
Performance Comparison of Uniprocessor

and Multiprocessor Web Server

Architectures

by

Ashif S. Harji

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Ashif S. Harji 2010

I hereby declare that I am the sole author of this thesis. Thisis a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis examines web-server architectures for static workloads on both uniprocessor and multi-

processor systems to determine the key factors affecting their performance. The architectures examined

are event-driven (µserver) and pipeline (WatPipe). As well, a thread-per-connection (Knot) architecture

is examined for the uniprocessor system. Various workloadsare tested to determine their effect on the

performance of the servers. Significant effort is made to ensure a fair comparison among the servers. For

example, all the servers are implemented in C or C++, and support sendfile and edge-triggeredepoll. The

existing servers, Knot andµserver, are extended as necessary, and the new pipeline-server, WatPipe, is

implemented usingµserver as its initial code base. Each web server is also tunedto determine its best

configuration for a specific workload, which is shown to be critical to achieve best server performance.

Finally, the server experiments are verified to ensure each is performing within reasonable standards.

The performance of the various architectures is examined ona uniprocessor system. Three workloads

are examined: no disk-I/O, moderate disk-I/O and heavy disk-I/O. These three workloads highlight the

differences among the architectures. As expected, the experiments show the amount of disk I/O is the most

significant factor in determining throughput, and once there is memory pressure, the memory footprint of

the server is the crucial performance factor. The peak throughput differs by only 9–13% among the best

servers of each architecture across the various workloads.Furthermore, the appropriate configuration

parameters for best performance varied based on workload, and no single server performed the best for

all workloads. The results show the event-driven and pipeline servers have equivalent throughput when

there is moderate or no disk-I/O. The only difference is during the heavy disk-I/O experiments where

WatPipe’s smaller memory footprint for its blocking servergave it a performance advantage. The Knot

server has 9% lower throughput for no disk-I/O and moderate disk-I/O and 13% lower for heavy disk-I/O,

showing the extra overheads incurred by thread-per-connection servers, but still having performance close

to the other server architectures. An unexpected result is that blocking sockets withsendfile outperforms

non-blocking sockets withsendfile when there is heavy disk-I/O because of more efficient disk access.

Next, the performance of the various architectures is examined on a multiprocessor system. Knot

is excluded from the experiments as its underlying thread library, Capriccio, only supports uniprocessor

execution. For these experiments, it is shown that partitioning the system so that server processes, subnets

and requests are handled by the same CPU is necessary to achieve high throughput. Both N-copy and

new hybrid versions of the uniprocessor servers, extended to support partitioning, are tested. While the

N-copy servers performed the best, new hybrid versions of the servers also performed well. These hybrid

servers have throughput within 2% of the N-copy servers but offer benefits over N-copy such as a smaller

memory footprint and a shared address-space. For multiprocessor systems, it is shown that once the system

becomes disk bound, the throughput of the servers is drastically reduced. To maximize performance on a

multiprocessor, high disk throughput and lots of memory areessential.

v

Acknowledgements

I would like to thank Peter Buhr, my supervisor, mentor and friend. You have always given me the

trust and respect of a colleague, but also tremendous support and guidance. As a result, I have had a most

unusual graduate experience. I have enjoyed the wide variety of projects we have worked on together, and

I will miss our close collaboration.

I also thank the other members of my committee: Tim Brecht, Sebastian Fischmeister, Martin Karsten

and Matt Welsh. Your feedback has improved this thesis and will help in my future research.

During my time in the Programming Languages lab, it has always been more than a place to work. The

lab has undergone many changes over the years, but one constant is the interesting people who choose to

work there. I would like to acknowledge all the members of PLG. You are a big part of the reason I stayed

for as long as I did. In particular, I would like to thank my good friend Roy Krischer for his help and

advice, and for his love of good food and movies. I would also like to thank Jiongxiong Chen, Maheedhar

Kolla, Brad Lushman, Richard Bilson, Ayelet Wasik, JustynaGidzinski, Stefan Büttcher, Mona Mojdeh,

Josh Lessard, Rodolfo Esteves, Azin Ashkan, Ghulam Lashari, Jun Chen, Davinci Logan Yonge-Mallo,

Kelly Itakura, Ben Korvemaker, John Akinyemi, Tom Lynam, Egidio Terra, Nomair Naeem, Jason Selby,

Dorota Zak and Krszytof Borowski. It has been a privilege sharing a lab with all of you. As well, thank

you to Lauri Brown, Stuart Pollock, Robert Warren, Elad Lahav, David Pariag and Mark Groves.

I would also like to thank the people I have had the pleasure ofworking with in my capacity as lab

manager. Especially, Mike Patterson, Wendy Rush, LawrenceFolland and Dave Gawley.

To my parents and my brother, thank you for your tremendous support and patience.

vii

To my parents

ix

Contents

List of Tables xv

List of Figures xix

List of Abbreviations xxi

1 Introduction 1

1.1 Contributions 2

1.2 Thesis Outline 3

2 Background and Related Work 5

2.1 Handling an HTTP Request 5

2.2 Server Architectures 6

2.2.1 Event-Driven Architecture 7

2.2.2 Thread-Per-Connection Architecture 10

2.2.3 Pipeline Architecture 11

2.3 Uniprocessor Performance Comparisons 13

2.4 Multiprocessor Performance Comparisons 15

2.5 File-System Cache 18

2.6 API Improvements 18

2.6.1 Scalable Event-Polling 18

xi

2.6.2 Zero-Copy Transfer 20

2.6.3 Asynchronous I/O 20

2.7 Summary .. . 21

3 Uniprocessor Web-Server Architectures 23

3.1 File Set 23

3.2 Response Time 26

3.3 Verification 27

3.4 Tuning 28

3.5 Environment 29

3.6 Cache Warming 31

3.7 Table Calculation 31

3.8 Servers 33

3.8.1 Knot and Capriccio 33

3.8.2 µserver . 37

3.8.3 SYMPED Architecture 37

3.8.4 Shared-SYMPED Architecture 38

3.8.5 WatPipe .. 38

3.9 Static Uniprocessor Workloads 40

3.10 1.4 GB 40

3.10.1 Tuning Knot .. . 40

3.10.2 Tuningµserver . 47

3.10.3 Tuning WatPipe 57

3.10.4 Server Comparison 59

3.11 4 GB .. . 67

3.11.1 Tuning Knot .. . 67

3.11.2 Tuningµserver . 72

xii

3.11.3 Tuning WatPipe 77

3.11.4 Server Comparison 79

3.12 .75 GB 85

3.12.1 Tuning Knot .. . 85

3.12.2 Tuningµserver . 90

3.12.3 Tuning WatPipe 96

3.13 Server Comparison 99

3.14 Comparison Across Workloads 106

3.15 Summary 108

4 Multiprocessor Web-Server Architectures 113

4.1 Overview 113

4.2 File Set 114

4.3 Environment 115

4.4 Affinities 117

4.5 Scalability 120

4.6 4 GB .. 123

4.6.1 Tuning N-copy .. . 123

4.6.2 Tuningµserver . 131

4.6.3 Tuning WatPipe 137

4.6.4 Server Comparison 142

4.7 2 GB .. 149

4.7.1 Tuning N-copyµserver . 149

4.7.2 Tuning N-copy WatPipe 152

4.7.3 Tuningµserver . 154

4.7.4 Tuning WatPipe 156

4.7.5 Server Comparison 158

4.8 Comparison Across Workloads 165

4.9 Summary .. . 168

xiii

5 Lessons Learned 171

5.1 Implementing Web Servers 171

5.1.1 WatPipe .. 172

5.2 Performance Problems 173

5.3 Performance Experiments 174

6 Conclusion 177

6.1 Future Work 179

APPENDICES 181

A Kernel Patches 183

A.1 Patch for Linux kernel 2.6.16-18 183

A.2 Patch for Linux kernel 2.6.24-3 184

References 185

xiv

List of Tables

3.1 Cumulative amount of memory required for requests when sorted by file size 25

3.2 Knot cache initial experiments - 1.4 GB (condensed area). 42

3.3 Knot cache fine tune experiments - 1.4 GB (condensed area). 42

3.4 Knotsendfile initial experiments - 1.4 GB . 46

3.5 Knotsendfile fine tune experiments - 1.4 GB . 46

3.6 µserver SYMPED initial experiments - 1.4 GB 48

3.7 µserver SYMPED fine tune experiments - 1.4 GB 48

3.8 µserver non-blocking SYMPED with large socket buffer size 51

3.9 µserver shared-SYMPED initial experiments - 1.4 GB 55

3.10 µserver shared-SYMPED fine tune experiments - 1.4 GB 55

3.11 WatPipe initial experiments - 1.4 GB 58

3.12 WatPipe fine tune experiments - 1.4 GB 58

3.13 Ranking of server performance - 1.4 GB 60

3.14 Server performance statistics gathered under a load of15,000 requests per second - 1.4 GB 65

3.15 Server performance statistics gathered under a load of15,000 requests per second - 1.4 GB 66

3.16 Knot cache initial experiments - 4 GB 68

3.17 Knot cache fine tune experiments - 4 GB 68

3.18 Knotsendfile initial experiments - 4 GB . 70

3.19 Knotsendfile fine tune experiments - 4 GB . 70

3.20 µserver SYMPED initial experiments - 4 GB 73

xv

3.21 µserver SYMPED fine tune experiments - 4 GB 73

3.22 µserver shared-SYMPED initial experiments - 4 GB 76

3.23 µserver shared-SYMPED fine tune experiments - 4 GB 76

3.24 WatPipe initial experiments - 4 GB 78

3.25 WatPipe fine tune experiments - 4 GB 78

3.26 Ranking of server performance - 4 GB 80

3.27 Server performance statistics gathered under a load of15,000 requests per second - 4 GB . 83

3.28 Server performance statistics gathered under a load of15,000 requests per second - 4 GB . 84

3.29 Knot cache initial experiments - .75 GB 86

3.30 Knot cache fine tune experiments - .75 GB 86

3.31 Knotsendfile initial experiments - .75 GB . 88

3.32 Knotsendfile fine tune experiments - .75 GB . 88

3.33 µserver SYMPED initial experiments - .75 GB 91

3.34 µserver SYMPED fine tune experiments - .75 GB 91

3.35 µserver shared-SYMPED initial experiments - .75 GB 94

3.36 µserver shared-SYMPED fine tune experiments - .75 GB 94

3.37 WatPipe initial experiments - .75 GB 97

3.38 WatPipe fine tune experiments - .75 GB 97

3.39 Ranking of server performance - .75 GB 100

3.40 Server performance statistics gathered under a load of15,000 requests per second - .75 GB 104

3.41 Server performance statistics gathered under a load of15,000 requests per second - .75 GB 105

4.1 Cumulative amount of memory required for requests when sorted by file size 115

4.2 Experiments with only network interface affinities set (condensed area) 119

4.3 Experiments with aligned network interface and processaffinities set (condensed area) . . 119

4.4 Scalability ofµserver N-copy SYMPED . 122

4.5 Scalability ofµserver N-copy SYMPED at a consistent rate 122

xvi

4.6 µserver N-copy SYMPED experiments - 4 GB 126

4.7 µserver N-copy blocking shared-SYMPED experiments - 4 GB 126

4.8 N-copy WatPipe experiments - 4 GB 130

4.9 µserver non-blocking SYMPED experiments - 4 GB 132

4.10 µserver shared-SYMPED experiments - 4 GB 134

4.11 µserver shared-SYMPED with readers/writer locks experiments - 4 GB 134

4.12 µserver shared-SYMPED with readers/writer locks and process affinities experiments - 4 GB134

4.13 WatPipe experiments - 4 GB 140

4.14 µserver N-copy non-blocking SYMPED load balancing experiments - 4 GB 140

4.15 N-copy non-blocking WatPipe load balancing experiments - 4 GB 140

4.16 Non-blocking WatPipe load balancing experiments - 4 GB. 140

4.17 Ranking of server performance - 4 GB 143

4.18 Server performance statistics gathered under a load of56,000 requests per second - 4 GB . 147

4.19 Server performance statistics gathered under a load of56,000 requests per second - 4 GB . 148

4.20 µserver N-copy non-blocking SYMPED experiments - 2 GB 149

4.21 µserver N-copy shared-SYMPED with readers/writer locks experiments - 2 GB 150

4.22 N-copy WatPipe experiments - 2 GB 153

4.23 µserver shared-SYMPED with readers/writer locks and process affinities experiments - 2 GB155

4.24 WatPipe experiments - 2 GB 157

4.25 Ranking of server performance - 2 GB 159

4.26 Server performance statistics gathered under a load of56,000 requests per second - 2 GB . 163

4.27 Server performance statistics gathered under a load of56,000 requests per second - 2 GB . 164

xvii

List of Figures

2.1 Server-side processing of an HTTP connection 6

2.2 SPED and AMPED server 8

2.3 Thread-per-connection server 10

2.4 Example pipeline server 11

3.1 From file set to HTTP requests 24

3.2 Networking between server and client machines 30

3.3 Knot cache performance with various cache sizes 42

3.4 µserver with non-blockingsendfile . 50

3.5 µserver with blockingsendfile . 52

3.6 Throughput of different architectures - 1.4 GB 60

3.7 Throughput of different architectures - 4 GB 80

3.8 Throughput of different architectures - .75 GB 100

3.9 Comparison of server throughput at 15,000 requests per second across workloads 107

4.1 µserver N-copy non-blocking with 4 processes, 80,000 connections and various affinities . 118

4.2 Partial block diagram of server hardware 139

4.3 Throughput of different architectures - 4 GB 143

4.4 Throughput of different architectures - 2 GB 159

4.5 Comparison of server throughput at 56,000 requests per second across workloads 166

4.6 Comparison of server performance across workloads 166

xix

5.1 Experiments unpatched and patched Linux kernel 2.6.24-3 - 2 GB 175

5.2 Experiments with unpatched and patched Linux kernel 2.6.32 - 2 GB 175

xx

List of Abbreviations

AIO Asynchronous I/O

AMPED Asymmetric Multi-Process Event-Driven

API Application Programming Interface

Gbps Gigabits per second

IPC Inter-Process Communication

IRQ Interrupt Request

LRU Least Recently Used

Mbps Megabits per second

MP Multiprocess

MT Multi-threaded

SEDA Staged Event-Driven Architecture

shared-SYMPED Shared SYmmetric Multi-Process Event-Driven

SPED Single Process Event-Driven

SYMPED SYmmetric Multi-Process Event-Driven

xxi

Chapter 1

Introduction

One of the biggest problems for many Internet companies is scalability. With social networking and cloud

computing growing in popularity, not only is more user-generated content moving online, ever larger

online user-communities are placing increased demands on popular web-sites. For example, Facebook1

serves over 600,000 unique images a second. Delivering thiscontent to a growing user base presents many

scalability problems. While additional hardware is necessary to handle the increased loads, correspond-

ingly advanced servers are required to utilize this hardware and manage the increased loads. These servers

must be able to handle high throughput and support a large number of concurrent connections. Fundamen-

tally, web servers are a key component through which much Internet traffic flows. Another recent change

is the shift to parallel processors (multi-threaded, multi-core, multiprocessor) even on low-end commodity

hardware. This hardware has the potential to reduce the number of server machines necessary for large

commercial sites, reducing power footprints and maintenance costs. However, this shift is forcing appli-

cations to become multi-threaded to take advantage of the parallel hardware. Little research has focused

on examining web-server architectures for static content on multiprocessors. The assumption is exist-

ing server architectures that incorporate threading should scale and perform similarly on multiprocessors.

However, previous work has shown this assumption to be false[62].

In order to achieve high performance, it is reasonable to usespecialized, highly-tuned servers for

various types of traffic. Specifically, a reasonable design is to use a separate server to handle static con-

tent [29, 31], possibly off-site, for example, at Amazon S32 or Akamai3. Even for general web-servers,

efficiently handling static content frees up resources for other types of traffic. Static content is an im-

portant aspect of web traffic, in fact, much user-generated content is static. This thesis examines various

1http://www.facebook.com
2http://aws.amazon.com/s3/
3http://www.akamai.com

1

CHAPTER 1. INTRODUCTION

web-server architectures for static workloads on both uniprocessor and multiprocessor systems. The goal

of the thesis is to identify the key factors affecting the performance of web servers.

Much research has focused on different architectures for web servers serving static content [17, 44, 57,

59, 61]. This work has led to a number of improvements in operating systems and web-server implemen-

tations; e.g., zero-copy transfer and user-level thread libraries that scale to thousands of threads. While

comparisons have been performed as various improvements were developed, a fair comparison of the dif-

ferent architectures based on the current state-of-the-art for web servers, across a number of workloads,

has not been performed. Therefore, the first objective of this thesis is to undertake such a comparison.

The comparison begins by analysing the performance of uniprocessor servers, which can then be used as

a baseline for examining the performance of multiprocessorarchitectures. The second objective of this

thesis is to extend the uniprocessor servers to perform wellon a multiprocessor and to compare their per-

formance across two different workloads. Given the uniprocessor servers as a baseline, the approach of

running multiple copies of a uniprocessor server [62] is thebenchmark used to evaluate the performance

of the extended servers.

1.1 Contributions

The contributions of this thesis are:

• A new pipeline server, WatPipe, is implemented. Its performance is comparable to the other servers

examined for in-memory workloads and it has better performance for disk-bound workloads. As

well, an existing thread library, Capriccio, is extended with a new non-blockingsendfile implemen-

tation.

• WatPipe and shared-SYMPED, an event-driven architecture,are extended for multiprocessor ex-

ecution, including support for partitioning of processes/kernel-threads, subnets and CPUs. These

extensions allow versions of these server to achieve performance comparable to N-copy on multi-

processors.

• Significant effort has been undertaken to make the servers asconsistent as possible to ensure the

comparison among the servers is fair. Contrary to previous work, it is shown that performance

differences between state-of-the-art implementations ofthe various server-architectures is small

given a level playing-field. In fact, the experiments in the thesis show architecture is most important

as it relates to the memory footprint of the servers, when there is memory pressure.

• An important result in the thesis is that non-blockingsendfile is better when there is no disk I/O or

moderate disk I/O, and blockingsendfile is better when the server is disk bound. Once the workload

2

1.2. THESIS OUTLINE

is disk bound, the blocking version of a server performs better than the corresponding non-blocking

server despite having a larger memory footprint because of better disk efficiency due to different

file-access patterns. The exception is the blocking shared-SYMPED servers in the multiprocessor

experiments, where their memory footprint is too large, negating the benefit.

• Through extensive experiments across a range of parameters, it is shown that proper tuning is critical

to achieve best server performance and that no single tuningachieves the best performance for all

workloads.

• Insight is provided into the work behind the thesis. Lessonslearned are presented with respect

to implementing, debugging and performing a large number ofperformance experiments on web

servers.

1.2 Thesis Outline

The thesis is organized as follows. Chapter 2 covers the background material for the thesis and the related

work. Chapter 3 compares the performance of several web-server architectures on a uniprocessor across

three workloads, from in-memory to disk bound. The architectures tested include thread-per-connection,

SYMPED, shared-SYMPED and pipeline. Each server is run withblocking and non-blockingsendfile

and a version of the thread-per-connection server, usingwrite with an application file-cache, is also tested.

The performance of the servers are also profiled and analysedto understand their differences. These

experiments establish a baseline for multiprocessor experiments. Chapter 4 compares the performance of

several web-server architectures on a multiprocessor across two workloads, in-memory and disk bound.

The architectures tested include SYMPED, shared-SYMPED and WatPipe. Both an N-copy version of

the server and a version of the server extended for executionon a multiprocessor are tested. Again, the

servers are run with blocking and non-blockingsendfile and then profiled and analysed to understand

the performance differences. Chapter 5 relates some of the lessons learned based on the experience of

implementing, debugging and performing a large number of experiments on the web servers in the thesis.

Chapter 6 contains the conclusion and future work.

3

Chapter 2

Background and Related Work

A variety of architectures for building web servers have been proposed and implemented. These servers

have become increasingly sophisticated to deal with a largenumber of concurrent connections while

achieving high throughput. In addition to evolving server architectures, operating-system facilities have

been examined and extensions proposed to improve scalability, efficiency and ease of programming. This

chapter examines this work.

2.1 Handling an HTTP Request

Before looking at complex server-architectures, it is useful to understand how a server handles an HTTP

request. Processing a typical static HTTP-request by a server consists of several steps, see Figure 2.1. The

server begins by accepting a connection request from a client. Once a connection is established, an HTTP

request is read from a socket. For a static request, the server searches for the requested file and a response

is sent to the client. Assuming the request is successful, aspart of this response the file is read from disk

and sent over the network to the client. If the connection is persistent, the server reads a new request from

the client. If there are no new requests, the connection is closed and a new connection is accepted. This

description is simplified as it does not consider file caches,the potential need to send the file in blocks,

etc.

Handling a single request can involve a number of delays, such as transmission latencies and band-

width limitations. Given these delays, the time to handle a typical request can be measured in seconds [9].

Therefore, a server needs to handle many requests simultaneously. For a high-performance server to

process thousands of requests a second, the server must be able to efficiently handle thousands of simul-

taneous connections. The web-server architectures examined in this thesis each have a different approach

5

CHAPTER 2. BACKGROUND AND RELATED WORK

Read Process CloseWriteAccept

Client Client

File

Client
persistent

Figure 2.1: Server-side processing of an HTTP connection

to dealing with a large number of simultaneous connections.

2.2 Server Architectures

There are several different server architectures appropriate for high-performance web-servers. As well,

there are a number of criteria upon which to evaluate the various server architectures. For this thesis, the

most important criteria is throughput, both at peak and after saturation. Throughput is selected because

it is a common performance metric used in a large body of previous work, allowing the results in the

thesis to be compared to this work. A well-designed server should degrade gracefully after saturation,

maintaining high throughput. As a consequence of the workloads used in this thesis, a server must support

a large number of connections to achieve high throughput. Additional criteria affecting throughput include

scalability, latency, memory footprint and contention, depending on the workload being tested. Finally,

while ease of programming and debugging are important, theyare not considered in this thesis because all

the servers examined are complex.

Traditionally, a web server is classified based on how it handles potentially-blocking network-I/O.

In order to achieve high throughput, a server must be able to interleave the processing of thousands of

simultaneous connections. For network I/O, it is possible to take advantage of the non-blocking socket

operations available on Unix-like operating-systems. With blocking semantics, the calling thread blocks

until all the data associated with the call has been bufferedor transmitted by the kernel. With non-blocking

semantics, only the portion of data that can be immediately buffered in the kernel is transmitted to the

client. Then, the calling thread continues and can attempt to send the remaining untransmitted data at a

later time. Combining non-blocking operations with an event-polling mechanism likeselect or poll allows

the server to interleave processing of thousands of simultaneous connections. This architecture is referred

to as an event-driven server.

6

2.2. SERVER ARCHITECTURES

Another method for dealing with potentially blocking network-I/O is to use threads. In this approach,

if a user-thread blocks waiting on a call, other unblocked threads can execute. In the simple case, each

thread only processes a single connection at a time, called thread-per-connection, so thousands of threads

may be required. Context-switching among the threads allows for the implicit interleaving of thousands

of simultaneous connections. This architecture is referred to as a threaded server.

There has been much debate over whether an event-driven or a threaded architecture is better [3,

20, 34, 43, 56]. The argument is event-driven programs tend to be difficult to understand because of

complicated control flow and threaded programs tend to have subtle errors and are difficult to debug. A

number of libraries have been developed to make event-driven programming easier, e.g.,libeel [19] and

libasync [20]. Simplifying programming with threads is an area currently receiving a lot of attention but

it is a difficult problem and no solution has been found. Unfortunately, this simple classification of server

architectures is both inadequate and misleading.

In addition to blocking network-I/O, disk I/O can cause blocking. Asynchronous I/O (AIO) mech-

anisms exist for some file operations, but performance-critical system-calls likesendfile have no AIO

equivalent. Therefore, all server architectures must employ some form of threading to mitigate the ef-

fects of blocking disk-I/O. Furthermore, over the past decade, there has been a paradigm shift within

hardware architecture from faster processors (more MHz) toparallel processors (multi-threaded, multi-

core, multiprocessor) because physical limits in CPU speedand power/cooling are being reached. This

change is having a ubiquitous effect on the design of all modern software towards some form of concur-

rency. As well, servers traditionally labelled as thread-based also involve events. Depending on the type

of threading, the event-handling mechanisms are in the thread library, the language run-time library or

embedded in the operating-system kernel. Taking a holisticview of the entire architecture, including ap-

plication, libraries and operating system, all server architectures must incorporate both threads and events

to maximize performance. There has been some research into integrating event-driven and threaded pro-

gramming [3, 20, 27, 32, 62]. While all the servers examined in this thesis use some combination of

event-driven and threaded programming, they do not use these approaches.

The following different web-server architectures have been proposed and implemented.

2.2.1 Event-Driven Architecture

Single-Process Event-Driven (SPED) architecture [44] is a common approach to implementing a web

server, withµserver [1] and Zeus [63] as examples of high-performance SPED web-servers. In this ap-

proach, a single process (kernel thread) services multipleconnections in various stages of processing using

non-blocking I/O, see Figure 2.2(a). In the figure, connections are represented byCi and rounded rectan-

gles represent tasks/threads/processes. Data structuresencode the current status of each connection. An

7

CHAPTER 2. BACKGROUND AND RELATED WORK

Close

File

Read Process WriteAccept

Client ClientClient
persistent

Close

File

Read Process WriteAccept

Client ClientClient
persistent

Close

File

Read Process WriteAccept

Client ClientClient
persistent

Event Poll

C1

C2

CN

Blocking and Non-Blocking

(a) SPED Server

Close

File

Read Process WriteAccept

Client ClientClient
persistent

Close

File

Read Process WriteAccept

Client ClientClient
persistent

Close

File

Read Process WriteAccept

Client ClientClient
persistent

Event Poll

C1

C2

CN

Blocking

Helper Task

Helper Task

Non-Blocking

(b) AMPED Server

Figure 2.2: SPED and AMPED server

event mechanism such asselect or poll is called to determine which connections are currently readable or

writable. For each outstanding event, an appropriate event-handler is invoked to process that event with-

out causing the server to block. For example, depending on the type of the event, a new connection may

be accepted, a new HTTP request may be read or some data may be written to the socket. Once all the

outstanding events are handled, the process is repeated. The complexity of implementing a SPED server

comes from the management required to concurrently processand maintain many partially completed

connections in differing states with only a single thread (complex finite-state machine).

An interesting extension to this strategy, proposed by Chandra and Mosberger [16] and further inves-

tigated by Brechtet al. [13], is multiaccept, i.e., to accept multiple connections when the event mechanism

indicates that a listening socket is readable. Callingaccept multiple times amortizes the overhead of

the event-mechanism system-call by establishing multipleconnections after each poll. This strategy is

employed by theµserver.

One major disadvantage of the SPED architecture is that blocking due to disk I/O significantly de-

creases performance [44]. Since SPED only involves a singleprocess containing one kernel thread, block-

ing disk-I/O suspends the entire server until the I/O completes. Based on profiling,µserver spends a large

portion of time I/O-blocked on disk-bound workloads. As SPED is single threaded, it cannot take advan-

tage of overlapping CPU execution and disk I/O, nor can it take advantage of multiple CPUs. A natural

extension to this approach is to run several copies of a SPED web-server. This approach is called N-copy

and was proposed by Zeldovichet al. [62]. Not only can this strategy take advantage of multiple CPUs,

but it can also be used to deal with blocking I/O. The key is that multiple server-copies are needed per

CPU, so when one process blocks due to blocking I/O, another process is usually available to run. As each

8

2.2. SERVER ARCHITECTURES

copy is independent, there is no need for mutual-exclusion/synchronization at the application level; at the

kernel level, sharing may occur necessitating locking. However, with N-copy each independent process is

listening for connections on a separate socket, requiring additional processing in order to balance requests

across the individual servers and to prevent all requests from being sent to only one server.

One approach that extends SPED to deal with blocking disk-I/O is the Asymmetric Multi-Process

Event-Driven (AMPED) architecture proposed by Paiet al. [44] and used in the implementation of

the Flash web-server. The idea behind this architecture is to make up for the lack of true non-

blocking/asynchronous system-calls for disk I/O on many operating systems by providing helper tasks

to handle blocking disk-I/O operations. The basic implementation is to use the SPED approach for all re-

quests that can be serviced from the main-memory file-cache and to pass off blocking disk-I/O operations

to helper tasks, as in Figure 2.2(b). Communication betweenthe server task and the helper tasks is done

through inter-process communication (IPC), e.g., pipes, so that completion events from the helper tasks

are processed by the server task using non-blockingselect. Processes may or may not share address-spaces

and AMPED relies on the operating system for all process scheduling.

Using helper tasks to perform blocking disk-I/O allows the server task to continue handling requests

while disk I/O is in progress. Further benefits include the ability to utilize multiple disk drives more

efficiently and more efficient disk-head scheduling. At the core of AMPED is a SPED server, hence it

benefits from the advantages of only having a single process managing the processing of connections.

Specifically, only a single cache with no mutual-exclusion/synchronization is required as the helper tasks

do not modify the cache. Furthermore, the only overhead for long-lived connections is one file descriptor

and some application-level data-structures rather than needing an entire thread as with the thread-per-

connection approach. Finally, the centralized storage of information simplifies data gathering and only

one listen socket is required. The disadvantages of this approach are the IPC overhead and the additional

memory required for the helper tasks. The amount of additional memory varies depending on whether

address spaces are shared. As well, the AMPED architecture may not scale well on its own with multiple

CPUs; while I/O is distributed among several processes, much of the processing is centralized in a single

process.

Another approach that builds on N-copy is the Symmetric Multi-Process Event Driven (SMPED)

architecture by Ren and Wang [37]. SMPED combines a pool of SPED processes with a scheduler process

to accept connections and distribute them among the SPED processes and perform load balancing. The

server deals with blocking I/O by having a pool of SPED processes whose size is dynamically adjusted

based on throughput feedback from each process. This architecture is similar to the Symmetric Multi-

Process Event-Driven architecture examined in this thesis(see section 3.8.3), though both were conceived

independently.

9

CHAPTER 2. BACKGROUND AND RELATED WORK

Close

File

Read Process WriteAccept

Client ClientClient
persistent

Close

File

Read Process WriteAccept

Client ClientClient
persistent

Close

File

Read Process WriteAccept

Client ClientClient
persistent

Library

Event Poll

C1 C2 CN

Figure 2.3: Thread-per-connection server

2.2.2 Thread-Per-Connection Architecture

The thread-per-connection architecture is another approach for implementing web servers, e.g.,

Apache [6] and Knot [57]. In this approach, one thread completely handles a single HTTP request before

processing another request, see Figure 2.3. Paiet al. [44] distinguish between multi-threaded (MT) and

multiprocess (MP) servers. The former involves multiple user-threads in a single address-space and the

later involves each thread corresponding to a unique process in a separate address-space. The type of

thread-per-connection server examined in this thesis is multi-threaded.

As well, it is possible to create processes or threads dynamically for each new connection or to use a

static pool of threads or processes. Dynamically creating threads allows the server to scale depending on

the workload. Having a fixed-size pool of threads results in more overhead when the number of connec-

tions is small but eliminates a potentially expensive thread/process creation cost for each connection. The

thread-per-connection server examined in this thesis usesa static pool of threads.

One advantage of the thread-per-connection architecture is the simplicity gained by making application-

level blocking-I/O calls in the server and allowing the interleaving of requests to be handled by context

switching rather than having a single thread explicitly manage the state of numerous partially-completed

connections. However, there are a number of disadvantages to this approach. First, a web server may

need to maintain hundreds or even thousands of simultaneousconnections resulting in a correspond-

ing number of threads. Having a large number of threads results in significant memory overhead due

to their stacks. Furthermore, there is additional overheadfor context switching and from the mutual-

exclusion/synchronization required to coordinate accessto shared data-structures, like the file cache. Hav-

ing a separate cache for each thread is impractical when there are a large number of threads as it can lead

to significant data duplication. As well, efficiently scheduling a large number of threads is difficult. In

addition to the execution costs associated with scheduling, factors such as locking and processor caches

must be considered to maximize performance [12, 33, 52].

10

2.2. SERVER ARCHITECTURES

Read

C7Accept

C5

Write

Write Poll

Read Poll

C2

C6C3

C1C4

Figure 2.4: Example pipeline server

The underlying thread-library used by a server has a significant affect on performance. The Linux

NPTL Pthreads library [22] uses a 1:1 threading model, whereeach user-level thread is also a kernel

thread. With this model, kernel threads can make blocking system-calls without inhibiting the execution

of other user-level threads and the server can take advantage of overlapping CPU execution with I/O and

multiple CPUs with no additional effort by the application programmer. The problem with 1:1 threading

libraries is that they do not scale to support the tens of thousands of threads needed for a high-performance

server [57].

Using an M:N user-level threading package is the alternative to allow scaling to thousands of threads.

With M:N threading, the threading library typically implements an I/O subsystem built on top of an event

mechanism likeselect or poll, similar to SPED, to handle I/O. As multiple user-threads are multiplexed

over a small number of kernel threads, the threading librarytries to avoid making blocking system-calls. In

order to provide blocking calls for the user threads withoutactually blocking the underlying kernel threads,

system calls are wrapped, and the underlying thread-library deals with blocking by making an equivalent

non-blocking system-call. If an equivalent non-blocking system-call is unavailable, the blocking call

can be allowed to proceed or handed off to a worker thread, similar to an AMPED helper thread. In

either case, a sufficient number of kernel threads are neededto handle blocking I/O while still allowing

unblocked user-threads to continue executing. Knot [57] isa thread-per-connection server implemented

using the Capriccio thread-package [57], which scales to thousands of threads (see Section 3.8.1, p. 33 for

more details).

2.2.3 Pipeline Architecture

The pipeline architecture is another approach for implementing web servers, e.g., [14, 17, 33, 53, 59, 61].
1 In a pipeline architecture, a server’s execution is broken into separate stages, with thread pools to service

1Note, while Flux [14] and Aspen [53] are languages and not architectures or servers, the network applications generatedby

Flux and Aspen have a pipeline architecture.

11

CHAPTER 2. BACKGROUND AND RELATED WORK

each stage, see Figure 2.4. The thread pools can be per-stageor shared across multiple stages or the entire

application. In the figure, the thread pools are per-stage, with the Read stage serviced by two threads and

the write stage serviced by four threads. The number of connections currently being processed by each

stage, indicated byCi, is at most equal to the number of threads, but there may be additional in-progress

connections waiting in the queues between stages. A pipeline architecture is often referred to as a hybrid

architecture as it explicitly uses threads and events, but the number of threads is fewer than the number of

connections. The Staged Event-Driven Architecture (SEDA) proposed by Welshet al. [59] is a complex

pipeline architecture used to construct the Haboob web-server [59]. SEDA starts as a basic pipeline server

by dividing an application into a series of stages. The stages are self-contained but linked by event queues

that are used to communicate between the stages. As well, a shared or individual thread-pool is used to

service each stage. SEDA then extends the basic pipeline design by adding a dynamic resource-controller

that adjusts the thread allocation and scheduling of the stage to meet performance targets. Typically there

are only a small number of threads per stage, and an application consists of a network of stages. For

example, the Haboob server contains the following stages: Socket Accept, Socket Read, HTTP Parse,

PageCache, CacheMiss, File I/O, HttpSend and SocketWrite.An HTTP request is passed from stage to

stage as it is processed through the pipeline.

There are several advantages to using a pipeline server withself-contained stages. First, the mod-

ularity of this approach allows stages to be reused in several applications and allows for independent

load-management. As well, it makes debugging easier and facilitates performance analysis. For example,

the size of the queues connecting the stages show how well theapplication is running and help to identify

bottlenecks. Third, using finite event-queues makes it easier to perform load shedding as requests can be

terminated at any stage.

While pipeline servers like SEDA have the complexity of bothevents and threads at the application

level, they also benefits from some advantages of both approaches and allow better control over each.

SEDA utilizes the efficiency of the event-based approach to reduce the number of threads significantly

below the number of connections. Furthermore, with multiple threads spread across the various stages,

pipeline servers can also benefit from the overlapping of I/Oand CPU execution as well as multiple CPUs.

Pipeline servers also allow for cohort [33] or convoy [60] scheduling, where tasks with similar operations

are scheduled together to allow for better data and instruction locality. As each stage in a pipeline is a

grouping of threads executing similar operations, scheduling these threads to execute together achieves

this objective.

The obvious disadvantage of this approach is that each connection incurs the overhead of passing

through a number of stages in the pipeline. This process involves an enqueue/dequeue for each stage and

likely a context switch as a different thread processes the request at each stage. However, this overhead

can be reduced by keeping the pipeline small and by having each thread handle several requests before

12

2.3. UNIPROCESSOR PERFORMANCE COMPARISONS

it is preempted, i.e., amortizing a context switch across several requests keeps the overhead manageable.

Finally, mutual-exclusion/synchronization is needed to protect the queues as multiple threads on different

processors may try to access the queues simultaneously, increasing complexity and runtime cost.

2.3 Uniprocessor Performance Comparisons

One of the objectives of this thesis is to compare current state-of-the-art web-server architectures on a

uniprocessor. In this section, a number of previous comparisons for web servers on a uniprocessor with a

static workload are discussed. The first comparison discussed is similar to the comparison of uniprocessor

architectures presented in this thesis; several servers are examined across various workloads. However, a

number of changes have occurred since that comparison, making a new comparison necessary, including

new server architectures, new implementations for existing server architectures, new operating-system

facilities and faster networks. As web server architectures have been introduced or refined, performance

among new and existing servers has been compared. The subsequent discussion presents the evolving

comparison picture as these changes occurred.

Paiet al. [44] implemented Flash, based on the AMPED architecture, and performed tests on various

server architectures for different workloads on a uniprocessor connected with multiple 100 Megabit per

second (Mbps) Ethernet interfaces. Several architectureswere implemented from a common code-base,

including AMPED, SPED, MP and MT. They show that architecture is not a significant factor for trivial

tests with a single file. For more realistic workloads, SPED,AMPED and MT have approximately the

same throughput when the file set fits into cache and the MP server has approximately 15–30% lower

throughput. As the workload becomes more disk bound, the performance of all the servers declines but

only the throughput of the SPED server drops significantly asit lacks additional threads to deal with

blocking disk-I/O. A final test with hundreds of concurrent connections, to model more realistic WAN

conditions, shows the performance of the MT server gradually declines and the performance of the MP

server declines more sharply as the number of concurrent connections increases, while the performance

of SPED and AMPED remain flat. They demonstrate the importance of threads for disk-bound workloads

and show the potential scalability problems with thread-per-connection servers.

Welsh et al. [59] also performed tests on various server architectures to compare the performance

of SEDA. They implemented a SEDA server called Haboob in Javaand compared it to Flash, which is

AMPED, and Apache, which is thread-per-connection. Flash and Apache are both implemented in C. The

workload tested is heavily disk bound as the size of the file set is 3.31 GB but the page cache is only 200

MB. In the experiments, throughput is measured as the numberof client connections are varied. Both the

AMPED server and the thread-per-connection server peak with fewer connections and lower throughput

13

CHAPTER 2. BACKGROUND AND RELATED WORK

than the SEDA server; Haboob has approximately 15–20% higher peak throughput than the other two

servers. None of the servers experience degradation in throughput as the number of connections increases;

however, Apache caps its connections at 150 and Flash at 506,while Haboob supports the maximum of

1024 connections tested. As well, Flash and Apache have a much larger distribution of response times,

with large maximum values. Although the machines were connected with gigabit Ethernet interfaces, the

throughput is low because the workload is heavily disk boundand the number of connections is small.

von Behrenet al. [57] compare the performance of Knot, Apache and Haboob. Theworkload for their

experiment is heavily disk bound since the cache size is limited to 200 MB and the file set is 3.2 GB. Their

experiment measures throughput as the number of connections is increased to the tens of thousands. Up

to 100 connections, the performance of the servers is approximately the same. Beyond 100 connections,

the performance of Haboob and Knot is about the same, and approximately 30% higher than the peak

performance of Apache. As the number of connections approaches 10,000 and higher, the performance of

Haboob and Knot drop until they reach the same level as Apache.

Brecht et al. [13] compare the performance of Knot andµserver with an in-kernel web-server,

TUX [36, 48]. They used two static workloads, an in-memory SPECweb99-like workload and a one-

packet workload on a uniprocessor with two gigabit Ethernetinterfaces. Though their results are ex-

pressed in replies per second, larger replies per second typically indicate higher throughput, especially

for the one-packet workload. Based on the experiments,µserver has 40–50% higher throughput for the

in-memory SPECweb99-like workload and 50–60% higher throughput for the one-packet workload com-

pared to Knot. In this comparison,µserver usesselect while Knot usespoll andµserver has a maximum

connection limit of 15,000 while Knot is configured to use only 1000 threads (connections). As ex-

pected [29, 49], the in-kernel server has the best performance, butµserver has performance close to TUX

for the SPECweb99-like workload.

Burnset al. [14] compare Haboob and Knot with servers of different architectures built using the Flux

language. The workload for their experiments is in-memory,consisting of a 32 MB static file-set on a

uniprocessor with a gigabit Ethernet interface. Their focus was on stressing CPU performance. In their

experiments, Knot has approximately two times the throughput of Haboob. The event-based Flux server

and the thread-pool based Flux server both had performance comparable to Knot but the Flux server with

dynamic threads had the worst performance.

Park and Pai [46] compare the performance of Flash, Apache and Haboob to servers modified to use

connection conditioning. With connection conditioning, requests pass through filters, to provide secu-

rity and connection management, before being passed on to the server. Their experiments were on an

inexpensive uniprocessor with a gigabit Ethernet interface and involved static workloads. For in-memory

workloads, their experiments show that Flash has the best performance, with Apache having lower perfor-

mance and Haboob having poor performance. As the workload shifts to more disk bound, the performance

14

2.4. MULTIPROCESSOR PERFORMANCE COMPARISONS

difference among the servers reduces until all the servers have approximately the same performance except

Haboob whose performance is relatively flat and lower than the other servers for all workloads.

As shown by the previous discussion, a number of changes occurred since the original performance

comparison by Paiet al. [44]. Unfortunately, the subsequent comparisons have not been as thorough or

consistent. In most cases, only one type of workload is examined, either in-memory or disk bound. Since

relative server performance can change based on workload, it is hard to get a complete picture of server

performance from a single workload. As well, implementation and configuration differences among the

servers make architecture comparisons difficult. For example, the number of connections supported by the

various servers in the comparison by Welshet al. [57] differs and in the comparison by Brechtet al. [13].

Another example is that the implementation languages are not consistent; Haboob is implemented in Java

while many of the other servers are implemented in C or C++. These differences can have a large effect on

performance. Finally, some of the results are contradictory. For example, in some experiments Haboob

performs well compared to Apache or Flash and in other experiments extremely poorly. As a result, it

is difficult to determine whether relative performance differences are due to architecture or other factors,

such as, language, implementation, tuning, memory footprint, workload, etc. Given these short-comings,

it is reasonable to perform a thorough comparison of currentstate-of-the-art web servers on a uniprocessor

across various workloads. The comparison in this thesis attempts to be fair, by addressing the problems

discussed in this section, and uses current best practices like sendfile andepoll.

Note, the publication [45] is a preliminary version of the moderate disk-I/O uniprocessor-workload

presented in Chapter 3. However, there are a number of differences that make the results in that publication

incomparable to those in the thesis. The differences in thisthesis include 1.4 GB of system-memory

instead of 2 GB for the moderate workload, the use ofepoll, a Linux kernel patched to fix a caching

problem, a newsendfile implementation for Knot and large changes to WatPipe based on addingepoll

support.

2.4 Multiprocessor Performance Comparisons

Another objective of this thesis is to compare the performance of multiprocessor server-architectures.

Little research has focused on web-server architectures specifically targeted for multiprocessors. Three

previous comparisons for web servers on multiprocessors with a static workload are presented.

Zeldovichet al. [62] compare the performance of a number of web servers. In addition to AMPED

(Flash) and thread-per-connection (Apache), they also measured the performance of N independent copies

of a single-process web-server, where N is the number of CPUs. For a balanced workload, they suggest

that the N-copy server represents an upper bound on performance as each server process runs indepen-

15

CHAPTER 2. BACKGROUND AND RELATED WORK

dently. Note that Flash also creates one independent servercopy per CPU on a multiprocessor, similar to

N-copy, except the servers share a listen socket. The purpose of their experiment is to measure the multi-

processor speedup for various architectures. The workloadis in-memory with a warmed file-cache. The

experiments show the performance of Flash is better than Apache for one processor, but as the number

of processors increases to four, the difference in performance shrinks. However, the performance of both

servers is less than the N-copy server. An interesting result of the experiment is that the speedup of all the

servers is small, especially beyond two CPUs. Similar to themultiprocessor comparison in the thesis, the

various servers are compared to an N-copy server, with the N-copy server having the highest throughput

for the in-memory workload. However, Zeldovichet al. do not include a pipeline server in their com-

parison, affinities and partitioning (see Section 4.4, p. 117) are not considered and only one workload is

examined.

Choi et al. [17] propose a pipeline architecture for multiprocessor systems and compare the perfor-

mance to AMPED, SPED, MP and MT architectures using a simulator. In their architecture, processing an

HTTP request is broken into pipeline stages, with each stageserviced by a single thread. A single pipeline

is referred to as a pipelined thread-pool, and the server consists of multiple pipelined thread-pools in a

single address-space. For the pipeline-server experiments there is one pipelined thread-pool per CPU, for

the AMPED and SPED server experiments there is one server copy per CPU and for the MT experiments

there are 32 or 64 threads per CPU. Based on the simulations, they conclude the memory footprint of a

server is important in determining the performance of a server especially as the number of CPUs becomes

large. Hence, servers with separate address-spaces scale poorly compared to servers with shared address-

spaces on multiprocessors when using an N-copy approach. Aswell, they found that contention became a

problem for MT servers as the number of threads becomes largebut not for the other servers because the

number of threads sharing data is small.

There are a number of similarities between the work done by Choi et al.and Chapter 4 of this thesis.

Both examine pipeline and N-copy servers under different workloads, and find memory footprint to be

an important factor in server performance. However, there are also a number of differences. The most

important difference is their experiments are run on a simulator, which allowed testing more workloads,

while the experiments in this thesis are actually run on a multiprocessor. The experiments run by Choi

et al. are a reasonable starting point, but do not take into accountaffinities and partitioning, scalability

issues (outside of file-cache locking), cache coherency or many other factors that come into play on a real

system. However, the advantage of running on a simulator is the number of CPUs (processing elements)

are scaled from 1 to 15, a larger range than examined in the thesis. As well, the pipeline server proposed

by Choiet al. is different from the architecture in this thesis. Differences include the number and function

of stages in the pipeline, the use ofsendfile in the thesis, the number of threads per stage, etc. As well,

Choiet al.do not discuss the mechanism used to poll for events in their simulation. Based on experiments

16

2.4. MULTIPROCESSOR PERFORMANCE COMPARISONS

in Chapter 4, their strategy of only using one thread per CPU to read data from disk is insufficient in the

presence of disk I/O. As well, their experiments show surprisingly little difference in throughput between

the SPED and AMPED servers when there is disk I/O.

Upadhyayaet al. [53] compare the performance of Flash, Haboob and a server developed using

Flux [14] with a pipeline server they developed using Aspen.The workload for the experiments con-

sists of a 3.3 GB static SPECweb99-like file-set on a 4 CPU multiprocessor with four gigabit Ethernet

interfaces. Since the server has 4 GB of memory, the workloadis probably in-memory or has a small

amount of disk I/O. Their experiments show that the pipelineAspen server is scalable as the number of

concurrent client-connections increases, eventually peaking with the highest throughput. Flash and the

Flux server achieve higher throughput for a smaller number of concurrent client-connections but their

throughput peaks quickly, levels off and is eventually surpassed by the Aspen server. The performance of

Haboob is much lower than the other servers. Flash and Haboobuse an application file-cache and Aspen

usessendfile. Flux does not use an application file-cache, but it is unclear if it usessendfile. Similar to the

experiments in the thesis, the pipeline server performs well. However, the use ofsendfile by Aspen gives

it a performance advantage. Unfortunately, there is not enough information to determine what factors are

affecting the performance of the various servers. As well, only one workload is tested and affinities and

partitioning are not considered.

Voras and Zagar [58] compare the performance of SPED, SEDA, AMPED and SYMPED on the

mdcached application, a memory database for web caches. Whilemdcached is not a web-server, it is a

high-performance network server. The workload for the experiments is in-memory on a 8 CPU machine.

However, the clients and server run on the same machine so only 4 CPUs are dedicated to the server. The

experiments show that SYMPED has the best performance, followed by SEDA and AMPED with similar

performance and SPED has the worst performance. In their experiments, SYMPED had a linear increase

in performance up to 4 threads. These experiments cannot be directly compared with the experiments in

the thesis because the operating system, test application and workload are different from those used in the

thesis; however, the result that SYMPED performs well for in-memory workloads is consistent with the

experiments in the thesis. The authors do not provide an explanation for SEDA’s performance.

Web-server experiments on multiprocessors have been relatively limited and have tended to ignore

important issues like affinities and partitioning. The non-simulator experiments have focused exclusively

on in-memory workloads, but workloads requiring disk-I/O must be examined as they are more realistic.

