occur necessitating locking. el®v, with N-copy each independent process is
listening for connections on a separate socket, requimigiifianal processing in order to balance requests
across the individual servers and to prevent all requesis being sent to only one server.

One approach that extends SPED to deal with blocking diSkid/the Asymmetric Multi-Process
Event-Driven AMPED) architecture proposed by Pat al. [E4] and used in the implementation of
the Flash web-server. The idea behind this architecture isnake up for the lack of true non-
blocking/asynchronous system-calls for disk 1/O on mangrafing systems by providing helper tasks
to handle blocking disk-1/0O operations. The basic impletagon is to use the SPED approach for all re-
quests that can be serviced from the main-memory file-caoti¢cgpass off blocking disk-1/0 operations
to helper tasks, as in Figure Z.4(b). Communication betvikerserver task and the helper tasks is done
through inter-process communication (IPC), e.g., pipeghat completion events from the helper tasks
are processed by the server task using non-blodéiegt. Processes may or may not share address-spaces
and AMPED relies on the operating system for all processdidhmey.

Using helper tasks to perform blocking disk-1/O allows teever task to continue handling requests
while disk 1/O is in progress. Further benefits include thditgtto utilize multiple disk drives more
efficiently and more efficient disk-head scheduling. At tlleecof AMPED is a SPED server, hence it
benefits from the advantages of only having a single procestaging the processing of connections.
Specifically, only a single cache with no mutual-exclussgnthronization is required as the helper tasks
do not modify the cache. Furthermore, the only overheadoing-lived connections is one file descriptor
and some application-level data-structures rather thading an entire thread as with the thread-per-
connection approach. Finally, the centralized storagefofmation simplifies data gathering and only
one listen socket is required. The disadvantages of thisbapp are the IPC overhead and the additional
memory required for the helper tasks. The amount of additiomemory varies depending on whether
address spaces are shared. As well, the AMPED architectayenot scale well on its own with multiple
CPUs; while 1/0 is distributed among several processeshmfithe processing is centralized in a single
process.

Another approach that builds on N-copy is the Symmetric Meitbcess Event DrivenSMPED
architecture by Ren and Warfg]37]. SMPED combines a pool &fl5rocesses with a scheduler process
to accept connections and distribute them among the SPEt2gses and perform load balancing. The
server deals with blocking I/O by having a pool of SPED preesswvhose size is dynamically adjusted
based on throughput feedback from each process. This ectihi¢ is similar to the Symmetric Multi-
Process Event-Driven architecture examined in this thssis sectioh-3.8.3), though both were conceived
independently.
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Library

Event Pol

Figure 2.3: Thread-per-connection server

2.2.2 Thread-Per-Connection Architecture

The thread-per-connection architecture is another apprdar implementing web servers, e.g.,
Apache [6] and KnofI37]. In this approach, one thread corefytdhandles a single HTTP request before
processing another request, see Figurk 2.3.ePai. [A4] distinguish between multi-threaded (MT) and
multiprocess (MP) servers. The former involves multiplertthireads in a single address-space and the
later involves each thread corresponding to a unique psoicea separate address-space. The type of
thread-per-connection server examined in this thesis Iti-thueaded.

As well, it is possible to create processes or threads dyainifor each new connection or to use a
static pool of threads or processes. Dynamically creatingaids allows the server to scale depending on
the workload. Having a fixed-size pool of threads results areroverhead when the number of connec-
tions is small but eliminates a potentially expensive thfpacess creation cost for each connection. The
thread-per-connection server examined in this thesisaisestic pool of threads.