As well, the server throughput for these experiments is relatively low, so it does not stress the server

architectures. Similar to the uniprocessor experiments, it is difficult to determine the factors causing the

performance differences among the various servers. The simulator experiments are a reasonable starting

point, but must be verified on an actual machine.

17

CHAPTER 2. BACKGROUND AND RELATED WORK

2.5 File-System Cache

The Linux file-system cache is important for the experimentsin this thesis. For example, file data is

transmitted usingsendfile via the file-system cache. As well, its size dictates the amount of disk I/O

required during an experiment; as the level of disk I/O increases, the throughput of a server decreases.

The file-system cache is global to the operating system and shared by all processes and threads. This

section presents a brief description of the Linux file-system cache.

The Linux file-system cache is used to cache data from disk, including meta-data, directory informa-

tion and file data. Data read from disk is typically stored andaccessed from the file-system cache because

disk access is slow compared to memory access. The cache is made up of pages, where a page is a fixed-

size block of memory. Cached data is stored indefinitely as long as there is sufficient free memory. The

size of the file-system cache is limited by the amount of free memory. If a section of a file is accessed

that is not currently in the file-system cache, it must be readinto the cache. However, if there is no free

memory, some existing file data must be evicted so the new file data can be read. A Least Recently Used

(LRU) algorithm is used to determine which pages of file data should be evicted from the file-system

cache. While changes to disk data also proceed through the file-system cache, this operation is not used

in this thesis, so it is not discussed further as it is irrelevant to the experiments.

Since disk access is slow and most file access is sequential, the operating system typically reads a

large amount of adjacent data for a single disk read into the file-system cache. In addition, if the operating

system detects that file access is proceeding sequentially,it also performs additional read-ahead by reading

the next chunk of sequential file data from disk before it is requested by the application. Performing larger

reads improves disk efficiency and using read-ahead reducesthe amount of time an application waits for

disk I/O as the data has already been requested. If the operating system detects that file access is not

sequential, then read-ahead is disabled.

2.6 API Improvements

Many of the servers discussed in this chapter do not take advantage of newer operating-system calls.

This section reviews some recent application-programming-interface (API) extensions applicable to high-

performance servers.

2.6.1 Scalable Event-Polling

Event-polling mechanisms are important for high-performance servers. Event-driven architectures such as

SPED and AMPED use event polling to determine what actions toperform next. Many thread libraries use

18

2.6. API IMPROVEMENTS

event polling to minimize blocking, allowing multiple user-threads to be multiplexed over a small number

of kernel threads. Banga and Mogul showed that traditional interfaces likeselect andpoll do not scale

well for a large number of file or socket descriptors [8]. In the context of a web server, each connection

corresponds to a socket descriptor.

One problem withselect andpoll is that the cost of the operation is proportional to the number of

descriptors, not the number of available events. These costs include O(n) copying costs for arguments such

as bitmasks or arrays into the kernel and back to user space and O(n) costs to scan the list of descriptors to

find outstanding events. Another problem is the calls are stateless, so each call requires the interest set as

an argument. Hence, multiple calls on the same set of file descriptors require the interest set to be copied

into the kernel each time, versus the kernel retaining the interest set.

Research on more appropriate event-polling mechanisms forhigh-performance servers handling a

large number of simultaneous connections has resulted in a number of new event-polling mechanisms [9,

16, 47]. These new event-polling mechanisms have been incorporated into various operating systems,

including /dev/poll on Solaris, Kqueue [35] on FreeBSD andepoll on Linux. I/O completion ports offer

similar functionality under Windows [9, 55].

The idea behind these mechanisms is similar to the scalable event-mechanism proposed by Bangaet

al. [9]. In their mechanism, rather than having event polling bestateless, the kernel stores the interest

set on behalf of the application. The application program calls an event-polling routine to retrieve events

associated with the stored interest-set or calls update routines to modify the interest-set stored in the kernel.

Their mechanism is both efficient and scalable; it reduces the amount of data copying required for polling

and the performance of the event-poll calls depend on the number of available events and not the size of

the interest set. One disadvantage to this approach, however, is that a copy of the interest set must be kept

inside the kernel, potentially resulting in additional memory overhead as a copy of the interest set likely

exists in the application too. As well, each change to the interest set requires an expensive call into the

kernel, offsetting some of the advantages, especially if the interest set changes frequently [26].

All the servers examined in this thesis take advantage ofepoll, with functionality similar to the event

mechanism proposed by Bangaet al. [9]. There are two modes of operation forepoll: level-triggered

and event-triggered. With level-triggered semantics, as long as there are events pending for a descriptor,

polling that descriptor returns, indicating events are available. With edge-triggered semantics, polling

a descriptor only indicates available events when the eventfirst occurs; subsequent polls of the same

descriptor do not indicate that events are pending until allevents for that descriptor are drained. Typically,

the application continues reading or writing to a descriptor until EAGAIN is returned before it can expect

to be notified of further events for that descriptor.

Gammoet al. [26] compared the performance ofepoll, select andpoll. They show that edge-triggered

19

CHAPTER 2. BACKGROUND AND RELATED WORK

epoll performs better than level-triggeredepoll for web servers under various loads and that edge-triggered

epoll performs equivalently or better thanselect or poll for a variety of workloads. As well, similar

to Chandra and Mosberger [16], they show thatselect andpoll perform reasonably under high load for

certain workloads provided multiaccept is used. The servers examined in this thesis use edge-triggered

semantics forepoll.

2.6.2 Zero-Copy Transfer

Originally, web servers maintained a cache of file data in theapplication. File data is read from disk into

the application file-cache and then thewrite system-call is used to transmit the data to the client. Hence,

the file data is read from disk into the kernel file-system cache and subsequently copied into the application

file-cache. Then, the data must be copied from application file-cache back to the kernel every time a file is

requested and transmitted to a client. This method is inefficient as it incurs at least double copying every

time file data is transmitted to a client, and possibly more copying if data is evicted from the application

file-cache due to size restrictions.

To reduce the inefficiency, operating systems offer zero-copy transfer methods:sendfile on Solaris,

Linux and FreeBSD andTransmitFile on Windows. With zero-copy transfer, the application does not need

to maintain an application file-cache. Instead, the file datain the kernel file-system cache is utilized to

transmit the file to the client, eliminating the overhead of copying the file data between user space and

the kernel. Both, Joubertet al. [29] and Nahumet al. [40] show the performance benefits of zero-copy

transfer. One potential downside of using zero-copy transfer is that the kernel decides which files remain

in the cache, not the application.

2.6.3 Asynchronous I/O

While sockets can be placed into non-blocking mode, that option does not exist for disk I/O. Instead,

operating systems are starting to offer support for asynchronous disk-I/O. Like non-blocking socket-I/O,

with asynchronous I/O, an application makes a request for disk I/O but does not block waiting for the

I/O to complete. At some point in the future, the kernel notifies the application once the I/O completes.

Currently, there is no unified event-mechanism supported byLinux; ideally, the kernel notifications should

be tied into an event mechanism likeepoll, so all I/O can be managed by the application through a single

interface. The advantage of this approach is that only a single thread is needed on a uniprocessor as an

application never needs to block waiting for socket or disk I/O. However, multiple threads or processes

are still needed to achieve parallel execution on a multiprocessor. Huet al. [28] show the advantage of

20

2.7. SUMMARY

using asynchronousTransmitFile in Windows NT under heavy load for large file transfers compared to

multi-threaded servers using synchronous I/O.

Unfortunately, the Linux kernel does not offer full supportfor asynchronous I/O [21]. For example, as

mentioned previously, asynchronoussendfile does not exist. In the absence of kernel support, it is possible

for an application to use kernel threads (helper tasks) to simulate asynchronous I/O, i.e., a set of kernel

threads are used to submit disk-I/O operations on behalf of the application and notify the application

once the I/O completes. However, this mechanism is less efficient than a kernel implementation as there

are overheads related to mutual-exclusion/synchronization as well as memory and scheduling overheads

resulting from additional threads.

Another approach is for the operating system to provide a general mechanism, like Scheduler Activa-

tions [5] or First-Class User-Level Threads [38], that allow thread libraries or applications to implement

asynchronous I/O operations on top of existing synchronousI/O operations. Elmeleegyet al. [23] propose

Lazy Asynchronous I/O, a user-level I/O library to allow event-driven servers to deal with blocking I/O

operations. The library provides a polling mechanism to allow both socket and file I/O to be handled in a

consistent manner. The advantage of this approach over traditional asynchronous I/O is that I/O contin-

uations are only created if an operation actually blocks. Chandaet al. [15] developed ServLib, a thread

library that provides an M:N threading library built using asynchronous I/O. While most M:N threading

libraries contain an I/O subsystem to transparently deal with blocking calls so the entire application does

not blocking waiting for I/O, ServLib provides this functionality by building its I/O subsystem using asyn-

chronous I/O. They show that M:N threading with asynchronous I/O offers better performance than other

threading models for I/O intensive multi-threaded serverslike web servers. Both Lazy Asynchronous I/O

and ServLib are built on top of Scheduler Activations. The drawback of Scheduler Activations is that a

new kernel thread is spawned every time an operation blocks,which could result in high overhead. As

well, many operating systems, including Linux, do not provide support for mechanisms like Scheduler

Activations.

2.7 Summary

Web servers are complex software applications. They must handle network and disk I/O efficiently and

scale to thousands of concurrent connections. Previous research has focused on improving web servers

serving static content. These improvements have included new architectures, implementations and op-

erating system facilities. Web server architectures include AMPED, thread-per-connection and pipeline.

High performance implementations of these architectures are Flash for AMPED, Knot for thread-per-

connection and Haboob for pipeline. Newer operating systemfacilities include zero-copy transfer and

scalable event-polling, e.g.,sendfile and edge-triggeredepoll, respectively.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

The current performance picture for web servers is unknown because a thorough comparison encom-

passing all these facets is lacking. Furthermore, much of this work has focused on the uniprocessor

domain. Chapter 3 presents a comparison of current state-of-the-art web servers on a uniprocessor across

various workloads. Once the uniprocessor situation is understood, Chapter 4 continues the comparison

into the multiprocessor domain.

22

Chapter 3

Uniprocessor Web-Server Architectures

This chapter examines various server architectures run on asingle processor with different workloads.

The goal of this chapter is to compare the performance of the server architectures and to see how their

performance changes under different workloads. A spectrumof workloads, ranging from in memory to

disk bound, are explored. The varying workloads are achieved by reconfiguring the server with different

amounts of memory. All other factors are kept the same, including the file set, the log files used by the

clients, the network configuration, etc.

For each workload, similar parameters for each server are tuned for best performance. All experi-

ments are verified (see Section 3.3) to ensure the server is providing fair service to the clients and only

those experiments passing verification are included. The best configuration for each server is profiled to

examine any differences and similarities among the architectures and for different implementations within

an architecture.

3.1 File Set

The file set used for the experiments in this chapter is staticand generated using the SPECweb99 [50]

file-set generator. The choice of a SPECweb99 file-set allowsthe results to be comparable to the large

body of previous work [13, 46, 53, 57, 59, 62], which uses a static SPECweb99 file-set. In many cases,

these file-sets are also of a similar size as the file-set in thethesis. More recent versions of the SPECweb

benchmark exist, and it would be interesting to test the server architectures on these and other workloads,

but that is beyond the scope of this thesis. The various workloads for this chapter are generated by keeping

the file set the same and reconfiguring the server with different amounts of memory. This strategy has the

advantage of keeping one additional variable consistent among the experiments.

23

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Log File 2

Log File 1

Log File 8Subset of Generated
File Names

Server

Generated
Files

Clients

File Data

File Request

Figure 3.1: From file set to HTTP requests

The SPECweb99 generator produces a number of directories each containing files with the same

profile. The files are classified into four classes each consisting of nine files, with all thirty-six files having

unique sizes. The sum of the file sizes in a single directory equals 5,123,580 bytes. Class 0 files range in

size from 102 bytes to 921 bytes. Class 1 files range in size from 1024 bytes to 9216 bytes. Class 2 files

range in size from 10,240 bytes to 92,160 bytes. Class 3 files range in size from 102,400 bytes to 921,600

bytes. The size of the files is constant across the directories. Directories are generated to make up a file

set of the desired size. While each directory contains 36 files (4 classes× 9 files), the contents of each file

differs.

Figure 3.1 shows the relationship among the file set, server and clients. For the experiments in this

chapter, 650 directories were generated, resulting in a fileset of approximately 3.1 gigabytes in size on the

server. However, the size of the generated file-set overestimates the size of the actual file-set used in the

experiments. The size of the actual file-set is based on the subset of files a client might actually request.

Each client consists of a copy of the httperf load-generator[39] running with a log file of requests.

The load generator simulates a number of users, based on the desired request rate, by establishing multiple

concurrent connections to the server. The main advantage ofhttperf is its ability to generate overload

request-rates, dealing with the inability of the SPECweb99load-generator to generate overload conditions

as discussed by Banga and Druschel [7]. Individual clients all have distinct log files, with the log files

generated based on the specifications of the file set and the requests in a log file are designed to conform

to a Zipf distribution [64]. Each log file contains a number ofpersistent HTTP connection sessions, where

each session is a request for one or more of the files. The log files include both active and inactive off

24

3.1. FILE SET

% Reqs Memory Size (MB) Max File size (B)

10 0.5 409

20 0.8 512

30 1.6 716

40 4.8 3072

50 8.4 4096

60 9.9 5120

70 12.2 5120

80 20.1 7168

90 94.6 40,960

95 127.2 61,440

100 2196.0 921,600

Table 3.1: Cumulative amount of memory required for requests when sorted by file size

periods to model browser processing times and user think times [10]. For this chapter, the log files for

each client have an average session length of 7.29 requests and all the requests are for static files. Due to

the way the log files are generated, not all the files in the file set are requested. The log files request 2.1

GB, consisting of 21,396 files across all 650 directories of the file set. Hence, the size of the requested file

set is approximately 2.1 GB.

Interestingly, even this value does not represent the effective file-set for a specific experiment. The

effective file-set during an experiment is based on the requests the server actually processes. During the

experiment, some client requests may timeout causing not only the request itself to not be processed by

the server but also all the subsequent requests in that session. Hence, it is possible that not all files in a

client log-file may be processed by the server, meaning that the effective file-set experienced by the server

may vary from run to run. Nevertheless, in the remainder of the thesis the term file set is used to refer

to the file set based on all possible client requests as it gives a reasonable approximation of the file set

experienced in a given experiment and is the file set that a server would handle if it was able to process all

client requests (i.e., no timeouts).

The various workloads in the chapter are generated by keeping the file-set the same and reconfiguring

the system with different amounts of system memory. Given that the server machine used for these

experiments has 4 GB of physical memory, a file-set size of 2.1GB fits entirely in memory and still

leaves enough memory for the operating system and application. For the experiments requiring moderate

disk activity, the system is booted with 1.4 GB of memory and for high disk activity, the system is booted

25

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

with .75 GB of memory.

When a server receives a valid file-request, it sends back thefile data to the client. The question of

how disk bound the file set is depends on the amount of memory available on the server and the pattern of

requests. Table 3.1 shows the amount of memory required to satisfy requests as the files size increases.1

For example, 60 percent of requests are for files of size 5120 bytes or less and the sum of the sizes of

the unique files contained in those requests is 9.9 megabytes. Due to the Zipf distribution, only a small

amount of memory is needed to service a significant percentage of requests; 50 percent of the requests

comprise 8.4 MB of the file set and 95 percent of the requests comprise only 127.2 MB of the 2.1 GB

file-set.

3.2 Response Time

In order to simulate more realistic workloads, all client requests must be serviced within a certain time.

If a request is not completed within that time frame, the client times out and closes the connection. This

behaviour models a real user who only waits for a relatively small amount of time for a web page to load.

This response time value may also vary from user to user, and auser’s response-time tolerance may vary

based on the web site being accessed.

For the experiments in this chapter, a single timeout value of 10 seconds is chosen and applied to

all requests. 10 seconds is reasonable based on the following observations. First, in Windows XP, the

TCP/IP stack is tuned to wait 9 seconds when trying to establish a connection before timing out. Second,

Nielsen [41] recommends that 10 seconds is the upper limit onacceptable response time based on a

variety of user studies examining human-computer conversational interactions conducted from 1960 to

1980. While 10 seconds sounds reasonable, based on expectations of current broadband users and the

fact that the networks in these experiments are running at gigabit speeds, a timeout value of 10 seconds

is likely rather generous. In fact, newer studies [30] suggest this value may be lower for certain types

of sites. However, even with a broadband connection, downloading a 1 MB file (approximate size of the

largest file in the file set) can take a few seconds. Hence, 10 seconds is a reasonable compromise.

Timeouts are enforced using the timeout parameter to httperf. However, this parameter is used for two

purposes. While establishing a connection, the timeout parameter is the amount of time the server has

to respond to a SYN. This value is in line with the Windows XP connection timeout mentioned above.

Once a connection is established, it becomes the timeout value for the entire persistent HTTP connection

session. All the files in the session must be completely sent within this amount of time.

1Files of size 5120 B span across 60%–70% of requests

26

3.3. VERIFICATION

3.3 Verification

The servers compared in this thesis are verified based on two criteria. First, it is necessary to ensure

correctness, i.e., that the server is sending valid data to the clients. This step is accomplished by having

each client compare the bytes returned by the server with a copy of the actual file requested. A server

is running correctly if all the data matches. Due to the significant overhead required to compare the

data sent by the server, only a few representative request rates are run to verify the correctness of the

server; correctness verification is disabled during the performance experiments. When there is a significant

change to the server, this verification is repeated to make sure the server is still sending valid data.

Second, it is necessary to ensure adequate performance, i.e., to verify the server is achieving an accept-

able response with respect to the entire range of client requests. This requirement creates a level playing

field and allows for a fair comparison of the servers. The criteria used to establish this range is that files of

differing sizes are equally serviced; otherwise, a server can ignore certain requests to achieve performance

benefits such as higher throughput or lower response times, e.g., requests for large files.

This verification step considers both the individual clients and the aggregate of the clients. Three

criteria are used to determine if a server is operating reasonably. These criteria focus on the percentage of

requests that timeout both cumulatively across all files andfor each file size. Client requests that timeout

before being accepted or read by the server are not counted because factors external to the server are

controlling this decision; in this case, the server has not seen the requests, and hence, is not explicitly

rejecting specific requests. While client timeouts are permitted across all file sizes, verification ensures

that each size receives a reasonable level of service. The criteria are as follows:

• The maximum percentage of timeouts for all files does not exceed 10%.

• The timeout percentage for each file size is below a certain threshold. For individual clients, the

threshold is 5% and the aggregate for all clients is 2%.

• For each file size, the timeout percentage is not larger than the mean timeout percentage of all files

plus a threshold. Again, for individual clients the threshold is 5% and the aggregate for all clients is

2%.

The first check ensures that there is not an excessive number of timeouts in general. The second check

ensures that no individual client experiences a disproportionate number of timeouts. The third check

ensures that no file size experiences a disproportionate number of timeouts. This check is similar to that

performed in SPECweb99 to verify that approximately the same quality of service is afforded to files of

different sizes. Based on experience, these checks may alsohelp to determine if a server is operating

incorrectly or if there is a problem with the experimental environment.

27

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Without this check, various techniques can be employed to improve performance. For example, it was

found that higher throughput could be obtained for certain workloads by allowing requests for the largest

files to timeout. Due to the fact these workloads use the Zipf distribution, smaller files are accessed more

frequently and hence, tend to remain in the file-system cache. Thus, giving priority to smaller files can

result in higher throughput and smaller response times because there is less disk I/O.

The verification step to ensure adequate performance does not effect server throughput as it is run

after the experiment finishes. All experiments undergo thisverification unless otherwise indicated and

results are only included for experiments that pass verification for all request rates. In instances where

experiments did not pass verification, it is most often due toservers not being able to respond to requests

for large files prior to the client timing out.

3.4 Tuning

When implementing a server, a number of design choices are available, with the biggest being the server

architecture. Once a server architecture is chosen, a number of smaller design choices still exist. Many

of these choices are made either through trial and error or byfollowing best practices. These choices can

include how the data is transmitted (sendfile vs write), the event mechanism (select vs poll vs epoll), etc.

For each architecture examined, best practices are used to implement a server.

However, even when best practices are used, there are a number of configuration parameters that affect

a server’s performance with respect to different workloadsand hardware, e.g., maximum number of simul-

taneous connections, number of threads, etc. Ideally, these parameters should be automatically adjusted

by the server according to the dynamic workload. However,auto-tuningis a challenging problem [11]. In

this thesis, tuning is performed systematically by hand.

The basic idea is to run experiments and measure the performance of the server as the parameters

of interest are varied. By observing how the performance of the server changes with different tunings,

it is possible to find a combination of parameters that resultin the best performance. Tuning is done

independently for each server and workload combination. Asthe number of possible tuning parameters

for each server is quite large, a subset of parameters is selected. Based on my experience in running a

large number of different server experiments, a subset of appropriate parameters was chosen that have the

most significant affect on performance.

The parameters chosen in general are the maximum number of simultaneous connections supported by

the server, level of concurrency and blocking versus non-blocking sendfile. The terms blockingsendfile

and non-blockingsendfile refer to whether a socket is in blocking or non-blocking modewhensendfile is

called. For Knot using an application level cache (knot-c, see Section 3.8.1), the size of the application

28

3.5. ENVIRONMENT

file-cache is the third parameter tuned; knot-c does not usesendfile. After selecting the type ofsendfile or

cache size for knot-c, a range of values for both the maximum connections and the level of concurrency

are chosen. In order to see the effect of each individual parameter change, an experiment is run for the

cross product of each parameter combination of the two ranges. The original ranges are chosen to be

sufficiently large so that the entire spectrum of performance is covered.

The initial set of experiments for each server are analyzed to get an indication of the general vicinity

resulting in good performance. Once this area is found, a more fine-grained matrix can be used to find

the combination of parameters that resulted in the best performance. This procedure can recurse as many

times as necessary but typically only two or three levels arenecessary.

Each experiment consists of running the server for several rates, with each rate taking about 5 to 8

minutes to complete. Client requests are generated using httperf as the load generator. The total request

rate is evenly divided among each copy of httperf, which is responsible for generating its portion of the

load using its associated log file. A client traverses the logfile one or more times based on the length

of time the experiment lasts and the desired request rate. For the experiments in this chapter, the request

rates range from 6000 requests per second to 30,000 requestsper second. This range is wide enough to

find a server’s peak throughput and to measure its throughputafter saturation. In the initial tuning, an

experiment consists of five request rates and for the fine-grained tuning the number of request rates is

increased to eight. The selected rates are run in increasingorder and the server is restarted between each

rate. There are 2 minutes of idle time between rates and between experiments to allow any connections in

the TIME-WAIT state to be cleared. As a result, 45 to 75 minutes are required to produce a single line on

a graph plotting multiple rates.

3.5 Environment

The experimental environment consists of four client machines and a single server. The client machines

each contain two 2.8 GHz Xeon CPUs, 1 GB of RAM, a 10,000 RPM SCSI disk and four one-gigabit

Ethernet cards. Each client machine runs two copies of the workload generator. They run a 2.6.11-1 SMP

Linux kernel, which permits each client load-generator to run on a separate CPU. The server machine is

identical to the client machines except that it contains 4 GBof RAM and a single 3.06 GHz Xeon CPU.

For all experiments, the server runs a 2.6.16-18 Linux kernel in uniprocessor mode, i.e., the kernel is built

with SMP disabled.

The 2.6.16-18 Linux kernel on the server has been modified to fix a problem with caching in the

kernel that I found and fixed. The file-system cache in the 2.6.16-18 kernel is designed to prevent a single,

sequential non-page-aligned read of a large file from invalidating a large portion of the file-system cache.

29

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

2 3 41

2 3 41 2 3 41 2 3 41 2 3 41

CLIENT 1 CLIENT 2 CLIENT 3 CLIENT 4

SERVER

Figure 3.2: Networking between server and client machines

The problem occurs because the mechanism to detect this behaviour is too coarse; multiple consecutive

accesses to the same page in the file-system cache do not update the access flags for that page. Only when

a different page in the file is accessed are the access flags updated. This logic causes files that are less than

or equal to the size of a single page to never be marked as accessed after their first access. Hence, these

pages are always ejected from the cache regardless of how often the file is accessed. Due to the range of

file sizes used by the SPECweb99 file set, a significant number of files are less than the size of a page,

and hence, are affected. The situation is exacerbated by theZipf distribution, which results in smaller

files being requested more frequently. In fact, more than 50%(see Table 3.1) of requests are for files of a

size that occupy one page or less. The result is a significant amount of unnecessary disk accesses for the

workloads in this chapter. In order to alleviate this problem, I helped to devise a patch for the 2.6.16-18

Linux kernel to circumvent this behaviour (see Section A.1 for patch). This patch has been approved

and is included in newer versions of the Linux kernel. This kernel problem also means that the results

presented by Pariaget al. [45] are not directly comparable.

The clients, server, network interfaces and switches have been sufficiently provisioned to ensure that

the network and clients are not the bottleneck. In particular, the server and client machines require mul-

tiple gigabit Ethernet interfaces. To take advantage of multiple Ethernet cards, separate subnets are used

for each interface, allowing for explicit load balancing ofrequests. Four subnets are used to connect the

server and client machines via multiple 24-port gigabit switches. Each machine has 4 one-gigabit net-

work interfaces and these interfaces are connected to the four subnets with no machine having multiple

interfaces connected to the same subnet. Each copy of the workload generator on a client machine uses a

different subnet and simulates multiple users who are sending requests to and getting responses from the

web server. Though each client machine only uses two subnets, the clients are equally spread over the

four interfaces available on the server, see Figure 3.2. Forexample, client 1 generates requests on subnets

1 and 2, while client 2 generates requests on subnets 3 and 4.

One limitation of this network configuration is that the clients and server all communicate using fast,

30

3.6. CACHE WARMING

reliable network links. A more realistic environment wouldinclude a mixture of link speeds from slow to

fast, similar to actual clients. Slow network links limit throughput to certain clients, resulting in increased

transmission times and additional TCP overheads. Since these conditions where not tested, their effect on

the server architectures examined is unknown; however, it is likely the performance of the servers would

change. Dealing with these changes could range from requiring additional connections or a higher level

of concurrency, especially for the servers using blockingsendfile, and may not be consistent across the

server architectures. As well, the overall throughput of the servers would probably be lower. Nevertheless,

I conjecture that many of the performance trade offs among the various server architectures would remain

the same in this environment as the environment used in this thesis.

3.6 Cache Warming

The experiments were run without clearing the file-system cache between rates and experiments. As well,

if the file-system cache is not warmed, a preliminary experiment is run to warm the cache before the

beginning the actual experiments. This approach is reasonable as the idea is to measure performance of

the web server after initialization and when a working set has been created in the file system. Hence, the

experiments are not completely independent as one run affects the immediately following run based on

what is left in the file-system cache. However, the state of the file-system cache should be acceptable

given that the log files used by the clients never change and that the requests follow a Zipf distribution.

However, this strategy is biased against knot-cache as its application cache is not warmed, and there-

fore, starts empty after each rate. Hence, there is a penaltyto warm up its application cache as the

experiment progresses, but it can still take advantage of the warmed file-system cache. Some experiments

were run to measure the extent of the bias by warming knot’s cache (see Section 3.10.1.1). The other

approach is to zero the file-system cache, but that seems inappropriate.

3.7 Table Calculation

Most of the results of the experiments conducted in this thesis are presented in tables. A table entry

is an ✕ if the experiment failed to verify. If the experiment verified, the performance of the multiple

experiment runs at different request rates is condensed into a single number. These numbers can be

compared to determine how experiments perform relative to each other, with larger values indicating better

performance. Ideally, it would be better to present the results of each experiment in a graph. However, as

the number of experiments is large and the number of lines that can reasonably be placed on a single graph

is small, using graphs is impractical for most cases. In addition to the number of graphs required to show

31

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

each experiment, comparing performance among graphs is also difficult. For these reasons, a single value

is used as a coarse representation of the performance of an experiment. Graphs are selectively included in

order to examine certain experiments in more detail.

The reason experiments composed of multiple runs at different rates can be condensed is that most

of the graphs have a very consistent shape (see Figure 3.4, page 50). The general shape results from the

following behaviour. For most of the experiments, the lowerrequest rates can be fully serviced resulting

in increasing throughput as the request rate is increased. Eventually, the server reaches a peak, typically

around 15,000 requests per second. After this point, the server is saturated and has relatively flat perfor-

mance with a slight decrease in throughput from peak. Experiments where this assumption does not hold

true are marked inred; these anomalies are explained further.

Given the common shape of a curve for an experiment, it is mostly the height of the throughput peak

that differentiates each curve. By taking the area under thecurve, a single value can be used to represent

the performance of an experiment. This area is then normalized to generate a smaller value, because

working with ten digit values is cumbersome. Since the lowest and highest request rates are consistent

for all the graphs, the area is a reasonable measure as experiments that have higher throughput have larger

areas compared to experiments with lower throughput. Hence, larger values represent better performance.

It is possible to normalize in a number of different ways. Forexample, dividing by the width of the

endpoints of the x-axis results in average throughput for the experiment. Unfortunately, throughput is

limited by the request rates below peak, meaning that the average throughput can be misleading as it is

lower than the throughput at peak and after saturation. Hence, I chose to normalize using an arbitrary

value so no additional information aside from relative performance can be inferred from the value. The

value chosen was to divide the area by 13 million to give smaller, unitless performance values.

More formally, let the request rates for the experiment be represented byratei , with ratei < ratei+1, ∀ i

and let the corresponding throughput be represented byt puti . In this case,t puti is actually goodput, where

goodput is the throughput of the requests completed within the 10 second timeout. Partially completed

requests that timeout are not included in this calculation.Then the condensed area of an experiment

consisting ofn rates (n > 1) can be represented by:

Condensed Area= (
n−1

∑
i=1

(ratei+1− ratei)× (t puti+1 + t puti)/2)/scaling f actor

As mentioned, for this thesisscaling f actor= 13,000,000.

32

3.8. SERVERS

3.8 Servers

There are three general servers compared in this chapter. Knot is a thread-per-connection server,µserver

is an event-driven server and WatPipe is a pipeline server. In order to perform a fair comparison and

to highlight differences in architecture, every effort wasmade to eliminate implementational bias where

possible and the servers are made as consistent as possible.

• All the servers, except caching Knot (knot-c), use essentially the same code for implementing the

cache table of file descriptors and HTTP headers

• Level of compiler optimization is -O2

• All the servers, except knot-c usesendfile

• All the servers used edge-triggeredepoll

Minor differences include using C forµserver and C++ for the other servers.

3.8.1 Knot and Capriccio

Previous studies [44, 59] have shown that for various workloads thread-per-connection servers are un-

suitable for high performance web servers. In order for a server to perform well under high loads, it

must support a large number of simultaneous connections [9], meaning a large number of concurrently

running threads for a thread-per-connection server. Unfortunately, as the number of threads increases,

overheads related to scheduling, mutual exclusion and synchronization also increase and tend to inhibit

performance. However, von Behrenet al. [57] have suggested the problem is not with the thread-per-

connection architecture but with the implementation of theunderlying threading libraries. Specifically,

any threading library that uses a 1:1 threading model does not scale well when thousands of concurrent

threads are required. With a 1:1 model, each user-level thread corresponds to an underlying kernel thread,

so overheads related to context switching, contention and scheduling eventually cause the performance of

the server to degrade as more threads are added.

Capriccio [57] is a user-level threading package designed to work well for high-concurrency appli-

cations. It is designed to efficiently support a large numberof concurrent user-level threads by using

a non-preemptive, M:1 threading model. With an M:1 threading model, all the user-level threads are

multiplexed over a single kernel-thread. This type of threading, combined with no preemption, reduces

contention because little or no locking is required since the user-level threads only give up control at fixed

scheduling points. Essentially, Capriccio implements threading by adding a scheduler and I/O facilities

33

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

to a coroutine library [18]. Building non-preemptive, M:1 threading on top of coroutines is similar to co-

operative task management with automatic stack managementas described by Adyaet al. [3]. While this

approach has the advantage of being fast with low overhead, it cannot take advantage of multiple CPUs,

where locking must occur.

Since Capriccio only has a single kernel-thread, allowing user threads to directly make I/O system-

calls is problematic. These I/O calls could block the underlying kernel thread essentially causing the

entire program to block. Instead, Capriccio has wrappers for I/O system-calls that interact with the sched-

uler thread and an I/O subsystem to transparently prevent the kernel thread from blocking unnecessarily.

Socket and disk I/O each have a specific wrapper implementation.

For socket I/O, the wrapper begins by allowing the user thread to attempt the system call in non-

blocking mode. If the call completes successfully, the wrapper returns and the user thread continues

execution. However, if the operating system indicates the call would block (EWOULDBLOCK), then

an I/O request structure is created, the associated socket descriptor is added to the interest set for the

appropriate event mechanism and the user thread blocks. Periodically or when there are no other threads to

schedule, the scheduler thread polls the event mechanism todetermine if any sockets are ready for reading

or writing. Based on the set of ready events, the scheduler retries the associated system calls on behalf of

the blocked user threads. If the subsequent system call completes without the system indicating the call

would block, then the associated user thread is placed back on the ready queue and the socket descriptor

is removed from the interest set. If the I/O request cannot becompleted without blocking, for example,

the amount of data being transmitted is larger than the available socket buffer space, then the scheduler

completes the request using multiple non-blocking system calls with the parameters appropriately adjusted

for each call. Similar to the initial request, the additional system calls are performed when subsequent

polling indicates the socket descriptor is ready again.

For disk I/O, the wrapper passes the request to a pool of kernel threads referred to as workers. These

worker tasks are necessary because disk I/O is potentially blocking if the data is not in the file-system

cache and non-blocking disk I/O is unavailable. These worker tasks spin polling a queue of Capriccio

disk-I/O requests and performing the potentially blockingdisk-I/O on behalf of the user-level threads.

When a user thread invokes a disk-I/O wrapper, the user thread creates an I/O request structure, places it

on the worker queue for processing and blocks. A worker task removes the queued request, performs the

associated system call on behalf of the user thread, and places the user thread back on the ready queue

once the call is completed. Safe access to the disk-I/O queueby multiple threads requires appropriate

locking.

Knot [57] is a thread-per-connection web server built usingthe Capriccio threading library. Knot can

be run in different modes depending on various compilation and command-line parameters. At compile

time, a fixed number of worker tasks is specified and the event mechanism, eitherpoll or epoll, is chosen.

34

3.8. SERVERS

The user threads in Knot can either be pre-forked during server initialization or created on demand for

new connections. Previous research [13, 56] reports that statically pre-forking threads results in better

performance. With pre-forked user threads, each thread executes a continuous loop accepting connections;

with on-demand threads, a single thread accepts connections and then dynamically creates additional

threads to process the requests. Once a connection is accepted, the associated thread reads an HTTP

request and completely processes the request before reading the next request from the same client.

Knot uses an application-level cache that stores HTTP headers and file data. If a file is not in cache, a

cache entry is created consisting of an HTTP header and the file data, which is read from disk. All requests

are serviced from the appropriate cache entry using thewrite system call to send the data from the cache

to a client.

3.8.1.1 Modifications to Capriccio and Knot

To allow for a fair comparison, several modifications were made to both Knot and Capriccio. These

changes serve to make all the servers consistent where possible and to add features or to fix Knot and

Capriccio so that they are implemented using best practices.

The first major change is the addition ofsendfile support to Capriccio. After Capriccio supports

sendfile, Knot is modified to optionally operate usingsendfile instead ofwrite. Previously supported I/O

system-calls in Capriccio can be classified as either involving socket I/O or disk I/O.sendfile is an inter-

esting system call as it can involve both socket and disk I/O.Given that these two types of I/O are handled

separately in Capriccio, supportingsendfile in Knot required a different implementation than previously

supported system calls. Threesendfile variations were implemented; two non-blocking versions and a

blocking version. Similar to other I/O functions in Knot,sendfile has a wrapper.

Initially, non-blockingsendfile was implemented in Capriccio as a socket request followed bya disk

request. The socket portion involves checking if the socketis ready for writing and the disk portion

involves writing file data to the socket with thesendfile system call. In detail, the socket is already in

non-blocking mode so thesendfile wrapper begins by creating a socket-I/O request data-structure, adding

the socket descriptor to the interest set for the event mechanism and blocking the user thread. When the

operating system reports that the socket is writable, however, thesendfile system call is not immediately

invoked by the scheduler thread; instead, the user thread isput back on the ready queue. Once the user

thread is rescheduled, it wakes up in the wrapper routine, creates a disk-I/O request data-structure, adds it

to the disk-I/O queue and blocks again. Eventually one of theworker tasks retrieves the request from the

queue and performs thesendfile call and then puts the user thread back on the ready queue. As the socket

is in non-blocking mode, the entire file may not be written by asingle call tosendfile. When the user

thread restarts, it may need to perform additionalsendfile wrapper calls to completely transfer the file.

35

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Unfortunately, when this version was tested, it exhibited poor performance due to high event-polling

and context-switching overheads. For all other socket I/O operations in Capriccio, the I/O operation is first

attempted and only if the operating system indicates that the call would block is the event mechanism used.

This technique tends to keep the event mechanism overhead low as the first attempt is usually successful.

However, sincesendfile may require disk I/O, it is undesirable for a user thread to make the call directly.

To alleviate this problem, a second version of non-blockingsendfile was implemented. This imple-

mentation is consistent with the idea of attempting the system call first and then using the event mech-

anism only if necessary. Thesendfile wrapper begins with the user thread creating a disk-I/O request

data-structure, adding the request to the disk-I/O queue and blocking the user thread. A worker task re-

moves the request from the queue and attempts thesendfile call with the socket in non-blocking mode. If

the operating system indicates that the call would block, then the worker task callspoll directly on that

socket descriptor with a one second timeout. If thepoll call indicates the socket is writable within the

timeout period, thesendfile call is retried. Otherwise, thepoll call times out and an appropriate return code

is passed back to the user thread. The downside of this approach is that it can cause the worker tasks to

block onpoll, but with sufficient worker tasks this is not problematic.

The implementation of the blockingsendfile version is similar to the second non-blocking implemen-

tation. Thesendfile wrapper creates a disk-I/O request data-structure, placesthe request on the disk-I/O

queue and blocks the user thread. A worker task removes the request from the queue, places the socket

in blocking mode and attempts thesendfile call. Once the call completes, the user thread is put back on

the ready queue. There are a couple of differences between the blockingsendfile version and the second

non-blockingsendfile version. First, the blocking version does not need to callpoll as the system call now

blocks if necessary. Second, a blockingsendfile call always transmits the entire file and so the overhead of

waking the user thread to repeatedly callsendfile is avoided. Both the second non-blockingsendfile and

the blockingsendfile implementations are used for the experiments in the thesis.

The second major change is to the cache in Knot. For all the versions of Knot tested, the hashing

algorithm is changed to be consistent with the hashing algorithm used byµserver and WatPipe. This

hashing algorithm performs better on the URLs for the file setused by these experiments. As well, for the

versions of Knot usingsendfile, further cache changes were required. Sincesendfile uses the file-system

cache, the application cache in Knot is inappropriate for the versions usingsendfile. For these versions

of Knot, the caching code was modified to be similar toµserver so that only file descriptors and HTTP

headers are cached.

The third major change is the addition of code to perform cache warming in Knot. The cache-warming

code allows a set of files to be read into the application cachewhen the server starts so the cache is warmed

before the experiment begins. In the case of knot-c, the file data is also read into the application cache.

36

3.8. SERVERS

Finally, various bugs were fixed throughout Capriccio and Knot. These bug fixes include problems

with epoll support, the I/O subsystem and scheduling.

The first non-blockingsendfile implementation, the blockingsendfile implementation and the cache

changes (not including cache warming) were made by other members of the project [45]. The remaining

changes and fixes were done as part of the work for this thesis.

3.8.2 µserver

In the Single-Process Event-Driven (SPED) architecture, a single thread services multiple connections

in various stages of processing using non-blocking I/O. Specifically, a SPED server maintains a set of

connections that are being processed and data structures toencode the current status of each connection.

An event mechanism such asselect is called to determine which connections have outstanding events. For

each outstanding event, an appropriate event handler is invoked to process that event.

Theµserver originated as an event-driven (SPED) server and has many configuration options, includ-

ing using eitherselect, poll or epoll as its event mechanism. It also supports zero-copysendfile and only

caches HTTP headers and open file descriptors. The major problem with a SPED server is blocking disk

I/O; when the single SPED process blocks for disk I/O, the entire process blocks, hence there is no way

to overlap CPU execution and I/O. Depending on the amount of disk I/O required, this can result in the

server spending a significant amount of time blocked waitingfor disk I/O. As well, a single process cannot

take advantage of multiple CPUs.µserver evolved to support two different architectures to deal with these

problems. It can run as either a Symmetric Multi-Process Event-Driven (SYMPED) server or a shared

Symmetric Multi-Process Event-Driven (shared-SYMPED) server. Note that when running with a single

process, both SYMPED and shared-SYMPED revert to a SPED server.

3.8.3 SYMPED Architecture

In SYMPED mode,µserver consists of multiple independent SPED processes. Each process is a fully

functional web server that accepts new connections, reads HTTP requests and writes HTTP replies. How-

ever, when one SPED process blocks due to disk I/O, the operating system context switches to another

SPED process that is ready to run. This approach allows multiple SPED servers to be used in environ-

ments where a single copy of the server blocks due to disk I/O.In µserver, the SPED processes are entirely

independent except they share a common listening socket. Port sharing is accomplished by having one

process create the additional copies of the server after thelisten socket has been initialized. This approach

has the advantage of not requiring any user-level mutual exclusion or synchronization. In addition, the

common listening socket means that no additional port demultiplexing or load balancing is required.

37

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

SYMPED is similar to SMPED by Ren and Wang [37], however, the two architectures were developed

independently. The SYMPED model is an extension of theN-copy approach described by Zeldovichet

al. [62]. With N-copy, however, each copy of the web server is started using a different TCP port number,

so some method for load balancing across the servers is required. Furthermore, in the presence of disk

I/O, it may be beneficial to actually have more copies of the server running than CPUs, so N is no longer

equal to the number of CPUs.

3.8.4 Shared-SYMPED Architecture

The main drawback of the SYMPED architecture is that each process executes in its own independent

address-space. The price of this independence is that each copy of the server maintains an independent

cache of open file descriptors and HTTP headers, resulting inmemory duplication. This duplication can

produce significant memory overhead. For example, 25,000 open file descriptors in each of 100 SPED

processes results in a cache of over 2,500,000 file descriptors and their associated HTTP headers across the

entire server. As well, the operating system is required to support an equivalent number of open files plus

an additional amount of open sockets. These resource requirements can potentially stress the operating

system and significantly increase the memory footprint of the server.

In order to mitigate this problem, the shared-SYMPED architecture was developed. In shared-

SYMPED, the processes are independent except for a shared cache of open file-descriptors and HTTP

headers. Two changes were required to implement shared-SYMPED in µserver. First, the shared-

SYMPED processes are created to be independent except that file descriptors are shared among the pro-

cesses. Second, the area of memory for the cache table ismmaped and shared across all the shared-

SYMPED processes. Mutual exclusion is handled using a single futex lock [25] around the entire cache

table. This approach significantly reduces the number of open file descriptors in the system, the size of

the cache table across the server and the memory footprint ofthe server. The downside of this approach

is that the server processes are no longer independent and multi-threaded program considerations must be

addressed, i.e., contention on the cache-table lock.

3.8.5 WatPipe

WatPipe is a web server I implemented using a pipeline architecture. In WatPipe, each stage handles a

portion of the processing of an HTTP request. It is implemented in C++ and built from theµserver source,

so much of the code base is the same or similar; however, the components are restructured into a pipeline

architecture. Additional code was added to support threadsfor each stage, communication using queues,

specialized event handling for various stages and mutual exclusion and synchronization where necessary.

38

3.8. SERVERS

While SEDA is designed to allow for the creation of well-conditioned servers via dynamic resource

controllers, WatPipe eliminates these controllers to simplify the design while still achieving good perfor-

mance. One of the primary design goals for WatPipe is to keep overhead low; in addition to eliminating

dynamic resource controllers, WatPipe also uses a short pipeline with only a small number of threads in

each stage. Keeping the number of threads small allows WatPipe to be built on top of a 1:1 threading

library. Wrapping of system calls is unnecessary as each thread can invoke (blocking) system calls di-

rectly without causing the entire application to block. In the implementation for this thesis, Pthreads are

used to create multiple threads within the same address space. Communication is handled using explicit

queues that are used to pass socket descriptors between stages. WatPipe’s careful batching of events and

shortened pipeline should prevent excessive context switching. Likeµserver, WatPipe takes advantage of

zero-copysendfile and uses the same code asµserver to cache HTTP reply-headers and open-file descrip-

tors. Both blocking and non-blockingsendfile are supported. Finally, eitherepoll or select can be used to

wait for events. In contrast, SEDA and Haboob are implemented in Java. Haboob has a longer pipeline

and utilizes dynamic resource controllers to perform admission control on overloaded stages.

Specifically, the WatPipe implementation consists of 5 stages: Accept, Read Poll, Read, Write Poll

and Write. The pipeline server in Figure 2.4 on page 11 is actually the WatPipe server. The first 4 stages

have one thread each, simplifying these stages as there is noconcurrency within a stage, and stage 5 has

a variable number of threads. Synchronization and mutual exclusion is required when communicating

between stages and when accessing global data (e.g., the open file-descriptors cache). Stage 1 (Accept)

accepts connections and passes newly accepted connectionsto stage 3. Stage 2 (Read Poll) uses an

event mechanism to determine which active connections can be read and passes these events to stage 3.

Stage 3 (Read) performs reads on these connections, parses the incoming HTTP requests and if necessary

opens the required files and adds the appropriate information to the application cache. Stage 4 (Write

Poll) uses an event mechanism to determine which connections are available for writing. Once stage 4

determines the connections that can be written, the threadsin stage 5 (Write) perform the actual writes.

In the case where non-blockingsendfile is used, a request may cycle within stage 5 until all bytes are

written. After all the data is written, the connection is passed back to stage 3 to handle the next request,

if necessary. Having multiple threads performing the writing allows processing to continue even when a

thread is blocked waiting for disk I/O to occur. WatPipe alsoallows multiple threads in the Read stage,

but they were unnecessary for the experiments in this chapter. The dashed lines to Read Poll and Write

Poll indicate that communication between the stages occursimplicitly, as the read and write interest sets

are maintained in the kernel, so no direct communication into these stages is required.

39

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

3.9 Static Uniprocessor Workloads

The next few sections contain the experiments run for each server on the various workloads. The work-

loads are generated by keeping the file set and client log filesconsistent and adjusting the memory size of

the server machine. The three workloads are labelled based on the size of the server memory: 1.4 GB, 4

GB and .75 GB. These workloads correspond to moderate disk I/O, no disk I/O (in-memory) and heavy

disk I/O.

For each workload, a number of experiments are run for each server. At the end of each experiment,

the throughput of the server is calculated based on output from the clients. Each client tracks the status of

each attempted request and the amount of data transferred.

Additional data is gathered in two ways. First, vmstat is runwith a five second interval on the server

machine. Second, each server tracks various statistics (server statistics), some of which are printed at 5

second intervals throughout the experiment and the remainder of which are printed out as summary data

when the experiment terminates. Due to the large amount of data gathered, only the condensed throughput

value for each experiment is reported. The remainder of the data is not included in the thesis. However,

a summary of some of the data gathered is presented when necessary to provide further explanations. In

particular, file-system cache-size, the percentage of timespent waiting for disk I/O (I/O wait), idle time

and context-switching information is provided from vmstat.

3.10 1.4 GB

For the experiments in this section, the server machine is configured with 1.4 GB of memory. Since the

size of file set is 2.1 GB, the entire file set does not fit completely into the file-system cache. However,

given the Zipf distribution of requests, the majority of requests should be serviced from the file-system

cache. While the remainder of requests need to be serviced from disk, only a moderate amount of disk

I/O should be required.

3.10.1 Tuning Knot

Experiments were run to tune the three versions of the Knot server: knot-c, knot-nb and knot-b. Knot-c is

the knot server running with an application cache, knot-nb is the knot server running with non-blocking

sendfile and knot-b is the Knot server running with blockingsendfile. For all the Knot servers, the pa-

rameters tuned are the number of threads and the number of worker tasks. As Knot runs using a thread-

per-connection model, the number of threads corresponds tothe maximum number of simultaneous con-

nections the server can handle. The number of worker tasks determines how many blocking disk-I/O

40

3.10. 1.4 GB

operations can occur simultaneously. For knot-c, one further tuning parameter is the size of its application

cache.

3.10.1.1 Knot-c

Table 3.2 shows the results of the coarse-grained tuning forknot-c after verification. Each row in the table

represents a different number of workers from 1 to 150. The columns are separated into three sections

with the results for 10,000 threads in section one, 15,000 threads in section two and 20,000 threads in

section three. In each section, the columns represent a different application cache size value from 10 to

700 MB.

A cache size of 10 MB is misleading as the actual size of the cache can be larger. It is at least as big

as the cumulative size of the active files being sent. Once thecache size limit is reached, files selected

for eviction are marked for removal and the cache size is updated but these files are only deleted from

memory once the file has been completely sent. Using a small cache size, such as 10 MB, is interesting

because it maximizes the amount of memory available for the file-system cache as effectively only active

files are in the application cache.

The term stability is used in the thesis to describe the performance of a web server as the tuning

parameters are adjusted. In this context, a server’s performance is stable once the condensed area of

the server levels off as one or both of the tuning parameters are adjusted. The range of tuning values

over which performance is stable is different for the various servers. Based on extensive tuning, the

performance of the servers follows a relatively consistentpattern as the tuning parameters are increased,

though individual performance varies from server to server. Once the performance of a server stabilizes or

begins decreasing across both tuning parameters, the server has reached its best performing configuration

and so increasing the tuning parameters further does not result in higher performance.

The best performing configuration in each Table is highlighted inbold. Note that throughout the thesis

if more than one configuration results in the best performance, the least resource intensive configuration

is always chosen as the best for any experiment. Once a sufficient number of workers are present, per-

formance stabilizes, which is reasonable as the incremental cost of adding additional worker tasks is low,

i.e., a small memory cost and the overhead of an additional worker task polling for disk operations. Even-

tually, these additional overheads will degrade performance. The experiments show the best performance

for knot-c is around 10,000 threads, 400 MB of application cache and at least 25 workers. Based on this

general vicinity, additional experiments were run and are presented in Table 3.3. For this table, there are

two sections with 10,000 threads in section one and 13,000 threads in section two. The columns are vary-

ing application cache sizes from 300 to 500 MB. Each row represents a different number of workers from

10 to 150. This table shows that the best performance occurs with 10,000 threads, 400 MB of application

41

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Cache size in MB

10,000 threads 15,000 threads 20,000 threads

Workers 10 100 400 700 10 100 400 700 10 100 400 700

1 1.48 1.65 1.63 ✕ 1.47 1.64 1.30 ✕ 1.46 1.62 ✕ ✕

5 1.48 1.67 1.61 ✕ 1.47 1.64 1.26 ✕ 1.46 1.62 ✕ ✕

25 1.48 1.70 1.77 1.33 1.47 1.67 1.70 ✕ 1.46 1.64 ✕ ✕

50 1.48 1.69 1.78 1.60 1.47 1.67 1.73 ✕ 1.46 1.64 1.71 ✕

100 1.48 1.68 1.79 1.72 1.46 1.66 1.75 ✕ 1.46 1.64 1.72 ✕

150 1.47 1.69 1.78 1.70 1.46 1.66 1.76 ✕ ✕ ✕ ✕ ✕

Table 3.2: Knot cache initial experiments - 1.4 GB (condensed area)

Cache size in MB

10,000 threads 13,000 threads

Workers 300 400 500 300 400 500

10 1.74 1.72 1.43 1.72 1.66 ✕

25 1.76 1.77 1.70 1.74 1.73 1.58

50 1.77 1.77 1.76 1.77 1.75 1.71

100 1.77 1.78 1.76 1.76 1.76 1.73

150 1.77 1.78 1.76 1.76 1.76 1.73

Table 3.3: Knot cache fine tune experiments - 1.4 GB (condensed area)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b
p
s

Requests/s

knot-c-10K-100w-400MB
knot-c-10K-100w-700MB
knot-c-10K-100w-100MB
knot-c-10K-100w-10MB

Figure 3.3: Knot cache performance with various cache sizes

42

3.10. 1.4 GB

cache and 100 workers (1.78), with a peak throughput of 1002 Mbps occurring at 15,000 requests per

second and with a sustained throughput of around 956 Mbps at 30,000 requests per second.

For knot-c, 10,000 threads (maximum simultaneous connections) gives the best performance. As is

shown later, only supporting 10,000 simultaneous connections is a bottleneck that throttles server perfor-

mance with this workload so no experiments are shown with values less than 10,000 connections. Hence,

the performance of knot-c is capped lower than the other servers since its best performance occurs with

10,000 threads. A significant problem appears to be the amount of memory consumed by each thread.

While the stack size of each thread is only 16 KB, adding 5000 threads can consume up to an additional

78 MB of memory just for the stacks. For example, with 100 workers and 400 MB of application cache,

the average size of the file-system cache is about 795 MB for 10,000 threads, 709 MB for 15,000 threads

and 623 MB for 20,000 threads. Hence, when compared to 10,000threads, the file-system cache is ap-

proximately 11% smaller with 15,000 threads and 22% smallerwith 20,000 threads. This problem is more

pronounced with knot-c than with the other versions of knot as knot-c’s memory footprint is already larger

due to its use of an application cache.

The focus of discussion for knot-c is on application cache size as the other Knot configurations use

sendfile, which uses the file-system cache to store the contents of thefiles. Figure 3.3 shows how the

throughput of knot-c changes as the size of the application cache is varied. Client request rate is plotted

on the horizontal axis and the corresponding server throughput in megabits per second is plotted on the

vertical axis. All the experiments shown are for 10,000 threads (10K) and 100 workers (100w) with cache

sizes of 10, 100, 400 and 700 MB. Up to 400 MB, increasing the size of the application cache improves

performance. Unexpectedly, however, increasing the cachesize beyond 400 MB causes performance to

degrade and for 15,000 threads or more, experiments stoppedverifying (see Table 3.2). As long as free

memory exists, a larger application cache size should benefit the server, meaning that the performance

of Knot should improve up to an application cache-size of around 1.2 GB based on memory information

gathered from vmstat during the Knot experiments.

The experiments in this chapter are all run with a warmed file-system cache. However, this method

represents a bias against the knot-c experiments as it also uses an application cache to store file data,

but this application cache is not warmed since the server is restarted between runs for each request rate

in a particular configuration. Furthermore, there is a tension between the application cache and the file-

system cache. Having two caches means duplication, resulting in wasted space. Ideally, the application

cache size should be as large as possible in order to minimizeoverheads when servicing requests. As

there is not enough memory to hold the entire file set in the application cache, overheads occur such as

copying file data from the file-system cache to the program memory every time a file is inserted into

the application cache and the additional management of the application cache as entries are inserted or

evicted. However, as shown in the experiments, an application cache larger than a certain size can cause

43

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

performance to degrade and experiments not to verify. This result is somewhat counter-intuitive because a

larger application cache size should benefit the server as itcan service more requests from its own cache.

Unfortunately, a larger application cache means that the size of the (warmed) file-system cache is smaller

when the server initially starts. Hence, at the beginning ofthe run, more requests are sent to disk, resulting

in timeouts early in the experiment that result in the experiment not verifying.

In order to overcome this bias, some knot-c experiments wererun with 100 workers but without

restarting the server between successive request rates of the same experiment. Keeping the server running

between rates means that the application cache is warm for all but the first run at the lowest rate. Without

performing a full tuning, it is difficult to judge the complete performance picture; however, these exper-

iments do provide some additional insights. Experiments with this cache warming strategy (not shown)

were run with 400 MB, 700 MB and 1 GB of application cache and 10,000 and 15,000 threads. Inter-

estingly, the performance with 400 MB and 700 MB for 10,000 threads is about the same (1.80) but the

performance with 1 GB is lower (1.72). The performance of the400 and 700 MB experiments appear to

be capped by the 10,000 threads. With 1 GB of application cache, the file-system cache size was about

145 MB. It appears that given the presence of disk I/O, a certain amount of file-system cache is needed

in order to get reasonable performance. Hence, a file-systemcache of 145 MB appears to be too small.

At 15,000 threads and 100 workers, the performance with 400 MB stays about the same (1.81) but the

performance with 700 MB of cache increases by 4% (1.87) and with 1GB of cache the experiment did

not pass verification. These experiments show that running knot-c without a warmed application cache

results in only a small decrease in performance for this workload, so the previous experiments without

cache warming sufficiently characterize knot-c’s performance.

The big drawback of knot-c is the need for an application cache. First, requiring two caches with

duplicated data means the effective cache size for knot-c isalways smaller than for the other servers

without an application cache. Second, the application cache for knot-c is not warmed between runs,

resulting in performance and verification problems. Switching tosendfile allows the application cache for

file data to be eliminated and the performance of knot to be evaluated on a more equal footing with the

other servers.

3.10.1.2 Knot-nb and knot-b

Table 3.4 shows the results of the coarse-grained tuning forknot-nb and knot-b after verification. Each

row in the table represents a different number of workers from 1 to 150. The columns are separated into

two sections with the results for knot-nb in the first sectionand the results for knot-b in the second section.

In each section, the columns represent the number of threads.

Consider the knot-nb section (left) in Table 3.4 first. Similar to knot-c, all the experiments with 20,000

44

3.10. 1.4 GB

threads did not verify. However, in this case the area of bestperformance occurs with 15,000 threads and

at least 5 workers. With non-blockingsendfile, fewer workers are required as there is less copying between

the kernel and user-space than knot-c. Based on this generalvicinity, additional experiments were run and

are presented in Table 3.5(a). For this table, the number of workers are varied from 15 to 150 and the

number of threads from 13,000 to 17,000. This table shows that the best performance occurs with at least

15 workers. As the performance is similar for both 13,000 or 15,000 threads, the least resource intensive

configuration is chosen. In this case, the best performance occurs with 13,000 threads and 15 workers

(2.18), with a peak throughput of 1280 Mbps occurring at 15,000 requests per second and with a sustained

throughput of around 1240 Mbps at 30,000 requests per second.

Again, once a sufficient number of workers are present, performance stabilizes. Unfortunately, the

workers in Capriccio poll, even when there are no requests toprocess, so idle time and I/O wait are almost

zero. Hence, it is impossible to use these values to tune the number of workers.

As can be seen in Tables 3.4 and 3.5(a), the number of threads is an important tuning parameter. Too

few threads hinder performance and too many threads result in verification failures. With 10,000 or fewer

threads, throughput never exceeds 1030 Mbps. In this case, performance for knot-nb is limited because

it cannot support a sufficiently large number of simultaneous connections. In all the experiments with a

memory size of 1.4 GB, when the number of simultaneous connections is capped at 10,000, throughput

never exceeds around 1030 Mbps, and the condensed area is approximately 1.82 for these experiments.

For every server configuration using non-blockingsendfile, there is a point where too many connec-

tions result in verification failures. The actual point where experiments begin to fail verification varies

from server to server. When the number of threads in knot-nb is larger than 15,000, experiments tend to

stop verifying.

As well, the relationship between workers and threads can beseen. With 10,000 threads, performance

improves as the number of workers is increased to around 5. After this point, performance does not

improve as there are an insufficient number of connections (threads). With 5 workers, increasing the

number of threads from 10,000 to 15,000 improves performance by almost 20%. At peak, performance

improves from 1023 Mbps to 1259 Mbps, an increase of 23%. Adding additional workers beyond 5 does

result in a small improvement in performance, but performance stabilizes once there are at least 5 workers.

Now consider the knot-b (right) section in Table 3.4. Unlikethe knot-c and knot-nb case, experiments

with 20,000 threads did verify. In this case, the area of bestperformance occurs with 15,000 threads and

100 workers. More worker tasks (kernel threads) are needed with blocking sendfile because the kernel

thread may block for both socket and file operations. Hence, the kernel thread is unavailable and cannot

be used by the server for other work, and therefore additional kernel threads are required.

Based on this general vicinity, additional experiments were run and are presented in Table 3.5(b). For

45

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Number of Threads

non-blockingsendfile blockingsendfile

Workers 10,000 15,000 20,000 10,000 15,000 20,000

1 1.77 ✕ ✕ ✕ ✕ ✕

5 1.81 2.17 ✕ ✕ ✕ ✕

25 1.82 2.18 ✕ 1.70 1.72 1.48

50 1.82 2.18 ✕ 1.82 2.15 2.09

100 1.82 2.19 ✕ 1.83 2.16 2.15

150 1.82 2.18 ✕ 1.82 2.16 2.15

Table 3.4: Knotsendfile initial experiments - 1.4 GB

Number of Threads

Workers 13,000 15,000 17,000

15 2.18 2.18 ✕

25 2.18 2.18 ✕

50 2.18 2.18 ✕

75 2.18 2.18 ✕

100 2.18 2.17 ✕

125 2.18 2.18 ✕

150 2.18 2.18 ✕

(a) non-blockingsendfile

Number of Threads

Workers 13,000 15,000 17,000

35 2.04 2.01 1.96

50 2.16 2.15 2.13

75 2.17 2.15 2.14

100 2.16 2.14 2.14

125 2.17 2.14 2.14

150 2.17 2.15 2.14

200 2.15 2.14 2.13

(b) blockingsendfile

Table 3.5: Knotsendfile fine tune experiments - 1.4 GB

this table, the number of workers are varied from 35 to 200 andthe number of threads from 13,000 to

17,000. This table shows the best performance occurs with 13,000 threads and 75 workers. Consistent

performance from 50 to 200 workers indicates there are sufficient worker tasks. The best performance

occurs at 13,000 threads and 75 workers (2.17), with a peak throughput of 1261 Mbps occurring at 15,000

requests per second and a sustained throughput of around 1237 Mbps at 30,000 requests per second.

Similar to knot-nb, throughput with 10,000 threads is capped at 1030 Mbps. As expected, the blocking

sendfile version requires more workers to achieve good performance,at least 50 instead of 15 with the non-

blocking version. Another interesting feature is that experiments with less than 50 workers tend to exhibit

performance degradation after peak. In fact, all the experiments with fewer than 50 workers either did not

verify or had tails that dropped by more than 20%, as indicated by theredentries in the tables.

46

3.10. 1.4 GB

It is interesting to note that the best knot-nb and knot-b configurations have very similar performance

for this memory size. However, despite this similarity, there are some notable differences. Unlike knot-nb,

knot-b seems to be able to support a larger number of threads (connections) without verification failures.

In fact, the blockingsendfile version of all the servers tends to be able to support a largernumber of con-

nections without verification failures when compared to their non-blocking counterparts. This verification

problem is explored in section 3.10.2. The downside of usingblocking sendfile is that for an equiva-

lent number of simultaneous connections, the number of workers required to service those connections is

larger resulting in more overhead and decreasing throughput. This additional overhead is more problem-

atic when the system is under increased memory pressure. Thebenefit of having a kernel thread dedicated

to sending the entire file is that as the number of connectionsincreases, experiments still verify despite

increased overheads and lower throughput.

3.10.2 Tuningµserver

Experiments were run to tune the four versions ofµserver: symped-nb, symped-b, sharedsymped-nb

and sharedsymped-b. These four versions cover the space of non-sharing (symped) versus sharing

(sharedsymped) of file descriptors and cache table, and non-blocking (-nb) versus blocking (-b)sendfile.

For all versions ofµserver, the parameters tuned are the maximum number of simultaneous connections

and the number of processes (number of copies of the server running). The number of processes deter-

mines how many disk I/O operations can be pending. These operations block the kernel thread if the data

is accessed from disk or are non-blocking if the data is in thefile-system cache. With blockingsendfile,

the number of processes also determines the maximum number of files concurrently being sent at any

given time.

3.10.2.1 Symped-nb and symped-b

Table 3.6 shows the results of the coarse-grained tuning forsymped-nb and symped-b. Each row in the

table represents a different number of processes from 1 to 150. The columns are separated into two

sections, with the results for symped-nb in section one and the results for symped-b in section two. In

each section, the columns represent a different maximum number of connections from 10,000 to 30,000.

The experiments show the best performance for symped-nb is around 25 processes and 15,000 connec-

tions (2.21). Based on this general vicinity, additional symped-nb experiments were run and are presented

in Table 3.7(a). For this table, the number of processes are varied from 5 to 75 and the maximum number

of connections from 13,000 to 17,000. Table 3.7(a) also shows the best performance occurs with 25 pro-

cesses and 15,000 connections (2.21), with a peak throughput of 1275 Mbps occurring at 15,000 requests

per second and with a sustained throughput of around 1264 Mbps at 30,000 requests per second.

47

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

non-blockingsendfile blockingsendfile

Procs 10,000 15,000 20,000 25,000 30,000 10,000 15,000 20,000 25,000 30,000

1 1.70 1.67 1.67 1.67 1.65 ✕ ✕ ✕ ✕ ✕

5 1.81 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

25 1.82 2.21 ✕ ✕ ✕ 1.57 1.70 1.54 1.41 ✕

50 1.82 2.14 ✕ ✕ ✕ 1.75 2.06 2.09 2.04 1.96

100 1.75 ✕ ✕ ✕ ✕ 1.76 2.04 2.09 2.11 2.11

150 1.68 ✕ ✕ ✕ ✕ 1.70 1.95 2.03 2.05 2.06

Table 3.6:µserver SYMPED initial experiments - 1.4 GB

Max Number of Connections

Procs 13,000 15,000 17,000

5 2.07 ✕ ✕

10 2.18 ✕ ✕

15 2.18 ✕ ✕

25 2.15 2.21 2.19

35 2.12 2.19 ✕

50 2.07 2.15 ✕

75 2.02 2.08 ✕

(a) non-blockingsendfile

Max Number of Connections

Procs 20,000 25,000 30,000 35,000 40,000

50 2.10 2.05 1.96 1.85 1.77

75 2.12 2.14 2.14 2.11 2.07

100 2.09 2.11 2.11 2.12 2.12

125 2.06 2.08 2.09 2.09 2.09

150 2.03 2.06 2.06 2.07 2.06

(b) blockingsendfile

Table 3.7:µserver SYMPED fine tune experiments - 1.4 GB

All the symped-nb experiments with a single process (SPED) verified because they are self limiting.

With SPED, a single process performs the tasks of accept, read and write in a continuous cycle. During the

accept phase, the process accepts all available connections until the operating system indicates that there

are currently no more connections to be accepted or the maximum number of simultaneous connections

is reached. Once the maximum number of simultaneous connections is sufficiently large, the size of the

pending accept queue and the rate at which new connections are arriving determine how many connec-

tions are accepted at any given time. If this rate is roughly balanced by the number of connections that

are closed, then a steady state is reached. At this point, further increasing the maximum simultaneous

connections parameter does not affect server function but simply increases the memory footprint of the

server because the size of the static data structures increases but additional connections are not accepted.

It may be possible to force the server to accept more connections, e.g., by increasing the size of the ac-

48

3.10. 1.4 GB

cept queue, but this technique does not improve throughput:since there is no idle time when the server

reaches steady-state, the server is already able to accept as many connections as it can handle. Forcing

the server to accept additional connections beyond this point results in verification problems as response

times increase but throughput does not. For all of the SPED experiments, steady-state occurs with less

than 10,800 simultaneous connections on average during an experiment. Increasing the maximum number

of connections parameter significantly beyond this value does not benefit the SPED experiments.

All experiments with a maximum number of connections parameter of 10,000 also verified. As with

all the servers with 1.4 GB of memory, performance with 10,000 connections is capped at around 1030

Mbps. Comparing all the servers, symped-nb and sharedsymped-nb achieve the best performance for a

maximum connections value of 10,000. However, 10,000 connections is too few as all the servers can

achieve better performance with a larger maximum-connections parameter.

For experiments involving more than one process, the experiments tend to stop verifying above 15,000

connections. As the maximum connections parameter is increased, the number of file timeouts, especially

for large files, increases beyond the verification threshold. A subset of the experiments in Table 3.6 were

run again with profiling enabled. Examining the OProfile data(not shown) reveals no spikes or unusual

values as the maximum number of connections parameter is increased, even in the costs related to calling

the event mechanism. (The stability in the cost of the event mechanism is due to the scalability ofepoll.)

The reason for the increase in file timeouts seems to be that after the experiment is running for a short time,

the number of requests read by the server starts to become larger than the number of requests completed

by the server. Despite not being able to keep up with the number of requests in progress, the server

continues to read new requests. Because requests for largerfiles tend to require multiple calls to non-

blockingsendfile, these replies tend to timeout before being completely processed. Clearly, the number of

simultaneous requests that the server is trying to process is directly related to the number of connections

it has accepted, and hence, related to the maximum number of connections parameter.

In fact, the reason for the verification failures with all thenon-blocking servers seems to be timeouts

on large files. With the non-blocking servers, if a file requires multiple calls tosendfile in order for it to

be completely sent, the time between calls tosendfile increases as the number of connections increases.

Eventually, the time increases sufficiently to cause the client to timeout before the file is completely

transferred. With blockingsendfile, the initial call continues until the file is completely sent, resulting in

fewer timeout problems.

To verify the large-file timeout problem, non-blockingsendfile experiments were run for symped-nb

with the socket write-buffer set large enough to accommodate the largest files in the file set. Hence, each

file can be transmitted with a single call tosendfile. Note that the operating system may still send the file in

several chunks, but the server only needs to make a single call to sendfile. If the reason that file timeouts

are occurring is that large files require multiple calls tosendfile and these calls get further apart as the

49

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b
p
s

Requests/s

symped-nb-15K-25p
symped-nb-13K-10p
symped-nb-13K-5p
symped-nb-13K-1p

Figure 3.4:µserver with non-blockingsendfile

load increases, then using a large socket buffer should fix this problem. Table 3.8 contains the results of

these experiments for 15,000 and 20,000 maximum connections. The main result is that the server is able

to handle a larger number of simultaneous connections, further experiments show no verification failures

up to 30,000–35,000 maximum connections. When verificationfailures do start to occur, the distribution

of timeouts is across all file sizes and not concentrated on the larger file sizes. The secondary result

is a performance boost because the server operates more efficiently without having to perform multiple

sendfile calls for a single request. While these are desirable outcomes, further experiments with a large

socket buffer are not run as most of the existing file set can already be sent in a single call and it is important

to test the server’s ability to handle larger files requiringmultiple writes. In general, it is impractical to

increase the socket-buffer size to accommodate the largestfile in the file-set because files can be arbitrarily

large, resulting in wasted memory, especially for a large number of simultaneous connections.

Figure 3.4 shows how the throughput of symped-nb changes as the number of connections and pro-

cesses are varied. The lines labeled 13K show the results for13,000 connections and one (1p), five (5p)

and ten processes (10p) respectively. The line labeled 15K shows the results with 15,000 connections and

twenty-five processes (25p).

The throughput of symped-nb-1p-13K is 923 Mbps at 15,000 requests per second and 946 Mbps at

30,000 requests per second. Increasing the number of processes to 5 improves throughput by 29% at

15,000 requests per second and 22% at 30,000 requests per second. Further increasing the number of

processes to 10 improves throughput by 6% at 15,000 requestsper second and 8% at 30,000 requests

per second. At 25 processes, the performance of the server goes down but it has not reached its best

50

3.10. 1.4 GB

Max Number of Connections

Procs 15,000 20,000

5 2.24 2.24

10 2.30 2.27

15 2.30 2.25

25 2.26 2.29

35 2.23 2.30

Table 3.8:µserver non-blocking SYMPED with large socket buffer size

performance (not shown). The problem is that the maximum simultaneous connections value is not large

enough and so the additional processes increase overhead without increasing throughput. By increasing

both the number of processes to 25 and the number of connections to 15,000, the server achieves its best

performance with throughput improving by 1% at 15,000 requests per second and 2% at 30,000 requests

per second.

Consider the I/O wait for each of these configurations. With 13,000 connections and 1 process, I/O

wait on average is 33% at 15,000 requests per second and 31% at30,000 requests per second. Increasing

to 5 processes results in the I/O wait dropping to 8–9% for both 15,000 and 30,000 requests per second.

Moving to 10 processes, the I/O wait drops to 2–3% on average.Finally, with 25 processes, the I/O wait

drops to 0. As can be seen in Table 3.7(a), additional processes beyond 25 do not help because the I/O

wait has essentially been eliminated. In fact, as additional processes are added, performance drops as

more resources are consumed.

While 25 processes drop the I/O wait to 0, performance at 13,000 connections goes down. In this case,

13,000 connections is the bottleneck and the additional processes increase overhead and hurt performance.

However, with 15,000 connections the I/O wait is still zero and performance is better as the server is able

to handle more connections.

It is important to have both a sufficient number of connections and a sufficient number of processes.

When there are too few connections, increasing the number ofprocesses is not beneficial. Furthermore,

increasing the number of connections without a sufficient number of processes leads to verification fail-

ures. When the number of connections is not the bottleneck, increasing the number of processes improves

performance. However, this performance increase is usually because of parallelism afforded by overlap-

ping disk I/O with other activities. Once the I/O wait is zero, additional performance benefits due to

concurrency are unlikely.

Table 3.6 also shows the results of the coarse-grained tuning for symped-b. The experiments show

the best performance for symped-b is around 100 processes and 25,000 connections (2.11). Based on this

51

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b
p
s

Requests/s

symped-b-30K-75p
symped-b-30K-100p
symped-b-25K-50p
symped-b-30K-50p
symped-b-25K-25p

Figure 3.5:µserver with blockingsendfile

general vicinity, additional experiments were run and are presented in Table 3.7(b). For this table, the

number of processes are varied from 50 to 150 and the maximum number of connections from 20,000

to 40,000. This table shows that the best performance occurswith 75 processes and 25,000 connections

(2.14), with a peak throughput of 1234 Mbps occurring at 15,000 requests per second and with a sustained

throughput of around 1198 Mbps at 30,000 requests per second.

As expected, blockingsendfile requires significantly more processes than symped-nb. In fact, the

symped-b experiments with fewer than 25 processes did not verify and all the experiments with 25 pro-

cesses had tails that dropped by more than 20% as indicated inredin the table. The experiments with 50

processes and 25,000 or more maximum connections also had tails with large drops. Figure 3.5 shows

how the throughput of symped-b changes as the number of connections and processes are varied. The

lines labeled with 30K show the results with 30,000 connections and fifty (50p), one hundred (100p) and

seventy-five (75p) processes. The lines labeled with 25K show the results with 25,000 connections and

twenty-five (25p) and fifty (50p) processes.

The bottom three lines are examples of experiments that are labeled inred in the Table 3.7(b). With

these experiments, the throughput increases to a certain point and then drops as the load on the server

increases. For all three of these lines, the drop is more than20%, with smaller table values indicating

earlier or steeper drops in performance.

Since symped-b requires additional processes to run well, it has lower performance than symped-nb

due to the extra overhead, especially memory. It is interesting to note that symped-b is resistant to large-

file timeouts even at high maximum connection values. With non-blocking sendfile, large files are sent

52

3.10. 1.4 GB

in pieces with multiple calls tosendfile. In between sending successive pieces of a large file, many other

files or file pieces may get sent. As the number of requests become large and the server gets saturated,

the period of time taken to send a large file increases as the processing of more and more requests are

interleaved with sending the large file. Eventually, the time it takes to send the file exceeds the time

alloted by the client and the request times out. This problemdoes not occur with small files as they are

sent in a single call tosendfile and has less affect with medium files as only a few calls tosendfile are

required. With blockingsendfile, the kernel thread performing the call blocks until the entire file is sent,

preventing new requests from getting priority over existing requests. In fact, using blocking sockets with

sendfile means that files get attention directly proportional to their size.

Unlike µserver SPED, with symped-b the number of simultaneous connections does increase as the

maximum connections parameter is increased due to the multiple kernel threads. However for rates of

10,000 requests per second or higher, another interesting trend emerges when the number of processes is

fixed. Despite an increasing number of simultaneous connections, the number of requests read per second

is relatively steady once performance reaches its peak. Note, for the symped-b experiments because of

blocking sendfile, the number of requests read is almost equal to the number of replies sent, and hence,

is an indicator of throughput. Therefore, the performance of the server also stabilizes once the number of

requests read stabilizes. For example, with 100 processes,according to the server output, the number of

requests read per second stabilizes with 25,000 or more simultaneous connections. Clearly, this stability

would degrade with a large number of connections due to the additional overhead. Hence, the symped-b

server is also self limiting but in another way compared toµserver SPED. Withµserver SPED, the number

of requests read also stabilizes, but this stability occursbecause the number of simultaneous connections

stops increasing even as the maximum connections parametercontinues to increase.

With 75 processes and a maximum connections parameter of 20,000, the I/O wait is zero at 30,000

requests per second. Increasing the maximum connections parameter to 25,000 results in a small I/O wait

value of 1%. With at least 100 processes, the I/O wait is againreduced to zero. However, as the number of

processes increases, the amount of overhead, especially memory, increases and the throughput decreases.

In fact, the file-system cache shrinks by about 25–30 MB everytime the number of processes is increased

by 25 because the processes do not share an address space. As the throughput stabilizes with 25,000 or

more simultaneous connections, increasing the number of connections does not improve performance. It is

possible that a small amount of additional performance exists in the space between 75 and 100 processes.

3.10.2.2 Sharedsymped-nb and sharedsymped-b

Table 3.9 shows the results of the coarse-grained tuning forsharedsymped-nb and sharedsymped-b. Each

row in the table represents a different number of processes from 1 to 150. The columns are separated into

53

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

two sections with the results for sharedsymped-nb in section one and the results for sharedsymped-b in

section two. In each section, the columns represent a different maximum number of connections from

10,000 to 30,000.

The experiments show the best performance for sharedsymped-nb is around 25 processes and 15,000

connections (2.27). Based on this general vicinity, additional experiments were run and are presented

in Table 3.10(a). For this table, the number of processes were varied from 5 to 75 and the maximum

number of connections from 13,000 to 17,000. This table shows that the best performance occurs with

15 processes and 17,000 connections (2.34), with a peak throughput of 1374 Mbps occurring at 15,000

requests per second and with a sustained throughput of around 1354 Mbps at 30,000 requests per second.

Similar to symped-nb, all the sharedsymped-nb experimentswith a single process (SPED) verified. In

fact, runningµserver SYMPED orµserver shared-SYMPED with one process is equivalent, except for the

cache lock. The difference is the basic overhead of locking as there is no contention in the single process

configuration. Comparing the symped-nb and sharedsymped-nb SPED experiments (Table 3.6 versus

Table 3.9) shows that the cost of locking is relatively smalland that any additional costs associated with a

shared cache-table, when there is more than one process, aredue to contention. For sharedsymped-nb, the

number of simultaneous connections did not exceed 15,000 for all the SPED experiments and on average

there were less than 11,000 simultaneous connections in each experiment during the run of the experiment.

Therefore, the performance of sharedsymped-nb SPED beyond15,000 maximum connections is relatively

steady.

The sharedsymped-nb experiments involving more than one process tend to stop verifying at or above

20,000 maximum connections. Once the server has at least 15 processes, adding further processes does

not improve performance. As more processes are added, performance tends to drop or experiments stop

verifying as more resources are consumed and the efficiency of the server degrades. Since the system is

under memory pressure, as the memory footprint of the serverincreases, the size of the file-system cache

gets smaller. For example, with a maximum connections valueof 15,000 at 30,000 requests per second,

the file-system cache is approximately 39 MB smaller (3%) with 75 processes than with 15 processes

and 82 MB smaller (7%) with 150 processes. Note that these memory-footprint increases are smaller per

process than with symped-nb, showing the advantage of sharedsymped-nb. In addition to the increased

memory footprint, the efficiency of the server with respect to calls toepoll_wait also decreases as the

number of processes increases. 75 processes make about 2.2 times the number of calls toepoll_wait and

150 processes make about 2.3 times the number of calls toepoll_wait compared to 15 processes. Finally,

context switching also increases with the number of processes; 75 processes have approximately 2.9 times

more context switches per second and 150 processes about 4.9times more context switching per second

compared to 15 processes. These overheads are enough to lower performance and eventually cause the

server to stop performing acceptably based on the verification criteria.

54

3.10. 1.4 GB

Maximum Number of Connections

non-blockingsendfile blockingsendfile

Procs 10,000 15,000 20,000 25,000 30,000 10,000 15,000 20,000 25,000 30,000

1 1.71 1.68 1.67 1.66 1.66 ✕ ✕ ✕ ✕ ✕

5 1.81 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

25 1.83 2.27 ✕ ✕ ✕ 1.57 1.72 1.56 ✕ ✕

50 1.83 2.20 ✕ ✕ ✕ 1.75 2.12 2.15 2.10 2.01

100 1.78 2.11 ✕ ✕ ✕ 1.79 2.11 2.19 2.21 2.22

150 1.72 2.06 ✕ ✕ ✕ 1.75 2.05 2.14 2.17 2.19

Table 3.9:µserver shared-SYMPED initial experiments - 1.4 GB

Max Number of Connections

Procs 13,000 15,000 17,000

5 2.11 ✕ ✕

15 2.22 2.31 2.34

25 2.20 2.28 2.31

35 2.17 2.25 2.29

50 2.14 2.21 ✕

75 2.09 2.16 ✕

(a) non-blockingsendfile

Max Number of Connections

Procs 23,000 25,000 27,000

35 1.85 1.78 1.73

50 2.14 2.11 2.07

75 2.22 2.23 2.23

100 2.21 2.21 2.22

125 2.18 2.20 2.20

150 2.16 2.17 2.19

(b) blockingsendfile

Table 3.10:µserver shared-SYMPED fine tune experiments - 1.4 GB

The expectation is that the performance of sharedsymped-nbshould be better than symped-nb for

the following reason. Sharedsymped-nb has a smaller memoryfootprint, making additional memory

available for the file-system cache, but has contention for the shared cache-table. Symped-nb has a larger

memory footprint but does not have to deal with contention related to sharing a cache table among multiple

processes. Assuming that the cache lock is not a bottleneck,sharedsymped-nb should perform better in

any situation where there is memory pressure as there is morememory available for the file-system cache.

Comparing the performance of symped-nb and sharedsymped-nb with a memory size of 1.4 GB shows

that sharedsymped-nb has a small performance advantage over symped-nb. This performance advantage

tends to get larger as the maximum number of connections increases, resulting in more sharedsymped-nb

experiments at 15,000 and 17,000 maximum connections verifying. For the best performing configura-

tions of each server, the performance difference is almost 8% at peak. However, the best parameters are

different for the two servers. Consider the performance of both servers with 17,000 maximum connections

55

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

and 25 processes. Symped-nb has a peak of 1288 Mbps and a condensed area of 2.19 (see Table 3.7(a))

and sharedsymped-nb has a peak of 1353 Mbps and a condensed area of 2.31. At 30,000 requests per sec-

ond, symped-nb’s average file-system cache size is 1105 MB and sharedsymped-nb’s average file-system

cache size is 1200 MB a difference of about 95 MB or 9% larger.

Table 3.9 also shows the results of the coarse-grained tuning for sharedsymped-b. The experiments

show the best performance for sharedsymped-b is around 100 processes and 30,000 connections (2.22).

Additional experiments run at higher maximum connection values (not shown in table) reveal that per-

formance stabilizes at around 25,000 to 30,000 maximum connections. Based on this stability, additional

experiments around 25,000 maximum connections were run andare presented in Table 3.10(b). For this

table, the number of processes were varied from 35 to 150 and the maximum number of connections from

23,000 to 27,000. This table shows that the best performanceoccurs with 75 processes and 25,000 con-

nections (2.23), with a peak throughput of 1295 Mbps occurring at 15,000 requests per second and with a

sustained throughput of around 1257 Mbps at 30,000 requestsper second.

Similar to symped-b, all experiments with fewer than 25 processes did not verify. While experiments

with 25 processes did verify, all these experiments had tails that dropped by more than 20% as indicated

in red in the table. Hence, 25 processes are insufficient when blocking sendfile is used. Similarly, with

25,000 connections or more, 50 processes are insufficient.

Similar to symped-b, the sharedsymped-b server is self limiting. For rates of 10,000 requests per sec-

ond or higher, with 100 processes and 25,000 or more simultaneous connections, according to the server

statistics the number of requests read per second stabilizes. Despite an increasing number of simultaneous

connections, the number of requests read per second is relatively steady once the performance reaches its

peak. Again, this stability would degrade once the overheadof an excessively large number of connections

uses sufficient additional memory, resulting in a noticeable effect on performance.

Also similar toµserver SYMPED, sharedsymped-b has lower performance than sharedsymped-nb. As

discussed earlier, the versions of the server using blocking sendfile require more processes to run well,

but these additional processes result in increased overheads and affect performance. When using blocking

sendfile, there seems to be a tension between using more processes to achieve the required concurrency to

run well in the presence of blocking socket operations and the overheads resulting from these additional

processes. Given the large number of processes required forthe blocking versions of the server, memory is

a significant overhead. Due to the sharing of file descriptorsand the cache table, the memory footprint of

sharedsymped-b is smaller than the memory footprint of symped-b for similar configuration options. As

the number of processes gets larger, this memory efficiency begins to become more significant and results

in better performance. For example, with 50 processes or more, sharedsymped-b performs better than

symped-b. However, unlike with sharedsymped-nb, this improved performance can likely be attributed to

a smaller memory footprint.

56

3.10. 1.4 GB

Comparing the performance of sharedsymped-b and symped-b for 75 processes and 25,000 maximum

connections at 30,000 request per second, the throughput ofsharedsymped-b is 1257 Mbps versus 1198

Mbps for symped-b. Based on vmstat data, sharedsymped-b hasan average file-system cache size of

1109 MB versus 966 MB for symped-b, resulting in a memory difference of around 143 MB or almost

15%. The average I/O wait is 1% for both sharedsymped-b and for symped-b. Interestingly, on aver-

age sharedsymped-b has about 7% more context switching thansymped-b and about 31% more calls to

epoll_wait. The smaller memory footprint of sharedsymped-b is a definite advantage despite the additional

overheads resulting from a shared cache-table.

3.10.3 Tuning WatPipe

Experiments were run to tune the two versions of WatPipe: watpipe-nb and watpipe-b. Watpipe-nb is the

WatPipe server using non-blockingsendfile and watpipe-b is the WatPipe server using blockingsendfile.

For both servers, the parameters tuned are the maximum number of connections and the number of writer

tasks. The number of writers determine how many blocking disk I/O operations can occur simultaneously.

Table 3.11 shows the results of the coarse-grained tuning for watpipe-nb and watpipe-b after verifi-

cation. Each row in the table represents a different number of writer tasks from 1 to 150. The columns

are separated into two sections with the results for watpipe-nb in section one and the results for watpipe-b

in section two. In each section, the columns represent a different maximum number of connections from

10,000 to 30,000.

The experiments show the best performance for watpipe-nb isaround 25 writer tasks and 15,000

maximum connections (2.34). Based on this general vicinity, additional experiments were run and are

presented in Table 3.12(a). For this table, the number of writer tasks were varied from 10 to 100 and the

maximum number of connections from 13,000 to 17,000. This table also shows that the best performance

occurs with 25 writer tasks and 15,000 connections (2.37), with a peak throughput of 1393 Mbps occurring

at 15,000 requests per second and with a sustained throughput of around 1370 Mbps at 30,000 requests

per second.

All watpipe-nb experiments with a maximum number of connections value of less than 25,000 verified.

Above 25,000 connections, the experiments tend to not verify. Once the server had at least 25 writer tasks,

adding further writers did not improve performance. In fact, the average I/O wait drops to zero once

there are at least 25 writers. As more writer tasks are added,performance did not drop appreciably, but

eventually the performance would drop as the overhead of adding more writer tasks becomes larger.

For the experiments run, the performance of watpipe-nb is more stable over a larger range for the

parameters tested than the other non-blocking servers. While experiments began to stop verifying at

57

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

non-blockingsendfile blockingsendfile

Writers 10,000 15,000 20,000 25,000 30,000 10,000 15,000 20,000 25,000 30,000

1 1.71 1.83 1.75 1.67 1.64 ✕ ✕ ✕ ✕ ✕

5 1.77 2.22 2.14 2.11 2.10 ✕ ✕ ✕ ✕ ✕

25 1.77 2.34 2.33 ✕ ✕ 1.67 1.79 1.50 1.38 ✕

50 1.77 2.33 2.33 ✕ ✕ 1.77 2.28 2.21 2.13 1.98

100 1.77 2.32 2.33 ✕ ✕ 1.78 2.30 2.31 2.31 2.31

150 1.78 2.32 2.32 ✕ ✕ 1.77 2.29 2.30 2.31 2.32

Table 3.11: WatPipe initial experiments - 1.4 GB

Max Number of Connections

Writers 13,000 15,000 17,000

10 2.23 2.36 2.34

25 2.23 2.37 2.37

35 2.23 2.36 2.36

50 2.23 2.36 2.37

75 2.23 2.35 2.36

100 2.22 2.35 2.36

(a) non-blockingsendfile

Max Number of Connections

Writers 13,000 15,000 17,000

35 2.13 2.14 ✕

50 2.23 2.31 2.29

75 2.23 2.32 2.32

100 2.22 2.31 2.32

125 2.22 2.31 2.31

150 2.22 2.31 2.31

(b) blockingsendfile

Table 3.12: WatPipe fine tune experiments - 1.4 GB

25,000 maximum connections, for less than 25,000 maximum connections, performance stabilizes once

there are a sufficient number of writer tasks. As the entire address space is shared, the cost of an additional

writer task is mainly its stack. More importantly, the remainder of the server functions the same, so adding

more writers should not affect the efficiency of the other stages of the pipeline. For example, the number

of calls to the event mechanism remains the same.

Table 3.11 also shows the results of the coarse-grained tuning for watpipe-b. The experiments show

the best performance for watpipe-b is around 100 writer tasks and 20,000 connections (2.31). However,

the performance of watpipe-b stabilizes around 100 writer tasks and 15,000 connections, so additional

experiments were run based on this general vicinity and are presented in Table 3.12(b). For this table,

the number of writer tasks were varied from 35 to 150 and the maximum number of connections from

13,000 to 17,000. This table also shows that the best performance occurs with 75 writer tasks and 15,000

58

3.10. 1.4 GB

connections (2.32), with a peak throughput of 1365 Mbps occurring at 15,000 requests per second and

with a sustained throughput of around 1323 Mbps at 30,000 requests per second.

Similar to the other experiments with blockingsendfile, all experiments with fewer than 25 threads

(writer tasks) did not verify. While experiments with 25 writer tasks did verify, all these experiments had

tails that dropped by more than 20% as indicated inred in the table. Similarly, with 25,000 connections

or more, 50 writer tasks are insufficient. All experiments with at least 50 writer tasks verified. Once the

server had at least 75 writer tasks, adding further writers did not improve performance. As more writer

tasks are added, performance did not drop appreciably, but eventually the performance would drop as the

overhead of adding more writer tasks becomes larger.

The blocking version requires more threads due to blockingsendfile, however, the additional threads

consume more resources and so the performance is lower than the non-blocking version. Since the system

is under memory pressure, watpipe-nb has an advantage as it achieves its best performance with fewer

writers. However, these memory differences do not entirelyaccount for the difference in performance.

For example, in Table 3.12 with 75 writers and 15,000 connections the performance of watpipe-nb is 2.35

while the performance of watpipe-b is 2.32. As these two configurations have similar memory footprints,

memory is not the only difference. Examining the vmstat output at 15,000 requests per second reveals that

the blocking server has 1% more user time and 2.2 times more context switching than the non-blocking

server. The difference seems to be that a non-blocking writer thread can do more work before being

context switched than a blocking writer thread, resulting in lower overhead for the non-blocking server.

While these overheads are small, they do affect performanceby 1–2% at peak and beyond.

For the watpipe-b experiments, the average I/O wait drops tozero once there are at least 75 writers.

Similar to the versions ofµserver using blockingsendfile, watpipe-b is also self limiting. For request rates

of 10,000 requests per second or higher, with 100 processes and 25,000 or more simultaneous connections

the number of requests read per second stabilizes.

3.10.4 Server Comparison

The previous sections examined the performance of different server architectures with multiple imple-

mentations of each under the same workload and environment by running experiments to tune each server

in order to find its best performing configuration. In this section, the best configurations for each server

are compared. As discussed earlier, the differences among the servers were minimized, and hence, the

remaining differences are related to architecture and not other factors, such as caching strategies, event

mechanisms, etc.

Figure 3.6 presents the best performing configuration for each server-architecture implementa-

tion: caching Knot (knot-c), non-blocking Knot (knot-nb),blocking Knot (knot-b), µserver non-

59

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b
p
s

Requests/s

watpipe-nb-15K-25w
sharedsymped-nb-17K-15p

watpipe-b-15K-75w
sharedsymped-b-25K-75p

symped-nb-15K-25p
knot-nb-13K-15w
knot-b-13K-75w

symped-b-25K-75p
knot-c-10K-100w-400MB

Figure 3.6: Throughput of different architectures - 1.4 GB

Server Rank

watpipe-nb 1

sharedsymped-nb 2

watpipe-b 3

symped-nb 4

sharedsymped-b 4

knot-nb 5

knot-b 5

symped-b 6

knot-c 7

Table 3.13: Ranking of server performance - 1.4 GB

60

3.10. 1.4 GB

blocking SYMPED (symped-nb),µserver blocking SYMPED (symped-b),µserver non-blocking shared-

SYMPED (sharedsymped-nb),µserver blocking shared-SYMPED (sharedsymped-b), non-blocking Wat-

Pipe (watpipe-nb) and blocking WatPipe (watpipe-b). The legend in Figure 3.6 is ordered from the best

performing server at the top to the worst at the bottom. Excluding knot-c, peak server performance varies

by about 11% (1234–1393 Mbps), indicating all the servers can do an excellent job.

Table 3.13 ranks the performance of the servers for the 1.4 GBworkload. The ordering is determined

by the area under the performance curve, with larger areas representing better performance. The best

performing configuration for each server is run three times.Then Tukey’s Honest Significant Difference

test is used to determine, based on an analysis of variance, which mean areas are significantly different

from one another with a 95% confidence level. The servers are then ranked based on mean area, with

servers without a significant difference being grouped together.

The top performer is watpipe-nb, followed by sharedsymped-nb and watpipe-b; however, the differ-

ence in performance among the servers is small. The next grouping consists of sharedsymped-b and

symped-nb. Thesendfile version of the Knot servers, knot-nb and knot-b are next, followed closely by

symped-b. Finally at the bottom is knot-c. Comparing the performance of the best version of WatPipe

and the best version ofµserver, watpipe-nb has a 1% higher peak at 15,000 requests per second and 1%

higher performance after saturation at 30,000 requests persecond, so the performance of these two servers

is basically identical. Comparing the performance of the best version of WatPipe and the best versions

of Knot, watpipe-nb has a 9% higher peak at 15,000 requests per second and 10% higher performance

at 30,000 requests per second. The watpipe-nb and watpipe-bservers have performance within about 2–

4% of each other. Sharedsymped-nb has a 6% higher peak at 15,000 requests per second and 8% higher

performance at 30,000 requests per second than sharedsymped-b. Between the blockingµserver and non-

blockingµserver versions is a larger gap; symped-nb has a 3% higher peak at 15,000 requests per second

and 6% higher performance at 30,000 requests per second. Thenon-blocking and blocking versions of

Knot have around the same performance. However, compared toknot-c, knot-nb has a 28% higher peak

at 15,000 requests per second and 30% higher performance at 30,000 requests per second.

The performance of most of the servers is relatively close, but there are some interesting differences

and similarities. In order to better understand the performance of the servers and to compare the servers,

the best configuration of each server was profiled. Data is gathered by running OProfile and vmstat

during an experiment where each server is subjected to a loadof 15,000 requests per second. While the

overhead of profiling does result in a performance penalty, this rate represents peak performance for most

of the servers, and even with profiling, all the servers pass verification. OProfile periodically samples the

execution of the program to determine where the system is spending time. As no unnecessary programs

or services are running on the machine during an experiment,all profiling samples, including those in

kernel and library code, can be legitimately attributed to the execution of the server. Additional statistics

61

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

are gathered directly from the servers. The resulting data are summarized in Tables 3.14 and 3.15.

The tables are divided into four sections with the data for each server in a separate column. The

first section lists the architecture of the server, the configuration parameters and the performance of the

server in terms of both reply rate and throughput in megabitsper second. In this section, “T/Conn”

means thread per connection and “s-symped” means shared-SYMPED. The second section is a summary

of the execution sampling data gathered by OProfile. The OProfile data consists of the percentage of

samples that occurred in a particular function. From this data, it is possible to extrapolate how much

CPU time the system is spending in each function. These functions are divided among the Linux kernel

(vmlinux), Ethernet driver (e1000), application (user space) and C library (libc). All remaining functions

fall into the “other” category, which mostly represents OProfile execution. The vmlinux and user-space

sections are further divided into sub-categories. Categorization is automated by generating ctags files to

define the members of each sub-category. In the user-space category, threading overhead denotes time

spent in the threading library (Capriccio for Knot and Pthreads for WatPipe) executing code related to

scheduling, context-switching and synchronization of user-level threads. It also includes communication

and synchronization between light-weight user and kernel threads for Knot. The event overhead refers to

the server CPU-time spent managing event interest-sets, processing event notifications from the operating

system and invoking appropriate event handlers for each retrieved event. The application sub-category

includes the time not spent in thread and event overhead. Thethird section presents data gathered by

vmstat during an experiment. The vmstat utility periodically samples the system state and generates

data about processes, memory, I/O, CPU activity, etc. For these experiments, vmstat was configured to

sample the system every five seconds. The data presented in the table is an average of the sampled values

gathered during the experiment. The row labelled “file-system cache” gives the average size of the Linux

file-system cache in megabytes and the row labelled “ctx-sw/sec” gives the average number of context

switches per second performed by the kernel. The last section contains the number of user-level context

switches per second gathered directly from Capriccio. For each server, only the values where there is a

significant difference among the servers are discussed.