One advantage of the thread-per-connection architecttine isimplicity gained by making application-
level blocking-I/O calls in the server and allowing the ng@ving of requests to be handled by context
switching rather than having a single thread explicitly agethe state of numerous partially-completed
connections. However, there are a number of disadvantagdsstapproach. First, a web server may
need to maintain hundreds or even thousands of simultanemusections resulting in a correspond-
ing number of threads. Having a large number of threads teeguisignificant memory overhead due
to their stacks. Furthermore, there is additional overheadtontext switching and from the mutual-
exclusion/synchronization required to coordinate acteshared data-structures, like the file cache. Hav-
ing a separate cache for each thread is impractical wheae #rera large number of threads as it can lead
to significant data duplication. As well, efficiently schédg a large number of threads is difficult. In
addition to the execution costs associated with schedulamgors such as locking and processor caches
must be considered to maximize performaricé [TP[3B, 52].

10
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AcceptC,;

| Read 8;
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Read Poll | Write c,c,

Write Poll

Figure 2.4: Example pipeline server

The underlying thread-library used by a server has a sigmfiaffect on performance. The Linux
NPTL Pthreads libraryI22] uses a 1:1 threading model, wieagh user-level thread is also a kernel
thread. With this model, kernel threads can make blockirsgesy-calls without inhibiting the execution
of other user-level threads and the server can take advanfagyerlapping CPU execution with I/O and
multiple CPUs with no additional effort by the applicatiorogrammer. The problem with 1:1 threading
libraries is that they do not scale to support the tens ofghnds of threads needed for a high-performance

server [5Y].

Using an M:N user-level threading package is the alteraativallow scaling to thousands of threads.
With M:N threading, the threading library typically implemts an I/O subsystem built on top of an event
mechanism likeselect or poll, similar to SPED, to handle I/O. As multiple user-threads rmultiplexed
over a small number of kernel threads, the threading likiréeyg to avoid making blocking system-calls. In
order to provide blocking calls for the user threads withamitially blocking the underlying kernel threads,
system calls are wrapped, and the underlying thread-ildaals with blocking by making an equivalent
non-blocking system-call. If an equivalent non-blockingstem-call is unavailable, the blocking call
can be allowed to proceed or handed off to a worker threadjasito an AMPED helper thread. In
either case, a sufficient number of kernel threads are needeahdle blocking 1/0O while still allowing
unblocked user-threads to continue executing. Kindt [53] tisread-per-connection server implemented
using the Capriccio thread-packa@€el[57], which scalesdogands of threads (see Secfion3.8.L . 33 for
more details).

2.2.3 Pipeline Architecture

The pipeline architecture is another approach for implegmgmweb servers, e.g[L TIEIIZ]E3] £31 B9, 61].
L In a pipeline architecture, a server’s execution is brokémseparate stages, with thread pools to service

INote, while Flux [I}] and Asped$3] are languages and ndiitctures or servers, the network applications genetated
Flux and Aspen have a pipeline architecture.
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each stage, see Figlirel2.4. The thread pools can be pemstsiggred across multiple stages or the entire
application. In the figure, the thread pools are per-stagfb, the Read stage serviced by two threads and
the write stage serviced by four threads. The number of adimms currently being processed by each
stage, indicated b§Z;, is at most equal to the number of threads, but there may b&add in-progress
connections waiting in the queues between stages. A pgalichitecture is often referred to as a hybrid
architecture as it explicitly uses threads and events Heuhtimber of threads is fewer than the number of
connections. The Staged Event-Driven Architect 88 DA proposed by Welskt al. [B3] is a complex
pipeline architecture used to construct the Haboob welesd]. SEDA starts as a basic pipeline server
by dividing an application into a series of stages. The stage self-contained but linked by event queues
that are used to communicate between the stages. As welhradsbr individual thread-pool is used to
service each stage. SEDA then extends the basic pipelimgndagadding a dynamic resource-controller
that adjusts the thread allocation and scheduling of thgestameet performance targets. Typically there
are only a small number of threads per stage, and an apphicatinsists of a network of stages. For
example, the Haboob server contains the following stageske® Accept, Socket Read, HTTP Parse,
PageCache, CacheMiss, File I/O, HttpSend and SocketWAiteHHTTP request is passed from stage to
stage as it is processed through the pipeline.