The user-space total for all the Knot servers is 3% - 11% larger than the user-space total for the other

servers. The difference is related to the fact that Knot requires a large number of threads (≥ 10,000) to

achieve good performance under this workload, resulting inadditional overhead for user-level threading,

I/O, synchronization and context switches. However, the size of this difference is misleading without

taking into account some other values. First, the overhead for calling an event mechanism (epoll overhead)

is lower with Knot than with the other servers. This difference is due to Knot’s implementation of trying

the call first and only using an event mechanism if the call cannot complete without blocking. In most

cases, the call completes successfully the first time, resulting in rather sparse interest sets. Hence, using

epoll instead ofselect or poll is more efficient [45]. Second, Capriccio calls into the kernel using syscalls

62

3.10. 1.4 GB

and bypasses using libc for I/O. So the libc overhead from theother servers is combined into the thread

overhead for the Knot servers. Hence, the extra overhead of running with a large number of threads is

actually lower than it may appear.

As can be seen from Figure 3.6, the performance of knot-c is much lower than the other servers,

even the other Knot servers. The OProfile data reveals that kernel data copying is quite large for knot-c

at 17.46%, but only around 1% for the other servers. This overhead is virtually eliminated in knot-nb

and knot-b by moving away from an application data cache and using sendfile instead, suggesting that

maintaining an application cache is not a good technique even aside form the data duplication problems

with maintaining two separate file caches. The next section,where the entire file set can fit into memory,

examines if performance is comparable when the file-system cache can be bypassed or if operations that

reduce data copying between the kernel and user-space are needed. Note that larger OProfile values are

not always an indication of a problem or inefficiency. In somecases, the differences between knot-c and

both knot-nb and knot-b, e.g., larger e1000 values, are related to differences in throughput. However, there

are issues related to duplication of data between the application and file-system cache that make it difficult

to confirm the hypothesis that high data copying overheads make write more expensive thansendfile. This

observation is revisited in the next section.

Another difference among the servers is the average size of their file-system cache. As knot-c uses

an application data-cache, its file-system cache is smallerthan the other servers. For the servers using

user-level threading, there is no significant difference infile-system cache despite the blocking version of

the server requiring more kernel threads since the stacks are small and the address space is shared. Knot-

nb and knot-b have virtually the same size file-system cache as do watpipe-nb and watpipe-b. For these

servers, the non-blocking and blocking versions have approximately the same size file-system cache and

almost the same throughput. For theµserver versions, the size of the difference depends on the amount

of sharing among the processes. With SYMPED, the non-blocking version has a file-system cache of

1106 MB versus 939 MB for the blocking version, which is a reduction of about 167 MB for the 50

additional processes required by the blocking version. With shared-SYMPED, the non-blocking version

has a file-system cache of 1203 MB versus 1105 MB for the blocking version. This is a reduction of

about 98 MB for the 60 additional processes required by the blocking version. For both servers, the

non-blocking version of the server has better performance.Even with the same number of processes,

sharedsymped-b has a 166 MB larger file-system cache than symped-b, resulting in the shared-SYMPED

servers having better performance than their SYMPED counterparts. Similarly, watpipe-b has an 82 MB

larger file-system cache than sharedsymped-b, resulting inWatPipe having the best performance among

the blocking servers.

Finally, it is interesting to note that the non-blocking servers with shared data, which require lock-

ing, also appear to have less context switching. While WatPipe does not have an alternative version to

63

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

compare with, watpipe-nb has the second lowest amount of context switching at 933 context-switches

per second. More interestingly, sharedsymped-nb has 845 context-switches per second on average com-

pared to symped-nb with 3475 context switches per second. The scheduling overhead in the profiling

tables show some of the direct overheads of context-switching; higher levels of kernel context-switching

result in larger scheduling-overhead values. Both knot-nband knot-b have around 20,000 kernel context-

switches per second as well as around 20,000 user-level context switches per second. While knot-nb and

knot-b have reasonable performance, their scheduling overheads are higher, indicating that high levels

of context-switching do result in higher overheads. However, at these levels, context-switching does not

appear to be a major problem. But, the differences in contextswitching among similar servers is impor-

tant as it may still give insight into the behaviour of the servers. For example, with shared-SYMPED,

fewer context switches could indicate that more data is being returned fromepoll, resulting in processes

executing longer between context switches.

64

3.10. 1.4 GB

Server Knot-cache Knot Knot userver userver

Arch T/Conn T/Conn T/Conn symped symped

Write Sockets non-block non-block block non-block block

Max Conns 10K 13K 13K 15K 25K

Workers/Procs/Writers 100w 15w 75w 25p 75p

Other Config 400MB

Reply rate 8002 9839 9627 9847 9444

Tput (Mbps) 952 1177 1149 1174 1127

OPROFILE DATA

vmlinux total % 65.34 57.45 59.00 63.25 64.09

networking 22.46 27.95 28.22 28.74 28.81

memory-mgmt 7.16 6.93 6.66 7.38 7.53

file system 3.22 4.78 4.67 5.08 5.68

kernel+arch 5.59 5.98 6.30 8.52 8.00

epoll overhead 1.68 2.21 2.18 5.35 5.21

data copying 17.46 0.64 0.66 1.07 0.99

sched overhead 1.64 2.07 2.99 0.66 1.08

others 6.13 6.89 7.32 6.45 6.79

e1000 total % 18.32 22.15 21.51 23.08 21.89

user-space total % 14.13 18.18 17.3 7.78 7.28

thread overhead 6.24 10.09 9.2 0.00 0.00

event overhead 0.00 0.00 0.00 2.76 2.41

application 7.89 8.09 8.1 5.02 4.87

libc total % 0.01 0.02 0.02 3.62 4.33

other total % 2.20 2.20 2.17 2.27 2.41

VMSTAT DATA

waiting % 0 0 0 0 0

file-system cache (MB) 795 1168 1168 1106 939

ctx-sw/sec (kernel) 2705 22,280 19,833 3475 4216

SERVER STATS

ctx-sw/sec (user) 12,380 22,290 19,455

Table 3.14: Server performance statistics gathered under aload of 15,000 requests per second - 1.4 GB

65

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Server userver userver WatPipe WatPipe

Arch s-symped s-symped pipeline pipeline

Write Sockets non-block block non-block block

Max Conns 17K 25K 15K 15K

Workers/Procs/Writers 15p 75p 25w 75w

Other Config

Reply rate 10,606 10,028 10,769 10,490

Tput (Mbps) 1267 1198 1286 1251

OPROFILE DATA

vmlinux total % 62.47 63.96 61.19 62.42

networking 29.93 29.96 29.70 29.49

memory-mgmt 7.36 7.47 8.12 7.71

file system 4.41 4.31 4.36 4.32

kernel+arch 7.41 7.60 7.12 7.56

epoll overhead 5.80 5.59 4.75 4.58

data copying 1.10 1.05 0.83 0.84

sched overhead 0.28 1.18 0.56 1.25

others 6.18 6.80 5.75 6.67

e1000 total % 24.23 22.42 24.06 22.51

user-space total % 7.91 7.63 10.84 11.21

thread overhead 0.00 0.00 4.51 5.19

event overhead 2.83 2.63 2.44 2.17

application 5.08 5.00 3.89 3.85

libc total % 3.31 3.88 1.86 1.78

other total % 2.08 2.11 2.05 2.08

VMSTAT DATA

waiting % 0 0 0 0

file-system cache (MB) 1203 1105 1187 1187

ctx-sw/sec (kernel) 845 4568 933 5078

SERVER STATS

ctx-sw/sec (user)

Table 3.15: Server performance statistics gathered under aload of 15,000 requests per second - 1.4 GB

66

3.11. 4 GB

3.11 4 GB

For these experiments, the system was configured with 4 GB of memory. In actual fact, the amount

of available memory is around 3.7 GB due to parts of the address space being reserved for hardware

devices. The idea behind these experiments is to examine performance when the entire file set is in

memory, thus eliminating disk I/O. Given the size of the file set, 2.1 GB, 3.7 GB of memory is sufficient

for these experiments. While the notion of having the file setin memory has different meanings for the

various servers, ideally, all the servers should be able to achieve their maximum throughput under this

configuration. As well, the expectation is that one or very few kernel threads are necessary for the servers

using non-blocking I/O, since with this setup no overlapping of disk I/O and CPU execution is possible as

the file set is cached and I/O waiting should be zero. However,in order to examine the tuning sensitivity

of the servers, a large range of parameters are presented foreach server even though the variation is small

in some cases.

3.11.1 Tuning Knot

Tuning was again performed for knot-c, knot-nb and knot-b. For all servers, the parameters tuned are the

number of threads and the number of worker tasks. Additionally, the size of the application cache is tuned

for knot-c.

3.11.1.1 Knot-c

For the knot-c experiments, two cache sizes are used, 1000 MBand 2500 MB. As discussed earlier, the

size of the file set is approximately 2.1 GB. With 1000 MB of application cache, the entire file set fits into

the file-system cache but not the application cache. With 2500 MB of application cache, the entire file

set no longer fits into the file-system cache but does fit into the application cache. As the point of these

experiments is to eliminate disk I/O, another strategy is used when the application cache is set to 2500

MB. In this case, the file set is preloaded into the application cache using cache warming. To perform

cache warming for knot-c, the file data for the entire file set is read into the application cache before

the experiment begins. Hence, during the experiment all filerequests can be serviced directly from the

application cache without requiring any disk I/O. Note thatusing cache warming is an extra benefit for

knot-c because the files do not need to be opened during the experiment as the file data is pre-cached

on startup, resulting in reduced overhead. While it is possible to eliminate this difference by performing

application cache-warming for the other server experiments, cache-warming is not done for the other

server experiments because it would eliminate interestingdifferences among the servers with respect to

shared versus non-shared application caches.

67

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Cache size in MB

10,000 threads 15,000 threads 20,000 threads 25,000 threads

Workers 1000 2500 1000 2500 1000 2500 1000 2500

1 1.82 1.82 2.05 2.10 2.05 2.10 2.04 2.10

5 1.82 1.82 2.05 2.10 2.05 2.10 2.04 2.10

10 1.82 1.82 2.05 2.10 2.05 2.10 2.05 2.10

25 1.82 1.81 2.05 2.10 2.04 2.10 2.04 2.10

50 1.81 1.81 2.04 2.09 2.04 2.10 2.04 2.09

100 1.81 1.81 2.04 2.10 2.04 2.09 2.04 2.09

Table 3.16: Knot cache initial experiments - 4 GB

2500 MB

Number of Threads

Workers 13,000 15,000 18,000 20,000

1 2.10 2.10 2.10 2.10

5 2.11 2.11 2.10 2.10

10 2.10 2.11 2.10 2.10

25 2.10 2.10 2.10 2.10

Table 3.17: Knot cache fine tune experiments - 4 GB

Table 3.16 shows the results of the coarse-grained tuning for knot-c after verification. Each row

represents a different number of workers from 1 to 100. The columns are separated into four sections with

the results for 10,000 threads in section one, 15,000 threads in section two, 20,000 threads in section three

and 25,000 threads in section four. In each section, the two columns correspond to the two different cache

sizes being tested, i.e., 1000 or 2500 MB.

The experiments show the best performance is around 1 worker, at least 15,000 threads and 2500

MB of application cache (2.10). Based on this general vicinity, additional experiments were run and are

presented in Table 3.17. In this table, the cache size is restricted to 2500 MB. Each row represents a

different number of workers from 1 to 25 and each column represents a different number of threads from

13,000 to 20,000. This table shows that the best performanceoccurs with 13,000 threads, 5 workers and

2500 MB of application cache (2.11), with a peak throughput of 1203 Mbps occurring at 15,000 requests

per second and with a sustained throughput of around 1192 Mbps at 30,000 requests per second. Note,

since there is no disk I/O, the additional workers are doing very little work (some polling). Hence, the

experiments are virtually identical, so the results for allthe experiments are very close, and it is likely

68

3.11. 4 GB

just experimental variation that resulted in this particular configuration giving the best performance for

this run. This result represents an improvement of approximately 20% at peak and 25% for the sustained

throughput over the best results obtained with knot-c for the 1.4 GB experiments.

However, even without disk I/O the performance of knot-c is still slightly worse than the performance

of the other servers running with only 1.4 GB of memory; its performance is just below the level achieved

by symped-b with 1.4 GB of memory. Eliminating cache duplication problems in these experiments

should allow for a better comparison of usingwrite with an application cache versus using zero-copy

sendfile with the file-system cache. While there may be duplicated data between the application cache

and the file-system cache, since the entire file-set is preloaded into the application cache, duplicated data

in the file-system cache does not effect the performance of knot-c for these experiments.

Both Table 3.16 and Table 3.17 show that after at least 13,000threads there is not much variation in

the results. Only as the number of worker tasks gets larger than 25 is there a slight but consistent drop in

throughput. As the memory overhead is irrelevant since there is enough memory to eliminate disk I/O and

swapping, one obvious overhead is the amount of context switching. However, this overhead is small and

does not affect performance greatly. For example, at 2500 MBof application cache and 15,000 threads

under a load of 30,000 requests per second, the average number of kernel context switches per second for

1 worker is 34 and for 100 workers is 1024. It is likely the timespent polling the empty worker (disk I/O)

queue results in more overhead than the context switching.

3.11.1.2 Knot-nb and knot-b

Table 3.18(a) shows the results of the coarse-grained tuning for knot-nb. Each row in the table represents

a different number of workers from 1 to 100 and each column represents a different number of threads

from 10,000 to 25,000. For these experiments, the best performance occurs at 15,000 threads and at least

1 worker (2.26). Based on this general vicinity, additionalexperiments were run and are presented in

Table 3.19(a). For this table, the number of workers are varied from 1 to 10 and the number of threads

from 13,000 to 17,000. For knot-nb, the best performance occurs with 15,000 threads and 1 worker

(2.29), with a peak throughput of 1339 Mbps occurring at 15,000 requests per second and with a sustained

throughput of around 1320 Mbps at 30,000 requests per second. This result represents an improvement

of approximately 5% at peak and 6% for the sustained throughput over the best results obtained for the

1.4 GB experiments. This improvement is much smaller than those obtained by knot-c; however, knot-c

benefited from more than just eliminating disk I/O. Not only did the entire file set fit into the application

cache, reducing tension with the file-system cache, but knot-c had the added benefit of application cache

warming.

It is interesting to note that 10,000 connections is again aninsufficient number of threads and lim-

69

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Threads

Workers 10,000 15,000 20,000 25,000

1 1.82 2.26 2.24 ✕

5 1.82 2.26 2.24 2.24

10 1.83 2.26 2.24 2.23

25 1.83 2.26 2.24 2.24

50 1.83 2.25 2.24 2.24

100 1.83 2.25 2.24 2.24

(a) non-blockingsendfile

Maximum Number of Threads

Workers 10,000 15,000 20,000 25,000

1 ✕ ✕ ✕ ✕

5 ✕ ✕ ✕ ✕

10 0.99 ✕ ✕ ✕

25 1.70 1.75 1.50 1.38

50 1.82 2.20 2.14 2.09

100 1.83 2.22 2.23 2.23

150 1.83 2.22 2.22 2.23

(b) blockingsendfile

Table 3.18: Knotsendfile initial experiments - 4 GB

Maximum Number of Threads

Workers 13,000 15,000 17,000

1 2.26 2.29 2.27

3 2.26 2.28 2.27

5 2.26 2.28 2.27

10 2.26 2.28 2.27

(a) non-blockingsendfile

Maximum Number of Threads

Workers 20,000 25,000 30,000 35,000

100 2.26 2.25 2.25 2.25

150 2.26 2.25 2.25 2.25

200 2.25 2.25 2.25 2.25

(b) blockingsendfile

Table 3.19: Knotsendfile fine tune experiments - 4 GB

its performance. When the number of simultaneous connections is capped at 10,000, throughput never

exceeds 1036 Mbps, and the condensed area is approximately 1.84 for these experiments. This value

is almost identical to the peak throughput observed with 1.4GB of memory, suggesting performance is

limited by only having 10,000 threads and not other overheads such as memory or disk I/O.

Finally, the tuning stability seen in the knot-c experiments when adding workers continues with the

knot-nb experiments. However, increasing the number of threads beyond 15,000 results in a gradual

decline in performance.

When knot-c is run with 2500 MB of cache, problems related to the size of the application cache versus

the file-system cache are eliminated. In this case, the entire file set fits into the application cache. Hence,

any differences between knot-c and knot-nb are likely related to the difference in efficiency betweenwrite

versus zero-copysendfile. It appears thatsendfile is more efficient and results in better performance even

with the benefit that knot-c gets from cache warming. This observation is explored further in the Server

70

3.11. 4 GB

Comparison section (3.11.4).

Table 3.18(b) shows the results of the coarse-grained tuning for knot-b after verification. Each row in

the table represents a different number of workers from 1 to 150 and each column represents a different

number of threads from 10,000 to 25,000. For these experiments, the best performance occurs at around

20,000 threads and 100 workers (2.23). Based on this generalvicinity, additional experiments were run

and are presented in Table 3.19(b). For this table, the number of workers are varied from 100 to 200

and the number of threads from 20,000 to 35,000. For knot-b, the performance of the experiments in

Table 3.19(b) are similar enough that the least resource intensive configuration is chosen as the best. The

best performance occurs with 20,000 threads and 100 workers(2.26), with a peak throughput of 1310

Mbps occurring at 30,000 requests per second. In this case, the peak occurs at the highest rate run but

the throughput at 15,000 requests per second is 1308 Mbps at which point performance is relatively level.

This result represents an improvement of approximately 4% at 15,000 requests per second and 6% for the

sustained throughput over the best results obtained for the1.4 GB experiments. This improvement is in

line with the improvements for knot-nb and smaller than those seen by knot-c.

Unlike knot-nb, even though the entire file set fits into the file-system cache, more workers are required

compared to knot-b running with 1.4 GB of memory. In this case, however, the workers are only blocked

waiting to send the contents of larger files and not due to diskI/O. The larger number of workers are

a function of the higher throughput and the increased numberof simultaneous connections. It is also

interesting to note that similar to the knot-b experiments with 1.4 GB of memory, more than 25 workers

are needed, otherwise experiments do not verify or performance drops of more than 20% occur after peak.

While there is no memory pressure, knot-b does not perform aswell as knot-nb. The only significant

difference is the larger number of workers required by knot-b. Based on vmstat output, one big difference

between the servers is kernel context-switching overhead.For their corresponding best performing con-

figurations, at a request rate of 30,000 requests per second,knot-nb has an average of 39 context switches

per second and knot-b has 6875 context switches per second. While the context switching overhead is

not very large in either case, the amount of time spent polling the worker (disk I/O) queue is much higher

with knot-b. While knot-b requires a larger number of workers to handle cases where many large files are

being sent concurrently, at other times these extra workerssimply consume CPU time polling the worker

queue because they spin.

As well, knot-b appears to be self-limiting. Based on serverstatistics, the number of simultaneous

connections does not appear to exceed 30,000 for any of the experiments in Table 3.19(b). Hence, further

increases to the number of threads is not helpful.

71

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

3.11.2 Tuningµserver

Experiments were run to tune the four versions ofµserver: symped-nb, symped-b, sharedsymped-nb

and sharedsymped-b. For all versions ofµserver, the parameters tuned are the maximum number of

simultaneous connections and the number of processes.

3.11.2.1 Symped-nb and symped-b

Table 3.20(a) shows the results of the coarse-grained tuning for symped-nb after verification. Each row in

the table represents a different number of processes from 1 to 100 and each column a different maximum

number of connections from 10,000 to 25,000. The experiments show the best performance for symped-nb

is around 1 process and 15,000 maximum number of connections(2.44). Based on this general vicinity,

additional symped-nb experiments were run and are presented in Table 3.21(a). For this table, the number

of processes are varied from 1 to 4 and the maximum number of connections from 13,000 to 20,000. Ta-

ble 3.21(a) shows that the best performance for symped-nb occurs with 1 process and 18,000 connections

(2.45), with a peak throughput of 1444 Mbps occurring at 15,000 requests per second and with a sustained

throughput of around 1437 Mbps at 30,000 requests per second. This result represents an improvement

of approximately 13% at 15,000 requests per second and 14% for the sustained throughput over the best

results obtained for the 1.4 GB experiments.

Moving from an actual SYMPED server to a SPED server represents a significant reduction in over-

head for symped-nb. Efficiencies are gained by only having a single process, such as fewer and hence

more efficient calls to the event mechanism, very few contextswitches and theµserver SPED servers are

self-limiting so verification problems are less likely as the maximum number of connections increase.

These types of efficiencies combined with other advantages of only having a single thread, such as, little

to no contention for resources, reduced scheduling overheads and better usage of hardware caches, result

in a performance advantage for the SPED servers.

The SPED runs are self-limiting; the maximum number of simultaneous connections never exceed

20,000. As well, the best performance occurs with 1 process as there is no blocking for disk I/O. Aside

from a performance boost when the maximum number of connections is at least 15,000, the results for 4

GB are very similar to results for 1.4 GB with respect to verification. As discussed earlier, once the I/O

wait is zero, adding additional processes does not improve performance.

Symped-nb experiments with 15,000 maximum connections andbetween 3 and 10 processes did not

verify, but other experiments with 15,000 maximum connections did verify. These verification problems

occur at 15,000 requests per second because the server is close to the edge of its tuning range for the

maximum number of connections. As discussed earlier, verification failures occur because the server

72

3.11. 4 GB

Maximum Number of Connections

Procs 10,000 15,000 20,000 25,000

1 1.83 2.44 2.43 2.43

5 1.84 ✕ ✕ ✕

10 1.83 ✕ ✕ ✕

25 1.83 2.33 ✕ ✕

50 1.83 2.29 ✕ ✕

100 1.78 2.18 ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Procs 10,000 15,000 20,000 25,000 30,000

1 ✕ ✕ ✕ ✕ ✕

5 ✕ ✕ ✕ ✕ ✕

10 1.02 ✕ ✕ ✕ ✕

25 1.59 1.75 1.59 1.44 ✕

50 1.75 2.10 2.14 2.10 2.01

100 1.78 2.08 2.14 2.17 2.18

(b) blockingsendfile

Table 3.20:µserver SYMPED initial experiments - 4 GB

Maximum Number of Connections

Procs 13,000 15,000 18,000 20,000

1 2.28 2.44 2.45 2.44

2 2.28 2.32 ✕ ✕

3 2.28 ✕ ✕ ✕

4 2.28 ✕ ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Procs 25,000 30,000 35,000 40,000

100 2.19 2.21 2.21 2.21

125 2.17 2.18 2.19 2.19

150 2.15 2.16 2.17 2.17

(b) blockingsendfile

Table 3.21:µserver SYMPED fine tune experiments - 4 GB

reads more requests than it can process, especially for higher request rates, so timeouts occur with large

files. With one process, event polling occurs at specific times and the requests available at that time are

processed before the event mechanism is called again. When there are several processes, event polling

occurs independently for each process over a larger span of time, resulting in more requests available for

reading. As the overall number of requests read becomes larger than the server can handle, verification

problems occur. However, as the number of processes increases, the server operates less efficiently and

eventually more requests time out before being read. Since throughput decreases as the number of pro-

cesses increases, the number of requests handled by the server must also decrease. Because there is a

direct correlation between the number of requests processed and the throughput of the server, if the num-

ber of requests handled by the server did not decrease, then additional read requests must time out, since

the throughput is lower, resulting in verification failures. Therefore, while the experiments with more than

10 processes verify, performance decreases.

Table 3.20(b) shows the results of the coarse-grained tuning for symped-b. Each row in the table rep-

73

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

resents a different number of processes from 1 to 100 and eachcolumn a different maximum number of

connections from 10,000 to 30,000. The experiments show thebest performance for symped-b is around

100 processes and 30,000 maximum number of connections (2.18). Based on this general vicinity, addi-

tional symped-b experiments were run and are presented in Table 3.21(b). For this table, the number of

processes are varied from 100 to 150 and the maximum number ofconnections from 25,000 to 40,000.

Table 3.21(b) shows that the best performance for symped-b occurs with 100 processes and 30,000 con-

nections (2.21), with a peak throughput of 1284 Mbps occurring at 15,000 requests per second and with

a sustained throughput of around 1263 Mbps at 30,000 requests per second. This result represents an im-

provement of approximately 4% at 15,000 requests per secondand 5% for the sustained throughput over

the best results obtained for the 1.4 GB experiments.

Similar to knot-b, more than 25 processes are needed, otherwise experiments do not verify or drops

in throughput larger than 20% occur after peak. The requirement for more than 1 process means that

symped-b does not perform as efficiently as symped-nb running SPED. As discussed earlier, with no

memory pressure a SPED server is more efficient than running with multiple processes. For example, at a

rate of 30,000 requests per second the best symped-b configuration made 128,365 calls to the event mech-

anism compared to 103,696 calls by symped-nb, a difference of approximately 24%. (See Section 3.11.4

for profiling data related to the efficiencies of running witha single process.) As well, since SYMPED

processes are symmetric, each process performs all the functions of a complete server, so additional pro-

cesses tend to have a larger negative effect on performance than asymmetric tasks like the worker threads

in Knot. Therefore, the performance difference between symped-nb and symped-b is larger than the per-

formance difference between knot-nb and knot-b. For the same reason, the SYMPED experiments for

this workload exhibit less tuning stability as the number ofprocesses are increased compared to the Knot

experiments when the workers are increased.

3.11.2.2 Sharedsymped-nb and sharedsymped-b

Table 3.22(a) shows the results of the coarse-grained tuning for sharedsymped-nb after verification. Each

row in the table represents a different number of processes from 1 to 100 and each column a different

maximum number of connections from 10,000 to 25,000. The experiments show the best performance for

sharedsymped-nb is around 1 process and 15,000 maximum number of connections (2.46). Based on this

general vicinity, additional sharedsymped-nb experiments were run and are presented in Table 3.23(a).

For this table, the number of processes are varied from 1 to 4 and the maximum number of connections

from 15,000 to 30,000. Table 3.23(a) shows that the best performance for sharedsymped-nb occurs with

1 process and 20,000 connections (2.46), with a peak throughput of 1457 Mbps occurring at 15,000

requests per second and with a sustained throughput of around 1442 Mbps at 30,000 requests per second.

74

3.11. 4 GB

This result represents an improvement of approximately 6% at 15,000 requests per second and 6% for the

sustained throughput over the best results obtained for the1.4 GB experiments.

Similar to symped-nb, the best performance for sharedsymped-nb occurs when it is running SPED.

As expected, the performance of symped-nb and sharedsymped-nb running SPED is approximately the

same and within the range of experimental variation. Hence,the improvement for sharedsymped-nb is

less than the improvement for symped-nb because sharedsymped-nb has better performance with 1.4 GB

of memory. With 1.4 GB of memory, the sharedsymped-nb serverbenefits from less runtime overhead

due to fewer processes and a smaller memory footprint due to ashared cache-table and fewer processes,

compared to symped-nb. In moving to 4 GB of memory, performance gains result from needing only one

process and no memory pressure in the system. These two changes are both smaller for sharedsymped-nb,

resulting in a smaller performance improvement for sharedsymped-nb versus symped-nb.

The pattern of verification failures with 15,000 maximum connections is similar for both symped-nb

and sharedsymped-nb, and occur for the same reason. Interestingly, the sharedsymped-nb experiment

with 15,000 maximum connections and 10 processes in Table 3.22(a) does verify, however, it has lower

throughput than the experiment with 25 processes. This unusual dip in performance occurs because the

experiment with 10 processes is close to failing due to timeouts on large files. These timeouts result in a

lower condensed area because only completed transfers are included in the calculation of throughput.

Table 3.22(b) shows the results of the coarse-grained tuning for sharedsymped-b after verification.

Each row in the table represents a different number of processes from 1 to 100 and each column a different

maximum number of connections from 10,000 to 30,000. The experiments show the best performance for

sharedsymped-b is around 100 processes and 30,000 maximum number of connections (2.30). Based on

this general vicinity, additional sharedsymped-b experiments were run and are presented in Table 3.23(b).

For this table, the number of processes are varied from 75 to 150 and the maximum number of connections

from 25,000 to 40,000. Table 3.23(b) shows that the best performance for sharedsymped-b occurs with

75 processes and 25,000 connections (2.31), with a peak throughput of 1356 Mbps occurring at 15,000

requests per second and with a sustained throughput of around 1311 Mbps at 30,000 requests per second.

This result represents an improvement of approximately 5% at 15,000 requests per second and 4% for the

sustained throughput over the best results obtained for the1.4 GB experiments.

Similar to symped-b, these improvements are not as large as those achieved by its non-blocking coun-

terpart due to the efficiencies gained when sharedsymped-nbis run as a SPED server. It is interesting to

note that there is approximately 2% idle time at 30,000 requests per second with 75 processes and 25,000

maximum connections. The amount of idle time drops to zero asthe number of processes is increased but

performance does not improve.

Similar to knot-b and symped-b, more than 25 workers are needed, otherwise experiments do not

75

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

Procs 10,000 15,000 20,000 25,000

1 1.83 2.46 2.46 2.45

5 1.84 ✕ ✕ ✕

10 1.83 2.35 ✕ ✕

25 1.84 2.41 ✕ ✕

50 1.83 2.36 ✕ ✕

100 1.81 2.26 ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Procs 10,000 15,000 20,000 25,000 30,000

1 ✕ ✕ ✕ ✕ ✕

5 ✕ ✕ ✕ ✕ ✕

10 1.01 ✕ ✕ ✕ ✕

25 1.58 1.75 1.57 ✕ ✕

50 1.75 2.17 2.21 2.16 2.05

100 1.80 2.18 2.27 2.29 2.30

(b) blockingsendfile

Table 3.22:µserver shared-SYMPED initial experiments - 4 GB

Maximum Number of Connections

Procs 15,000 20,000 25,000 30,000

1 2.45 2.46 2.45 2.46

2 2.33 ✕ ✕ ✕

3 ✕ ✕ ✕ ✕

4 ✕ ✕ ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Procs 25,000 30,000 35,000 40,000

75 2.31 2.30 2.27 2.21

100 2.29 2.30 2.30 2.30

125 2.28 2.28 2.28 2.29

150 2.25 2.27 2.28 2.29

(b) blockingsendfile

Table 3.23:µserver shared-SYMPED fine tune experiments - 4 GB

verify or drops in throughput larger than 20% occur after peak. As expected, the larger number of workers

means sharedsymped-b cannot perform as efficiently as sharedsymped-nb running SPED. By comparison,

the best sharedsymped-b configuration at a rate of 30,000 requests per second makes 206,216 calls to the

event mechanism compared 104,941 calls to the event mechanism for the best sharedsymped-nb running

SPED. As well, the symmetric processes with shared-SYMPED result in a larger performance difference

between sharedsymped-nb and sharedsymped-b versus knot-nb and knot-b.

A reasonable expectation is that sharedsymped-b would perform worse than symped-b for this work-

load. Since the system is not under memory pressure, a sharedcache offers no advantages and the

additional overhead of locking should adversely affect performance. However, the performance of

sharedsymped-b is better than the performance of symped-b.It has approximately 6% better perfor-

mance at peak and 4% for sustained throughput. This performance difference is examined further in

Section 3.11.4 with the help of profiling data.

76

3.11. 4 GB

3.11.3 Tuning WatPipe

Experiments were run to tune the two versions of WatPipe: watpipe-nb and watpipe-b. For both versions

of WatPipe, the parameters tuned are the maximum number of simultaneous connections and the number

of writer tasks.

Table 3.24(a) shows the results of the coarse-grained tuning for watpipe-nb. Each row in the table

represents a different number of writers from 1 to 100 and each column a different maximum number of

connections from 10,000 to 25,000. The experiments show thebest performance for watpipe-nb is around

1 writer and 15,000 maximum number of connections (2.43). Based on this general vicinity, additional

watpipe-nb experiments were run and are presented in Table 3.25(a). For this table, the number of writers

are varied from 1 to 4 and the maximum number of connections from 15,000 to 23,000. Table 3.25(a)

shows that the best performance for watpipe-nb occurs with 1writer and 18,000 connections (2.45), with a

peak throughput of 1452 Mbps occurring at 15,000 requests per second and with a sustained throughput of

around 1439 Mbps at 30,000 requests per second. This result represents an improvement of approximately

4% at 15,000 requests per second and 5% for the sustained throughput over the best results obtained for

the 1.4 GB experiments.

The overall performance of watpipe-nb is similar to sharedsymped-nb. The expectation is that, in

the absence of disk I/O, a SPED server is more efficient than a server with multiple threads. Hence, the

fact that watpipe-nb manages to achieve similar performance to both of the SPED servers is surprising.

However, WatPipe also has certain efficiencies gained by only having multiple writer tasks. What is not

surprising is that, unlike the two non-blocking versions ofµserver, watpipe-nb has stable performance

with up to 100 writer tasks even though only one writer task isrequired because the cost of additional

writers is negligible.

Table 3.24(b) shows the results of the coarse-grained tuning for watpipe-b. Each row in the table

represents a different number of writers from 1 to 100 and each column a different maximum number of

connections from 10,000 to 25,000. The experiments show thebest performance for watpipe-b is around

100 writers and 15,000 maximum number of connections (2.33). Based on this general vicinity, addi-

tional watpipe-b experiments were run and are presented in Table 3.25(b). For this table, the number of

writers are varied from 75 to 150 and the maximum number of connections from 13,000 to 20,000. Ta-

ble 3.25(b) shows that the best performance for watpipe-b occurs with 75 writers and 15,000 connections

(2.36), with a peak throughput of 1399 Mbps occurring at 15,000 requests per second and with a sustained

throughput of around 1357 Mbps at 30,000 requests per second. This result represents an improvement of

approximately 2% at 15,000 requests per second and 3% for thesustained throughput over the best results

obtained for the 1.4 GB experiments. Interestingly, the throughput of watpipe-b for the 1.4 GB workload,

despite the presence of disk I/O, is close to its performancefor the in-memory workload.

77

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

Writers 10,000 15,000 20,000 25,000

1 1.77 2.43 2.41 ✕

5 1.78 2.42 2.42 ✕

10 1.78 2.42 2.41 ✕

25 1.78 2.42 2.42 ✕

50 1.78 2.41 2.41 ✕

100 1.77 2.40 2.40 ✕

(a) non-blockingsendfile

Maximum Number of Connections

Writers 10,000 15,000 20,000 25,000

1 ✕ ✕ ✕ ✕

5 ✕ ✕ ✕ ✕

10 1.01 0.98 ✕ ✕

25 1.68 1.83 1.53 1.40

50 1.78 2.32 2.23 2.16

100 1.77 2.33 2.32 2.32

(b) blockingsendfile

Table 3.24: WatPipe initial experiments - 4 GB

Maximum Number of Connections

Writers 15,000 18,000 20,000 23,000

1 2.44 2.45 2.44 ✕

2 2.45 2.45 2.44 ✕

3 2.44 2.45 2.45 ✕

4 2.44 2.45 2.44 ✕

(a) non-blockingsendfile

Maximum Number of Connections

Writers 13,000 15,000 18,000 20,000

75 2.24 2.36 2.36 2.35

100 2.23 2.36 2.36 2.35

125 2.23 2.36 2.36 2.35

150 2.23 2.35 2.36 2.35

(b) blockingsendfile

Table 3.25: WatPipe fine tune experiments - 4 GB

Despite a smaller increase in performance compared to symped-b and sharedsymped-b, watpipe-b

has better performance than those servers. In the 1.4 GB experiments, watpipe-b had the advantage of

a smaller memory footprint so under memory pressure it is reasonable that watpipe-b has better perfor-

mance. However, for this set of experiments there is no memory pressure but watpipe-b still has better

performance than symped-b and sharedsymped-b despite the fact that their non-blocking counterparts

have similar performance. One disadvantage of the SYMPED approach is that all the server processes

perform all the steps of a single SPED server. While this approach scales well for a small number of

server processes, as the number of server processes gets larger, inefficiencies related to this architecture

emerge. One such inefficiency is the number of calls to the event mechanism. For example, for the best

blocking server configurations at 30,000 requests per second watpipe-b has 45,475 calls to the event mech-

anism, sharedsymped-b has 206,216 calls across 75 processes and symped-b has 128,365 calls across 100

processes. As mentioned earlier, the additional performance difference for symped-b is examined further

in Section 3.11.4 with the help of profiling data.

78

3.11. 4 GB

3.11.4 Server Comparison

Figure 3.7 presents the best performing configuration for each server architecture implementa-

tion: caching Knot (knot-c), non-blocking Knot (knot-nb),blocking Knot (knot-b), µserver non-

blocking SYMPED (symped-nb),µserver blocking SYMPED (symped-b),µserver non-blocking shared-

SYMPED (sharedsymped-nb),µserver blocking shared-SYMPED (sharedsymped-b), non-blocking Wat-

Pipe (watpipe-nb) and blocking WatPipe (watpipe-b). The legend in Figure 3.7 is ordered from the best

performing server at the top to the worst at the bottom. Excluding knot-c, peak server performance varies

by about 13% (1284–1457 Mbps), indicating all the servers can do an excellent job.

Table 3.26 ranks the performance of the servers for the 4 GB workload. Again, based on a total of

three runs for each server, Tukey’s Honest Significant Difference test is used to differentiate the servers

with a 95% confidence level. The servers are then ranked basedon mean area.

The top performing servers are sharedsymped-nb, watpipe-nb and symped-nb, all with approxi-

mately the same performance. The next server is watpipe-b, which has slightly better performance than

sharedsymped-b and knot-nb. The last two blocking servers,knot-b and symped-b, occur next with knot-c

at the bottom again. The performance gap between the non-blocking and blocking servers is larger than

with the 1.4 GB experiments. The best non-blocking server, sharedsymped-nb, compared to the best

blocking server, watpipe-b, has a 4% higher peak at 15,000 requests per second and 6% higher perfor-

mance after saturation at 30,000 requests per second. Compared to the 1.4 GB experiments, the through-

put of the non-blocking servers improved more than the throughput of their blocking counterparts. This

difference is a result of the number of threads required for the non-blocking servers decreasing while the

number of threads required for the blocking servers increasing. Comparing sharedsymped-nb to the best

Knot server, sharedsymped-nb has a 9% higher peak at 15,000 requests per second and 9% higher perfor-

mance at 30,000 requests per second. This performance difference is approximately the same compared

to the 1.4 GB experiments. The non-blocking version of knot compared to knot-c has an 11% higher peak

at 15,000 requests per second and 11% higher performance at 30,000 requests per second. This difference

is much lower than the difference at 1.4 GB and is a result of the additional benefits experienced by knot-c

beyond eliminating disk I/O.

To better understand the performance of the servers, the best configuration of each server is profiled.

The OProfile and vmstat data for these experiments are summarized in Tables 3.27 and 3.28. Perhaps

the most interesting observation is that the OProfile data gathered for each server is very similar to the

data gathered for the 1.4 GB experiments. Differences are small and generally related to throughput,

higher networking, e1000 andepoll overhead values with 4 GB, and number of threads, lower scheduling

overheads for the non-blocking servers with 4 GB. The biggest differences occur in the file-system cache-

size and context switches per second values reported by vmstat. For the 4 GB experiments, the file-system

79

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b
p
s

Requests/s

sharedsymped-nb-20K-1p
watpipe-nb-18K-1w
symped-nb-18K-1p

watpipe-b-15K-75w
sharedsymped-b-25K-75p

knot-nb-15K-1w
knot-b-20K-100w

symped-b-30K-100p
knot-c-13K-5w-2560MB

Figure 3.7: Throughput of different architectures - 4 GB

Server Rank

symped-nb 1

sharedsymped-nb 1

watpipe-nb 1

watpipe-b 2

sharedsymped-b 3

knot-nb 4

knot-b 5

symped-b 6

knot-c 7

Table 3.26: Ranking of server performance - 4 GB

80

3.11. 4 GB

cache size is always large enough to contain the entire file set and any variations between the 4 GB

experiments are not important. The exception is knot-c, which uses cache warming and an application

cache large enough to contain the entire file set. The amount of context switching is directly related to

the number of kernel threads and hence is generally lower forthe non-blocking, 4 GB experiments. The

exception is watpipe-nb, which has significantly more context switching than the SPED servers due to its

pipeline design with dedicated threads for each stage. Despite having more than one thread, watpipe-nb

performs as well as the SPED servers.

Several observations from the 1.4 GB experiments are true for these experiments as well. Knot-c

again has high data-copying overheads (16.89%) due to usingwrite, inhibiting the performance of the

server. In general, Knot has higher user-space plus libc overheads than the other servers because a large

number of user-level threads incurs high thread overheads.However, similar to the analysis for the 1.4

GB experiments, part of this additional overhead is mitigated by lowerepoll overheads. Despite these

overheads pushing the performance of Knot lower than the other servers, knot-nb and knot-b still manage

to outperform symped-b.

While it is expected that the blocking version of a server hasworse performance than its non-blocking

counterpart, the performance of symped-b is especially poor. The idea behind shared-SYMPED is to

reduce the memory footprint of the server to reduce the amount of disk I/O when there is memory pressure

in the system. When there is no memory pressure, the expectation is that the overheads related to locking

and contention on the shared application cache negatively affects performance. Hence, it is reasonable

to expect that symped-b would have better performance than sharedsymped-b in these experiments but

the actual performance of symped-b is worse. Examining the OProfile data and the server statistics at a

rate of 15,000 request per second reveals some interesting observations. The time spent in the file-system

category is about 36% larger for symped-b than for sharedsymped-b. As well, the server output shows the

application cache hit rate for symped-b is 78% versus 99.5% for sharedsymped-b. For both servers, the

application cache only contains file descriptors and HTTP headers, and is large enough to cache the entire

file-set. The first time a file is requested, the file is not in theapplication cache (cache miss) so the server

opens the file and stores the file descriptor and an associatedHTTP header in its application cache. If a

subsequent request occurs for the same file, the file is already in the application cache (cache hit) so no

additional work is required to cache the file. The cache hit rate is calculated by dividing the total number

of cache hits across every file by the total number of requests. With µserver SYMPED, each server process

has a separate application cache so each process must individually open and create a cache entry for each

file. With µserver shared-SYMPED, the cache is shared so each file is onlyopened and cached once for

the entire server the first time any server process receives arequest for the file. Because each symped-b

process has its own separate application cache, each file needs to be looked up multiple times and it takes

longer for each individual cache to become fully populated than for a single shared cache. Hence, there is

81

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

significantly more file system activity and increased kernellocking and contention on the file system due

to the larger number of I/O accesses with symped-b, resulting in poorer performance. For the experiment

at 15,000 requests per second, symped-b has 807,719 cache misses versus 21,297 for sharedsymped-b, a

difference of 786,422. An experiment comparing sharedsymped-b and symped-b with 100 processes and

30,000 connections with a warmed application cache, i.e., all the files in the file-set are opened before the

experiment begins, thereby eliminating most of the difference in file system activity between the servers

during the experiment, shows approximately equivalent performance for both servers.

The expectation is that eliminating disk I/O would result inthe servers requiring fewer kernel threads

to achieve their best performance. While this expectation holds true for the non-blocking servers, it does

not hold true for the blocking servers. Instead, the higher throughput of the blocking servers means

that more threads/processes are required to handle more simultaneous requests for large files. In fact,

the number of threads required is dictated by the size of the socket buffers, the number of simultaneous

requests for large files and the throughput of the server.

The additional processes required by the blocking servers are problematic as they reduce the efficiency

of the server and increase the system overheads. For the SYMPED and shared-SYMPED servers, the

OProfile data shows that the kernel overheads, especially related to scheduling, are larger for the blocking

version of the servers. These increases are consistent across the servers and indicate that additional kernel

threads in the system cause an increase in overheads.

82

3.11. 4 GB

Server Knot-cache Knot Knot userver userver

Arch T/Conn T/Conn T/Conn symped symped

Write Sockets non-block non-block block non-block block

Max Conns 13K 15K 20K 18K 30K

Workers/Procs/Writers 5w 1w 100w 1p 100p

Other Config 2560MB

Reply rate 9296 10,340 10,061 10,893 9672

Tput (Mbps) 1108 1233 1202 1301 1152

OPROFILE DATA

vmlinux total % 63.65 56.84 58.79 62.07 64.11

networking 24.94 29.33 29.31 30.07 29.25

memory-mgmt 5.32 6.57 6.37 6.90 6.85

file system 2.55 4.81 4.58 4.24 5.74

kernel+arch 5.61 6.19 6.48 6.85 8.29

epoll overhead 1.96 2.34 2.21 7.11 5.37

data copying 16.89 0.63 0.71 1.16 1.00

sched overhead 1.13 0.96 2.40 0.06 1.13

others 5.25 6.01 6.73 5.68 6.48

e1000 total % 20.41 23.15 22.19 24.87 21.92

user-space total % 14.29 18.27 17.15 8.14 7.36

thread overhead 6.6 10.53 9.39 0.00 0.00

event overhead 0.00 0.00 0.00 2.95 2.35

application 7.69 7.74 7.76 5.19 5.01

libc total % 0.01 0.01 0.02 3.19 4.57

other total % 1.64 1.73 1.85 1.73 2.04

VMSTAT DATA

waiting % 0 0 0 0 0

file-system cache (MB) 1309 2287 2291 2270 2272

ctx-sw/sec (kernel) 96 190 5910 68 4328

SERVER STATS

ctx-sw/sec (user) 12,269 23,781 20,575

Table 3.27: Server performance statistics gathered under aload of 15,000 requests per second - 4 GB

83

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Server userver userver WatPipe WatPipe

Arch s-symped s-symped pipeline pipeline

Write Sockets non-block block non-block block

Max Conns 20K 25K 18K 15K

Workers/Procs/Writers 1p 75p 1w 75w

Other Config

Reply rate 11,190 10,347 10,926 10,621

Tput (Mbps) 1334 1235 1305 1266

OPROFILE DATA

vmlinux total % 61.78 63.07 59.97 61.68

networking 30.12 29.90 30.18 29.47

memory-mgmt 6.93 6.99 7.57 7.17

file system 4.18 4.23 4.24 4.29

kernel+arch 6.82 7.63 6.98 7.74

epoll overhead 6.83 5.55 4.79 4.44

data copying 1.14 1.09 0.81 0.87

sched overhead 0.06 1.16 0.29 1.32

others 5.70 6.52 5.11 6.38

e1000 total % 25.12 23.18 25.23 22.89

user-space total % 8.13 7.85 11.13 11.78

thread overhead 0.00 0.00 4.16 5.33

event overhead 2.92 2.65 2.62 2.33

application 5.21 5.20 4.35 4.12

libc total % 3.21 3.99 2.03 1.84

other total % 1.76 1.91 1.64 1.81

VMSTAT DATA

waiting % 0 0 0 0

file-system cache (MB) 2295 2295 2291 2291

ctx-sw/sec (kernel) 68 4519 1058 6058

SERVER STATS

ctx-sw/sec (user)

Table 3.28: Server performance statistics gathered under aload of 15,000 requests per second - 4 GB

84

3.12. .75 GB

3.12 .75 GB

The final workload examined is on a system configured with .75 GB of memory. These experiments

examine the performance of the servers when there is heavy disk I/O, so a server cannot completely

eliminate I/O wait. The expectation is that these experiments should have significantly lower throughput

because of slow disk I/O. As a consequence, the non-blockingservers require additional threads to achieve

their best performance and the servers with smaller memory footprints should perform better than the

servers requiring more memory. Hence, these experiments should tend to favour the servers that share an

address space unless contention becomes an issue. An interesting point is to see how the blocking servers

perform compared to the non-blocking servers since the blocking servers have a larger memory footprint.

3.12.1 Tuning Knot

Tuning was again performed for the three versions of Knot: knot-c, knot-nb and knot-b. For all servers,

the parameters tuned are the number of threads and the numberof worker tasks. Additionally, the size of

the application cache is tuned for knot-c. Unlike the experiments with 4 GB of memory, the application

cache is not warmed for the knot-c experiments with this workload.

3.12.1.1 Knot-c

Table 3.29 shows the results of tuning knot-c after verification. Each row represents a different number of

workers from 5 to 200. The columns are separated into four sections with the results for 8000 threads in

section one, 10,000 threads in section two, 15,000 threads in section three and 20,000 threads in section

four. In each section, the columns correspond to the three different cache sizes being tested, i.e., 10 MB,

100 MB or 200 MB.

The experiments show the best performance is around 150 workers, at least 8000 threads and 10

MB of application cache (1.39). Based on this general vicinity, additional experiments were run and are

presented in Table 3.30. Each row represents a different number of workers from 50 to 200. The columns

are separated into two sections with the results for 8000 threads in section one and 9000 threads in section

two. In each section, the columns correspond to the two different cache sizes being tested, i.e., 10 MB, or

50 MB. This table shows that the best performance occurs with8000 threads, 100 workers and 50 MB of

application cache (1.44), with a peak throughput of 795 Mbpsoccurring at 15,000 requests per second and

with a sustained throughput of around 782 Mbps at 30,000 requests per second. This result represents a

decline of approximately 21% at peak and 18% for the sustained throughput over the best results obtained

with knot-c for the 1.4 GB experiments.

85

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Cache size in MB

8000 threads 10,000 threads 15,000 threads 20,000 threads

Workers 10 100 200 10 100 200 10 100 200 10 100 200

5 1.03 0.81 ✕ 0.94 0.72 ✕ 0.70 ✕ ✕ ✕ ✕ ✕

25 1.37 1.13 0.79 1.31 1.07 ✕ ✕ ✕ ✕ ✕ ✕ ✕

50 1.38 1.26 0.87 1.37 1.16 ✕ 1.11 ✕ ✕ ✕ ✕ ✕

100 1.38 1.30 0.93 1.38 1.22 ✕ ✕ ✕ ✕ ✕ ✕ ✕

150 1.39 1.26 ✕ 1.37 1.16 ✕ ✕ ✕ ✕ ✕ ✕ ✕

200 1.38 1.25 ✕ 1.36 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Table 3.29: Knot cache initial experiments - .75 GB

Cache size in MB

8000 threads 9000 threads

Workers 10 50 10 50

50 1.39 1.42 1.38 1.36

100 1.38 1.44 1.38 1.42

125 1.39 1.44 1.38 1.37

150 1.38 1.44 1.38 1.36

200 1.38 1.43 1.38 1.35

Table 3.30: Knot cache fine tune experiments - .75 GB

For this workload, knot-c performs better with small cache-sizes; experiments with cache sizes of

100 MB or larger have lower throughput or do not verify. Basedon previous experiments, the fact that

knot-c performs better with smaller cache-sizes is expected, but the application cache sizes here are very

small. Due to increased memory pressure in the system, the application is disk bound. While the best

performing knot-c has no I/O wait at either 15,000 or 30,000 requests per second, the lack of I/O wait

is actually the result of polling in the application. At peak, the main Knot thread makes 2,408,380 calls

to the event mechanism with 87% of the calls returning no events. This polling indicates there is extra

CPU time available, which is reasonable given the smaller number of connections. Hence, using a smaller

application-cache at the expense of additional CPU time reduces duplication with the file-system cache

and is a reasonable trade off. However, there is a point wherethis tradeoff is no longer beneficial and

further reductions in cache size negatively effect performance. For the same configuration with 10 MB of

cache, Knot makes only 389,523 calls to the event mechanism with 85% of the calls returning no events.

Polling is reduced because additional overheads associated with managing a smaller application-cache

86

3.12. .75 GB

decrease the available CPU time.

3.12.1.2 Knot-nb and knot-b

Table 3.31(a) shows the results of tuning knot-nb. Each row in the table represents a different number of

workers from 5 to 200 and each column represents a different number of threads from 8000 to 20,000. For

these experiments, the best performance occurs at 8000 threads and at least 50 workers (1.38). Based on

this general vicinity, additional experiments were run andare presented in Table 3.32(a). For this table, the

number of workers are varied from 25 to 200 and the number of threads from 7000 to 9000. For knot-nb,

the best performance occurs with 8000 threads and 50 workers(1.37), with a peak throughput of 769 Mbps

occurring at 8000 requests per second and with a sustained throughput of around 734 Mbps at 30,000 re-

quests per second. The occasional verification failures with 8000 workers indicate that knot-nb is close to

the maximum number of threads (connections) that it can handle for this workload. This result represents

a decline of approximately 40% at 15,000 requests per secondand 41% for the sustained throughput over

the best results obtained with knot-nb for the 1.4 GB experiments. This decline is significant and much

larger than the drop in performance experienced by knot-c.

Comparing the performance of knot-nb and knot-c shows a difference from the trend observed in the

previous workloads; knot-nb performs worse than knot-c. For their respective best performing configu-

rations, knot-c has 4% higher peak throughput at 15,000 requests per second and 7% higher sustained

throughput at 30,000 requests per second. This result is surprising because the reasons that knot-nb has

better performance under the previous two workloads still hold true for this workload.

Consider the performance of both servers at 30,000 requestsper second with 8000 threads and 100

workers for both and also with 50 MB of application cache for knot-c. First, knot-nb has a smaller memory

footprint than knot-c, resulting in a larger average file-system cache, 595 MB versus 534 MB for knot-c.

Second, knot-nb uses zero-copysendfile versuswrite for knot-c, resulting in less kernel data copying

overhead. Based on profiling data, knot-nb spends 0.47% timeperforming kernel data copying at peak

versus 19.18% for knot-c.

Despite these advantages, however, knot-nb is executing less efficiently than knot-c in some important

ways. Knot-nb makes 1,325,180 calls to the event mechanism with 86% of these calls returning no events,

indicating that the main knot thread is spending a reasonable amount of time spinning with no other work

to do. On the other hand, knot-c makes 852,058 calls to the event mechanism with 77% of these calls

returning no events. As well, knot-nb has an average of 328,815 kernel context-switches per second versus

28,474 for knot-c. This additional spinning also explains why knot-nb has higher user-time compared to

knot-c, 25% for knot-nb versus 17% for knot-c.

87

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Number of Threads

Workers 8000 10,000 15,000 20,000

5 ✕ ✕ ✕ ✕

25 1.36 ✕ ✕ ✕

50 1.38 ✕ ✕ ✕

100 1.38 ✕ ✕ ✕

150 1.37 ✕ ✕ ✕

200 1.37 ✕ ✕ ✕

(a) non-blockingsendfile

Number of Threads

Workers 8000 10,000 15,000 20,000

5 ✕ ✕ ✕ ✕

25 1.36 1.37 1.19 1.04

50 1.43 1.56 1.40 1.26

100 1.43 1.56 1.41 1.28

150 1.43 1.55 1.40 1.30

200 1.43 1.55 1.41 1.31

(b) blockingsendfile

Table 3.31: Knotsendfile initial experiments - .75 GB

Number of Threads

Workers 7000 8000 9000

25 1.26 1.36 ✕

50 1.27 1.37 ✕

100 1.27 1.37 ✕

125 1.27 ✕ ✕

150 1.27 ✕ ✕

200 1.26 1.37 ✕

(a) non-blockingsendfile

Number of Threads

Workers 9000 10,000 12,000

50 1.55 1.57 1.50

100 1.55 1.57 1.50

150 1.55 1.56 1.48

200 1.54 1.57 1.47

(b) blockingsendfile

Table 3.32: Knotsendfile fine tune experiments - .75 GB

This data suggests that knot-nb is spending a large amount oftime polling for additional work, in

both the main thread and worker tasks, but is unable to take advantage of unused capacity in the system.

The usual technique when a server is underutilized is to increase the number of connections and thereby

increase the throughput of the server. However, Tables 3.31(a) and 3.32(a) show that increasing the number

of connections leads to verification failures for knot-nb. Furthermore, even with additional overheads,

knot-c is able to outperform knot-nb with similar configuration parameters.

One advantage of knot-c over knot-nb is the way the two servers read data from disk. Knot-c reads an

entire file from disk into its application cache in a single system call before sending any data to the client.

This method of disk access is efficient, especially for files that are laid out contiguously on disk. Once

the file is in its application cache, knot-c transmits the fileto the requestor usingwrite. While multiple

calls towrite may be necessary if the file is sent in chunks, no further disk I/O is required for that request.

88

3.12. .75 GB

Knot-nb uses non-blockingsendfile to transmit a file to the requestor. With non-blockingsendfile, large

files may be transmitted in chunks to the requestor, requiring multiple calls tosendfile in order to complete

the transfer. For file data that is not in the file-system cache, a call tosendfile can result in both disk I/O

and network I/O. Furthermore, a single call tosendfile may not cause the entire file to be loaded into the

file-system cache, meaning that large files requiring multiple sendfile calls likely have to block waiting for

disk I/O multiple times. Since each disk I/O request must be queued, the total amount of time it takes to

transmit a file increases as multiple calls tosendfile for the same request may block waiting for disk I/O,

leading to more large-file timeouts. As well, once the disk head is positioned, it is more efficient to read

in data contiguously than jumping around reading in portions of various files. Therefore, knot-c is able to

support more threads than knot-nb without verification problems. Based on vmstat output, knot-nb reads

in an average of 14,258 blocks per second while knot-c reads in an average of 17,629 blocks per second

at 30,000 requests per second.

Table 3.31(b) shows the results of tuning knot-b after verification. Each row in the table represents

a different number of workers from 5 to 200 and each column represents a different number of threads

from 8000 to 20,000. For these experiments, the best performance occurs at around 10,000 threads and

50 workers (1.56). Based on this general vicinity, additional experiments were run and are presented in

Table 3.32(b). For this table, the number of workers are varied from 50 to 200 and the number of threads

from 9000 to 12,000. The best performance occurs with 10,000threads and 50 workers (1.57), with a

peak throughput of 888 Mbps occurring at 15,000 requests persecond and with a sustained throughput of

around 842 Mbps at 30,000 requests per second. This result represents a decline of approximately 30%

at 15,000 requests per second and 32% for the sustained throughput over the best results obtained with

knot-b for the 1.4 GB experiments. This drop in performance is less than knot-nb but more than knot-c.

For their best configurations, knot-b has 12% better performance than knot-c at 15,000 requests per

second and 8% better performance at 30,000 requests per second. As well, knot-b has 15% better perfor-

mance than the best knot-nb configuration at 15,000 requestsper second and 15% better performance at

30,000 requests per second. At 30,000 requests per second, knot-b has a file-system cache size of 574 MB,

putting it between knot-c and knot-nb. Compared to knot-c, knot-b manages better performance because

of a smaller memory footprint and less overhead due tosendfile. Its use of blockingsendfile allows knot-b

to support more threads without verification problems and a larger file-system cache results in higher

throughput. On the other hand, knot-nb also usessendfile and has approximately the same size file-system

cache for equivalent experiments but knot-b has better performance. Knot-b outperforms knot-nb because

it blocks a worker task until the entire file is sent, giving priority to larger files, resulting in fewer verifica-

tion problems due to large-file timeouts. As the experimentsshow, fewer verification problems mean that

knot-b can support a larger number of threads (connections), allowing it to achieve better performance.

While performance eventually decreases as the number of threads increases, knot-b does not suffer from

89

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

verification problems like knot-nb. However, even for configuration parameters where knot-nb verifies,

knot-b has better performance. There appears to be a performance advantage when using blockingsendfile

for this workload.

Based on vmstat output, for its best configuration, knot-b spends 13% of its time waiting for I/O at

30,000 requests per second and 6% at 15,000 requests per second. Increasing the number of workers

eliminates I/O wait but does not improve performance. Neither knot-nb nor knot-c have I/O wait for their

best configurations, however, given that Knot constantly polls it is difficult to draw any conclusions based

on this observation.

3.12.2 Tuningµserver

Experiments were run to tune the four versions ofµserver: symped-nb, symped-b, sharedsymped-nb

and sharedsymped-b. For all versions ofµserver, the parameters tuned are the maximum number of

simultaneous connections and the number of processes.

3.12.2.1 Symped-nb and symped-b

Table 3.33(a) shows the results of tuning symped-nb after verification. Each row in the table represents a

different number of processes from 5 to 150 and each column a different maximum number of connections

from 8000 to 15,000. The experiments show the best performance for symped-nb is around 25 processes

and 8000 maximum number of connections (1.24). Based on thisgeneral vicinity, additional symped-nb

experiments were run and are presented in Table 3.34(a). Forthis table, the number of processes are

varied from 10 to 150 and the maximum number of connections from 7000 to 9000. Table 3.34(a) shows

that the best performance for symped-nb occurs with 25 processes and 8000 connections (1.24), with a

peak throughput of 680 Mbps occurring at 12,500 requests persecond and with a sustained throughput of

around 659 Mbps at 30,000 requests per second. This result represents a decline of approximately 48% at

15,000 requests per second and 48% for the sustained throughput over the best results obtained for the 1.4

GB experiments.

The performance of symped-nb is lower than all the Knot servers in the previous section. Similar

to knot-nb, symped-nb experiences verification problems when the maximum number of connections is

larger than 9000. As well, the performance of symped-nb peaks with 25 processes, unlike the Knot servers

which peak with 50–100 workers.

With 25 processes and 8000 connections at 30,000 requests per second, symped-nb has an average

file-system cache of 555 MB. This cache size is approximately40 MB smaller than the average cache-size

90

3.12. .75 GB

Maximum Number of Connections

Processes 8000 10,000 15,000

5 1.08 ✕ ✕

10 1.19 ✕ ✕

25 1.24 ✕ ✕

50 1.19 ✕ ✕

100 ✕ ✕ ✕

150 ✕ ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Processes 8000 10,000 15,000 20,000

5 ✕ ✕ ✕ ✕

10 0.84 0.80 ✕ ✕

25 1.23 1.26 1.18 1.08

50 1.29 1.33 1.27 1.20

100 1.25 1.26 1.21 1.14

150 1.20 1.19 1.11 ✕

(b) blockingsendfile

Table 3.33:µserver SYMPED initial experiments - .75 GB

Maximum Number of Connections

Processes 7000 8000 9000

10 1.15 1.18 1.17

15 1.18 1.22 1.22

25 1.19 1.24 1.24

50 1.17 1.20 ✕

100 ✕ ✕ ✕

125 ✕ ✕ ✕

150 ✕ ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Processes 9000 10,000 12,000

35 1.31 1.32 1.31

50 1.32 1.34 1.31

100 1.28 1.28 1.26

125 1.25 1.25 1.22

150 1.21 1.20 1.17

(b) blockingsendfile

Table 3.34:µserver SYMPED fine tune experiments - .75 GB

of knot-nb with 50 workers and 8000 threads. Increasing the number of processes or connections with

symped-nb leads to verification problems, restricting the performance of symped-nb. The limitation on

the number of processes is a significant problem given the amount of disk I/O required for this workload

because additional processes allow the server to continue servicing requests when a process blocks waiting

for disk I/O. If the server cannot support a sufficient numberof processes, then CPU time is wasted while

the server is I/O blocked; the symped-nb server spends 40% ofits time waiting for I/O.

The problem with symped-nb is that its memory footprint grows non-trivially as processes are added

since the processes are independent, unlike the Knot servers. For example, moving to 50 processes and

8000 connections at 30,000 requests per second results in anaverage file-system cache of size 519 MB,

a reduction of approximately 36 MB. As the file-system cache size decreases, the number of requests re-

91

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

quiring disk I/O increases, eventually resulting in large-file timeouts and verification problems. Therefore,

despite unused CPU time available in the system, symped-nb cannot support a large enough number of

processes to improve performance.

Table 3.33(b) shows the results of tuning symped-b after verification. Each row in the table represents a

different number of processes from 5 to 150 and each column a different maximum number of connections

from 8000 to 20,000. The experiments show the best performance for symped-b is around 50 processes

and 10,000 maximum number of connections (1.33). Based on this general vicinity, additional symped-b

experiments were run and are presented in Table 3.34(b). Forthis table, the number of processes are varied

from 35 to 150 and the maximum number of connections from 9000to 12,000. Table 3.34(b) shows that

the best performance for symped-nb occurs with 50 processesand 10,000 connections (1.34), with a peak

throughput of 743 Mbps occurring at 12,500 requests per second and with a sustained throughput of

around 700 Mbps at 30,000 requests per second. This result represents a decline of approximately 42% at

15,000 requests per second and 42% for the sustained throughput over the best results obtained for the 1.4

GB experiments.

Table 3.33 shows that symped-b verifies over a larger range ofparameters than symped-nb. Not

only does the best performing symped-b experiment have moreconnections and more processes than

symped-nb but it also has better performance. Symped-b has 8% better performance than symped-nb at

peak and 6% better performance at 30,000 requests per second. However, the performance of symped-b

is lower than the Knot servers in the previous section.

The problem with symped-b is its large memory footprint. While symped-nb and symped-b have com-

parable memory footprints for equivalent configuration parameters, for its best configuration symped-b

has an average file-system cache-size of 502 MB at 30,000 requests per second, 53 MB smaller than

symped-nb. While a smaller file-system cache likely increases the amount of time a process must wait

for disk I/O, a larger number of processes and connections allows the server to service more requests.

Overall, the I/O wait is still high at 35% but less than the I/Owait for symped-nb despite having a smaller

file-system cache. The net effect is that symped-b has betterperformance than symped-nb despite having

a larger memory-footprint due to more connections and processes.

In general, the problem with the SYMPEDµserver is a large memory-footprint; moving to shared-

SYMPED reduces the memory footprint of the server and shouldimprove performance. Withµserver,

the size of the cache table is based on the number of files so thecache-table size is fixed for the various

workloads tested but other statically allocated data structures in the server are based on the number of

connections. Given the small maximum connections values for these experiments, moving to a shared

cache-table should have a noticeable effect on performance.

92

3.12. .75 GB

3.12.2.2 Sharedsymped-nb and sharedsymped-b

Table 3.35(a) shows the results of tuning sharedsymped-nb after verification. Each row in the table rep-

resents a different number of processes from 5 to 150 and eachcolumn a different maximum number of

connections from 8000 to 15,000. The experiments show the best performance for sharedsymped-nb is

around 50 processes and 10,000 maximum number of connections (1.45). Based on this general vicinity,

additional sharedsymped-nb experiments were run and are presented in Table 3.36(a). For this table, the

number of processes are varied from 15 to 150 and the maximum number of connections from 8000 to

12,000. Table 3.36(a) shows that the best performance for sharedsymped-nb occurs with 50 processes and

10,000 connections (1.46), with a peak throughput of 812 Mbps occurring at 8000 requests per second

and with a sustained throughput of around 791 Mbps at 30,000 requests per second. This result represents

a decline of approximately 42% at 15,000 requests per secondand 42% for the sustained throughput over

the best results obtained for the 1.4 GB experiments.

The performance of sharedsymped-nb is 19% higher at peak than symped-nb and 20% higher at 30,000

requests per second, due to a smaller memory footprint than symped-nb as a result of the shared cache-

table; for its best configuration at 30,000 requests per second, its average file-system cache-size is 604

MB, approximately 49 MB larger than symped-nb. Consideringthat the system is running with 768 MB

of memory, 604 MB is a large amount of space for the file-systemcache. The incremental cost of adding

additional processes is smaller with shared-SYMPED than with SYMPED. For example, moving from

25 process to 50 process with 8000 connections at 30,000 requests per second decreases the average file-

system cache size by 12 MB, approximately one third of the reduction experienced by symped-nb. Since

sharedsymped-nb runs with a larger file-system cache, it cansupport more processes and connections

without verification problems, resulting in higher throughput. The larger number of processes and con-

nections for its best configuration allows sharedsymped-nbto utilize the extra CPU time available when

a process blocks for disk I/O in order to improve performance. Sharedsymped-nb spends 31% of its time

blocked waiting for disk I/O, which is lower than both the SYMPED servers.

Sharedsymped-nb also has a performance advantage over knot-nb, with 6% better performance at

peak and 8% better performance at 30,000 requests per second. For their best configurations at 30,000

requests per second, sharedsymped-nb has a larger file-system cache by approximately 9 MB. This differ-

ence is not large enough to account for the performance disparity between the two servers. However, at

its best configuration knot-nb is only running with 8,000 threads (connections) as it has verification prob-

lems for larger connections values, while sharedsymped-nbis running with 10,000 connections. There-

fore, sharedsymped-nb supports more connections with a smaller memory footprint, resulting in higher

throughput than expected just based on the difference in file-system cache-size. Adding a small number

of additional worker tasks has little effect on knot-nb’s memory footprint but adding a large number of

93

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

Processes 8000 10,000 15,000

5 1.13 ✕ ✕

10 1.27 1.28 ✕

25 1.37 1.44 ✕

50 1.40 1.45 ✕

100 1.40 ✕ ✕

150 1.40 ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Processes 8000 10,000 15,000

5 ✕ ✕ ✕

10 ✕ ✕ ✕

25 1.29 1.39 1.31

50 1.41 1.57 1.56

100 1.45 1.61 1.59

150 1.46 1.59 1.50

(b) blockingsendfile

Table 3.35:µserver shared-SYMPED initial experiments - .75 GB

Maximum Number of Connections

Processes 8000 9000 10,000 12,000

15 1.32 1.36 1.36 ✕

25 1.36 1.41 1.44 ✕

50 1.40 1.45 1.46 ✕

100 1.40 1.44 ✕ ✕

150 1.40 1.42 ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Processes 9000 10,000 12,000

35 1.46 1.51 1.53

50 1.52 1.59 1.61

100 1.56 1.63 1.64

125 1.57 1.62 1.63

150 1.56 1.61 1.62

(b) blockingsendfile

Table 3.36:µserver shared-SYMPED fine tune experiments - .75 GB

additional threads (connections) has a larger effect. With50 processes and 8000 connections at 30,000 re-

quests per second, sharedsymped-nb has a file-system cache size of 620 MB, approximately 25 MB larger

than knot-nb with equivalent parameters, explaining sharedsymped-nb’s slightly better performance even

at 8,000 connections.

Table 3.35(b) shows the results of tuning sharedsymped-b after verification. Each row in the table

represents a different number of processes from 5 to 150 and each column a different maximum number

of connections from 8000 to 15,000. The experiments show thebest performance for sharedsymped-b is

around 100 processes and 10,000 maximum number of connections (1.61). Based on this general vicinity,

additional sharedsymped-b experiments were run and are presented in Table 3.36(b). For this table, the

number of processes are varied from 35 to 150 and the maximum number of connections from 9000 to

12,000. Table 3.36(b) shows that the best performance for sharedsymped-b occurs with 100 processes and

12,000 connections (1.64), with a peak throughput of 909 Mbps occurring at 15,000 requests per second

94

3.12. .75 GB

and with a sustained throughput of around 879 Mbps at 30,000 requests per second. This result represents

a decline of approximately 30% at 15,000 requests per secondand 30% for the sustained throughput over

the best results obtained for the 1.4 GB experiments.

The performance of sharedsymped-b is 12% higher at peak thansharedsymped-nb and 11% higher at

30,000 requests per second. While sharedsymped-nb and sharedsymped-b have similar memory foot-

prints for equivalent configuration parameters, for its best configuration at 30,000 requests per sec-

ond, sharedsymped-b has a file-system cache-size of 561 MB, approximately 43 MB smaller than

sharedsymped-nb for its best configuration. Similar to knot-b and symped-b, despite having a smaller

memory footprint sharedsymped-b performs better than sharedsymped-nb.

Sharedsymped-b also has 2% better performance than knot-b at peak and 4% better performance

at 30,000 requests per second. For their best configurationsat 30,000 requests per second, knot-b’s

file-system cache is 14 MB larger than sharedsymped-b but itsperformance is lower. Similar to the

non-blocking version, sharedsymped-b supports more connections than knot-b, for their best performing

configurations. Staying with 50 workers but increasing to 12,000 threads, knot-b’s file-system cache is

552 MB at 30,000 requests per second, 9 MB smaller than sharedsymped-b with equivalent parameters.

Similarly, sharedsymped-b has 22% better performance thansymped-b at peak and 26% better perfor-

mance at 30,000 requests per second. In this case, for their best configurations at 30,000 requests per

second, sharedsymped-b has a file-system cache that is 59 MB larger while supporting 2000 additional

connections, resulting in better overall performance. Around the vicinity where best performance occurs,

sharedsymped-b has a smaller memory footprint than an equivalently configured knot-b or symped-b, re-

sulting in better performance. As well, a smaller memory footprint allows sharedsymped-b to support a

larger number of connections, resulting in further performance improvements.

For its best configuration at 30,000 requests per second, sharedsymped-b spends 20% of its time

blocked waiting for disk I/O. While this value is lower than the I/O wait for the other servers discussed

so far for this workload, it is still not zero. Sharedsymped-b does not suffer from verification problems,

so it is possible to examine the effect of increasing the number of connections. Increasing the number

of connections to 15,000 results in performance decreasingto 863 Mbps and I/O wait increasing to 25%

because the average file-system cache shrinks by 27 MB. By decreasing the size of the file-system cache,

the number of requests requiring disk I/O increases to a point where increasing the number of connections

no longer yields performance benefits but hurts performance. At this point, increasing the number of

processes to compensate for the additional connections only exacerbates the problem by further shrinking

the file-system cache.

95

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

3.12.3 Tuning WatPipe

Table 3.37(a) shows the results of tuning watpipe-nb after verification. Each row in the table represents a

different number of writers from 5 to 150 and each column a different maximum number of connections

from 8000 to 15,000. The experiments show the best performance for watpipe-nb is around 100 writers

and 10,000 maximum number of connections (1.52). Based on this general vicinity, additional watpipe-nb

experiments were run and are presented in Table 3.38(a). Forthis table, the number of writers are varied

from 15 to 200 and the maximum number of connections from 9000to 12,000. Table 3.38(a) shows that

the best performance for watpipe-nb occurs with 100 writersand 10,000 connections (1.52), with a peak

throughput of 880 Mbps occurring at 8000 requests per secondand with a sustained throughput of around

823 Mbps at 30,000 requests per second. This result represents a decline of approximately 40% at 15,000

requests per second and 40% for the sustained throughput over the best results obtained for the 1.4 GB

experiments.

The performance of watpipe-nb is 9% higher at peak than sharedsymped-nb and 4% higher at 30,000

requests per second. However, for its best configuration at 30,000 requests per second watpipe-nb has an

average file-system cache size of 590 MB, which is 14 MB smaller than sharedsymped-nb. Watpipe-nb

verifies over a larger range of configuration parameters thansharedsymped-nb, with more stable per-

formance across these parameters. The reason for watpipe-nb’s stability is that its tasks share an address

space so the incremental cost of additional writers is small. Initially, watpipe-nb has a larger memory foot-

print than sharedsymped-nb but the memory footprint of sharedsymped-nb increases faster as processes

are added compared to watpipe-nb as writer tasks are added. Both sharedsymped-nb and watpipe-nb have

approximately the same performance with 50 workers and 10,000 connections. Sharedsymped-nb has a

file-system cache that is 13 MB larger at 30,000 requests per second. With watpipe-nb, moving from

50 writers to 100 writers and 10,000 connections at 30,000 requests per second results in the file-system

cache shrinking by approximately 1 MB. With sharedsymped-nb, moving from 50 processes to 100 pro-

cesses and 10,000 connections at 30,000 requests per secondresults in the file-system cache shrinking

by approximately 22 MB. Hence, watpipe-nb has a larger file-system cache with 100 writer tasks versus

sharedsymped-nb with 100 processes, both at 10,000 maximumconnections. Since watpipe-nb supports

more writer tasks with less memory overhead, it is able to realize a performance advantage by moving to

100 writer tasks.

Watpipe-nb spends 26% of its time waiting for disk I/O with 100 writers and 10,000 connections at

30,000 requests per second, lower than the other non-blocking servers examined. I/O wait represents an

opportunity to improve performance by taking advantage of unused CPU time. While watpipe-nb does

not have verification problems over the range of tuning values tested, it is unable to improve performance

and eliminate I/O wait. The reason is that its memory footprint grows slowly as writer tasks are added

96

3.12. .75 GB

Maximum Number of Connections

Writers 8000 10,000 15,000

5 1.03 0.99 0.93

10 1.21 1.19 1.10

25 1.35 1.37 1.29

50 1.40 1.48 1.38

100 1.41 1.52 1.44

150 1.42 1.52 1.44

(a) non-blockingsendfile

Maximum Number of Connections

Writers 8000 10,000 15,000

5 ✕ ✕ ✕

10 0.87 0.79 0.69

25 1.37 1.42 1.26

50 1.43 1.66 1.56

100 1.43 1.71 1.68

150 1.43 1.72 1.68

(b) blockingsendfile

Table 3.37: WatPipe initial experiments - .75 GB

Maximum Number of Connections

Writers 9000 10,000 12,000

15 1.30 1.28 1.25

25 1.40 1.39 1.34

50 1.46 1.46 1.43

100 1.51 1.52 1.49

150 1.51 1.52 1.50

200 1.51 1.52 1.48

(a) non-blockingsendfile

Maximum Number of Connections

Writers 9000 10,000 12,000

35 1.56 1.58 1.54

50 1.60 1.66 1.65

100 1.61 1.72 1.77

125 1.60 1.72 1.74

150 1.60 1.72 1.75

200 1.60 1.71 1.74

(b) blockingsendfile

Table 3.38: WatPipe fine tune experiments - .75 GB

and grows at about the same rate as sharedsymped-nb as connections are added. At 10,000 connections,

adding additional processes beyond 100 does not improve performance though I/O wait does decline.

Moving to 12,000 connections reduces the file-system cache-size by 14 MB, increases I/O wait to 30%

and reduces performance. Increasing the number of writers to 150 reduces I/O wait to 25% and improves

performance slightly but not back to the level of its best performance. Further increasing the number

of writers decreases I/O wait, but does not improve performance even though the file-system cache-size

decreases only slightly. The disk is clearly the bottleneckinhibiting performance.

Table 3.37(b) shows the results of tuning watpipe-b after verification. Each row in the table represents

a different number of writers from 5 to 150 and each column a different maximum number of connections

from 8000 to 15,000. The experiments show the best performance for watpipe-b is around 150 writers

and 10,000 maximum number of connections (1.72). Based on this general vicinity, additional watpipe-b

97

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

experiments were run and are presented in Table 3.38(b). Forthis table, the number of writers are varied

from 35 to 200 and the maximum number of connections from 9000to 12,000. Table 3.38(b) shows that

the best performance for watpipe-b occurs with 100 writers and 12,000 connections (1.77), with a peak

throughput of 1002 Mbps occurring at 15,000 requests per second and with a sustained throughput of

around 968 Mbps at 30,000 requests per second. This result represents a decline of approximately 27% at

15,000 requests per second and 27% for the sustained throughput over the best results obtained for the 1.4

GB experiments.

The performance of watpipe-b is 14% higher at peak than watpipe-nb and 18% higher at 30,000

requests per second. For its best configuration at 30,000 requests per second, watpipe-b has an average

file-system cache-size of 577 MB, which is 13 MB smaller than watpipe-nb. Again, the WatPipe servers

have similar memory footprints for equivalent configuration parameters, so the memory difference is due

to differing parameters for their best configurations. For all the servers examined, the blocking version

has better performance than its non-blocking counterpart with this workload.

The performance of watpipe-b is 10% higher at peak than sharedsymped-b and 10% higher at 30,000

requests per second. For its best configuration at 30,000 requests per second, watpipe-b has an average

file-system cache that is 16 MB larger than sharedsymped-b. This difference is not large enough to explain

the performance disparity between the servers since both watpipe-b and sharedsymped-b have their best

performance with the same configuration parameters. The performance difference between the servers

arises because of factors other than memory footprint. While the previous discussion has shown a strong

correlation between throughput and memory footprint for servers with equivalentsendfile behaviour, a

memory difference of less than 3% cannot account for a 10% difference in performance.

A couple of other factors also contribute to watpipe-b having better performance than sharedsymped-b.

Watpipe-b spends 16% of its time waiting for disk I/O, which is the smallest amount of time among all the

servers tested, versus 20% for sharedsymped-b. One advantage that watpipe has over shared-SYMPED is

that its tasks perform different actions. With sharedsymped-b, it is possible for all the processes associated

with the server to become blocked waiting for disk I/O. In this case, extra CPU time that could be devoted

to accepting new connections, reading new requests or polling is wasted. With watpipe-b, when all the

writer tasks block waiting for disk I/O, the remaining taskscontinue to process other stages of the pipeline.

As the number of connections are fixed, at some point the remaining tasks must wait for disk I/O to

complete before they can proceed, resulting in a low but non-zero I/O wait. Similar to the other servers, at

some point the trade off between the increase in memory footprint from additional connections outweighs

the performance gains and the performance of the server declines. However, watpipe-b is able to push that

point further than the other servers due to its architecture. As well, WatPipe has lower costs associated

with event polling than shared-SYMPED because WatPipe has centralized polling whereas each shared-

SYMPED process performs its own event polling (see OProfile data in Section 3.13).

98

3.13. SERVER COMPARISON

3.13 Server Comparison

Figure 3.8 presents the best performing configuration for each server-architecture implementa-

tion: caching Knot (knot-c), non-blocking Knot (knot-nb),blocking Knot (knot-b), µserver non-

blocking SYMPED (symped-nb),µserver blocking SYMPED (symped-b),µserver non-blocking shared-

SYMPED (sharedsymped-nb),µserver blocking shared-SYMPED (sharedsymped-b), non-blocking Wat-

Pipe (watpipe-nb) and blocking WatPipe (watpipe-b). The legend in Figure 3.8 is ordered from the best

performing server at the top to the worst at the bottom. Peak server performance varies by about 47%

(680–1002 Mbps).

Table 3.39 ranks the performance of the servers for the .75 GBworkload. Again, based on a total of

three runs for each server, Tukey’s Honest Significant Difference test is used to differentiate the servers

with a 95% confidence level. The servers are then ranked basedon mean area.

The top performer is watpipe-b, with performance 10% betterthan the next best server, sharedsymped-

b. Third are knot-b and watpipe-nb, which is the highest performing non-blockingsendfile server. The

next grouping consists of knot-c and sharedsymped-nb with approximately the same performance. Fi-

nally, come knot-nb and the SYMPED servers with knot-nb and symped-b having better performance

than symped-nb.

Comparing the performance of the best version of WatPipe andthe best version ofµserver, watpipe-b

has a 10% higher peak than sharedsymped-b at 15,000 requestsper second and 10% higher performance

after saturation at 30,000 requests per second. Comparing the performance of the best version of WatPipe

and the best version of Knot, watpipe-b has a 13% higher peak than knot-b at 15,000 requests per second

and 15% higher performance at 30,000 requests per second. For this workload, knot-c does not have the

worst performance; it places in the middle of the servers tested. However, compared to knot-c, knot-b

has a 12% higher peak at 15,000 requests per second and 8% higher performance at 30,000 requests per

second. The best blocking server, watpipe-b compared to thebest non-blocking server, watpipe-nb, has

a 14% higher peak at 15,000 requests per second and 18% higherperformance at 30,000 requests per

second. Between the best blockingµserver and the worst non-blockingµserver versions is a larger gap;

sharedsymped-b has a 34% higher peak at 15,000 requests per second and 33% higher performance at

30,000 requests per second compared to symped-nb. Symped-nb is the worst performing server, with

symped-b having a 9% higher peak at 15,000 requests per second and 6% higher performance at 30,000

requests per second.

To better understand the performance of the servers, the best configuration of each server is profiled.

The OProfile and vmstat data for these experiments are summarized in Tables 3.40 and 3.41. Additional

vmstat data is presented for this workload; the row labelled“blocks in” gives the average number of blocks

read in per second. Note, a non-zero I/O wait value indicatesthat the profiling data must be scaled because

99

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b

p
s

Requests/s

watpipe-b-12K-100w
sharedsymped-b-12K-100p

knot-b-10K-50w
watpipe-nb-10K-100w

knot-c-8K-150w-50MB
sharedsymped-nb-10K-50p

knot-nb-8K-50w
symped-b-10K-50p
symped-nb-9K-25p

Figure 3.8: Throughput of different architectures - .75 GB

Server Rank

watpipe-b 1

sharedsymped-b 2

knot-b 3

watpipe-nb 3

knot-c 4

sharedsymped-nb 4

knot-nb 5

symped-b 5

symped-nb 6

Table 3.39: Ranking of server performance - .75 GB

100

3.13. SERVER COMPARISON

the profiling data gathered only accounts for time when the CPU is executing, so it does not include I/O

wait. For example, if the I/O wait is 30%, then the profiling data still adds up to 100% but only covers the

70% of the time that the CPU is in use.

The SYMPED and shared-SYMPED servers have lower user-spaceexecution totals than the other

servers by 50% or more. The relative user-space totals forµserver have stayed consistent over the various

workloads but the totals for Knot and WatPipe are highest forthis workload. With Knot, both the main

thread and the worker tasks poll for additional work. Since there is extra CPU time as a result of waiting

for disk I/O, Knot spends this time polling, leading to increased application totals compared to the other

servers. With WatPipe, the various threads in the system arenot busy enough to keep running so there is

a lot of blocking and signaling of threads, resulting in higher thread overheads. Asµserver is event-driven

it does not suffer from these overheads.

However, the downside of the SYMPED and shared-SYMPED servers is high kernel event-poll over-

heads. Since all theµserver processes are symmetric, each process independently calls the event mech-

anism. For example, sharedsymped-b makes 2945 calls per second toepoll_wait, while watpipe-nb with

asymmetric tasks has less overhead as it only makes 1745 calls per second.

The SYMPED and shared-SYMPED servers appear to have high networking and e1000 values but

not correspondingly high throughput. However, scaling thenetworking and e1000 values based on the

appropriate I/O wait shows that these values are consistentwith the other servers.

Similar to the other workloads tested, knot-c has large data-copy overhead. As well, additional over-

heads related to user-level threading still exist for all the Knot servers. For this workload, however, these

overheads do not have a large effect on performance. Becausethe workload is disk bound, there is extra

CPU time available in the system to absorb these overheads, reducing their effect on performance. Knot-nb

and knot-b spend any leftover CPU time polling, resulting ina high level of kernel context-switching that

results in large scheduling overheads and higher user-space totals. For knot-c, the data-copying overhead

required to maintain an application cache consumes this extra CPU time. Note the low kernel context-

switching and scheduling overhead values for knot-c. Hence, knot-c’s performance penalty for not using

sendfile is offset and it also gains some efficiency with respect to disk access by performing large contigu-

ous disk reads into the application cache. The result is thatthe performance of the Knot servers are similar

to the other servers despite additional overheads.

The discussion in the previous sections showed a correlation between the file-system cache-size and

the throughput of a server. For equivalent configurations, the server with a smaller memory footprint has

higher throughput. Furthermore, a smaller memory footprint often allows the server to achieve its best

performance with a larger number of processes and/or connections, resulting in additional performance

improvements. Since the servers are disk bound, the expectation is that the average throughput of the disk

101

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

is approximately the same for all the servers and the size of the file-system cache only effects the number

of requests that must block waiting for disk I/O. However, according to the vmstat data in Tables 3.40

and 3.41, the blocks-in per second values show a large variation across the servers.

For analysis, divide the servers in two separate groups: non-blocking sendfile servers and blocking

sendfile servers. The difference in blocks-in among the servers appears to be related to two factors, the

number of kernel threads (workers, processes or writers depending on the server) and the size of the file-

system cache. If the number of kernel threads is kept the same, then servers with larger file-system caches

have higher blocks-in per second and higher throughput. Since the system is under memory pressure, the

most frequently requested files are likely already in the file-system cache, while the remaining files need to

be read in from disk when requested. Due to the Zipf distribution of requests, smaller files are requested

more frequently than larger files. Therefore, as the size of the file-system cache increases, the average

size of a file serviced from disk also increases. Requesting larger files from disk means that on average

more contiguous data is read on each disk read, so disk efficiency increases and the amount of data that

can be read from disk also increases. The servers with 100 kernel threads have file-system cache-sizes

that are less than 20 MB smaller than the best performing servers with 50 kernel threads. For these small

differences, having more kernel threads is an advantage as these additional threads are able to keep the

disk more consistently busy, resulting in higher blocks-in. However, since the file-system cache continues

to shrink as kernel threads are added, the average file-size of requests requiring disk I/O becomes smaller

and disk efficiency eventually drops resulting in lower performance.

When all the servers are analysed together, a performance anomaly emerges when comparing block-

ing versus non-blockingsendfile servers. As mentioned in the sections discussing the performance of

individual servers for this workload, the blocking versionof a server has better performance than the

equivalent non-blocking version. This behaviour is unusual because in all cases, for their best configura-

tions, the blocking server has a smaller file-system cache than its non-blocking counterpart. For some of

the servers, part of the performance difference can be attributed to the non-blocking servers encountering

verification problems at the configuration parameters wherethe blocking version of the server performed

best. However, the blocking servers even outperformed the non-blocking servers at the best configuration

parameters for the non-blocking server. Furthermore, watpipe-nb does not suffer from verification prob-

lems but watpipe-b still has better performance. Since the only difference between the WatPipe servers

is blocking versus non-blockingsendfile, for equivalent configuration parameters their file-systemcache

sizes are approximately the same and cannot account for thisperformance difference. One unexpected

difference that is consistent among the servers is that the blocking version of the server has higher blocks-

in per second than the non-blocking version of the server. Since the speed of the disk remains consistent

and the disk is a bottleneck for this workload, the expectation is that all the servers are maximizing disk

I/O and the average throughput of the disk is consistent among the servers assuming that other factors are

102

3.13. SERVER COMPARISON

equivalent. But the blocks-in per second values for the servers suggest that the blocking servers are able

to get more data from disk than the non-blocking servers.

Read access to each file for all the servers is sequential. However, with non-blockingsendfile the

access pattern for reading large files may be misinterpretedby the kernel. Withsendfile, the data is

transmitted in pieces, with the size of each piece determined by the socket-buffer size. Similarly, the

operating system reads a file into the file-system cache from disk in pieces, with the size of each piece

determined by the I/O scheduling algorithm. For large files,the socket-buffer size is smaller than the

amount of file-data read in by a single disk request, so the number of disk accesses required is fewer

than the number of network transmissions required for a request of a large file that is not already in the

file-system cache. With non-blockingsendfile, the file-access pattern appears random because subsequent

sendfile calls do not appear to continue from the end of the last disk I/O. At this point, the kernel disables

page-caching read-ahead for the file and the size of the disk requests become smaller on average. With

blocking sendfile, only a singlesendfile call is required, and since the kernel performs the appropriate

tracking, it recognizes that file access is sequential, resulting in two benefits. First, the average disk-

request size is larger, resulting in better disk efficiency.Second, since the blocking server has page-

caching read-ahead enabled, the kernel requests the next section of the file be read in from disk while it

is still processing the current section of the file. Hence, the total amount of time to send an entire file is

reduced as the transmission of the file is overlapped with thereading of the file from disk, leading to fewer

large-file timeouts. The misclassifying of the non-blocking sendfile access-pattern is likely a deficiency

of the Linux kernel used for these experiments and may not apply to newer kernels or other operating

systems.

Once the servers become disk bound, there is extra CPU capacity in the system so execution effi-

ciency becomes less important than disk-access efficiency when comparing servers and server architec-

tures. Knot-c’s performance with this workload is an example of the importance of disk efficiency. For

this experiment, the two factors affecting disk efficiency are blocking versus non-blockingsendfile and

memory footprint. The use of blockingsendfile made the biggest difference, with the blocking servers

outperforming the non-blocking servers despite having smaller memory footprints. However, once the

servers are divided based onsendfile, small memory footprints result in better performance. Forthis

workload, the servers with at least some shared address-space performed better, with the two SYMPED

servers having the worst performance and no shared address-space.

103

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Server Knot-cache Knot Knot userver userver

Arch T/Conn T/Conn T/Conn symped symped

Write Sockets non-block non-block block non-block block

Max Conns 8K 8K 10K 8K 10K

Workers/Procs/Writers 100w 50w 50w 25p 50p

Other Config 50MB

Reply rate 6470 6283 6974 5384 5881

Tput (Mbps) 770 750 832 641 700

OPROFILE DATA

vmlinux total % 65.97 59.45 60.11 62.45 63.25

networking 19.31 18.35 22.32 26.41 26.14

memory-mgmt 7.35 4.81 5.52 6.84 6.89

file system 4.25 3.41 3.79 5.38 5.55

kernel+arch 5.53 5.72 6.33 9.72 9.76

epoll overhead 1.36 1.53 1.69 4.65 4.63

data copying 19.18 0.47 0.53 0.95 0.93

sched overhead 2.04 10.91 8.03 1.02 1.57

others 6.95 14.25 11.90 7.48 7.78

e1000 total % 15.69 15.61 17.79 23.79 22.35

user-space total % 15.72 22.56 19.62 7.34 7.07

thread overhead 7.03 10.97 9.68 0.00 0.00

event overhead 0.00 0.00 0.00 2.54 2.37

application 8.69 11.59 9.94 4.8 4.7

libc total % 0.02 0.02 0.02 3.60 4.36

other total % 2.60 2.36 2.46 2.82 2.97

VMSTAT DATA

waiting % 0 1 6 39 31

file-system cache (MB) 528 593 570 542 478

blocks-in/sec 17,101 14,514 16,489 13,670 16,066

ctx-sw/sec (kernel) 9984 319,285 194,558 4575 7264

SERVER STATS

ctx-sw/sec (user) 16,012 14,506 13,794

Table 3.40: Server performance statistics gathered under aload of 15,000 requests per second - .75 GB

104

3.13. SERVER COMPARISON

Server userver userver WatPipe WatPipe

Arch s-symped s-symped pipeline pipeline

Write Sockets non-block block non-block block

Max Conns 10K 12K 10K 12K

Workers/Procs/Writers 50p 100p 100w 100w

Other Config

Reply rate 6502 7586 7068 8322

Tput (Mbps) 778 908 843 990

OPROFILE DATA

vmlinux total % 63.00 64.95 61.35 62.26

networking 26.02 25.26 20.79 23.01

memory-mgmt 7.04 6.74 6.02 6.21

file system 4.37 4.26 3.61 3.95

kernel+arch 10.33 11.05 12.97 11.79

epoll overhead 5.05 5.85 2.56 2.88

data copying 0.97 0.93 0.67 0.71

sched overhead 1.84 3.13 5.48 4.71

others 7.38 7.73 9.25 9.00

e1000 total % 23.45 21.25 18.84 18.41

user-space total % 7.45 7.29 15.38 14.96

thread overhead 0 0 10.35 9.78

event overhead 2.63 2.45 1.90 1.89

application 4.82 4.84 3.13 3.29

libc total % 3.37 3.85 1.65 1.67

other total % 2.73 2.66 2.78 2.70

VMSTAT DATA

waiting % 30 13 23 10

file-system cache (MB) 598 554 585 572

blocks-in/sec 15,352 18,643 16,605 19,501

ctx-sw/sec (kernel) 7933 14,967 21,278 19,977

SERVER STATS

ctx-sw/sec (user)

Table 3.41: Server performance statistics gathered under aload of 15,000 requests per second - .75 GB

105

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

3.14 Comparison Across Workloads

The previous sections concentrate on understanding the performance of the various servers under three

different workloads. This section examines the performance of the servers across the workloads. As the

workload changes, the general behaviour of the servers are similar; as memory pressure increases, the

throughput of the servers decreases. However, the relativeperformance of the servers is not consistent

over the three workloads.

Figure 3.9 graphs the throughput of servers versus the system memory size across the three workloads

at 15,000 requests per second. The knot-c experiments across the workloads show that usingsendfile is

crucial for high performance. Usingwrite results in high data-copying overheads and cache duplication,

resulting in lower throughput. The performance of knot-c has already been discussed in the previous

sections, so knot-c is ignored in the following discussion,except where referred to explicitly.

The servers achieve their best performance with the 4 GB workload, when there is no memory pressure

in the system. At this point, differences in architecture, aside from memory footprint, have the largest

effect on the performance of a server. For the in-memory workload, servers requiring few kernel threads

tend to have low overheads and high throughput. Since the non-blocking servers require only a few

kernel threads, as no overlapping of CPU and disk I/O can occur since all data reads (disk I/O) occur

without blocking, the non-blocking servers perform betterthan the blocking servers. The blocking servers

have higher overheads as they require a large number of kernel threads to handle blocking network I/O.

The additional overheads associated with user-level threading result in lower performance for the Knot

servers. However, unlike with other comparisons of server architectures for in-memory workloads, the

differences in performance among the various architectures are small and the performance of all the servers

is reasonable.

When the entire file set no longer fits into the file-system cache, some requests require disk I/O to

complete. If the system is able to overlap computation with disk I/O, eliminating the time a server is

entirely blocked waiting for I/O, the drop in performance issmall. Once the amount the memory pressure

in the system is large, disk I/O becomes the bottleneck and the throughput of the servers drops sharply

as the servers begin blocking waiting for disk I/O to complete. A reasonable expectation is that server

performance should tend to converge as the memory pressure in the system increases and the speed of

disk I/O becomes the major bottleneck. However, server throughput does not converge.

The most important factors governing performance are the memory footprint and the disk efficiency

of the server. For servers with similar disk efficiency, oncethere is memory pressure in the system,

the memory footprint of the server dictates performance; a smaller memory footprint results in higher

throughput. As discussed in section 3.13, the blockingsendfile servers have better disk efficiency than

the non-blockingsendfile servers, though that is at least partly due to the kernel read-ahead problem. The

106

3.14. COMPARISON ACROSS WORKLOADS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5

M
b
p
s

System Memory Size (GB)

sharedsymped-nb
watpipe-nb
symped-nb
watpipe-b

sharedsymped-b
knot-nb
knot-b

symped-b
knot-c

Figure 3.9: Comparison of server throughput at 15,000 requests per second across workloads

effect of these two factors can be observed in both the 1.4 GB and .75 GB workloads. Other factors such

as maximum connections and number of kernel threads are alsoimportant to achieve high throughput, but

to a large extent these factors are constrained by the memoryfootprint of the server.

The throughput of all the servers decreases when moving fromthe 4 GB workload to the 1.4 GB

workload. However, the throughput of the non-blocking servers decreases more than the blocking servers,

resulting in a tighter grouping of server performance. The larger drop in throughput is partially because

of the overhead of the non-blocking servers going from one orfew kernel threads to many kernel threads,

incurring more overheads; e.g., whenµserver goes from SPED to SYMPED with multiple processes.

However, the blocking servers also have the advantage of better disk efficiency, resulting in smaller drops

in throughput. As a result, the performance of the blocking servers is close to the performance of the

non-blocking servers despite having larger memory footprints and more overheads since additional kernel

threads are required. Since the disk is not saturated and I/Owait can be eliminated, the effect of disk

efficiency is lower for this workload compared to the .75 GB workload. In fact, ignoring knot-c, the

107

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

spread of throughput for the servers is smallest for the 1.4 GB workload.