There are several advantages to using a pipeline serversefitttontained stages. First, the mod-
ularity of this approach allows stages to be reused in skegaications and allows for independent
load-management. As well, it makes debugging easier atilddtas performance analysis. For example,
the size of the queues connecting the stages show how welpftiation is running and help to identify
bottlenecks. Third, using finite event-queues makes ieeasiperform load shedding as requests can be
terminated at any stage.

While pipeline servers like SEDA have the complexity of betlents and threads at the application
level, they also benefits from some advantages of both apipesaand allow better control over each.
SEDA utilizes the efficiency of the event-based approactetiuce the number of threads significantly
below the number of connections. Furthermore, with mudtighireads spread across the various stages,
pipeline servers can also benefit from the overlapping ofii@® CPU execution as well as multiple CPUs.
Pipeline servers also allow for cohdrf]33] or convbhyl[6(Reduling, where tasks with similar operations
are scheduled together to allow for better data and insbrudbcality. As each stage in a pipeline is a
grouping of threads executing similar operations, schiaguhese threads to execute together achieves
this objective.

The obvious disadvantage of this approach is that each ctiandancurs the overhead of passing
through a number of stages in the pipeline. This procesdves@n enqueue/dequeue for each stage and
likely a context switch as a different thread processesdhjeast at each stage. However, this overhead
can be reduced by keeping the pipeline small and by having #mead handle several requests before
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it is preempted, i.e., amortizing a context switch acroserse requests keeps the overhead manageable.
Finally, mutual-exclusion/synchronization is neededratgct the queues as multiple threads on different
processors may try to access the queues simultaneouskyagicg complexity and runtime cost.

2.3 Uniprocessor Performance Comparisons

One of the objectives of this thesis is to compare currerteéstathe-art web-server architectures on a
uniprocessor. In this section, a number of previous corapas for web servers on a uniprocessor with a
static workload are discussed. The first comparison digclisssimilar to the comparison of uniprocessor

architectures presented in this thesis; several serversxamined across various workloads. However, a
number of changes have occurred since that comparisonngakiew comparison necessary, including

new server architectures, new implementations for exjss@rver architectures, new operating-system
facilities and faster networks. As web server architecturave been introduced or refined, performance
among new and existing servers has been compared. The sebsetiscussion presents the evolving

comparison picture as these changes occurred.

Paiet al. [@4] implemented Flash, based on the AMPED architecturd,p@nformed tests on various
server architectures for different workloads on a unipssoe connected with multiple 100 Megabit per
second (Mbps) Ethernet interfaces. Several architectueze implemented from a common code-base,
including AMPED, SPED, MP and MT. They show that architeetisr not a significant factor for trivial
tests with a single file. For more realistic workloads, SPEBIPED and MT have approximately the
same throughput when the file set fits into cache and the MRisbas approximately 15-30% lower
throughput. As the workload becomes more disk bound, thipeance of all the servers declines but
only the throughput of the SPED server drops significantlyt éscks additional threads to deal with
blocking disk-1/0O. A final test with hundreds of concurreminaections, to model more realistic WAN
conditions, shows the performance of the MT server gragutdtlines and the performance of the MP
server declines more sharply as the number of concurremtections increases, while the performance
of SPED and AMPED remain flat. They demonstrate the impoetafithreads for disk-bound workloads
and show the potential scalability problems with threadqmmnection servers.

Welshet al. [E9] also performed tests on various server architectwwesompare the performance
of SEDA. They implemented a SEDA server called Haboob in dedacompared it to Flash, which is
AMPED, and Apache, which is thread-per-connection. FlaghApache are both implemented in C. The
workload tested is heavily disk bound as the size of the filéss& 31 GB but the page cache is only 200
MB. In the experiments, throughput is measured as the nuofliient connections are varied. Both the
AMPED server and the thread-per-connection server pedkfewter connections and lower throughput
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than the SEDA server; Haboob has approximately 15-20% higeak throughput than the other two
servers. None of the servers experience degradation inghput as the number of connections increases;
however, Apache caps its connections at 150 and Flash awB0ie, Haboob supports the maximum of
1024 connections tested. As well, Flash and Apache have & tatger distribution of response times,
with large maximum values. Although the machines were coaewith gigabit Ethernet interfaces, the
throughput is low because the workload is heavily disk boamd the number of connections is small.