The relative performance of the blocking servers continuesto improve compared to the non-blocking

servers for the .75 GB workload. Since the workload is disk bound, I/O wait cannot be eliminated and

disk efficiency becomes more important. As the amount of diskI/O increases, disk efficiency becomes

crucial for high throughput and so the blocking servers begin performing better than the non-blocking

servers. Again, for servers with similar disk efficiency, a server with a larger file-system cache has higher

throughput. Therefore, the servers that share address space perform better than the SYMPED servers.

The disk efficiency of the blocking servers and the large differences in memory footprint relative to the

available memory result in the largest spread in throughputfor the .75 GB workload.

The tuning parameters to achieve best performance varies across the servers but they tend to be-

have consistently across the workloads. The expectation isthat the number of kernel threads required

to achieve best performance increases with the memory pressure in the system. For the non-blocking

sendfile servers, one kernel thread is required for the in-memory workload, fifteen to twenty-five for

the 1.4 GB workload and twenty-five to one hundred for the .75 GB workload. The range of kernel

threads gets larger as the level of disk I/O increases because the increase in memory footprint as addi-

tional workers/processes/writers are added constrain themaximum number of kernel threads to achieve

best performance. Therefore, servers with shared address-space are able to support a larger number of

kernel threads. For the blockingsendfile servers, seventy-five to one hundred kernel threads are required

for the in-memory workload, seventy-five for the 1.4 GB workload and fifty to one hundred for the .75

GB workload. When the server is not disk bound, the number of kernel threads required is dictated by the

throughput of the servers. Since the servers have higher throughput with the in-memory workload, more

requests tend to block onsendfile, so more kernel threads are required. Once the servers are disk bound,

the memory footprint of the server constrains the number of kernel threads.

For the second tuning parameter, number of connections, therelationship is more straightforward.

The throughput of the server dictates the maximum number of connections it can support without veri-

fication problems. As the amount of disk I/O increases, the throughput of the servers decrease and best

performance occurs with fewer maximum connections. As discussed previously, the blocking servers can

support a larger number of connections without verificationproblems and achieve their best performance

with a larger number of connections.

3.15 Summary

This chapter examines the performance of several server architectures on a uniprocessor machine for a

spectrum of workloads, from in-memory to disk bound. The architectures include thread-per-connection,

108

3.15. SUMMARY

SYMPED, shared-SYMPED and pipeline. For the first three architectures, an existing high performance

server implementation is chosen, Knot running on top of the Capriccio thread library for the thread-per-

connection server andµserver for SYMPED and shared-SYMPED. For the last architecture, WatPipe, a

new pipeline server is implemented. Previous research has shown both Knot andµserver to be among

the best for their respective architectures and WatPipe hascomparable performance. Significant effort

has been undertaken to make the servers consistent, allowing for a fair comparison. As well, the servers

employ newer operating system features, i.e.,sendfile and edge-triggeredepoll, to reduce overhead and

improve throughput. The servers have been extensively tuned to find the best performing configuration

and both a non-blockingsendfile and blockingsendfile version of each server is examined. In addition, a

version of Knot using an application file-cache withwrite is also tested. This version of Knot is similar to

the original version, except it usesepoll for its event mechanism and has some modifications to make it

consistent with the other servers, e.g., updated hashing code.

The experiments show that tuning the server parameters is critical to achieving high throughput. In

some cases there is a narrow window of best tuning, especially for the non-blocking servers, and missing

that window can result in large performance penalties. Limiting the maximum number of connections for

non-blocking servers is important to maintain high throughput after saturation. One important problem

with the non-blocking servers is large-file timeouts. As theblocking servers focus on replying to current

requests before reading new requests, they tend to be immuneto large-file timeouts. This behaviour is also

self-limiting, so the blocking servers are less sensitive to a larger maximum number of connections. With

respect to the number of kernel threads, performance of the servers with shared memory and asymmetric

tasks is stable as the number of kernel threads increase. Even when there is no memory pressure in the

system, the servers with symmetric processes show less tuning stability as the number of kernel threads

increase due to additional overheads.

The servers are verified to ensure that all file sizes are equally serviced. Typically, once the tuning

parameters exceed a certain value, either performance levels off, performance decreases or verification

failures occur. However, examining the throughput of experiments failing verification shows the perfor-

mance of the server levels off or decreases in this case as well. This observation is reasonable because if

a server is attempting to equally service all file sizes, verification problems indicate timeouts for requests

in progress, resulting in wasted processing time.

One big difference between the servers is how additional kernel threads are introduced into the server.

µserver uses symmetric processes, while the other servers use asymmetric kernel threads, Knot has a

main thread and worker tasks and WatPipe has threads dedicated to servicing the various stages. The

advantage of symmetric processes (or kernel threads) is that scheduling is easier. The fair scheduling

of the default operating system scheduler does a reasonablejob for symmetric processes. On the other

hand, scheduling asymmetric threads can be difficult. Fairly scheduling all threads may be inappropriate,

109

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

forcing the application to self schedule its threads. In WatPipe, for example, it is unreasonable to allow

an event polling thread to repeatedly call the event mechanism without allowing the other threads in

the application to process the available events between calls. This coordination introduces additional

overheads, can be tricky and may not be portable. However, asymmetric threads also offer advantages

over symmetric threads. One advantage of asymmetric threads is they allow adding threads where needed,

without affecting overheads for other parts of the application. For example, adding additional worker tasks

in Knot to handle disk I/O. While neither approach shows significant advantages for the servers tested,

the symmetric approach seems to work better when fewer kernel threads are required and the asymmetric

approach when a larger number of kernel threads are required. For example, the servers with asymmetric

threads have a smaller performance difference between their non-blocking and blocking versions than the

servers with symmetric processes, for the in-memory workload.

The experiments show the throughput of the servers is affected by the workload. The servers have

highest throughput with the 4 GB workload, followed by the 1.4 GB workload and finally the .75 GB

workload. Since servicing requests from memory is faster than servicing requests from disk, the amount

of disk I/O required dictates the maximum throughput of the server. All the architectures tested are a

viable choice for a high-performance web-server. New operating system facilities, such assendfile, epoll

and efficient context switching bring the performance of theservers together. However, as the workload

changes, the relative performance of the servers also change; no single server performs the best across

all the workloads tested. For the 4 GB workload,µserver non-blocking shared-SYMPED,µserver non-

blocking SYMPED and non-blocking WatPipe have the highest throughput at 15,000 requests per second,

approximately 9% higher than non-blocking Knot. For the 1.4GB workload, non-blocking WatPipe and

non-blocking shared-SYMPED have the highest throughput at15,000 requests per second, approximately

9% higher than both non-blocking SYMPED and non-blocking Knot. For the .75 GB workload, blocking

WatPipe has the highest throughput at 15,000 requests per second, approximately 10% higher than block-

ing shared-SYMPED and 13% higher than blocking Knot and 35% higher than blocking SYMPED. The

additional overheads related to user-level threading witha large number of threads for Knot result in it

consistently performing lower than the other servers.

Once there is memory pressure in the system, the biggest factors determining the performance of a

server are memory footprint and disk efficiency. For the diskbound workload, the blocking servers per-

form better than the corresponding non-blocking servers despite having a larger memory footprint because

of better disk efficiency. Overall, blocking WatPipe has thebest performance. It benefits from both better

disk efficiency from blockingsendfile and from a smaller memory footprint due to its completely shared

address space once there is memory pressure in the system. Ifa system is under memory pressure, the

biggest factor in determining whether an architecture is reasonable appears to be memory footprint. It

may be possible to improve the memory footprint of all the servers tested, resulting in better performance.

110

3.15. SUMMARY

Based on the experiments in this chapter, no single server performs best across all the workloads;

the peak throughput difference among the best version of each server is within 9–13%, depending on

the workload, indicating that all the servers perform well.If achieving maximum throughput is critical,

non-blocking WatPipe and non-blocking shared-SYMPED offer the best performance for in-memory and

moderate disk-I/O, and blocking WatPipe offers the best performance when there is heavy disk-I/O. Knot

has extra overheads related to supporting a large number of user-threads. Non-blockingµserver SYMPED

performs well for in-memory workloads butµserver SYMPED does not scale efficiently as the number of

processes increase because the processes have completely separate address-spaces.

Given the reasonable performance exhibited by all the servers, factors other than throughput may

be more important in deciding which server architecture is appropriate. For example, the experiments

show tuning is important to achieve the best performance butthe best tuning for a server varies based

on workload. Therefore, servers that are less sensitivity to larger tuning parameters are easier to tune

and a single tuning may be reasonable for a wider range of loads. The servers with shared memory and

asymmetric tasks are easier to tune because they show less tuning sensitivity across all workloads as the

number of kernel threads are increased. As well, the blocking servers have fewer verification problems

as the maximum number of connections increase. Based on these additional criteria, blocking WatPipe is

a good server choice. Blocking WatPipe performs well acrossthe workloads, i.e., it has peak throughput

within 4% of the best server for the in-memory workload, 2% for the moderate disk I/O workload and

10% higher peak throughput for the disk-bound workload. Furthermore, it is easier to tune than the other

servers; its performance is stable as the number of writer tasks is increased and it does not have verification

problems as the number of connections is increased.

111

Chapter 4

Multiprocessor Web-Server Architectures

This chapter examines various server architectures run on amultiprocessor with different workloads. The

servers from Chapter 3, aside from Knot, are extended for multiprocessor execution and both the N-copy

version of the uniprocessor server and the extended versionof the server are tested. Two workloads are

explored: the first is in-memory and the second is disk bound.Similar to the uniprocessor experiments,

the varying workloads are achieved by reconfiguring the server with different amounts of memory, while

keeping other factors the same.

For the multiprocessor experiments, partitioning the subnets and processes/kernel-threads is important

to achieve high performance (see Section 4.4). While achieving this partitioning is straightforward for the

N-copy servers, the server architectures are extended to allow this partitioning as well. The goal of this

chapter is to compare the performance of the server architectures on a multiprocessor and to show that

performance comparable to N-copy can be achieved with the extended servers. Again, each server is indi-

vidually tuned for best performance on each workload and thebest configuration of each server is profiled

to examine any differences and similarities among the architectures, and for different implementations

within an architecture.

4.1 Overview

The methodology for the experiments in this chapter is generally the same as the methodology used in

Chapter 3. Specifically, httperf is run with a 10 second timeout value, the same verification procedures

are followed and similar tuning is performed on each the servers. However, based on experience gained

with the uniprocessor experiments, only a single round of tuning is performed. For the experiments

113

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

in this chapter, the request rates range from 25,000 requests per second to 70,000 requests per second.

Differences in file set and environment are discussed further in the next two sections.

Before running experiments to measure the performance of the various servers, some preliminary

experiments are run. These preliminary experiments determine the affinity settings required to maximize

performance and examine the scalability of the hardware andoperating system.

Performance experiments are run to test each server on two workloads. The two workloads are labelled

based on the size of the server memory: 4 GB and 2 GB. These workloads correspond to in-memory and

heavy disk I/O. Note, 2 GB of system memory results in heavy disk-I/O for these experiments due to higher

throughput resulting from multiple processors. For each workload, a number of tuning experiments are

run for each server.

Additional data is gathered for each experiment in three ways. Similar to the uniprocessor experi-

ments, vmstat is run with a 5 second interval and each server gathers statistics while it is running. In

addition, mpstat is run during the experiments. The mpstat utility is run with a 5 second interval to sample

the system state and generate per CPU data about where CPU-execution time is spent. It breaks down the

information into categories such as user time, system time,software interrupts (softirqs), interrupts per

second, etc. Similar to the uniprocessor experiments, onlythe condensed area under the throughput curve

for each experiment is reported. The remainder of the data isnot included in the thesis, but a summary of

some of the data gathered is presented when necessary to provide further explanations.

Finally, no Knot experiments are run for this chapter. Knot,when running on the Capriccio thread li-

brary, only supports multiple kernel-threads for writing so it can only be run N-copy. Given this limitation,

Knot is uninteresting on a multiprocessor so it is not considered further.

4.2 File Set

The file set used for the experiments in this chapter is staticand generated using the SPECweb99 file-set

generator. Similar to the file set used in Chapter 3, 650 directories were generated, resulting in approxi-

mately 3.1 GB of files on the server. Based on preliminary performance experiments, the 650 directories

are distributed over the server’s two hard drives to achievehigher throughput when disk I/O occurs (not

done in the uniprocessor experiments). The list of the files in each directory and their profile is the same

as the files in Chapter 3.

The multiprocessor experiments are run with 16 clients (versus 8 in the uniprocessor experiments),

each running a copy of the httperf load generator, requiringa new set of 16 log files, also with requests

conforming to a Zipf distribution, to account for the additional clients. As discussed earlier, the actual file

114

4.3. ENVIRONMENT

set for the experiments is based on the files present in the client log-files. Due to the way the log files

are generated, not all the generated files on the server are used. The client log-files request 2.2 gigabytes,

consisting of 21,600 files across all 650 directories of the file set. Hence, the actual size of the file set

is approximately 2.2 GB. For the experiments in this chapter, the log file for each client has an average

session length of 7.29 and all the requests are for static files. Like Chapter 3, the various workloads for

this chapter are generated by keeping the file set and client log files constant and reconfiguring the server

with different amounts of memory.

Table 4.1 shows the amount of memory required to satisfy requests as the file size increases. The

distribution of requests over the file sizes is very similar to the log files in Chapter 3 but not exactly the

same. Again, due to the Zipf distribution, only a small amount of memory is needed to service a significant

percent of the requests; 50 percent of the requests comprise8.4 MB of the file set and 95 percent of the

requests comprise only 126.5 MB of the file set.

% Reqs Memory Size (MB) Max File size (B)

10 0.5 409

20 0.8 512

30 1.5 716

40 4.8 3072

50 8.4 4096

60 9.9 5120

70 12.2 5120

80 20.1 7168

90 94.3 40,960

95 126.5 51,200

100 2291.6 921,600

Table 4.1: Cumulative amount of memory required for requests when sorted by file size

4.3 Environment

The experimental environment consists of eight client machines and a single server. The client machines

are identical to the clients in Chapter 3. The server machinecontains one quad-core E5440 2.83 GHz

Xeon CPU, 4 GB of RAM, two 10,000 RPM, 146 GB SAS hard drives andten one-gigabit Ethernet

ports. Four of the ports are on-board, four more are from one add-on card and the remaining two from

115

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

another add-on card. For all experiments, the server runs a 2.6.24-3 Linux kernel in 32-bit mode with SMP

enabled. Switching to a newer kernel is required to properlysupport the hardware on the server machine.

With a 32-bit address space, the default configuration for the Linux kernel is to assign 1 GB of virtual

address space for the kernel and 3 GB for user processes. Using the default 1 GB/3 GB memory split,

the kernel began to run out of available memory for some experiments due to a large number of processes

and sockets. The problem appears to be related to slow reuse of kernel memory, eventually resulting in

insufficient free memory for new connections over the courseof an experiment. In order to accommodate

experiments with a large number of processes and sockets, the kernel has been compiled to use a 2 GB/2

GB memory split between the kernel and user-space.

The 2.6.24-3 kernel already contains the fix for the caching problem discovered in the 2.6.16-18 kernel

used in the previous chapter. However, the kernel code path for sendfile is different in the 2.6.24-3 kernel

versus the 2.6.16-18 kernel, so the fix is not relevant for theexperiments in this chapter. Furthermore, the

read-ahead code has also been extensively modified and does not exhibit the problem seen in Chapter 3

(see Section 3.13 for details). Unfortunately, I discovered that the new code path has a page caching prob-

lem that results in poor disk performance. Whensendfile is used to transmit a file to a client, none of the

pages associated with the file are marked as accessed by the kernel. Not marking page-accesses means the

kernel cannot distinguish between recently or frequently accessed pages and other pages in the file-system

cache. Therefore, under memory pressure the kernel evicts random pages from the file-system cache. The

problem is these random pages could include pages in the middle of files, frequently accessed pages, etc.,

resulting in erratic performance and low disk-throughput as long contiguous disk reads and read-ahead

buffering are less useful as disk requests become smaller and more random. Therefore, the experiments

in this chapter use a 2.6.24-3 kernel that I patched so that page accesses are correctly marked forsendfile

calls (see Section A.2 for patch). Disk throughput improvedfrom approximately 11,000 blocks in per sec-

ond for non-blockingsendfile and 20,000 blocks-in for blockingsendfile to approximately 28,000–30,000

blocks-in for both non-blocking and blockingsendfile with the patch. As well, the difference in disk per-

formance between blocking and non-blockingsendfile is small and the variation in throughput is low for

repeated experiments. Due to improved disk throughput, theperformance of the servers also improved

with the patch.

The connection between the server and client machines is thesame as that described in section 3.5,

except scaled to 8 client machines. Again, each client machine has two CPUs and runs two copies of

the workload generator, resulting in 16 clients evenly spread over eight network interfaces on the server.

The clients, server, network interfaces and switches have been sufficiently provisioned to ensure that the

network and clients are not the bottleneck.

116

4.4. AFFINITIES

4.4 Affinities

On a single processor, all the processes and interrupt servicing must execute on that processor. When

multiple processors exist, there are several options regarding how the execution of processes and interrupt

servicing can be distributed. Of particular interest for these experiments is the execution of the kernel

threads associated with the server and the interrupt servicing for the network interfaces.

The default behaviour is to allow the system to schedule the server kernel-threads and interrupt re-

quests (IRQs). In order to control the behaviour of the kernel with respect to IRQ scheduling, the Linux

kernel used in this chapter is built with IRQBALANCE disabled because the IRQ balancing functionality

in the Linux kernel does not perform well. Other simple strategies like handling interrupts round-robin

among the CPUs also perform poorly due to poor cache behaviour. Instead, IRQ scheduling should be

configured manually to achieve best performance for specificserver hardware. The Linux kernel also al-

lows setting CPU affinities for kernel threads and for interrupts. Setting CPU affinity ties a kernel thread

or interrupt to a specific processor or set of processors.

The server machine in the test environment has multiple processors and multiple network-interfaces,

so a number of configurations exist. Affinities can be set independently for the network interfaces and for

the server processes. This section considers some of the options for an N-copy server using non-blocking

sendfile. For these experiments,µserver SYMPED is used. Based on Chapter 3, oneµserver process per

CPU should be sufficient and achieve reasonable performance.

There are four CPUs, so four copies of the symped-nb server are executed. In order for the servers

to cover all eight subnets, each symped-nb server handles two distinct subnets with no subnet handled by

more than one server. This configuration results in a unique association of servers and subnets that allows

segregation of server processes and network interfaces. InFigure 4.1, the same experiment is chosen

for all configurations: 4 processes with 20,000 maximum connections per process for a total of 80,000

connections. Verification failures are ignored and just thethroughput of the server is considered. However,

both experiments where the network interface affinities arenot set fail verification.

In the first experiment,no affinity, no affinities are set to allow subsequent comparisons with various

affinity settings. Both the network interfaces and the processes are free to use any CPU. Note the server

does not have IRQBALANCE enabled in the kernel or installed on the system. Thepeak throughput is

2375 Mbps at 25,000 requests per second.

Based on the mpstat output for the experiment, one CPU spends100% of its time servicing interrupts

and the other processors spend a small amount of time servicing interrupts, 5% or less on average. Note

the processor that becomes dedicated to handling interrupts does vary between experiments but is constant

during the run for each individual rate. However, a single processor handling the majority of interrupts is a

117

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10000 20000 30000 40000 50000 60000 70000

M
b

p
s

Requests/s

no affinity
process affinity

interrupt affinity
aligned process and interrupt affinity

unaligned process and interrupt affinity

Figure 4.1:µserver N-copy non-blocking with 4 processes, 80,000 connections and various affinities

bottleneck because it does not have enough CPU capacity to handle interrupt processing for eight network

interfaces, inhibiting performance. Given this organization, the server processes receive insufficient work,

resulting in low throughput and a large amount of idle time onthe remaining CPUs.

In the second experiment,process affinity, each server process has its affinity set to a separate processor

and interrupt affinities are not set. Setting affinities for the processes results in a slight improvement, with

a peak throughput of 2794 Mbps at 25,000 requests per second.The mpstat output again reveals that the

system schedules the servicing of interrupts on a single processor, resulting in a bottleneck as the CPU is

quickly saturated. As a result, the server process tied to the saturated CPU is starved for execution time

after interrupt servicing occupies 100% of the CPU.

In the third experiment,interrupt affinity, interrupt affinities are set for the network interfaces but

the processes are free to execute on any of the CPUs. Setting the network-interface affinities results in a

significant improvement in performance; the peak throughput is 5915 Mbps at 56,000 requests per second.

Examining the mpstat output reveals that the average software interrupt servicing time, as well as, user

time, system time, etc. is approximately the same across allthe CPUs for each rate. However, Table 4.2

shows that performance can be inconsistent across experiments; the condensed area at 80,000 connections

is lower than the value for 60,000 and 100,000 connections. This anomaly occurs for the following reason.

By default, the Linux scheduler schedules a particular process consistently on the same CPU unless a load

imbalance occurs. When it detects a load imbalance, a process is selected to execute on another CPU. So

when the server processes are not bound, they tend to executeon a single CPU and this CPU is likely the

same as the CPU tied to servicing its interrupts. However, when this coincidental affinity does not occur,

118

4.4. AFFINITIES

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

4 12.87 16.75 16.62 16.76

Table 4.2: Experiments with only network interface affinities set (condensed area)

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

4 12.87 16.84 16.85 16.84

Table 4.3: Experiments with aligned network interface and process affinities set (condensed area)

there can be poor performance at that rate, in this case 65,000 requests per second. (Note the drop in the

interrupt affinity line at that point in Figure 4.1). Based on a number of experiments (not shown), the

instability can randomly occur at different request rates with various configuration parameters. This type

of instability occurs as a result of not binding each processes to a specific CPU.

In the fourth experiment,aligned process and interrupt affinity, both process and interrupt affinities

are set and aligned to correspond so that the server process handling requests from a particular subnet is

bound to the same CPU as the CPU servicing interrupts for thatsubnet. The peak throughput is 6202

Mbps at 56,000 requests per second. Unlike the previous experiment, setting both process and interrupt

affinity results in stable throughput across all the experiments, see Table 4.3.

Finally, a fifth experiment,unaligned process and interrupt affinity, is run to confirm that the alignment

of interrupt servicing and processes to the same CPU is important. In this case, both process and interrupt

affinities are set but the alignment is explicitly set so thatprocesses and network interfaces are unaligned.

The performance of this experiment is much lower than the interrupt affinity and aligned process and

interrupt affinity experiments. In fact, the fifth experiment did not pass verification. Ignoring verification

problems, however, the peak throughput for the unaligned experiment is 4081 Mbps at 65,000 requests

per second, compared to 6202 Mbps at 56000 requests per second for the aligned process and interrupt

affinity experiment. In this case, after the experiment has been executing for a while two of the CPUs

become mostly dedicated to servicing interrupts and the server processes on those CPUs become starved

for execution time. As those processes are only handling a small number of requests, the time spent

servicing interrupts on the other two remaining CPUs drops.Effectively, only two of the processes are

servicing requests and the other two processes are starved.Clearly, aligning the processes and network

interfaces results in the best performance. In addition, this experiment confirms that the Linux scheduler

does a reasonable job of scheduling the processes based on the interrupt affinity settings with this type of

workload. While the Linux scheduler does a reasonable job ifthe process affinities are not set, it is better

119

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

to align the affinities, if possible, to guarantee the best performance.

The term partitioned is used to describe the general case of aserver running with aligned process

and network affinities. Specifically, partitioning means that the kernel threads processing a request must

execute on the same CPU that handles the network interrupt processing for the subnet associated with

the request. For certain experiments in this chapter, stepsare taken in order to achieve partitioning.

First, affinities are set so that network interrupt processing for a subnet occurs on a single CPU. For load

balancing, interrupt processing for the eight subnets are equally distributed over the four CPUs, so each

CPU handles interrupt processing for two distinct subnets.Second, each kernel thread in a server only

processes requests from subnets associated with the a particular CPU, and affinities are set so the kernel

thread only executes on that CPU. As will be seen with WatPipein Section 4.6.3, absolute partitioning of

all the kernel threads is not always required.

Other work has also shown that aligning processor and interrupt affinities yields the best perfor-

mance [4, 24]. Foonget al. [24] performed similar experiments to test TCP performanceunder vari-

ous affinity settings. Their experiments also show that aligning process and interrupt affinities yields the

best performance. In addition, they also provide an explanation as to why only setting interrupt affini-

ties performs almost as well as aligning process and interrupt affinities. According to their explanation,

tasklets, deferrable functions related to interrupt handling, are usually scheduled on the same processor

as the interrupt handler, indirectly resulting in aligned process affinity. As well, they provide a detailed

analysis explaining why aligned process and interrupt affinities result in the best performance. They note

improvements in cache misses, pipeline flushes and locking across various parts of the TCP pipeline.

Anand and Hartner [4] examined TCP/IP performance on the 2.4and 2.5 versions of the Linux ker-

nel. They showed that aligning both process and interrupt affinities results in better data and instruction

locality, resulting in better cache performance and higherthroughput.

4.5 Scalability

In order to achieve higher throughput, the simplest approach is to have multiple, identically configured

single-processor machines each running an independent copy of a web server. Assuming that an external

mechanism exists to handle load balancing, the performanceof the system should scale perfectly from

one to N machines. An alternative approach that may seem similar is to run independent copies of a

web server on a multiprocessor system, with one server copy per CPU. Despite the copies of the server

running independently, sharing at the operating system andhardware level can have a significant effect on

scalability.

Experiments were run to examine the scalability of runningµserver N-copy non-blocking SYMPED

120

4.5. SCALABILITY

on a multiprocessor machine. The purpose of the experiment is to determine if running on a multiprocessor

scales similarly to running on separate single-processor machines. To accomplish this comparison, in-

memory experiments were run as both the server hardware (CPUs and network interfaces) and client load

are scaled proportionately to simulate independent single-processor machines. To perform the equivalent

uniprocessor experiment, the server is booted with 1 CPU running a single copy ofµserver with four clients

generating requests over two subnets. Correspondingly, ifN CPUs are booted, the experiment consists

of running N copies ofµserver with 4× N clients generating requests, simulating N single-processor

machines. Experiments with N equal to 1, 2 and 4 were run.

Eachµserver process is set up to receive requests from two subnetswith no two processes sharing a

subnet, i.e., each process communicates exclusively with two network interfaces. Affinities are aligned

so a process and the interrupts for its corresponding network interfaces are handled by the same CPU and

no two server processes share a CPU. The idea is to minimize sharing of resources among copies of the

server. As well, the experiments are setup so that eachµserver process receives the same sequence of

requests; i.e., the same set of log files are used for each group of clients associated with aµserver copy.

Since the number of clients are scaled along with the CPUs, aggregate request rates are also scaled so

that the request rate for each individual client remains thesame. For example, with 1 CPU, an aggregate

request rate of 8,000 requests per second would result in each of the four clients running at a rate of 2000

requests per second. With 4 CPUs, the aggregate request rateis adjusted to 32,000, resulting in each of

the sixteen clients running at a rate of 2000 requests per second.

Unfortunately, when running with 1 CPU, the single copy ofµserver achieves line speed on the two

network interfaces before the CPU is fully utilized. While utilizing additional network interfaces would

have solved this problem, scaling to 4 CPUs would require more client machines than available and more

network interfaces than the server machine can support. To mitigate this problem, special measures are

taken for the scalability experiments. First, the speed of the CPUs is reduced from 2.83 GHz to 2.00 GHz.

Second, transmit and receive checksumming is disabled on the network interfaces to increase the amount

work done by the CPUs. These measures reduced the throughputenough so the scalability experiments

could be run with the existing hardware setup.

Table 4.4 contains the results of the scalability experiments. Perfect scalability is not achieved. With

4 CPUs, the throughput is around 2.3 times the throughput with a single CPU. Interestingly, the speedup

from 2 to 4 CPUs is also 1.5. The table shows that the request rate at which the servers peak is lower

(after appropriate scaling) than the expected perfect scaling. For example, with 1 CPU the server peaks at

14,000 requests per second but with 2 CPUs the server peaks at22,500 requests per second, not 28,000

requests per second.

To compare the servers, experiments with a single consistent rate, scaled for each configuration, are

examined, see Table 4.5. In this case, the rate chosen is 33,000 requests per second, the peak rate for 4

121

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

CPUs Rate Throughput (Mbps) Speedup Idle Time (%)

1 14,000 1556 1 4

2 22,500 2367 1.5 1

4 33,000 3603 2.3 2

Table 4.4: Scalability ofµserver N-copy SYMPED

CPUs, with scaled rates of 16,500 for 2 CPUs and 8250 for 1 CPU.As expected, the scalability at these

rates is almost perfect since virtually all the requests aresuccessfully handled. Only the 4 copy version

had a small number of client timeouts. More important for these experiments is to examine the average

idle time, based on vmstat output during the experiment. Theidle time in Table 4.5 is averaged over the

CPUs, so 2% means 2% per CPU in the 4 CPU case. From 1 CPU to 2 CPUs, the idle time drops by 12%

and from 2 CPUs to 4 CPUs the idle time drops by a further 24%. The decrease in idle time as the number

of CPUs increases indicates that at some level the servers are not entirely independent, and hence, perfect

scaling would not continue at higher request rates.

CPUs Rate Throughput (Mbps) Speedup Idle Time (%)

1 8250 907 1 38

2 16,500 1814 2 26

4 33,000 3603 4 2

Table 4.5: Scalability ofµserver N-copy SYMPED at a consistent rate

For a further breakdown, mpstat output is also gathered during the experiments. The only significant

difference in the mpstat values is the time spent in system-level and software-interrupt (softirq) code. The

averages with 1 copy: 29% for system, 23% for softirq, with 2 copies: 35% system and 29% softirq and

with 4 copies: 55% system and 38% softirq. Again all the timesare averaged over the number of CPUs.

As load is scaled based on the number of CPUs, ideally all parts of the system should have the same

relative performance, so the percent of time spent in each part should remain constant. Given that the

user times (not shown) are within 0.5%,µserver is scaling linearly, so the non-linear parts appear to be

concentrated in the kernel.

Despite attempting to segregate the server processes and their associated hardware, including CPU

and network interfaces, the system does not scale linearly because the operating-system kernel, processor

caches and hardware buses are still shared. These elements of the system inhibit parallelism of the server

processes. The focus of this chapter is to examine the effectof various server architectures within the

122

4.6. 4 GB

confines of these limitations.

Veal and Foong [54] also analysed the scalability of a web server on a multiprocessor. Similar to

the experiments in this section, they found scalability problems as the number of cores increased. Based

on extensive profiling, they determined that address-bus capacity is the primary bottleneck that inhibited

scaling of the web server on eight cores for their machine andenvironment. However, both the application

and kernel also exhibited some scalability problems.

4.6 4 GB

This section considers the performance of various web-server architectures when the entire file set fits into

the file-system cache. For these experiments, the system wasconfigured with 4 GB of memory, resulting

in 3.5 GB of available memory due to parts of the address spacebeing reserved for hardware devices.

Eliminating memory pressure highlights the multiprocessor characteristics of the various architectures

without focusing on disk I/O. The next section examines the effect of disk I/O. Note, the special measures

taken for the scalability experiments are not in effect for the other experiments in this chapter; the CPU

speed has been reset to 2.83 GHz and transmit and receive checksumming on the network interfaces has

been re-enabled. Based on the throughput speedup achieved with four processors, the network capacity

for the server and test environment are sufficiently provisioned.

The servers can be run in various ways to achieve parallel execution on a multiprocessor. The ex-

periments in this section try to cover some different options for achieving parallel execution but not all

possible configurations are tested for each option. One reasonable technique for achieving parallel exe-

cution is the N-copy approach discussed in Section 4.4. Aside from N-copy, the servers can be run with

multiple kernel threads, similar to the uniprocessor experiments. Based on experiments in Section 4.4,

network interrupt affinities are always set, so that interrupt processing is equally distributed across the

CPUs, by pinning two network interfaces to each CPU. Where possible, process affinities are also set so

that network and process affinities are aligned in order to partition the system. For example, the N-copy

experiments in this section segregate the CPU and network interfaces associated with each server copy so

the experiments achieve better performance.

4.6.1 Tuning N-copy

As the experiments use static workloads, no communication is required among the various server processes

and connections; hence, N-copy is a reasonable architecture. While the SYMPED and shared-SYMPED

servers already have an N-copy design, there are some differences between those servers and the N-copy

123

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

architecture in this section. The SYMPED and shared-SYMPEDservers have a single listening port with

all processes handling connections from any subnet. This approach does not allow specific processes to

be associated with particular subnets and for the hardware to be partitioned based on this association. By

running N copies of the SYMPED, shared-SYMPED and pipeline servers, the desired segregation can

be achieved. Since there is no communication among the servers and the system is not under memory

pressure, the N-copy approach likely represents the best possible performance for the servers.

The problems when running concurrent programs on a multiprocessor are locking, synchronization,

cache coherency, etc. By setting affinities appropriately,the idea is to run the server as a number of

uniprocessor servers each running on a single CPU. This approach tries to eliminate multiprocessor issues

among servers at the application level as the servers are independent and can only be scheduled on a single

CPU. It also tries to minimize multiprocessor issues in the kernel by segregating the hardware and servers

as much as possible. However, locking and sharing of data structures still occurs within the Linux kernel

to control access to shared resources such as the disk, file system, bus, network cards, etc.

Based on uniprocessor tests for non-blockingsendfile, only one kernel thread is required per CPU

when there is no disk I/O. Based on testing in Section 4.4, segregating the subnets among the servers and

then running the servers on the same CPU as the subnets it is handling is the best approach. Again, since

there are eight subnets and four server copies, each server must handle connections from two subnets.

4.6.1.1 Tuning N-copyµserver

Sinceµserver is already a form of N-copy, a bit of explanation is required to differentiate the experiments

in this section. In the N-copy experiments earlier in this chapter, there is only one process per CPU with

affinities set to segregate the hardware. Hence, each servercopy is essentially a separate instance of a

SPED server. For the next set of experiments, each copy of theN-copy server is a general SYMPED or

shared-SYMPED server potentially consisting of multiple processes sharing the same subnets and running

on a single CPU. The machine used for these experiments has four CPUs available and so for these N-copy

experiments, N equals four. Consider an N-copy experiment with a blocking SYMPED server where each

copy of the server uses 100 processes. A single copy of the server would consist of 100 processes each

sharing two subnets all tied to a single CPU. The entire experiment consists of 400 processes across eight

subnets and all four CPUs, i.e., 4 of the single copies.

Experiments were run to tune three versions ofµserver: N-copy symped-nb, N-copy symped-b and

N-copy sharedsymped-b (but not N-copy sharedsymped-nb, see below). As discussed later in this section,

no N-copy sharedsymped-nb experiments were run. For all versions ofµserver, the parameters tuned are

the maximum number of simultaneous connections and the number of processes.

124

4.6. 4 GB

Table 4.6(a) shows the results of tuning N-copy symped-nb. Each row in the table represents a different

number of processes from 4 to 16 with the number of processes representing the total number of processes

running. The total number of processes must be divided by four to determine the number of processes

for each server copy. For example, the 8 processes in the second row represent 4 symped-nb servers each

with 2 processes. The columns represent a different maximumnumber of connections from 40,000 to

100,000. Again, the columns represent the total number of connections across all the servers. Hence, the

entry for 8 processes and 60,000 connections means that eachof the four symped-nb server copies has

a maximum of 15,000 connections. Furthermore, each individual symped-nb process has a maximum of

7500 connections as each server copy has 2 processes in this example. The experiments show the best

performance for N-copy symped-nb is around 4 processes and 100,000 connections (16.87), with a peak

throughput of 6202 Mbps occurring at 56,000 requests per second and with a sustained throughput of

around 5695 Mbps at 70,000 requests per second. This throughput is substantially larger than those seen

in the uniprocessor experiments. However, the results cannot be compared as the hardware and operating

systems are different.

One interesting observation for the best configuration is that after the peak the throughput drops by

6.5% from 6204 Mbps to 5800 Mbps at 58,000 requests per secondand then starts to level off. While the

condensed areas at 60,000 and 100,000 connections are similar, 16.85 and 16.87 respectively, the shape of

the throughput curves are different. At 60,000 connections, the peak is 5964 Mbps at 56,000 requests per

second but after peak the performance holds steady with a throughput of 5954 Mbps at 58,000 requests

per second. Hence, there is a trade off with lower peak throughput but a more gradual decline after peak.

Similar to the uniprocessor experiments, when there is no disk I/O, efficiencies are gained by only

having a single process. In this case, a single SPED server oneach processor is equivalent and performs

the best. As well, the performance of these experiments level off beyond 60,000 maximum connections.

N-copy symped-nb running with a single server process per CPU is self-limiting with an average of less

than 16,500 concurrent connections per server. Therefore,similar to the uniprocessor SPED experiments,

additional connections beyond 100,000 do not result in higher throughput.

Table 4.6(b) shows the results of tuning N-copy symped-b. Each row in the table represents a different

number of processes from 200 to 600, with the number of processes representing the total number of

processes running. The total number of processes must be divided by four to determine the number of

processes for each server copy. For example, the 300 processes in the second row represent 4 symped-b

server copies each with 75 processes. The columns representa different maximum number of connections

from 40,000 to 100,000. Again, the columns represent the total number of connections across all the

servers. Hence, the entry for 300 processes and 80,000 connections means that each of the 4 symped-b

server copies has a maximum of 20,000 connections. Furthermore, each individual symped-b process has

a maximum of 267 connections as each server has 75 processes in this example. The experiments show

125

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

4 12.86 16.85 16.86 16.87

8 ✕ ✕ 16.68 16.68

12 12.87 ✕ 16.66 16.64

16 ✕ ✕ 16.64 16.63

(a) non-blockingsendfile

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

200 12.19 14.14 13.21 12.87

300 12.59 15.34 14.52 13.89

400 12.75 15.54 15.05 14.66

500 12.55 15.41 15.28 14.95

600 12.42 14.87 15.18 14.74

(b) blockingsendfile

Table 4.6:µserver N-copy SYMPED experiments - 4 GB

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

200 12.18 13.93 13.45 ✕

300 12.64 15.09 14.34 13.58

400 12.73 15.24 14.98 14.39

500 12.81 15.31 15.17 14.94

600 12.91 15.38 15.26 15.11

(a) mutex lock

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

200 12.18 14.22 13.15 12.88

300 12.63 15.46 14.57 13.81

400 12.76 15.77 15.43 14.68

500 12.82 15.82 15.62 15.30

600 12.93 15.79 15.72 ✕

700 13.04 15.88 15.77 15.69

800 12.91 15.73 15.81 15.68

(b) readers/writer lock

Table 4.7:µserver N-copy blocking shared-SYMPED experiments - 4 GB

the best performance for N-copy symped-b is around 400 processes and 60,000 connections (15.54), with

a peak throughput of 5346 Mbps occurring at 50,000 requests per second and with a sustained throughput

of around 4286 Mbps at 70,000 requests per second. The throughput is 14% lower at peak than the

throughput of the corresponding non-blocking version and 25% lower at 70,000 requests per second.

The problem is that N-copy symped has a large memory footprint. Even for 200 processes and 40,000

connections, the memory footprint of the server is large enough that the file set cannot fit into the remaining

memory. For the best performing configuration at peak, the average file-system cache is 1.99 GB, resulting

in disk I/O but no I/O wait. Since the amount of disk I/O increases as the number of processes and/or

connections increase, the server becomes disk bound and theoverall performance of the server decreases,

see Table 4.6(b). As seen in Chapter 3, each symped-b server copy requires at least 50 processes for stable

performance, hence running with fewer processes reduces performance.

126

4.6. 4 GB

To mitigate the large-memory footprint-problem, some N-copy sharedsymped-b experiments were

run. With N-copy sharedsymped-nb, the best performing server is expected to be the SPED version of

the server as this is consistent with the experiments in Chapter 3 and the N-copy symped-nb experiments

earlier in this section. Since, sharedsymped-nb and symped-nb are the same when the servers are run with

a single process, the N-copy sharedsymped-nb experiments are unnecessary.

Table 4.7(a) shows the results of tuning N-copy sharedsymped-b. Each row in the table represents a

different number of processes from 200 to 600. The columns represent a different maximum number of

connections from 40,000 to 100,000. Again, 4 copies of the shared-SYMPED server are run, with the

rows and columns representing the total number of processesand connections across all the servers. The

experiments show the best performance for N-copy sharedsymped-b is around 600 processes and 60,000

connections (15.38), with a peak throughput of 5153 Mbps occurring at 50,000 requests per second and

with a sustained throughput of around 4444 Mbps at 70,000 requests per second. The throughput is 17%

lower at peak than the throughput of N-copy symped-nb and 22%lower at 70,000 requests per second.

A number of the experiments had a higher peak than the experiment yielding the best overall perfor-

mance but large performance drops after peak result in worseoverall performance for these experiments.

For example, the experiment with 300 processes and 60,000 connections (15.09) has a higher peak of 5459

Mbps at 50,000 requests per second but its throughput drops by more than 20%, with a throughput of 3706

Mbps at 70,000 requests per second. Similar to the uniprocessor experiments, these drops in throughput

occur with blocking servers when there are insufficient processes to handle higher request rates. As well,

since the number of workers required is related to throughput, more workers per CPU are needed for these

experiments. Additional processes result in a tradeoff because the increase in overhead results in a small

decrease in peak throughput but more processes result in a large increase in sustained throughput.

The N-copy sharedsymped-b server has a smaller memory footprint than the corresponding N-copy

symped-b server. It is not until 100,000 connections and at least 400 processes that the memory footprint

of the N-copy sharedsymped-b server is large enough so that there is not enough memory available for

the file-system cache to contain the entire file set. Since most of the experiments do not experience

memory pressure, the pattern of performance for the N-copy sharedsymped-b server is more in line with

expectations, i.e., performance is stable. Once disk I/O starts to occur, as with N-copy symped-b, the

performance of a server drops.

At its best performing configuration, N-copy sharedsymped-b has no idle time at peak for 600 pro-

cesses. However, the peak throughput for its best configuration is only about 1% higher than its peak

for 400 processes and 80,000 connections, where it has an average of 5% idle time at 56,000 requests

per second. The larger number of processes improve performance, especially for rates after peak, but at

the cost of higher overhead. The difference in idle time is even more pronounced for higher rates. For

example, with 400 processes and 80,000 connections at a rateof 70,000 requests per second N-copy,

127

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

sharedsymped-b has 26% idle time on average. The high amountof idle time combined with the low

throughput of 4029 Mbps suggests that the performance of theserver is inhibited by lock contention. The

only sharing occurring between the processes at the application-level is the cache table, which is analyzed

next.

Exclusive access to the cache is only required when an entry is added or removed from the table. As

each file is only added to the table once, most cache table accesses are lookups to find existing entries.

Multiple cache table lookups can proceed simultaneously asthey do not require exclusive access to the

cache table. Once an entry is found, exclusive access to thatentry is required so its usage information

can be updated. If the entry is not found, then the entire cache table must be locked so the new entry can

be added to the table. Therefore, the current strategy of locking the entire cache table for every access

inhibits concurrency. To test the contention hypothesis, the cache table mutex lock is replaced with a

readers/writer lock. The changes are implemented by using two-tiered locking, with a furwock [25] used

to lock the cache table and one futex per individual cache entry. The furwock is acquired with exclusive

access when entries are added or removed from the cache table. Otherwise, read access is acquired when

searching the cache table and then individual cache entriesare locked for updating.

Table 4.7(b) shows the results of tuning N-copy sharedsymped-b after the conversion. Each row in

the table represents a different number of writer tasks from200 to 800. The columns represent a different

maximum number of connections from 40,000 to 100,000. The experiments show the best performance

for N-copy sharedsymped-b with readers/writer locks is around 700 processes and 60,000 connections

(15.88), with a peak throughput of 5416 Mbps occurring at 50,000 requests per second and with a sustained

throughput of around 4614 Mbps at 70,000 requests per second. The throughput is 5% higher at peak than

the throughput of N-copy sharedsymped-b and 4% higher at 70,000 requests per second.

Based on vmstat output, there is no idle time at peak and the idle time at 70,000 requests per second is

5%. Unfortunately, by 70,000 requests per second the systemstarts to experience a small amount of disk

I/O. Further increasing the number of processes to 800 improves the throughput of the server at 70,000

requests per second and eliminates idle time at the cost of decreased throughput at peak. Increasing both

the number of processes to 800 and the maximum connections value to 80,000 results in throughput gains

at 70,000 requests per second with a smaller decrease in peakthroughput. Unfortunately, the memory

footprint of the server becomes too large so the overall effectiveness of further increasing the number

of processes is muted as disk I/O starts to occur. In terms of overall performance, the trade off in peak

throughput versus sustained throughput for these experiments did not result in a higher condensed area.

128

4.6. 4 GB

4.6.1.2 Tuning N-copy WatPipe

Extensive changes were made to WatPipe to improve its multiprocessor performance. These changes are

described in Section 4.6.3. This new version of WatPipe is used for the N-copy experiments in this section.

Experiments were run to tune the two versions of N-copy WatPipe: N-copy watpipe-nb and N-copy

watpipe-b. For all versions of WatPipe, the parameters tuned are the maximum number of simultaneous

connections and the number of writer tasks.

Similar to theµserver experiments, one copy of WatPipe is started on each processor, resulting in 4

copies of WatPipe for these experiments. In the tables, the number of writers and maximum number of

connections listed represents the aggregate across all copies of the server. The values for each individual

server can be obtained by dividing by four as writer tasks andconnections are equally distributed among

the servers.

Table 4.8(a) shows the results of tuning N-copy watpipe-nb.Each row in the table represents a different

number of writer tasks from 4 to 16. The columns represent a different maximum number of connections

from 40,000 to 100,000. The rows and columns represent the total number of writer tasks and connections

across all the servers. The experiments show the best performance for N-copy watpipe-nb is around 12

writer tasks and 100,000 connections (16.92), with a peak throughput of 6066 Mbps occurring at 56,000

requests per second and with a sustained throughput of around 5705 Mbps at 70,000 requests per second.

Unexpectedly, the best performance does not occur with 4 writer tasks (one task per CPU). However, the

highest peak does occur with 4 writer tasks and 80,000 connections. This peak is 6196 Mbps at 56,000

requests per second. This peak is very close to the peak of 6202 Mbps achieved by the N-copy symped-nb

server.

The experiment with 12 writer tasks has a larger condensed area because its post-peak performance

experiences a more gradual decline in throughput. While thebest performing N-copy symped-nb and

N-copy watpipe-nb with 4 writer tasks experience a 6.5% and 8.1% decline in throughput at 58,000 request

per second respectively, the 12 writer version of N-copy watpipe-nb experiences a decline of only 1.1%.

While the sustained throughput for all three servers is around 5700 Mbps, the more gradual decline in

performance of N-copy watpipe-nb with 12 writers results ina higher condensed area despite having a

lower peak. This result is unexpected and interesting. Similarly, the shaper decline in throughput for the

4 writer version of N-copy watpipe-nb resulted in a lower condensed area for N-copy watpipe-nb with

80,000 connections.

Table 4.8(b) shows the results of tuning of N-copy watpipe-b. Each row in the table represents a

different number of writer tasks from 200 to 600. The columnsrepresent a different maximum number of

connections from 40,000 to 100,000. The experiments show the best performance for N-copy watpipe-b is

129

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

Writers 40,000 60,000 80,000 100,000

4 12.62 16.81 16.81 16.80

8 12.60 16.80 16.72 16.73

12 12.61 16.76 16.91 16.92

16 12.61 16.74 16.87 16.87

(a) non-blockingsendfile

Maximum Number of Connections

Writers 40,000 60,000 80,000 100,000

200 12.59 15.18 15.11 14.75

300 12.61 16.54 16.44 16.15

400 12.60 16.71 16.79 16.78

500 12.60 16.68 16.73 16.73

600 12.60 16.64 16.68 16.68

(b) blockingsendfile

Table 4.8: N-copy WatPipe experiments - 4 GB

around 400 writer tasks and 80,000 connections (16.79), with a peak throughput of 5957 Mbps occurring

at 56,000 requests per second and with a sustained throughput of around 5645 Mbps at 70,000 requests

per second. The difference in peak throughput between the best N-copy non-blocking server (N-copy

symped-nb) and N-copy watpipe-b is around 4%, which is in line with the 4% throughput difference

observed between the best non-blocking and blocking servers in the 4 GB uniprocessor experiments. The

throughput is 10% higher at peak than the throughput of N-copy sharedsymped-b with readers/writer locks

and 22% higher at 70,000 requests per second. The performance of N-copy watpipe-b is more consistent

with the performance of the blocking servers in Chapter 3 than the other multiprocessor N-copy blocking-

servers.