von Behreret al. [E7] compare the performance of Knot, Apache and Haboob.vildrkload for their
experiment is heavily disk bound since the cache size isduirto 200 MB and the file set is 3.2 GB. Their
experiment measures throughput as the number of connggioncreased to the tens of thousands. Up
to 100 connections, the performance of the servers is ajppataly the same. Beyond 100 connections,
the performance of Haboob and Knot is about the same, andédpately 30% higher than the peak
performance of Apache. As the number of connections appesat0,000 and higher, the performance of
Haboob and Knot drop until they reach the same level as Apache

Brecht et al. [[3J] compare the performance of Knot apderver with an in-kernel web-server,
TUX [Bd E8]. They used two static workloads, an in-memoryES®eb99-like workload and a one-
packet workload on a uniprocessor with two gigabit Etheintdrfaces. Though their results are ex-
pressed in replies per second, larger replies per secomchlypindicate higher throughput, especially
for the one-packet workload. Based on the experimamstver has 40-50% higher throughput for the
in-memory SPECweb99-like workload and 50-60% higher thhguit for the one-packet workload com-
pared to Knot. In this comparisopserver useselect while Knot usegoll andpserver has a maximum
connection limit of 15,000 while Knot is configured to useyodlD00 threads (connections). As ex-
pected [ZP[40], the in-kernel server has the best perfocmdiutuserver has performance close to TUX
for the SPECweb99-like workload.

Burnset al. [I4]] compare Haboob and Knot with servers of different aettures built using the Flux
language. The workload for their experiments is in-memooyjsisting of a 32 MB static file-set on a
uniprocessor with a gigabit Ethernet interface. Their fowas on stressing CPU performance. In their
experiments, Knot has approximately two times the througlep Haboob. The event-based Flux server
and the thread-pool based Flux server both had performamparable to Knot but the Flux server with
dynamic threads had the worst performance.

Park and Pal]46] compare the performance of Flash, Apacti¢daboob to servers modified to use
connection conditioning. With connection conditioningguests pass through filters, to provide secu-
rity and connection management, before being passed oretsettver. Their experiments were on an
inexpensive uniprocessor with a gigabit Ethernet interfaicd involved static workloads. For in-memory
workloads, their experiments show that Flash has the befstrpgance, with Apache having lower perfor-
mance and Haboob having poor performance. As the worklaftd shmore disk bound, the performance
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difference among the servers reduces until all the senaes &ipproximately the same performance except
Haboob whose performance is relatively flat and lower tharother servers for all workloads.

As shown by the previous discussion, a number of changesreccsince the original performance
comparison by Pagt al. [B4]. Unfortunately, the subsequent comparisons have @en las thorough or
consistent. In most cases, only one type of workload is exadjieither in-memory or disk bound. Since
relative server performance can change based on workloedhard to get a complete picture of server
performance from a single workload. As well, implementatémd configuration differences among the
servers make architecture comparisons difficult. For exantipe number of connections supported by the
various servers in the comparison by Wedglal. [B7)] differs and in the comparison by Breddttal. [[L3].
Another example is that the implementation languages areamsistent; Haboob is implemented in Java
while many of the other servers are implemented in C or C+es€ldifferences can have a large effect on
performance. Finally, some of the results are contradictbor example, in some experiments Haboob
performs well compared to Apache or Flash and in other ewxpmaris extremely poorly. As a result, it
is difficult to determine whether relative performance eliéfinces are due to architecture or other factors,
such as, language, implementation, tuning, memory fagttpriorkload, etc. Given these short-comings,
itis reasonable to perform a thorough comparison of cugee-of-the-art web servers on a uniprocessor
across various workloads. The comparison in this thesisrgitts to be fair, by add