One reason for the stability of the N-copy watpipe-b server is that its memory footprint is smaller than

the memory footprint of the other N-copyµserver servers. Hence, the entire file set fits into the file-system

cache for all the N-copy watpipe-b experiments. However, even for experiments with the same param-

eters where neither server experiences disk I/O, N-copy watpipe-b performs better. N-copy watpipe-b

has its best performance at 400 writer tasks and 80,000 connections and N-copy sharedsymped-b with

readers/writer locks also has no disk I/O for those parameters; however, N-copy sharedsymped-b’s perfor-

mance is worse than N-copy watpipe-b. In fact, N-copy sharedsymped-b with readers/writer locks peaks

at 50,000 requests per second with a throughput of 5460 Mbps but only has a throughput of 5295 Mbps at

56,000 requests per second. N-copy watpipe-b has equivalent performance at 50,000 requests per second,

but peaks at 56,000 requests per second with a throughput of 5957 Mbps. One major difference among

the servers is that with the shared-SYMPED server, each process is a separate event-driven server. For

400 processes and 80,000 connections at 56,000 requests persecond, N-copy sharedsymped-b with read-

ers/writer locks has an average of 8592 calls toepoll_wait per second while N-copy watpipe-B has 2007

calls per second on average. Based on OProfile data for this experiment, N-copy watpipe-b spends 1.79%

of time in the kernel event-mechanism versus 3.29% for N-copy sharedsymped-b with readers/writer

130

4.6. 4 GB

locks. This difference accounts for some but not all of the performance difference.

Not only do N-copy sharedsymped-b and N-copy watpipe-b achieve their best performance with dif-

ferent tuning parameters, but the performance of N-copy watpipe-b is stable over a larger tuning range

than N-copy sharedsymped-b. Switching to a readers/writerlock helps to increase the performance and

scalability of N-copy sharedsymped-b but a large number of processes are required to achieve best per-

formance. One big difference between N-copy watpipe-b and N-copy sharedsymped-b is the contention

on the locks associated with the cache table. With N-copy watpipe-b, only reader tasks contend for the

readers/writer lock and with the N-copy version there is only one reader task per server so there is no

contention on the lock. The reader task and writer tasks onlycontend for the individual locks associated

with each cache entry. With N-copy sharedsymped-b, all the processes associated with a server copy

contend for both the readers/writer lock associated with the cache table and the locks associated with indi-

vidual cache entries. Despite the fact that all the processes sharing the lock execute on the same CPU, the

contention on the lock reduces concurrency and increases overhead because processes tend to be blocked

waiting for the lock. Overcoming the reduction in concurrency requires more processes, which increases

execution overhead and the memory footprint of the server, resulting in lower throughput. It is interesting

to note that N-copy sharedsymped-nb avoids this problem by reducing contention as it only requires a

small number of processes. However, this solution is not viable for the blocking server.

The expectations for these experiments is that N-copy should produce the best performance [62].

Requests are independent so the server processes can be independent. However, non-N-copy servers offer

advantages that can be useful, such as shared memory, betterload balancing, etc. The next sections

examine these types of servers and what can be done to offer reasonable performance.

4.6.2 Tuningµserver

Experiments were run to tune three versions ofµserver: symped-nb, sharedsymped-nb and sharedsymped-

b. Symped-b is excluded because its memory footprint is too large. For all versions ofµserver, the

parameters tuned are the maximum number of simultaneous connections and the number of processes.

Table 4.9 shows the results of tuning symped-nb. Each row in the table represents a different number

of processes from 4 to 16. The columns represent a different maximum number of connections from

40,000 to 100,000. The experiments show the best performance for symped-nb is around 4 processes

and 80,000 connections (16.13), with a peak throughput of 5463 Mbps occurring at 50,000 requests per

second and with a sustained throughput of around 5217 Mbps at70,000 requests per second. Experiments

with additional rates between 50,000 and 56,000 requests per second were run to explore the area of peak

throughput for the server (not shown). Based on these experiments, the peak throughput for symped-nb

with 4 processes and 80,000 connections is 5585 Mbps occurring at 52,000 requests per second. N-copy

131

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

4 12.81 16.12 16.13 16.11

8 12.82 16.06 16.03 16.04

12 12.81 16.07 15.99 15.99

16 12.81 16.08 15.96 15.95

Table 4.9:µserver non-blocking SYMPED experiments - 4 GB

symped-nb has throughput that is approximately 11% higher at peak than symped-nb and 9% higher at

70,000 requests per second

There are a couple of differences between this experiment and the N-copy version. First, none of the

processes have CPU affinity set, so any process is free to execute on any CPU. Furthermore, only a single

listening port is used so each server process can handle connections from any subnet. Note, interrupt

processing is still equally distributed so that two networkinterfaces are pinned to each CPU.

These differences result in a server that is distinct from the N-copy servers examined in Section 4.4.

Specifically, the performance of symped-nb is lower than theperformance of the N-copy symped-nb server

without process affinities, even though both run with network-interface interrupt-affinities set on the sys-

tem but not process affinities. In the N-copy symped-nb server without process affinities, each process

only handles requests from two subnets, both associated with a single CPU; it is possible for the operating

system to schedule a process on the CPU associated with its subnets. In fact, the Linux scheduler does

a reasonable job of scheduling the processes of the N-copy server and the server achieves good perfor-

mance (see Section 4.4). With symped-nb, however, a processcan handle connections from any subnet

regardless of the CPU on which it is executing. Since the affinity of the network interfaces associated

with these subnets span multiple CPUs, scheduling the server processes in order to maintain CPU affinity

between processes, subnets and requests is impossible without more support from the operating system.

The inability to partition symped-nb results in increased overhead and lower performance than N-copy

symped-nb. For example, with 4 processes and 80,000 connections at 50,000 requests per second, av-

erage softirq time is 8% higher and average system time is 7% higher for symped-nb than both N-copy

symped-nb and N-copy symped-nb server without process affinities. The increased overhead means that

the symped-nb server peaks earlier with lower throughput.

However, symped-nb performs better than the N-copy symped-nb server with misaligned network

interface and process affinities. With the misaligned experiment, each request is handled by a process

executing on a CPU that is different from the CPU tied to the subnet of the request. With symped-nb,

the expectation is that 25% of the requests are handled by processes executing on the same CPU as

132

4.6. 4 GB

the network interface associated with the subnet of the request, resulting in better performance than the

misaligned server with 0%.

In order to improve the performance of symped-nb, the logical step is to restrict the server processes

so they do not handle requests from all subnets. Partitioning the subnets among the server processes would

allow these processes to be scheduled on the appropriate CPU. This partitioning is essentially the N-copy

server discussed earlier in the chapter.

Table 4.10(a) shows the results of tuning sharedsymped-nb.Each row in the table represents a dif-

ferent number of processes from 4 to 16. The columns represent a different maximum number of con-

nections from 40,000 to 100,000. The experiments show the best performance for sharedsymped-nb is

around 4 processes and 60,000 connections (15.97), with a peak throughput of 5462 Mbps occurring at

50,000 requests per second and with a sustained throughput of around 5097 Mbps at 70,000 requests per

second. N-copy symped-nb has approximately 14% higher throughput at peak than sharedsymped-nb

and 12% higher at 70,000 requests per second. As well, symped-nb has slightly higher throughput at

peak and a more gradual decline in throughput after peak, resulting in better overall performance than

sharedsymped-nb.

Based on vmstat output gathered during the experiment, sharedsymped-nb has about 2% idle time even

after peak. At the application level, only the cache table isshared among the server processes. Moving

to better locking on the shared cache-table, such as a readers/writer lock, should improve scalability and

eliminate idle time. Table 4.11(a) shows the results of tuning sharedsymped-nb after converting the shared

cache-table to use readers/writer locks. This change resulted in a small performance improvement as the

idle time now goes down to zero. The experiments show the bestperformance for sharedsymped-nb with

readers/writer locks is around 4 processes and 80,000 connections (16.16). The peak throughput is still

5463 Mbps but sustained throughput is around 5266 Mbps at 70,000 requests per second. Not only is

this performance consistent with the results for symped-nb, but both servers spend a larger amount of

time servicing softirqs compared to N-copy symped-nb. With4 processes and 80,000 connections at

50,000 requests per second, the increase in average time spent on softirqs is about 3% and the increase in

average system time is about 8% compared to N-copy symped-nb. This overhead is less than the overhead

experienced by the symped-nb server. While the sharedsymped-nb server with readers/writer locks has a

slightly lower peak than the symped-nb server, it has betterthroughput at 70,000 requests per second.

The sharedsymped-nb servers have two disadvantages over their N-copy counterparts. First, the cache

table is shared across processors, inhibiting parallelism. This problem is mitigated by switching to read-

ers/writer locks for the cache table. The second problem is the inability to partition server processes,

subnets and CPUs. In order to address the second problem, a version of sharedsymped-nb is implemented

such that processes, subnets and CPUs are partitioned but a single cache table is shared across all pro-

cesses. The difference between N-copy symped-nb and sharedsymped-nb with readers/writer locks and

133

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

4 12.82 15.97 15.97 15.94

8 12.81 15.35 15.35 15.38

12 12.82 14.89 14.88 14.89

16 12.81 14.74 14.73 14.73

(a) non-blockingsendfile

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

200 11.67 12.89 11.77 11.02

300 12.05 13.53 13.39 12.84

400 11.87 13.19 13.25 13.20

500 11.65 12.84 12.82 12.80

600 11.41 12.48 12.42 12.26

(b) blockingsendfile

Table 4.10:µserver shared-SYMPED experiments - 4 GB

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

4 12.82 16.13 16.16 16.15

8 12.81 16.07 16.01 16.00

12 12.81 16.06 15.96 15.96

16 12.81 16.06 15.93 15.93

(a) non-blockingsendfile

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

200 11.69 13.40 12.64 12.06

300 12.08 13.87 13.64 13.01

400 11.92 13.54 13.59 13.49

500 11.69 13.15 13.19 13.08

600 11.44 12.68 12.73 12.66

(b) blockingsendfile

Table 4.11:µserver shared-SYMPED with readers/writer locks experiments - 4 GB

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

4 12.87 16.84 16.80 16.81

8 ✕ ✕ 16.42 16.44

12 12.88 ✕ 16.33 16.32

16 12.87 ✕ 16.29 16.30

(a) non-blockingsendfile

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

200 12.29 14.41 13.35 ✕

300 12.66 15.44 14.65 13.88

400 12.74 15.71 15.41 14.83

500 12.83 15.71 15.52 15.21

600 12.95 15.82 15.64 15.44

700 13.04 15.70 15.67 ✕

(b) blockingsendfile

Table 4.12:µserver shared-SYMPED with readers/writer locks and process affinities experiments - 4 GB

process affinities is that sharedsymped-nb has a shared cache-table and its processes share file descriptors.

The shared cache-table affects performance, but its effectis small when the number of processes is also

small.

134

4.6. 4 GB

Table 4.12(a) shows the results of tuning sharedsymped-nb with readers/writer locks and process

affinities. Each row in the table represents a different number of processes from 4 to 16. The columns

represent a different maximum number of connections from 40,000 to 100,000. The experiments show

the best performance for sharedsymped-nb with readers/writer locks and process affinities is around 4

processes and 60,000 connections (16.84), with a peak throughput of 5959 Mbps occurring at 56,000 re-

quests per second and with a sustained throughput of around 5673 Mbps at 70,000 requests per second.

The throughput of sharedsymped-nb with readers/writer locks and process affinities is around 4% lower

at peak than N-copy symped-nb and approximately the same at 70,000 requests per second.

At peak, the server experiences an average of 6% idle time that reduces to 1% by 70,000 requests

per second. Increasing the maximum number of connections reduces the idle time but does not improve

performance.

Table 4.10(b) shows the results of tuning sharedsymped-b. Each row in the table represents a dif-

ferent number of processes from 200 to 600. The columns represent a different maximum number of

connections from 40,000 to 100,000. The experiments show the best performance for sharedsymped-b is

around 300 processes and 60,000 connections (13.53), with apeak throughput of 4349 Mbps occurring

at 45,000 requests per second and with a sustained throughput of around 3999 Mbps at 70,000 requests

per second. The difference in peak throughput between N-copy sharedsymped-b and sharedsymped-b is

around 18% and N-copy sharedsymped-b also has 11% higher throughput at 70,000 requests per second.

This throughput difference is larger than with the non-blocking version.

There are two major differences between the sharedsymped-band N-copy sharedsymped-b servers.

First, N-copy sharedsymped-b benefits from additional parallelism as there are four separate cache tables,

one per CPU; whereas, sharedsymped-b has a single cache table that is shared by all the server processes.

Furthermore, with N-copy sharedsymped-b, only processes tied to the same CPU share a cache table.

Hence, the shared cache-table does not inhibit the potential parallelism across the system as blocking

effects are limited to a single CPU and the amount of contention on each cache table is less since only 25%

of the processes share a single cache table. Second, N-copy sharedsymped-b benefits from the alignment

of CPUs, network interfaces and processes, while the processes in sharedsymped-b accept connections

from any subnet and are not tied to a single CPU. The expectation is that 25% of requests should be

aligned while the remainder of the requests should not be aligned. As shown previously, this alignment

can make a large difference in performance.

Since using a single cache table is a bottleneck that inhibits the server from scaling, a new version of

µserver is implemented with a readers/writer lock used for the shared cache-table. Table 4.11(b) shows

the results of tuning sharedsymped-b with readers/writer locks used for the shared cache-table. The exper-

iments show the best performance for sharedsymped-b with readers/writer locks is around 300 processes

and 60,000 connections (13.87), with a peak throughput of 4528 Mbps occurring at 45,000 requests per

135

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

second and with a sustained throughput of around 3972 Mbps at70,000 requests per second. Compared

to N-copy sharedsymped-b, the throughput of sharedsymped-b with readers/writer locks is around 12%

lower at peak and 11% lower at 70,000 requests per second.

The effect of switching to readers/writer locks is small forthe blocking server; however, that is ex-

pected as the experiments have no idle time. With 300 processes and 60,000 connections at 45,000 re-

quests per second, sharedsymped-b with readers/writer locks spends approximately 66% of its time han-

dling softirqs, 12% more than N-copy sharedsymped-b with readers/writer locks. It is interesting to note

that sharedsymped-b with readers/writer locks actually has lower system and user times than the N-copy

version. This difference can be attributed to the lower throughput of sharedsymped-b with readers/writer

locks. Since, handling softirqs takes more CPU time, the experiment peaks earlier with lower throughput.

Not partitioning processes, subnets and CPUs has a detrimental effect on performance and the additional

processes required by sharedsymped-b only exacerbates thesituation.

Table 4.12(b) shows the results of tuning sharedsymped-b with readers/writer locks and process affini-

ties. Each row in the table represents a different number of processes from 200 to 700. The columns repre-

sent a different maximum number of connections from 40,000 to 100,000. The experiments show the best

performance for sharedsymped-b with readers/writer locksand process affinities is around 600 processes

and 60,000 connections (15.82), with a peak throughput of 5452 Mbps occurring at 50,000 requests per

second and with a sustained throughput of around 4568 Mbps at70,000 requests per second. The differ-

ence in throughput between N-copy sharedsymped-b with readers/writer locks and sharedsymped-b with

readers/writer locks and process affinities is less than 1% at both peak and 70,000 requests per second.

At peak, the server experiences no idle time but this value increases to 7% by 70,000 requests per

second. As expected, since sharedsymped-b with readers/writer locks and process affinities uses a sin-

gle cache table across all processes and CPUs, its overall performance is a little lower. However, both

servers start to experience disk I/O, which has a tendency toeven out the performance. It turns out

that sharedsymped-b with readers/writer locks and processaffinities has a larger memory footprint than

its N-copy counterpart. The memory savings gained by only having one cache table instead of four is

more than offset by the increase in the size of some application data structures resulting from sharing

file descriptors. While the number of file descriptors remains constant for both servers, the maximum

file-descriptor supported by an individual process is four times larger with sharedsymped-b compared to

N-copy sharedsymped-b. In particular,µserver uses an index array to map a socket descriptor to its corre-

sponding entry in an array containing the information aboutits associated request. Each entry in the index

array consists of a single integer and the number of elementsin the array is based on the largest possible

file descriptor for the server. For N-copy sharedsymped-b, with 600 processes and 60,000 connections the

maximum file descriptor is approximately 40,000 (15,000 connections per N-copy+ 25,000 files in the

file-set), requiring 92 MB of memory (600 processes× 4 bytes× 40,000 entries). For sharedsymped-b

136

4.6. 4 GB

with similar parameters, the maximum file descriptor is approximately 85,000 (60,000 connections+

25,000 files), requiring 195 MB of memory (600 processes× 4 bytes× 85,000 entries). However, the

cache table is only 6 MB, so four cache tables require 24 MB of memory. While sharedsymped-b saves

18 MB of memory by only having one cache, it expends 103 MB of memory due to larger index arrays.

This increase in memory footprint causes sharedsymped-b with readers/writer locks and process affinities

to peak with fewer processes as it incurs disk I/O with fewer processes, which begins to occur at 600

processes and 60,000 connections.

With SYMPED and shared-SYMPED, a single process handles an entire request so the difference

between these servers and their N-copy counterparts is small. However, based on the results for the

SYMPED and shared-SYMPED servers in this section, aligningrequests, processes, subnets and CPUs

is important for achieving the best performance. Adopting this partitioning to create a hybrid server

improved performance but the difference between the hybridshared-SYMPED server and N-copy is small.

Other servers, for example, WatPipe, are more amenable to hybrid approaches that are still somewhat

distinct from N-copy.

4.6.3 Tuning WatPipe

Major changes are required for WatPipe to run well with theseexperiments. The goal of changing WatPipe

is to create a hybrid server that encompasses the major benefits of an N-copy server while retaining

advantages of a shared-memory pipeline server. The most important feature of the N-copy approach

is the ability to partition server processes, subnets and CPUs in order to reduce overhead and improve

throughput. The challenge with WatPipe is to determine which parts of the pipeline require partitioning.

Completely partitioning the kernel threads and data structures would essentially result in an N-copy

server in a single address space. While certain types of servers may benefit from this approach as it allows

data or computations to be efficiently shared via common memory, it offers no benefits over straight

N-copy for the static workload experiments in this section.In fact, the need to support a large number

of file descriptors due to the shared address-space is a drawback compared to actually running N-copy.

Overall, the biggest problem with the N-copy approach is thelarge memory footprint of the server due

to duplication resulting from independent data structures. The advantages of this approach are reduced

overhead due to partitioning and reduced contention as server data is not shared across the partitioned

kernel threads.

The other extreme is for the server to be completely unpartitioned. In this case, the tasks in the server

are free to handle requests from any subnet and can execute onany CPU. Based on the experiments in

the previous section, there is a significant penalty associated with not partitioning the server. As well,

the shared queues and other data structures represent a major source of contention. Locking the queues

137

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

inhibits parallelism across the CPUs and represents a significant bottleneck. The major benefit of this

approach is that the memory footprint of the server is small compared to the N-copy approach. Additional

benefits include centralized event polling and CPU load balancing since tasks can execute on any CPU.

A hybrid approach is to selectively partition sections of the pipeline. Specifically, only sections of

the pipeline directly involved with network I/O are partitioned. In the case of WatPipe, the reader and

writer tasks and their associated queues are partitioned and each subnet is allocated an equal portion of

the maximum number of connections. Advantages of moving to ahybrid approach include partitioning

to reduce overhead, efficiencies due to centralizing event polling and a small amount of load balancing

is possible since the remaining tasks are free to execute on any CPU. There are a number of tradeoffs

resulting from moving to a hybrid approach. While the memoryfootprint is smaller than N-copy, it is

not as small as the unpartitioned approach. Contention due to shared queues and data structures is higher

than the N-copy approach but reduced compared to the unpartitioned approach since queues are only

selectively shared.

While completely partitioning the server likely yields thebest performance, it offers no benefits com-

pared to N-copy for these experiments while possibly incurring additional overhead. On the other hand,

the performance of a completely unpartitioned server is toolow for it to be considered a reasonable choice.

Hence, the hybrid approach is chosen for WatPipe as it offersthe best compromise, while incurring only

a small performance penalty compared to N-copy.

Specifically, the hybrid approach involves partitioning selective sections of the pipeline. The idea

behind partitioning is to associate a task with a CPU and for that task to only handle requests from sub-

nets tied to the same CPU. Since there are four CPUs with two associated subnets, where applicable,

pipeline stages are similarly partitioned. Hence, reader and writer tasks are assigned exclusively to a par-

ticular CPU with each type of task equally distributed amongthe CPUs. Therefore, each reader or writer

task only executes on a single CPU and services the two subnets associated with that CPU. To reduce

contention, there is a separate queue per CPU for the Read andWrite stages of the pipeline. For these

experiments, exactly four reader tasks are used, one assigned to each CPU. The number of writer tasks is

one of the parameters that is varied during tuning to achievethe best performance. Since the maximum

number of connections is equally divided between the subnets, a single listening socket does not provide

enough control because an accepted connection could come from any of the subnets. Therefore, a separate

listening socket is created for each subnet with one acceptor task per subnet, resulting in eight acceptor

tasks. While each acceptor task is associated with a specificsubnet, they are free to execute on any CPU

as no affinities are set for these tasks. There is still only one task handling polling for read events for all

subnets and one task handling polling for write events for all subnets. Since both of these tasks are free to

execute on any CPU, their execution is throttled by introducing a small delay between polls.

While this approach seems very similar to N-copy, it has somesignificant differences. Aside from the

138

4.6. 4 GB

82571

ESB-2
IOH

PCI-E

ESI (PCI-E)
CPU MCH

NB
Ethernet 0 and 1

Ethernet 2 and 3

PCI-E

PCI-E

FSB PCI-E

Figure 4.2: Partial block diagram of server hardware

separate per-CPU entry-queues in the Reader and Writer stages of the pipeline, the data structures used to

track connections and requests are shared and there is a single, shared cache-table. Similar to the changes

made to theµserver cache table, readers/writer locks are used to allow concurrent access to the cache

table. Hence, the hybrid implementation has a smaller memory footprint than the N-copy version. Not

all tasks are confined to a single CPU and some activities are handled by a single task instead of having

a separate task per subnet or CPU. More specifically, the acceptor, ReadPoll and WritePoll tasks do not

have affinities set and can execute on any processor. The advantage of allowing these tasks to float is that

if offers some flexibility for the scheduler to perform a small amount of load balancing to better handle

small variations in load.

Experiments were run to tune two versions of WatPipe: watpipe-nb and watpipe-b. For all versions of

WatPipe, the parameters tuned are the maximum number of simultaneous connections and the number of

writer tasks.

Table 4.13(a) shows the results of tuning watpipe-nb. Each row in the table represents a different

number of writers from 4 to 16. The columns represent a different maximum number of connections from

40,000 to 100,000. The experiments show the best performance for watpipe-nb is around 4 writer tasks

and 100,000 connections (17.04), with a peak throughput of 6070 Mbps occurring at 56,000 requests

per second and with a sustained throughput of around 5835 Mbps at 70,000 requests per second. The

difference in peak throughput between N-copy watpipe-nb and watpipe-nb is around 2% and between

N-copy symped-nb and watpipe-nb is also around 2%, with watpipe-nb having lower peak throughput in

both cases. At 70,000 requests per second, watpipe-nb’s throughput is 2% better than N-copy watpipe-nb

and 2% better than N-copy symped-nb. But just after peak at 60,000 requests per second, watpipe-nb’s

throughput is 6% higher than N-copy watpipe-nb and 4% higherthan N-copy symped-nb. This stability is

even more impressive given that the peak of watpipe-nb is only 2% lower than the best N-copy servers. A

more gradual decline after peak gives watpipe-nb a larger condensed area than the N-copy servers despite

having a lower peak.

139

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

Writers 40,000 60,000 80,000 100,000

4 12.61 16.78 17.03 17.04

8 12.60 16.77 16.93 16.92

12 12.59 16.45 16.48 16.47

16 12.60 16.43 16.45 16.45

(a) non-blockingsendfile

Maximum Number of Connections

Writers 40,000 60,000 80,000 100,000

200 12.58 15.02 14.89 14.37

300 12.60 16.37 16.29 16.11

400 12.61 16.39 16.41 16.40

500 12.59 16.34 16.36 16.36

600 12.60 16.29 16.30 16.29

(b) blockingsendfile

Table 4.13: WatPipe experiments - 4 GB

Maximum Number of Connections

Procs 40,000 60,000 80,000 100,000

4 12.86 16.84 17.09 17.10

Table 4.14:µserver N-copy non-blocking SYMPED load balancing experiments - 4 GB

Maximum Number of Connections

Writers 40,000 60,000 80,000 100,000

4 12.61 16.82 17.03 17.02

Table 4.15: N-copy non-blocking WatPipe load balancing experiments - 4 GB

Maximum Number of Connections

Writers 40,000 60,000 80,000 100,000

4 12.60 16.80 17.28 17.27

Table 4.16: Non-blocking WatPipe load balancing experiments - 4 GB

Figure 4.2 contains a portion of the system-level block diagram for the server machine used in the

experiments [51]. Specifically, the diagram shows the connection of the on-board network interfaces

and the PCI slots containing the additional Ethernet ports.Ethernet 0 and 1 are connected directly to

the Southbridge I/O Hub (IOH), Ethernet 2 and 3 are connectedvia a dual gigabit Ethernet chip (Intel

Ophir 82571) to the IOH via a PCI-E connection and the remaining Ethernet interfaces are add-on cards

connected via PCI-E to the Northbridge Memory Controller Hub (MCH) and the IOH respectively. The

network interfaces, not directly connected to the IOH have additional latencies and CPU overhead, because

they must communicate over the PCI bus, compared to the network interfaces connected directly to the

140

4.6. 4 GB

IOH. These lower-overhead network-interfaces were not used for the main experiments in this chapter,

however, several experiments were run using these network interfaces to see the effect of a small hardware

performance-imbalance on the servers. As a result of partitioning, two of the CPUs on the machine

are associated with one lower-overhead network-interfaceand one higher-overhead network-interface,

while the other two CPUs are associated with two higher-overhead network-interfaces. Table 4.14 shows

the results of tuning N-copy symped-nb, Table 4.15 shows theresults of tuning N-copy watpipe-nb and

Table 4.16 shows the results of tuning watpipe-nb. All the servers were run with 4 processes or writers

across all copies of the server and with a maximum number of connections from 40,000 to 100,000.

All the servers show a performance improvement due to the lower-overhead direct-connection. N-copy

symped-nb has best performance at 100,000 connections (17.10), with a throughput of 6202 Mbps at

peak and 5897 Mbps at 70,000 requests per second. N-copy watpipe-nb has best performance at 80,000

connections (17.03), with a throughput of 6196 Mbps at peak and 5907 Mbps at 70,000 requests per

second. Watpipe-nb has best performance at 80,000 connections (17.28), with a throughput of 6293 Mbps

at peak and 6051 Mbps at 70,000 requests per second.

Because of the imbalance, the two CPUs only associated with the higher-overhead network-interfaces

become saturated before the other two CPUs. The N-copy servers show a small increase in overall per-

formance but not in peak throughput. With the N-copy servers, the higher-overhead network-interfaces

cannot handle an increase in capacity, which throttles the throughput of the entire system. Watpipe-nb,

however, has higher throughput at peak and higher overall performance. The reason watpipe-nb achieves

higher throughput is because not all of its tasks are confinedto a specific CPU. Therefore, the free tasks

can be scheduled on the less saturated CPUs, freeing up processing capacity on the CPUs only associated

with the higher-overhead network-interfaces. Examining the idle time of the servers at 58,000 requests

per second, the N-copy servers have an average of 4–5% idle time on two of the CPUs and 10–13% on the

other two CPUs, but watpipe-nb has an average of only 3–5% idle time on all four CPUs. The end result

is watpipe-nb can take advantage of a small amount of load balancing to achieve higher throughput than

the N-copy servers.

As mentioned, the lower-overhead network-interfaces wereonly used for the previous few experi-

ments. Therefore, these experiments are not discussed further, for example, in the Server Comparison

section. The remaining experiments in this chapter all use the same hardware configuration that does not

include these alternative network interfaces.

Table 4.13(b) shows the results of tuning watpipe-b. Each row in the table represents a different num-

ber of writers from 200 to 600. The columns represent a different maximum number of connections from

40,000 to 100,000. The experiments show the best performance for watpipe-b is around 400 writer tasks

and 80,000 connections (16.41), with a peak throughput of 5622 Mbps occurring at 56,000 requests per

second and with a sustained throughput of around 5395 Mbps at70,000 requests per second. Experiments

141

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

with additional rates between 50,000 and 56,000 requests per second were run to explore the area of peak

throughput for the server (not shown). Based on these experiments, the peak throughput for watpipe-b

with 400 writer tasks and 80,000 connections is 5729 Mbps occurring at 54,000 requests per second. The

throughput of N-copy watpipe-b is approximately 4% higher at peak than watpipe-b and 5% higher at

70,000 requests per second.

N-copy watpipe-b and watpipe-b have their best performancewith the same configuration parameters.

However, based on vmstat data, watpipe-b has an average of 4%idle time at peak and 3% at 70,000

requests per second, while N-copy watpipe-b has an average of 2% idle time at peak and no idle time at

70,000 requests per second. These differences occur because N-copy watpipe-b has less contention than

watpipe-b and no locking or sharing of application data across CPUs.

Watpipe-b has 5% better throughput than sharedsymped-b and6% better throughput than N-copy

sharedsymped-b at peak. Both sharedsymped-b and N-copy sharedsymped-b have their best per-

formance with more processes than the number of writer tasksin watpipe-b: 700 processes for

N-copy sharedsymped-b and 600 for sharedsymped-b. An interesting difference between watpipe-b

and sharedsymped-b involves the amount of contention on thecache-table readers/writer lock. With

sharedsymped-b, all the processes are symmetric and must acquire the lock on the cache-table at some

point while processing a request. Even though most of the acquisitions are for reading, all lock calls re-

quire some basic mutual exclusion to determine the lock state, and also exclusive access is required on the

first request for a file. Hence, there are hundreds of processes across multiple CPUs contending for the

cache-table lock. With watpipe-b, only the reader tasks acquire the cache-table lock as the writer tasks

work with the mutex lock associated with individual cache entries. Hence, with watpipe-b there are only

four tasks contending for the cache-table lock. As well, since there are dedicated tasks servicing the vari-

ous stages of the pipeline, when a reader task blocks on the cache-table lock, the other tasks in the system

can continue execution. In order to compensate for blockingon the cache-table lock, sharedsymped-b

requires additional processes, increasing overhead. Eventually, the memory footprint of sharedsymped-b

becomes large enough that disk I/O occurs as the file-system cache can no longer hold the entire file set

causing the throughput of the server to be capped. While other factors may influence the performance of

the servers, the effect of disk I/O is too large to overcome. The fact that watpipe-b has a small memory

footprint also accounts for its stability as it does not havedisk I/O for any of the tuning parameters tested.

4.6.4 Server Comparison

Figure 4.3 presents the best performing configuration for each server-architecture implementation:µserver

N-copy non-blocking SYMPED,µserver N-copy blocking shared-SYMPED with readers/writerlocks,

N-copy non-blocking WatPipe, N-copy blocking WatPipe,µserver non-blocking SYMPED,µserver

142

4.6. 4 GB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10000 20000 30000 40000 50000 60000 70000

M
b

p
s

Requests/s

ncopy-symped-nb-100K-4p
watpipe-nb-100K-4w

ncopy-watpipe-nb-100K-12w
ncopy-watpipe-b-80K-400w

sharedsymped-nb-rw-aff-60K-4p
watpipe-b-80K-400w

symped-nb-80K-4p
sharedsymped-nb-rw-80K-4p

ncopy-sharedsymped-b-rw-60K-700p
sharedsymped-b-rw-aff-60K-600p

sharedsymped-b-rw-60K-300p

Figure 4.3: Throughput of different architectures - 4 GB

Server Rank

watpipe-nb 1

N-copy symped-nb 2

N-copy watpipe-nb 2

N-copy watpipe-b 3

sharedsymped-nb with readers/writer locks and process affinities 3

watpipe-b 4

N-copy sharedsymped-b with readers/writer locks 5

sharedsymped-b with readers/writer locks and process affinities 5

Table 4.17: Ranking of server performance - 4 GB

143

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

non-blocking shared-SYMPED with readers/writer locks,µserver blocking shared-SYMPED with read-

ers/writer locks,µserver non-blocking shared-SYMPED with readers/writer locks and process affinities,

µserver blocking shared-SYMPED with readers/writer locks and process affinities, non-blocking WatPipe

and blocking WatPipe. The legend in Figure 4.3 is ordered from the best performing server at the top to

the worst at the bottom. In the legend, “rw” indicates the useof readers/writer locks and “aff” indicates

process affinities for the shared-SYMPED servers. Excluding sharedsymped-b with readers/writer locks,

peak server throughput varies by about 15% (5416–6202 Mbps), a range of 786 Mbps.

Table 4.17 ranks the performance of the servers for the 4 GB workload. Only the best server of each

type is included in the ranking, so all the non-N-copy servers without process affinities are excluded from

the ranking. Again, based on a total of three runs for each server, Tukey’s Honest Significant Difference

test is used to differentiate the servers with a 95% confidence level. The servers are then ranked based on

mean area.

The top performer is watpipe-nb, followed by N-copy symped-nb and N-copy watpipe-nb, which have

approximately the same performance. The next grouping consists of N-copy watpipe-b and sharedsymped-

nb with readers/writer locks and process affinities. Watpipe-b is next followed by the blocking shared-

SYMPED servers, N-copy sharedsymped-b with readers/writer locks and sharedsymped-b with read-

ers/writer locks and process affinities. The non-blocking servers without process affinities (not ranked),

symped-nb and sharedsymped-nb with readers/writer locks,appear to have performance between watpipe-

b and the blocking shared-SYMPED server. The blocking shared-SYMPED servers, have approximately

the same peak as the non-blocking servers without process affinities but larger decreases in throughput af-

ter peak. Sharedsymped-b with readers/writer locks (not ranked) is last with the worst performance. Com-

paring the performance of the best version of WatPipe and thebest version ofµserver, N-copy symped-nb

has a 2% higher peak at 56,000 requests per second but watpipe-nb has 2% higher throughput at 70,000

requests per second. If only peak throughput is considered,then N-copy watpipe-nb with its best peak

(not shown in Figure 4.3 as it has a lower condensed area than the corresponding server in the figure) and

N-copy symped-nb have approximately the same throughput atpeak and at 70,000 requests per second.

Ignoring the N-copy servers and comparing the best version of WatPipe and the best version ofµserver

shared-SYMPED, watpipe-nb has 2% higher throughput than sharedsymped-nb with readers/writer locks

and process affinities. For the non-blocking servers, both WatPipe and the bestµserver servers have sim-

ilar performance. The real difference occurs among the blocking servers, with WatPipe having a clear

advantage. The best blocking WatPipe server, N-copy watpipe-b, has 9% higher peak throughput than the

best blockingµserver, sharedsymped-b with readers/writer locks and process affinities.

Finally, consider the difference between the N-copy and single-copy versions of a server. For non-

blocking WatPipe, the differences in peak throughput is approximately 2% and for blocking WatPipe

around 4%. For non-blocking shared-SYMPED, the differencein peak is 4% (assuming the same peak

144

4.6. 4 GB

as for N-copy symped-nb), and for blocking shared-SYMPED less than 1%. For these experiments, the

performance advantage of N-copy over the hybrid servers is small.

To better understand the performance of the servers, the best configuration of each server is profiled.

The OProfile, vmstat and mpstat data for these experiments are summarized in Tables 4.18 and 4.19.

Some additional terms are used to describe the architectureof the multiprocessor servers. In this section,

“N-copy” means the server is being run N-copy with each server copy and its associated subnets parti-

tioned to execute on a separate CPU, “rw” means thatµserver is being run with a readers/writer lock for

its cache table and “aff” means that a single shared-SYMPED server is being run with process affinities

set so that its processes can be partitioned similar to N-copy. A new section is added to the end of the

table and it contains the results of running mpstat during the experiment. The row labelled “softirq” gives

the percent of time spent servicing software interrupts. Aside from these changes, the table is similar to

the profiling tables presented in the previous chapter. For each server, only the values where there is a

significant difference among the servers are discussed.

Typically, more time spent in networking is an indication ofhigher throughput. However, the non-

partitioned servers, symped-nb, sharedsymped-nb with readers/writer locks and sharedsymped-b with

readers/writer locks have larger networking values (over 30%) than the other servers, which are all par-

titioned, without correspondingly higher throughput. Similarly, these non-partitioned servers also have

large softirq values (over 60%) and large e1000 values both of which are typically associated with higher

throughput. These large values show the increased overheads incurred as a result of not partitioning the

processes, subnets and CPUs.

As expected, the variousµserver versions generally have higherepoll overheads than WatPipe. As

well, the blocking versions ofµserver have largerepoll overheads than the non-blocking versions since

they have significantly more processes. With WatPipe, the blocking and non-blocking versions of the

server have approximately the sameepoll overheads since only the polling tasks call the event mechanism

and these tasks are the same between the servers. However, the N-copy WatPipe servers have lowerepoll

overheads than the other WatPipe servers. This result is unexpected as WatPipe has centralized event

polling across all the CPUs while the N-copy versions perform separate polling in each server copy. Since

event polling is throttled for the experiments being profiled, N-copy WatPipe has approximately 4 times

the number of calls toepoll_wait as WatPipe. The number of calls toepoll_ctl is approximately the same.

Overall, the N-copy WatPipe servers have more system calls related to events. The larger overhead for

WatPipe, despite fewer overall system calls related to events, is likely a result of sharing a singleepoll file

descriptor across CPUs.

According to the table, the blockingµserver versions also incur higher scheduling overheads than the

non-blockingµserver versions. The increase in scheduling overhead is a result of having more processes

that need to be scheduled. This effect does not hold true withN-copy WatPipe. Examining the average ker-

145

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

nel context-switching values shows that N-copy watpipe-nbhas almost twice as much context switching as

N-copy watpipe-b, resulting in more scheduling overhead for N-copy watpipe-nb. Since the bestµserver

configurations are non-blocking with only 4 processes, the amount of context switching is low so the

scheduling overheads for these servers is also low. However, all the WatPipe servers perform well despite

having large average context-switching per second values compared to the best performing SYMPED and

shared-SYMPED servers. The WatPipe servers have 10 to 130 times more context switching but still have

comparable performance, including both the non-blocking and blocking servers. While the difference in

scheduling overhead among the servers can be large, the actual overhead is small. Nevertheless, the large

scheduling differences highlight significant architectural differences among the servers.

The row labelled “idle” represents the amount of time the kernel spends executing its idle loop. The

amount of idle time for N-copy sharedsymped-b with readers/writer locks and sharedsymped-b with read-

ers/writer locks and process affinities is large and helps toexplain their poor performance. Note as well,

the large kernel+arch values for these servers. As discussed earlier, the large number of processes result

in contention for both the shared cache-table and system-related data-structures. Eliminating idle time by

increasing the number of processes does not work for these experiments as the memory footprint of the

server becomes too large and disk I/O starts to occur. In fact, the average file-system cache-size entry for

the sharedsymped-b with readers/writer locks and process affinities is smaller than the size of the file set,

confirming that it incurs disk I/O during the experiment. Watpipe-nb has the lowest idle time compared

to the other servers, explaining why it achieves excellent throughput despite additional overheads related

to sharing data across CPUs. This advantage is realized by centralizing certain operations and not pinning

all tasks to specific CPUs.

Much of the difference among the servers relates to partitioning of the server processes, subnets and

CPUs. Hence, the N-copy and hybrid servers perform better than the other servers. Watpipe-nb has a

peak close to the peak of the best N-copy server, N-copy symped-nb, and has a more gradual decline in

performance after peak. The performance of watpipe-nb is surprising since it shares a number of queues

and data structures across processes and CPUs while the N-copy servers have no sharing at the appli-

cation level. As well, similar to the uniprocessor experiments, using blockingsendfile incurs a penalty

compared to non-blockingsendfile for the in-memory experiments. Unfortunately, the blocking servers

require a large number of kernel threads due to the high throughput of the servers, resulting in memory

pressure and contention. Of the blocking servers, only the blocking WatPipe servers did not suffer from

memory pressure, however, the additional contention caused by the large number of writer tasks resulted

in lower performance than the non-blocking WatPipe servers. One benefit of the N-copy servers is re-

duced contention, resulting in better performance for N-copy watpipe-b than watpipe-b. In fact, N-copy

watpipe-b performed as well as the hybrid non-blocking shared-SYMPED server, sharedsymped-nb with

readers/writer locks and process affinities.

146

4.6. 4 GB

Server userver userver WatPipe WatPipe userver userver

Arch symped s-symped pipeline pipeline symped s-symped

Write Sockets non-block block non-block block non-block non-block

Max Conns 100K 60K 100K 80K 80K 80K

Processes/Writers 4p 700p 12w 400w 4p 4p

Other Config N-copy N-copy,rw N-copy N-copy rw

Reply rate 47,474 43,378 49,229 48,116 43,329 43,308

Tput (Mbps) 5666 5180 5866 5729 5176 5171

OPROFILE DATA

vmlinux total % 81.70 84.46 80.78 81.65 81.38 80.96

networking 29.70 20.30 27.58 28.48 33.00 32.88

memory-mgmt 30.52 24.38 28.75 29.15 27.63 27.37

file system 4.28 3.49 3.93 4.51 4.04 4.18

kernel+arch 3.91 7.48 6.45 5.85 3.97 4.02

epoll overhead 3.43 3.63 1.69 1.79 3.49 3.47

data copying 0.76 0.57 0.76 0.75 0.72 0.69

sched overhead 0.04 1.66 0.96 0.77 0.07 0.07

idle 6.6 19.72 7.39 7.18 6.15 5.96

others 2.46 3.23 3.27 3.17 2.31 2.32

e1000 total % 11.23 8.71 10.27 10.45 11.90 11.92

user-space total % 5.33 4.52 4.7 3.95 5.01 5.45

thread overhead 0.00 0 1.83 1.51 0.00 0

event overhead 1.84 1.45 0.44 0.37 1.71 1.69

application 3.49 3.07 2.43 2.07 3.3 3.76

libc total % 0.90 1.19 1.23 1.10 0.88 0.84

other total % 0.84 1.12 3.02 2.85 0.83 0.83

VMSTAT DATA

waiting % 0 0 0 0 0 0

file-system cache (MB) 2560 2438 2360 2360 2559 2395

ctx-sw/sec (kernel) 1083 74,730 129,836 64,003 680 921

MPSTAT DATA

softirq % 58 58 56 58 61 60

Table 4.18: Server performance statistics gathered under aload of 56,000 requests per second - 4 GB

147

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Server userver userver userver WatPipe WatPipe

Arch s-symped s-symped s-symped pipeline pipeline

Write Sockets block non-block block non-block block

Max Conns 60K 60K 60K 100K 80K

Processes/Writers 300p 4p 600p 4w 400w

Other Config rw rw,aff rw,aff

Reply rate 35,227 49,717 43,707 49,886 45,666

Tput (Mbps) 4193 5944 5210 5944 5448

OPROFILE DATA

vmlinux total % 82.90 81.94 83.36 79.33 80.84

networking 30.79 28.08 21.54 29.41 28.35

memory-mgmt 22.95 31.82 24.52 28.49 27.36

file system 4.05 4.17 3.78 4.53 4.55

kernel+arch 5.79 4.27 7.15 5.62 5.79

epoll overhead 6.86 2.36 3.66 2.58 2.5

data copying 0.60 0.64 0.62 0.72 0.72

sched overhead 1.18 0.08 1.53 0.48 0.78

idle 7.3 8.2 17.28 4.53 7.66

others 3.38 2.32 3.28 2.97 3.13

e1000 total % 10.26 10.82 9.13 10.91 10.36

user-space total % 4.65 5.49 4.97 5.44 4.71

thread overhead 0 0 0.01 2.32 1.93

event overhead 1.41 1.63 1.55 0.46 0.39

application 3.24 3.86 3.41 2.66 2.39

libc total % 1.11 0.89 1.32 1.16 1.06

other total % 1.08 0.86 1.22 3.16 3.03

VMSTAT DATA

waiting % 0 0 0 0 0

file-system cache (MB) 2415 2395 2327 2358 2360

ctx-sw/sec (kernel) 58,888 4523 72,645 11,096 59,401

MPSTAT DATA

softirq % 64 59 57 58 56

Table 4.19: Server performance statistics gathered under aload of 56,000 requests per second - 4 GB

148

4.7. 2 GB

Maximum Number of Connections

Procs 40,000 50,000 60,000 70,000

4 11.71 11.23 11.17 11.03

20 12.23 12.29 ✕ ✕

32 12.45 12.71 ✕ ✕

40 12.42 12.52 ✕ ✕

52 12.21 ✕ ✕ ✕

60 12.04 ✕ ✕ ✕

Table 4.20:µserver N-copy non-blocking SYMPED experiments - 2 GB

4.7 2 GB

This section examines the effect of memory pressure on the web-server architectures for multiprocessors

by configuring the server with 2 GB of memory. While the amountof memory pressure in the system

is low relative to the 2.2 GB file set, the potentially high throughput of the server means the disk is a

bottleneck. Only the best servers from Section 4.6 are selected for this workload. An interesting point

is whether, similar to the uniprocessor experiments, the blocking servers outperform the non-blocking

servers despite the fact that the system is under memory pressure and the blocking servers have a larger

memory footprint.

4.7.1 Tuning N-copyµserver

Experiments were run to tune three versions of N-copyµserver: N-copy symped-nb, N-copy

sharedsymped-nb with readers/writer locks and N-copy sharedsymped-b with readers/writer locks. For

all versions ofµserver, the parameters tuned are the maximum number of simultaneous connections and

the number of processes.

Table 4.20 shows the results of tuning N-copy symped-nb. Each row in the table represents a different

number of processes from 4 to 60, with the number of processesrepresenting the total number of processes

running across all copies of the server. The columns represent a different maximum number of connections

from 40,000 to 70,000, also cumulative across all the servers. The experiments show the best performance

for N-copy symped-nb is around 32 processes and 50,000 connections (12.71), with a peak throughput of

4012 Mbps occurring at 54,000 requests per second and a sustained throughput of 3856 Mbps at 70,000

requests per second. This result represents a decline of approximately 35% at peak and 32% at 70,000

requests per second compared to the best N-copy symped-nb for the 4 GB experiments.

149

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections

Procs 40,000 50,000 60,000 70,000

4 11.60 11.28 11.13 11.07

20 12.59 13.46 ✕ ✕

40 ✕ 13.88 ✕ ✕

60 12.70 13.98 ✕ ✕

80 ✕ ✕ ✕ ✕

100 12.73 ✕ ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Procs 40,000 50,000 60,000 70,000

200 11.95 12.45 12.00 11.24

300 12.35 13.68 12.76 11.95

400 12.50 13.66 12.17 ✕

500 12.54 12.51 ✕ ✕

(b) blockingsendfile

Table 4.21:µserver N-copy shared-SYMPED with readers/writer locks experiments - 2 GB

The vmstat data for the server for its best configuration at 70,000 requests per second shows that it

has an average file-system cache-size of 1.35 GB. Despite a large file-system cache, the server spends an

average of 36% of its time waiting for disk I/O. As shown in Table 4.20, increasing the number of con-

nections results in verification problems, as well, increasing the number of processes reduces throughput

and eventually causes verification errors.

As the server copies are independent, increasing the numberof processes results in a large change in

memory footprint. For example, increasing the number of processes from 32 to 52 with 50,000 connec-

tions at 70,000 requests per second reduces the size of the file-system cache by 64 MB and increases I/O

wait to 44%. Given the high throughput of the server, it appears that disk I/O is a bottleneck despite the

file-system cache containing a large portion of the file set.

No N-copy symped-b experiments are run due to its large memory footprint. Sharedsymped-nb ex-

periments are run and its smaller memory footprint should bean advantage for this workload. Based on

the results in Section 4.6, only the shared-SYMPED servers with readers/writer locks are considered for

this workload.

Table 4.21(a) shows the results of tuning N-copy sharedsymped-nb with readers/writer locks. Each

row in the table represents a different number of processes from 4 to 100, with the number of processes

representing the total number of processes running across all copies of the server. The columns represent

a different maximum number of connections from 40,000 to 70,000. The experiments show the best

performance for N-copy sharedsymped-nb with readers/writer locks is around 60 processes and 50,000

connections (13.98), with a peak throughput of 4570 Mbps occurring at 54,000 requests per second and

a sustained throughput of 4235 Mbps at 70,000 requests per second. This result represents a decline of

approximately 26% at peak and 26% at 70,000 requests per second compared to the best N-copy symped-

nb for the 4 GB experiments.

150

4.7. 2 GB

Compared to N-copy symped-nb, N-copy sharedsymped-nb withreaders/writer locks has 12% higher

throughput at peak and 9% higher throughput at 70,000 requests per second. The performance difference

appears to be related to memory footprint. For their best configurations at 70,000 requests per second,

N-copy sharedsymped-nb with readers/writer locks has approximately a 138 MB larger file-system cache

on average despite having almost twice the number of processes. These two factors combine to reduce

the I/O wait for N-copy sharedsymped-nb with readers/writer locks at 70,000 requests per second to

10%. However, similar to N-copy symped-nb, increasing the number of connections results in verification

failures due to timeouts on large files. Since the memory footprint of the server increases as the number of

processes increases, it is expected that performance should eventually start to decline. However, as each

copy of the server shares a cache table, the memory footprintgrows slowly. Despite this slow growth,

N-copy sharedsymped-nb with readers/writer locks begins to experience verification failures beyond 60

processes. As the server processes are symmetric, the number of requests read across all server copies

increases with the number of processes. Eventually, more requests are read than the server can handle and

verification errors occur. As well, once the server begins experiencing timeout problems, both the number

of requests read and the throughput decrease.

Table 4.21(b) shows the results of tuning N-copy sharedsymped-b with readers/writer locks. Each row

in the table represents a different number of processes from200 to 500, with the number of processes

representing the total number of processes running across all copies of the server. The columns represent

a different maximum number of connections from 40,000 to 70,000. The experiments show the best

performance for N-copy sharedsymped-b with readers/writer locks is around 300 processes and 50,000

connections (13.68), with a peak throughput of 4589 Mbps occurring at 56,000 requests per second and

a sustained throughput of 3549 Mbps at 70,000 requests per second. This result represents a decline

of approximately 15% at peak and 23% at 70,000 requests per second compared to the best N-copy

sharedsymped-b for the 4 GB experiments.

Despite a lower condensed area, the peak throughput of the best N-copy sharedsymped-b with

readers/writer locks is approximately the same as for the non-blocking version. However, N-copy

sharedsymped-b with readers/writer locks has a large decline in throughput as the request rate increases,

resulting in lower overall performance. At 70,000 requestsper second, N-copy sharedsymped-b with

readers/writer locks has 16% lower throughput than N-copy sharedsymped-nb with readers/writer locks.

Similar to the uniprocessor experiments, blocking serversrequire additional processes to prevent a sharp

decline in throughput at higher request rates. Unfortunately, the average file-system cache for the server

with 300 processes, its best configuration, is already 75 MB smaller at 70,000 requests per second than

the best non-blocking configuration. Increasing the numberof processes from 300 to 400 while keeping

the number of connections at 50,000 further reduces the average file-system cache-size by 45 MB. At this

point, any potential performance gains from the additionalprocesses are offset by increased I/O wait due

151

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

to a smaller file-system cache. While the throughput at higher request rates may increase somewhat as

the number of processes increases, peak throughput declines until the overall performance of the server

decreases. As for all the servers under memory pressure, there is a tension between having a sufficient

number of processes to compensate for I/O wait and the increase in memory footprint resulting from the

additional processes.

Unlike N-copy symped-nb and N-copy sharedsymped-nb with readers/writer locks, N-copy

sharedsymped-b with readers/writer locks has fewer verification problems. Similar to the uniprocessor

experiments, blockingsendfile causes the server to be self limiting because it spends more time servicing

existing requests rather than reading new requests. Despite being self limiting, however, increasing the

number of connections reduces the memory footprint of the server, resulting in more time spent waiting

for disk I/O and eventually requests begin to timeout as the efficiency of the server decreases.

4.7.2 Tuning N-copy WatPipe

Experiments were run to tune the two versions of N-copy WatPipe: N-copy watpipe-nb and N-copy

watpipe-b. For both versions of WatPipe, the parameters tuned are the maximum number of simultaneous

connections and the number of writer tasks. As well, for all the WatPipe experiments for this workload,

the number of reader tasks per CPU is increased from one to five. Increased concurrency with respect to

reading requests is helpful when reader tasks block waitingfor disk I/O related to finding and opening

files.

Table 4.22(a) shows the results of tuning N-copy watpipe-nb. Each row in the table represents a

different number of writer tasks from 4 to 100, with the number of writer tasks representing the total

number of writers running across all copies of the server. The columns represent a different maximum

number of connections from 40,000 to 70,000. The experiments show the best performance for N-copy

watpipe-nb is around 100 writer tasks and 50,000 connections (14.43), with a throughput of 4594 Mbps

occurring at 54,000 requests per second and a sustained throughput of 4598 Mbps at 70,000 requests per

second. While peak throughput occurs at 70,000 requests persecond, throughput is relatively flat after

45,000 requests per second. This result represents a decline of approximately 26% at 56,000 requests per

second and 20% at 70,000 requests per second compared to the best N-copy watpipe-nb for the 4 GB

experiments.

With WatPipe, the incremental cost of adding additional writer tasks is small since the address space

is shared. Hence, N-copy watpipe-nb has stable performanceas the number of writer tasks increases. For

its best configuration at 70,000 requests per second, watpipe-nb has a file-system cache-size that is only

approximately 4 MB smaller than N-copy sharedsymped-nb with readers/writer locks for its best con-

figuration despite having 100 writer tasks compared to 60 server processes for N-copy sharedsymped-nb

152

4.7. 2 GB

Maximum Number of Connections

Writers 40,000 50,000 60,000 70,000

4 11.53 10.80 10.73 10.66

20 12.46 13.82 ✕ ✕

40 12.52 14.40 ✕ ✕

60 12.51 14.32 ✕ ✕

80 12.51 14.33 ✕ ✕

100 12.52 14.43 ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Writers 40,000 50,000 60,000 70,000

200 12.58 14.25 13.46 12.30

300 12.58 14.88 15.07 14.03

400 12.59 14.88 15.00 15.01

500 12.58 14.91 15.25 ✕

600 12.58 14.89 ✕ ✕

(b) blockingsendfile

Table 4.22: N-copy WatPipe experiments - 2 GB

with readers/writer locks. While the memory footprint for both servers grows slowly as the number of

writer-tasks/processes increases, the memory footprint of the N-copy watpipe-nb server grows slower.

In addition, N-copy watpipe-nb does not suffer from verification problems as the number of writers in-

crease because the tasks in WatPipe are not symmetric. Therefore, unlike adding processes to N-copy

sharedsymped-nb with readers/writer locks, adding additional writer tasks to WatPipe does not result in

more requests being read than can be serviced.

Increasing the number of connections has a larger effect on the memory footprint of N-copy watpipe-nb

because the size of many of the data structures in WatPipe areproportional to the number of connections.

Moving from 50,000 to 60,000 connections reduces the average file-system cache-size by approximately

73 MB. However, the big problem is that the server accepts toomany connections resulting in verification

problems due to timeouts.

Table 4.22(b) shows the results of tuning N-copy watpipe-b.Each row in the table represents a differ-

ent number of writer tasks from 200 to 600, with the number of writer tasks representing the total number

of writers running across all copies of the server. The columns represent a different maximum number of

connections from 40,000 to 70,000. The experiments show thebest performance for N-copy watpipe-b

is around 500 writer tasks and 60,000 connections (15.25), with a throughput of 5012 Mbps occurring at

60,000 requests per second and a sustained throughput of 4994 Mbps at 70,000 requests per second. This

result represents a decline of approximately 16% at peak and12% at 70,000 requests per second compared

to the best N-copy watpipe-b for the 4 GB experiments.

N-copy watpipe-b has 8% higher throughput than its non-blocking counterpart. This difference in per-

formance is surprising because N-copy watpipe-b has a larger memory footprint than N-copy watpipe-nb.

For example, at 70,000 requests per second, N-copy watpipe-b’s file-system cache is 41 MB smaller than

N-copy watpipe-nb for their respective best configurations. However, N-copy watpipe-b spends less time

153

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

waiting for I/O than N-copy watpipe-nb, 3% versus 17%. Part of the reason N-copy watpipe-b spends only

a small amount of time waiting for I/O is its ability to support a large number of connections without ver-

ification problems; a larger number of connections allows the server to operate more efficiently. However,

even for lower connection values, where N-copy watpipe-nb also verifies, N-copy watpipe-b has higher

overall throughput. For example, at 50,000 maximum connections N-copy watpipe-b has a peak of 4788

Mbps at 45,000 requests per second, 4% higher that N-copy watpipe-nb. It appears that using blocking

sendfile allows for better disk efficiency and higher throughput.

N-copy watpipe-b also has higher throughput than N-copy sharedsymped-b. For their best config-

urations, N-copy watpipe-b has 9% higher throughput at peakthan N-copy sharedsymped-b and 41%

higher throughput at 70,000 requests per second. In this case, the difference is that each watpipe-b copy

uses a completely shared address-space, resulting in a smaller overall memory footprint than N-copy

sharedsymped-b. As seen in the non-blocking experiments, when the number of writer-tasks/processes is

less than 100, the difference in memory footprint between N-copy shared-SYMPED and N-copy WatPipe

is small. However, for a larger number of writer-tasks/processes the difference in memory footprint be-

comes important. For example, with 500 writer-tasks/processes respectively and 60,000 connections at

70,000 requests per second, N-copy sharedsymped-b has a file-system cache that is approximately 207

MB smaller on average, around 14%, compared to N-copy watpipe-b. The large performance difference

at 70,000 requests per second occurs because the memory footprint of N-copy watpipe-b grows very grad-

ually as writer tasks are added, unlike N-copy sharedsymped-b, resulting in two advantages. First, N-copy

watpipe-b can support a sufficient number of writers to avoida large decline in performance for higher

request rates. Second, N-copy watpipe-b gets better performance even with fewer threads because it has a

smaller memory footprint than N-copy sharedsymped-b.

4.7.3 Tuningµserver

Experiments were run to tune two versions ofµserver: sharedsymped-nb with readers/writer locks and

process affinities and sharedsymped-b with readers/writerlocks and process affinities. For all versions of

µserver, the parameters tuned are the maximum number of simultaneous connections and the number of

processes. Noµserver SYMPED experiments are run for this workload becauseµserver SYMPED does

not support partitioning of requests and processes withoutbecoming equivalent to the N-copy version.

Table 4.23(a) shows the results of tuning sharedsymped-nb with readers/writer locks and process

affinities. Each row in the table represents a different number of processes from 4 to 100 and the columns

represent a different maximum number of connections from 40,000 to 70,000. The experiments show

the best performance for sharedsymped-nb with readers/writer locks and process affinities is around 60

processes and 50,000 connections (14.02), with a peak throughput of 4584 Mbps occurring at 56,000 re-

154

4.7. 2 GB

Maximum Number of Connections

Procs 40,000 50,000 60,000 70,000

4 11.71 11.34 11.22 11.26

20 12.55 13.57 ✕ ✕

40 12.68 13.89 ✕ ✕

60 12.68 14.02 ✕ ✕

80 12.72 ✕ ✕ ✕

100 12.70 ✕ ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Procs 40,000 50,000 60,000 70,000

200 11.98 12.75 12.04 11.01

300 12.46 13.41 12.79 11.70

400 12.58 13.36 11.76 ✕

500 12.53 11.89 ✕ ✕

600 12.44 ✕ ✕ ✕

(b) blockingsendfile

Table 4.23:µserver shared-SYMPED with readers/writer locks and process affinities experiments - 2 GB

quests per second and a sustained throughput of 4197 Mbps at 70,000 requests per second. This result

represents a decline of approximately 23% at peak and 26% at 70,000 requests per second compared to

the best sharedsymped-nb with readers/writer locks and process affinities for the 4 GB experiments.

Compared to N-copy sharedsymped-nb with readers/writer locks, sharedsymped-nb with read-

ers/writer locks and process affinities has approximately the same throughput at peak. In fact, the perfor-

mance of the two servers is similar; the differences in throughput seem to be in the range of experimental

variation. At 70,000 requests per second, the average file-system cache-size of sharedsymped-nb with

readers/writer locks and process affinities is approximately 5 MB smaller than N-copy sharedsymped-nb

with readers/writer locks. While there is a small difference, approximately 4%, for the equivalent 4 GB

experiments, disk I/O and a similar memory footprint in the 2GB experiments seems to have equalized

performance.

Table 4.23(b) shows the results of tuning sharedsymped-b with readers/writer locks and process affini-

ties. Each row in the table represents a different number of processes from 200 to 600 and the columns

represent a different maximum number of connections from 40,000 to 70,000. The experiments show

the best performance for sharedsymped-b with readers/writer locks and process affinities is around 300

processes and 50,000 connections (13.41), with a peak throughput of 4576 Mbps occurring at 54,000 re-

quests per second and a sustained throughput of 3521 Mbps at 70,000 requests per second. This result

represents a decline of approximately 16% at peak and 23% at 70,000 requests per second compared to

the best sharedsymped-b with readers/writer locks and process affinities for the 4 GB experiments.

Compared to N-copy sharedsymped-b with readers/writer locks, sharedsymped-b with readers/writer

locks and process affinities has approximately the same throughput at peak and at 70,000 requests per

second. While these two rates are similar, the N-copy serverhas better performance in the middle rates,

resulting in better overall performance. At 70,000 requests per second, the file-system cache-size of

155

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

sharedsymped-b with readers/writer locks and process affinities is approximately 81 MB smaller than

N-copy sharedsymped-b with readers/writer locks. Similarto the 4 GB experiments, sharedsymped-b

with readers/writer locks and process affinities has a larger memory footprint compared to the N-copy

server because of larger data structures as a result of sharing file descriptors across all the server pro-

cesses. Both servers have their best performance with the same parameters and both servers suffer from

the same problem with this configuration, a sharp decline in throughput at higher request rates. Despite

the difference in memory footprint, the performance of bothservers for their best configuration at 70,000

requests per second is dominated by an insufficient number ofprocesses, resulting in similar throughput.

The effect of this larger memory footprint is more pronounced at 400 processes and beyond. For exam-

ple, with 400 processes and 50,000 connections at 70,000 requests per second, the difference in memory

footprint grows to 103 MB. At this point, the difference in memory footprint begins to have a large effect

on performance.

4.7.4 Tuning WatPipe

Experiments were run to tune the two versions of WatPipe: watpipe-nb and watpipe-b. For both versions

of WatPipe, the parameters tuned are the maximum number of simultaneous connections and the number

of writer tasks.

Table 4.24(a) shows the results of tuning watpipe-nb. Each row in the table represents a different

number of writer tasks from 4 to 100. The columns represent a different maximum number of connections

from 40,000 to 70,000. The experiments show the best performance for watpipe-nb is around 100 writer

tasks and 50,000 connections (14.43), with a throughput of 4633 Mbps occurring at 54,000 requests per

second and a sustained throughput of 4565 Mbps at 70,000 requests per second. This result represents

a decline of approximately 24% at peak and 22% at 70,000 requests per second compared to the best

watpipe-nb for the 4 GB experiments.

Compared to N-copy watpipe-nb, watpipe-nb has approximately the same throughput at peak and at

70,000 requests per second, as well as the same condensed area. However, watpipe-nb has a smaller

memory footprint. Comparing the best configuration for bothservers at 70,000 requests per second,

watpipe-nb has a 34 MB larger file-system cache than N-copy watpipe-nb. As well, watpipe-nb spends

less time waiting for I/O, 14% versus 17% for N-copy watpipe-nb. While both of these differences are

small, the expectation is that the watpipe-nb should have slightly higher throughput. However, watpipe-nb

shares application data across CPUs, resulting in additional execution costs.

Watpipe-nb has better overall performance than sharedsymped-nb with readers/writer locks and pro-

cess affinities. While watpipe-nb only has equivalent performance at peak, and 9% better performance at

70,000 requests per second. Since all the tasks in watpipe-nb share the same address space, it has a smaller

156

4.7. 2 GB

Maximum Number of Connections

Writers 40,000 50,000 60,000 70,000

4 11.53 11.13 10.92 10.89

20 12.50 14.21 ✕ ✕

40 12.53 14.28 ✕ ✕

60 12.53 14.28 ✕ ✕

80 12.53 14.38 ✕ ✕

100 12.52 14.43 ✕ ✕

(a) non-blockingsendfile

Maximum Number of Connections

Writers 40,000 50,000 60,000 70,000

200 12.56 14.26 13.74 12.58

300 12.59 14.92 15.12 14.79

400 12.57 14.94 15.19 14.88

500 12.57 14.86 15.25 15.09

600 12.56 14.86 15.14 15.09

700 12.57 14.81 15.12 15.02

(b) blockingsendfile

Table 4.24: WatPipe experiments - 2 GB

memory footprint than sharedsymped-nb with readers/writer locks and process affinities. For their best

configurations at 70,000 requests per second, watpipe-nb has an average file-system cache-size that is

36 MB larger than sharedsymped-nb with readers/writer locks and process affinities, despite having 100

writer tasks versus 60 processes for the shared-SYMPED server.

Table 4.24(b) shows the results of tuning watpipe-b. Each row in the table represents a different num-

ber of writer tasks from 200 to 700. The columns represent a different maximum number of connections

from 40,000 to 70,000. The experiments show the best performance for watpipe-b is around 500 writer

tasks and 60,000 connections (15.25), with a throughput of 4992 Mbps occurring at 54,000 requests per

second and a sustained throughput of 4863 Mbps at 70,000 requests per second. This result represents

a decline of approximately 11% at peak and 10% at 70,000 requests per second compared to the best

watpipe-b for the 4 GB experiments.

Compared to N-copy watpipe-b, watpipe-b has approximatelythe same throughput at peak but 3%

lower throughput at 70,000 requests per second. Watpipe-b has higher throughput for some of the middle

rates, resulting in similar overall performance. However,watpipe-b has a smaller memory footprint than

N-copy watpipe-b. Comparing the best configuration for bothservers at 70,000 requests per second,

watpipe-b has a 34 MB larger file-system cache than N-copy watpipe-b, the same difference as the non-

blocking WatPipe servers. While this difference is small, the expectation is that watpipe-b should have

slightly higher throughput. Again, any performance gains are offset due to higher execution costs resulting

from sharing data across CPUs.

Watpipe-b has better overall performance than sharedsymped-b, 9% higher throughput at peak and

38% higher throughput at 70,00 requests per second. The difference in performance is due to a smaller

memory footprint for watpipe-b compared to sharedsymped-bwith readers/writer locks and process affini-

ties. For their best configurations at 70,000 requests per second, watpipe-b has an average file-system

157

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

cache that is 214 MB larger, approximately 16%, than sharedsymped-b with readers/writer locks and pro-

cess affinities. Similar to the situation with N-copy, watpipe-b has two advantages over sharedsymped-b

with readers/writer locks and process affinities. Watpipe-b has a smaller memory footprint so it can sup-

port a sufficient number of threads to prevent a decline in performance at high request rates and it can get

better performance with fewer threads because its has a smaller memory footprint than sharedsymped-b

with readers/writer locks and process affinities.

4.7.5 Server Comparison

Figure 4.4 presents the best performing configuration for each server-architecture implementation:µserver

N-copy non-blocking SYMPED,µserver N-copy non-blocking shared-SYMPED with readers/writer locks,

µserver N-copy blocking shared-SYMPED with readers/writerlocks, N-copy non-blocking WatPipe, N-

copy blocking WatPipe,µserver non-blocking shared-SYMPED with readers/writer locks and process

affinities,µserver blocking shared-SYMPED with readers/writer locks and process affinities, non-blocking

WatPipe and blocking WatPipe. The legend in Figure 4.4 is ordered from the best performing server at the

top to the worst at the bottom. Peak server throughput variesby about 25% (4012–5012 Mbps), a range

of 1000 Mbps. Without N-copy symped-nb, the difference reduces to 10% (4570–5012 Mbps), a range of

442 Mbps.

Table 4.25 ranks the performance of the servers for the 4 GB workload. Again, based on a total of

three runs for each server, Tukey’s Honest Significant Difference test is used to differentiate the servers

with a 95% confidence level. The servers are then ranked basedon mean area.

The top performing servers are N-copy watpipe-b and watpipe-b, which have the same overall perfor-

mance. Though N-copy watpipe-b has better sustained throughput than watpipe-b, it is less stable after

peak; the throughput of watpipe-b is more stable after peak resulting in approximately the same over-

all performance, despite lower sustained throughput. The next grouping of servers have approximately

the same peak throughput of 4600 Mbps, but differing performance after saturation. N-copy watpipe-nb

and watpipe-nb have approximately the same performance with only a small decline in throughput after

peak. Similarly, N-copy sharedsymped-nb with readers/writer locks and sharedsymped-nb with read-

ers/writer locks and process affinities have approximatelythe same performance but a larger decline

in throughput after peak compared to non-blocking WatPipe.The final two servers in that grouping,

N-copy sharedsymped-b with readers/writer locks and sharedsymped-b with readers/writer locks and pro-

cess affinities, also have similar performance with a large drop in throughput after peak. Though N-copy

symped-nb has the worst overall performance, its throughput after peak declines gradually and its through-

put beyond 60,000 requests per second is actually higher than the two blocking shared-SYMPED servers.

Comparing the performance of the best version of WatPipe andthe best version ofµserver, N-copy

158

4.7. 2 GB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10000 20000 30000 40000 50000 60000 70000

M
b

p
s

Requests/s

ncopy-watpipe-b-60K-500w
watpipe-b-60K-500w

ncopy-watpipe-nb-50K-100w
watpipe-nb-50K-100w

ncopy-sharedsymped-nb-rw-50K-60p
sharedsymped-nb-rw-aff-50K-60p

ncopy-sharedsymped-b-rw-50K-300p
sharedsymped-b-rw-aff-50K-300p

ncopy-symped-nb-50K-32p

Figure 4.4: Throughput of different architectures - 2 GB

Server Rank

N-copy watpipe-b 1

watpipe-b 1

N-copy watpipe-nb 2

watpipe-nb 2

N-copy sharedsymped-nb with readers/writer locks 3

sharedsymped-nb with readers/writer locks and process affinities 3

N-copy sharedsymped-b with readers/writer locks 4

sharedsymped-b with readers/writer locks and process affinities 4

N-copy symped-nb 5

Table 4.25: Ranking of server performance - 2 GB

159

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

watpipe-b has 9% higher throughput than sharedsymped-nb with readers/writer locks and process affini-

ties at peak and 19% higher throughput after saturation at 70,000 requests per second. Between the best

non-N-copy version of WatPipe and the best non-N-copy version of µserver, watpipe-b has 9% higher

throughput than sharedsymped-nb with readers/writer locks and process affinities at peak and 16% higher

throughput at 70,000 requests per second. For this workload, N-copy watpipe-b is the best perform-

ing server and N-copy watpipe-nb is the best performing non-blocking server. At peak, the throughput

of N-copy watpipe-b is 9% higher than N-copy watpipe-nb and 9% higher at 70,000 requests per sec-

ond. As mentioned earlier, the best N-copy server, N-copy watpipe-b, and the best non-N-copy server,

watpipe-b, have similar throughput at peak and watpipe-b has 3% lower throughput at 70,000 requests per

second. The best N-copyµserver, N-copy sharedsymped-nb, and the best non-N-copy version ofµserver,

sharedsymped-nb with readers/writer locks and process affinities also have approximately the same per-

formance.

To better understand the performance of the servers, the best configuration of each server is profiled.

The OProfile, vmstat and mpstat data for these experiments are summarized in Tables 4.26 and 4.27.

Additional vmstat data is presented for this workload; the row labelled “blocks in” gives the average

number of blocks read in per second. Otherwise, the tables are similar to the profiling tables presented in

the previous workload. Note, a non-zero I/O wait value indicates that the profiling data must be scaled

because the profiling data gathered only accounts for time when the CPU is executing, so it does not

include I/O wait (similar to Section 3.13). For each server,only the values where there is a significant

difference among the servers are discussed. The effect of running OProfile is larger on the non-N-copy

servers, so their throughput is more adversely affected than the N-copy servers.

Similar to the other experiments in this thesis, for partitioned servers, higher throughput corresponds

to larger networking, e1000 and softirq values, after scaling for I/O wait. The two non-blocking WatPipe

servers, however, have slightly lower values than expectedgiven their throughput. The softirq and net-

working values are approximately 10% lower than expected compared to the other servers. It is unclear

why these values are different for the non-blocking WatPipeservers.

A larger number of threads corresponds to more context switching and higher scheduling values for a

server. However, the amount of context switching is also much higher for these experiments, compared

to the 4 GB workload, because the best configuration for each server tends to require more kernel threads

to deal with blocking disk-I/O and kernel threads blocking waiting for disk-I/O also increase the amount

of context-switching. As well, the kernel idle values for this workload are generally larger compared to

the 4 GB workload. The increased idle time is likely a result of additional contention and locking in the

kernel related to updating the file-system cache as file data is added or removed. These values, however,

are comparable to the 4 GB experiment values for the servers that incurred disk-I/O.

The WatPipe servers have approximately 25% higher user-space execution compared to the N-copy

160

4.7. 2 GB

WatPipe servers. Increased execution time for the non-N-copy WatPipe servers is expected as application

data-structures are shared across the CPUs, resulting in additional overheads, e.g., locking and cache

coherency. Since the amount of time spent in user-space is small, the absolute differences are also small.

Similar to the uniprocessor experiments, the experiments for this workload show a correlation between

file-system cache-size and the throughput of a server. Equivalently configured servers with smaller mem-

ory footprints tend to have higher throughput and tend to have their best configurations with more kernel

threads and/or connections. However, the experiments alsoshow an advantage to using blockingsendfile.

With the uniprocessor experiments, it is difficult to separate the advantages of using blockingsendfile

from the effects of the read-ahead problem in the version of the Linux kernel used for those experiments,

but the patched Linux kernel used for these experiments doesnot have this problem. The variability of

the average blocks-in per second is less for these experiments, especially if the effects of OProfile are

eliminated. The mpstat data for the same experiments without OProfile running (not in the table) show

an average blocks-in per second difference of 1948 (28,213–30,161) across all the servers at a request

rate of 56,000 requests per second. The minor differences inblocks-in among the servers appear related

to the size of the file-system cache; servers with larger file-system caches tend to have smaller blocks-in

values. For example, the non-blocking and blocking WatPipeservers have average blocks-in per second

values within 1% of each other, and average file-system caches size differences within 2–3%. Despite 400

additional workers, the blocking servers have average file-system caches that are only 34–43 MB smaller

because the extra memory overhead is limited to each worker’s stack.

At 56,000 requests per second, the blockingsendfile servers in the experiment spend less time waiting

for disk I/O than the corresponding non-blocking servers. However, since the blocking servers have larger

memory footprints, the expectation is they should have higher I/O wait. Part of the lower I/O wait can be

attributed to additional overhead incurred by the blockingservers. Low I/O wait combined with higher

throughput indicate that blockingsendfile accesses the disk more efficiently than non-blockingsendfile for

the workload tested. Comparing the disk request patterns for N-copy watpipe-nb and N-copy watpipe-b

reveals some interesting observations. The blocking server makes disk-I/O requests on fewer distinct files

and for the larger files these requests tend to be contiguous,allowing the server to take advantage of page

cache read-ahead. The result is the blocking server makes fewer disk requests overall compared to the

non-blocking server and is able to service more requests. The remainder of the lower I/O wait can be

attributed to more efficient disk access for the blocking servers.

The difference between the two servers is the duration over which file data in the file-system cache

is accessed. With the blocking server, a single kernel thread blocks trying to send an entire file, so the

time over which the file data for a single file is accessed is small. This approach has the added advantage

of reducing verifications problems due to timeouts. With thenon-blocking server, a kernel thread may

interleave the sending of a large file with the sending of file data for many other files, so the time over

161

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

which the file data for a single file is accessed could be much longer. When there is memory pressure in

the system, the kernel evicts pages from the file-system cache using an LRU algorithm. For the blocking

server, since the pages associated with a file are accessed within a short span of time, it is likely that

the kernel would subsequently evict the entire file from the file-system cache because these pages would

become least recently used at approximately the same time. For the non-blocking server, the kernel is

more likely to evict portions of various files based on the non-blocking server’s interleaved access-pattern.

As a result, the blocking server tends to read entire files from disk into the file-system cache when disk-

I/O is necessary, while the non-blocking server tends to read in smaller portions of many files. The

blocking server benefits from the efficiency of contiguous disk reads and better file read-ahead caching.

A possible consequence of this difference is that the non-blocking server may read in file data from disk

that is already in the file-system cache because individual disk reads tend to be for a fixed size of data.

Overall, the blocking server has better disk efficiency thanthe non-blocking server. This difference in disk

access allows a blockingsendfile server to have the same or higher throughput than the corresponding non-

blocking server despite having a larger memory footprint.

The same analysis applies to the uniprocessor kernel in the previous chapter, which also has a read-

ahead problem (see Section 3.13). However, both these problems benefit blockingsendfile, making it

difficult to separate out the effect of each.

162

4.7. 2 GB

Server userver userver userver WatPipe WatPipe

Arch symped s-symped s-symped pipeline pipeline

Write Sockets non-block non-block block non-block block

Max Conns 50K 50K 50K 50K 60K

Processes/Writers 32p 60p 300p 100w 500w

Other Config N-copy N-copy,rw N-copy,rw N-copy N-copy

Reply rate 31,365 37,524 39,097 37,902 41,161

Tput (Mbps) 3747 4490 4675 4511 4905

OPROFILE DATA

vmlinux total % 86.49 83.74 81.43 82.50 81.37

networking 20.26 24.15 23.35 22.16 24.58

memory-mgmt 25.64 26.87 25.71 26.42 25.93

file system 2.96 3.34 3.86 3.28 4.05

kernel+arch 5.65 5.29 6.52 7.47 7.48

epoll overhead 1.7 2.07 3.51 1.34 1.47

data copying 0.45 0.53 0.63 0.52 0.63

sched overhead 0.14 0.39 1.69 0.99 1.48

idle 27.75 18.82 12.65 17.05 11.84

others 1.94 2.28 3.51 3.27 3.91

e1000 total % 8.02 9.07 9.60 8.81 9.49

user-space total % 3.13 4.14 4.98 3.9 4.18

thread overhead 0.00 0.00 0.00 1.74 1.71

event overhead 1.02 1.31 1.62 0.30 0.35

application 2.11 2.83 3.36 1.86 2.12

libc total % 0.63 0.74 1.21 0.90 1.02

other total % 1.73 2.31 2.78 3.89 3.94

VMSTAT DATA

waiting % 38 22 13 23 7

file-system cache (MB) 1384 1539 1446 1519 1476

blocks-in/sec 28,593 28,442 31,614 29,620 30,399

ctx-sw/sec (kernel) 9476 34,044 179,025 128,876 208,602

MPSTAT DATA

softirq % 37 47 48 43 49

Table 4.26: Server performance statistics gathered under aload of 56,000 requests per second - 2 GB

163

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Server userver userver WatPipe WatPipe

Arch s-symped s-symped pipeline pipeline

Write Sockets non-block block non-block block

Max Conns 50K 50K 50K 60K

Processes/Writers 60p 300p 100w 500w

Other Config rw,aff rw,aff

Reply rate 38,253 38,139 37,489 39,951

Tput (Mbps) 4560 4562 4461 4756

OPROFILE DATA

vmlinux total % 83.35 81.81 81.40 80.24

networking 24.18 22.68 22.29 24.27

memory-mgmt 27.85 25.43 24.87 24.63

file system 3.41 3.81 3.36 4.03

kernel+arch 5.23 6.60 7.77 7.97

epoll overhead 2.09 3.39 1.78 2.09

data copying 0.54 0.59 0.56 0.62

sched overhead 0.42 1.60 1.23 1.79

idle 17.29 14.29 16.08 10.78

others 2.34 3.42 3.46 4.06

e1000 total % 9.13 9.38 8.83 9.38

user-space total % 4.41 4.94 4.69 5.08

thread overhead 0 0 2.17 2.27

event overhead 1.37 1.55 0.35 0.37

application 3.04 3.39 2.17 2.44

libc total % 0.78 1.15 0.93 1.03

other total % 2.33 2.72 4.15 4.27

VMSTAT DATA

waiting % 21 17 20 5

file-system cache (MB) 1530 1364 1556 1522

blocks-in/sec 28,523 31,748 27,908 27,553

ctx-sw/sec (kernel) 37,632 165,682 153,640 222,268

MPSTAT DATA

softirq % 47 45 42 49

Table 4.27: Server performance statistics gathered under aload of 56,000 requests per second - 2 GB

164

4.8. COMPARISON ACROSS WORKLOADS

4.8 Comparison Across Workloads

This section examines the performance of the best multiprocessor servers in the chapter across the two

workloads tested. Similar to the uniprocessor experiments, as memory pressure increases, the through-

put of the servers decrease. However, with the multiprocessor experiments, even a moderate amount of

memory pressure results in a sharp drop in throughput.

Figure 4.5 graphs the throughput of the servers versus the system memory-size across the two work-

loads at 56,000 requests per second. Unfortunately, 56,000requests per second does not represent the

peak throughput for every server, making comparisons difficult. For example, both N-copy watpipe-b and

watpipe-b have approximately the same throughput at peak for the 2 GB workload, but peak at different

request rates. To allow for a better comparison, Figure 4.6 graphs the condensed area of the servers across

the request-rates tested for the two workloads using a stacked histogram. The servers are on the horizontal

axis, with each server represented by a single bar and the corresponding condensed area is on the vertical

axis. The black portion is the condensed area for the 2 GB workload and the gray portion represents the

additional condensed area, due to higher throughput, for the 4 GB workload. While the condensed area

gives a better picture of overall performance, it de-emphasizes differences in peak throughput.

The general pattern is the same for both the uniprocessor andmultiprocessor experiments: as the

memory pressure in the system increases, the throughput of the servers decrease. Therefore, the servers

achieve their best performance with the 4 GB workload. When there is no memory pressure, another

pattern emerges: the non-blocking servers require few kernel threads, resulting in low overheads and high

throughput, and the blocking servers require more kernel threads, resulting in higher overheads and lower

throughput.

The performance of all the servers drop with the 2 GB workload. When there is memory pressure in

the system, a different pattern emerges: memory footprint and disk efficiency are two important factors

determining server performance. The blocking version of a server benefits from better disk efficiency but

it also has a larger memory footprint than the correspondingnon-blocking server. Since WatPipe uses a

shared address-space it can scale to a large number of kernelthreads with only a small increase in memory

footprint. Hence, the blocking WatPipe servers perform thebest. Unfortunately, shared-SYMPED does

not scale as efficiently, resulting in the blocking shared-SYMPED servers having a large memory footprint

and lower performance compared to blocking WatPipe. As well, less efficient scaling means the blocking

shared-SYMPED servers are unable to support a sufficient number of processes, resulting in lower overall

performance than all the non-blocking servers, except N-copy symped-nb. N-copy symped-nb has the

worst performance as it has even less efficient scaling and does not benefit from better disk efficiency.

Two additional factors affecting the throughput of the multiprocessor experiments are high throughput

and the presence of multiple CPUs. These factors combine to affect the performance of the servers in

165

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 1 2 3 4 5

M
b

p
s

System Memory Size (GB)

ncopy-symped-nb
ncopy-sharedsymped-nb-rw

watpipe-nb
ncopy-watpipe-nb

ncopy-watpipe-b
sharedsymped-nb-rw-aff

watpipe-b
ncopy-sharedsymped-b-rw

sharedsymped-b-rw-aff

Figure 4.5: Comparison of server throughput at 56,000 requests per second across workloads

 10

 11

 12

 13

 14

 15

 16

 17

 18

ncopy-sym
ped-nb

ncopy-sharedsym
ped-nb-rw

w
atpipe-nb

ncopy-w
atpipe-nb

ncopy-w
atpipe-b

sharedsym
ped-nb-rw

-aff

w
atpipe-b

ncopy-sharedsym
ped-b-rw

sharedsym
ped-b-rw

-aff

C
o
n
d
en

se
d
 A

re
a

Server

4 GB
2 GB

Figure 4.6: Comparison of server performance across workloads

166

4.8. COMPARISON ACROSS WORKLOADS

various ways.

To achieve high throughput, the multiprocessor servers require larger configuration parameters, re-

sulting in larger memory footprints. Specifically, the blocking servers require a large number of kernel

threads to handle blocking network-I/O. While the non-blocking servers also require additional kernel

threads to handle blocking disk-I/O and multiple CPUs, the increase is much smaller than for the blocking

servers. Even with the 4 GB workload, N-copy sharedsymped-band sharedsymped-b with readers/writer

locks and process affinities have large enough memory footprints to affect their performance. The best

configuration parameters for these two servers is at the point where disk I/O begins to occur. Hence, even

though there is little to no disk I/O for the best configuration of the two servers, the memory footprint of

the server limits performance; once disk I/O occurs, the performance of a server begins to level off and

then decrease as its tuning parameters are increased.

To deal with blocking disk-I/O, the number of kernel threadsrequired increases for the 2 GB workload,

resulting in additional memory pressure. However, the larger memory footprints are mitigated by a larger

system memory-size, 2 GB versus a system memory-size of 1.4 GB or .75 GB for the uniprocessor experi-

ments with memory pressure. In fact, the multiprocessor servers need larger file-system caches-sizes than

either of the two uniprocessor workloads with memory pressure because of higher throughput. Despite the

larger file-system caches, however, the decline in throughput of the multiprocessor experiments is sharper.

The presence of I/O wait indicates the 2 GB workload is disk bound. Given the high request rates, even a

small percentage of requests requiring disk I/O means the disks become a bottleneck.

Another difference with the multiprocessor experiments isdata sharing and contention across CPUs,

reducing the parallel execution of the system, especially for the non-N-copy servers since they also share

application data among a larger number of threads and acrossCPUs. This problem affects the in-memory

experiments as well. Note the poor scalability moving from 1CPU to 4 CPUs in Section 4.4. For ex-

ample, data sharing and contention at the application levelacross CPUs results in worse performance for

watpipe-b in the 4 GB workload compared to N-copy watpipe-b,and watpipe-b, despite having a smaller

memory footprint, has performance equivalent to N-copy watpipe-b in the 2 GB workload. The problem

is worse when there is disk I/O because the file-system cache is shared, resulting in additional locking and

contention as file data is added and removed. As expected, better disk efficiency and a smaller memory

footprint result in more efficient use of the file-system cache and lower additional overheads. Therefore,

the blocking WatPipe servers receive an additional performance advantage.

The multiprocessor tuning parameters to achieve the best performance for the various servers are

larger than for the uniprocessor experiments. The changes in processes/kernel-threads over the two work-

loads is discussed earlier in this section. To achieve high throughput, the servers must also support a large

number of connections. Similar to the uniprocessor experiments, as the memory pressure in the system in-

167

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

creases, the throughput of the servers decreases and the number of simultaneous connections required also

decreases. Interestingly, for the multiprocessor experiments, the non-blocking servers achieve their best

performance with a larger number of connections than the blocking servers for the in-memory workload.

It is not apparent why this tuning is opposite from the uniprocessor experiments. For the 2 GB workload,

the blocking and non-blocking shared-SYMPED servers have the same number of connections and the

blocking WatPipe servers require a larger number of connections. It is the larger memory footprint of the

blocking shared-SYMPED servers that limits their throughput, and hence, fewer connections are required.

4.9 Summary

This chapter examines the performance of several server architectures on a multiprocessor machine for

two workloads: in-memory and disk bound. The architecturesinclude SYMPED, shared-SYMPED and

pipeline. Similar to the uniprocessor experiments,µserver is used for SYMPED and shared-SYMPED and

a new version of WatPipe is implemented for the pipeline architecture.

The uniprocessor experiments identified a number of factorsaffecting the performance of the servers,

including memory footprint and disk efficiency. These factors are important, however, executing on a

multiprocessor introduces a number of challenges over executing on a uniprocessor. Key issues include

data sharing across CPUs, affinities and partitioning, locking and high throughput. These factors must

be considered when designing a web server for execution on a multiprocessor. Simply running a server

from the previous chapter on a multiprocessor does not achieve high throughput, despite the presence

of multiple kernel threads. For the experiments in the thesis, regardless of the server architecture or

implementation, it is important to set affinities to equallydistribute network interrupt processing across

the available CPUs. Based on this arrangement, extending the uniprocessor servers to support partitioning

is necessary to achieve best performance.

The most straightforward approach to achieve partitioningis to use an N-copy approach, with one copy

of a server per CPU. The system is partitioned by pinning eachserver copy and its associated processes to

a specific CPU and having each server copy only handle requests on subnets associated with that CPU. As

there is no shared data at the application level, the expectation is the non-blocking N-copy servers should

perform the best for the in-memory workloads. The uniprocessor servers are also extended to support

partitioning using a hybrid approach whereby the processing of requests is partitioned but application data

is shared across CPUs to varying degrees.

The advantage of sharing data is a smaller memory footprint,however, sharing data results in addi-

tional overheads to ensure safe access and can inhibit parallel execution with multiple CPUs. Despite

improved locking, as the number of kernel threads sharing data increases, these overheads also increase.

168

4.9. SUMMARY

The N-copy servers typically have larger memory footprintsthan the non-N-copy servers due to data du-

plication across the copies; however, the difference in memory footprint is proportional to the number of

CPUs. While there may be many processes/kernel-threads, there are only a few CPUs, limiting the amount

of additional duplication, e.g., the application cache is only 6 MB, so one application cache instead of four

is a savings of only 18 MB. When the system is not under memory pressure, increased contention as the

number of kernel threads increases results in lower throughput for the blocking non-N-copy servers. When

there is memory pressure in the system, the tradeoff betweenmemory footprint and contention results in

approximately equivalent performance for the N-copy and non-N-copy versions of a server, except for

blocking shared-SYMPED, where the N-copy version actuallyhas a smaller memory footprint than the

non-N-copy version due to an implementation issue.

Blocking µserver N-copy shared-SYMPED has a smaller memory footprintthan the blocking non-

N-copy version because in the presence of a large number of shared file-descriptors and a large number

of processes, its index data-structures are costly enough to negate any memory savings generated for the

non-N-copy servers. In fact, several of the performance differences observed are related to implementation

rather than architecture. Another example is the use of a global mutex lock for the cache table. Better

performance is gained by switching to two-tiered locking. Afinal example is the scheduling of asymmetric

tasks in WatPipe has a large effect on performance.

The difference between server architectures is more pronounced than the difference between the

N-copy and non-N-copy versions of a server. Again, no singleserver or tuning achieves the best per-

formance across all the workloads. For the in-memory workloads, all the non-blocking servers that sup-

port partitioning have high performance and for the disk-bound workload blocking WatPipe, both N-copy

and multiprocessor, has the best performance. Blocking WatPipe performs the best because of better

disk efficiency due to blockingsendfile and a smaller memory footprint due to asymmetric tasks and a

shared address space. In fact, N-copy blocking WatPipe performs well across both workloads, it has peak

throughput within 4% of the best server for the in-memory workload and 9% higher throughput than the

other servers, not including watpipe-b, for the disk-boundworkload. Hence, N-copy blocking WatPipe is

a good server choice across workloads.

Predicting the best server as the number of CPUs increases isdifficult because other factors, such

as memory size and workload, must also be considered. However, server architecture becomes more

important as throughput and the number of CPUs increase. Forin-memory workloads, it is likely that

the non-blocking N-copy servers would have the best performance. As seen with the blocking servers, a

larger number of kernel threads results in increased contention and eventually lower throughput. When

there is memory pressure in the system, the situation is moredifficult to predict as there is a tradeoff in

the servers designs between memory footprint and contention. For situations where N-copy servers are

inappropriate, the pipeline architecture appears to offerbetter scalability because of its use of a shared

169

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

address space and asymmetric tasks. As well, the servers arealso more sensitive to memory pressure as

throughput increases, meaning that high disk-throughput is essential for good performance.

170

Chapter 5

Lessons Learned

A large part of the work for this thesis involved implementing or augmenting web servers, debugging

performance problems and running experiments. While the results of this work are discussed in the pre-

vious chapters, the process of performing the work is not discussed. This chapter discusses some of my

experiences and may provide useful information to anyone else undertaking similar research.

5.1 Implementing Web Servers

The main software development effort for the thesis is the WatPipe server, both the uniprocessor and

multiprocessor versions. However, I also augmentedµserver, Knot and Capriccio to enhance the servers

and fix bugs. Some of the design and implementation choices for the various servers are discussed in this

section, along with some of the implications of these choices.

It is reasonable for an application to avoid holding a lock while performing blocking I/O, unless

the lock is explicitly protecting the I/O operation. However, blocking I/O can occur in subtle ways, for

example, calls toopen and fstat access the file system and are potentially blocking. In the uniprocessor

experiments, the application cache-table inµserver shared-SYMPED is protected by a global mutex-lock.

Originally, as part of adding an entry to the application cache-table, bothopen andfstat were called with

the cache lock acquired. Sinceµserver shared-SYMPED has a shared application-cache, thisbehaviour

reduces throughput when there is memory pressure because ifone process blocks holding the cache lock,

while waiting for I/O as a result of one of these calls, other processes would tend to block waiting on the

cache lock. In fact, the problem was discovered because the server always had a small amount of I/O wait

for the moderate disk-I/O experiments. To fix the problem, the cache lock is released before callingopen

171

CHAPTER 5. LESSONS LEARNED

and fstat, and reacquired afterwards. While there is extra locking overhead, the overall result is higher

throughput and I/O wait is eliminated because of the additional concurrency.

A more general observation is that small decisions can become important when scaling to thousands of

connections and hundreds of processes. One example is the index data-structures used inµserver to map

between a socket descriptor and the array containing its corresponding request information. As discussed

in Section 4.6.2, when scaling to hundreds of processes witha large number of connections, this data

structure can occupy hundreds of megabytes of space.

All the servers tend to operate more efficiently when a largernumber of events are returned from each

call to the event mechanism. An interesting observation is that more events returned for one call to the

event mechanism leads to more events per call for subsequentcalls to the event mechanism. When more

events are returned from a call, more work is performed processing the events, so the processes/kernel-

threads tend to execute longer resulting in a larger number of events available for the next call.

While these observations apply to all the servers, there area number of lessons learned specifically

related to the design and implementation of WatPipe.

5.1.1 WatPipe

One of the major design features of WatPipe is the use of asymmetric tasks. Asymmetric tasks offer many

benefits but allowing tasks to execute freely and be scheduled by the operating-system scheduler can lead

to problems such as contention and poor cache behaviour. Thethroughput of WatPipe can vary greatly

depending on how these tasks are scheduled. To deal with these problems, WatPipe uses convoy or cohort

scheduling so reader tasks are not active at the same time as writer tasks. As well, the execution of the

event polling tasks are also controlled by WatPipe. Becausethese tasks perform very little work aside

from calling epoll_wait, they do not use their entire time slice, so the Linux scheduler tends to schedule

them frequently. However, event polling is more efficient when the delay between polls is longer, i.e.,

fewer calls result in more events returned per call. With theuniprocessor server, information is centralized

so deciding when to perform polling is simple. With the multiprocessor server, sections of the server are

executing independently on different CPUs, so making a global decision is difficult. Hence, the simple

approach of throttling the polling tasks using a small delayis used.

When designing the multiprocessor version of WatPipe, determining how to partition the server was

difficult. The approach taken is to partition most of the server, including the read stage and the write

stage, and creating a separate copy per CPU of the the cache table and most of the internal data-structures.

In-memory experiments were then run to confirm the server’s throughput is equivalent to the N-copy

server and to generate a baseline throughput for subsequentcomparisons. Then, parts of the system were

172

5.2. PERFORMANCE PROBLEMS

unpartitioned in turn and experiments were run to determinethe effect on performance. This systematic

unpartitioning identified places where partitioning is necessary for high performance, resulting in the

multiprocessor WatPipe server presented in the thesis. Forexample, unpartitioning the read and write

stages resulted in a large drop in throughput, but the acceptor tasks and most of the internal data structures

did not require partitioning. An unpartitioned application-cache also resulted in lower throughput initially,

but moving from a single global lock to two-tiered locking made a shared application-cache reasonable.

The initial design of multiprocessor WatPipe used a single listening-port with a small number of

acceptor tasks. However, the final design contains separatelistening-ports with one acceptor task per

subnet. While using a single port for accepting connectionsis more efficient, it does not provide enough

control. Because WatPipe uses fixed-sized queues and separate per CPU queues, it is inappropriate, at

times, to accept connections from any subnet; but it may be reasonable to continue accepting connections

for certain subnets. Therefore, each subnet must be handledseparately to control the subnets from which

new connections are accepted. While it is possible to reducethe number of acceptor tasks by using accept

with a non-blocking listening socket, this approach leads to polling. It is more efficient to use accept with

blocking sockets, requiring a separate acceptor task per subnet.

5.2 Performance Problems

Debugging for the thesis can be classified into one of two categories: correctness and performance. Track-

ing down either type of problem is challenging, especially if they only occur when the server is under a

full load. The focus of this section is the kernel problems discovered in the course of the experiments.

While at least two of the kernel problems can be considered correctness issues, all the problems presented

themselves initially as performance problems.

Debugging performance problems are difficult, especially tracking a performance problem into the

Linux kernel. The first step is to recognize that a performance problem actually exists. In isolation, it is

difficult to determine if a server is running reasonably or ifthere is a problem. One advantage of comparing

multiple servers across various configurations is the opportunity to compare throughput among the servers

to identify performance anomalies. Tracking down the source of an anomaly can be challenging if these

anomalies only tend to occur when the server is under a full load. The first step is to determine whether the

server itself is defective or if an external factor is causing the problem. If an anomaly occurs consistently

with certain types of servers or server configurations, it might suggest a deeper problem. This situation

occurred several times over the course of the thesis. In one case, there was a consistent performance

difference between the non-blocking and blocking servers for the disk bound workloads. In another case,

using a separate cache per process unexpectedly had better performance than using a shared cache. In a

173

CHAPTER 5. LESSONS LEARNED

final example, there was inconsistent throughput for multiple runs with the same server configuration. In

each of these case, the problem was eventually traced into the Linux kernel

In tracking down these problems, I found OProfile data was nothelpful because it tended to be too

coarse grained. Rather, other types of data gathered duringthe experiments, such as differences in the

average blocks-in from disk or the amount of I/O wait, were more helpful. Unexpected differences in

these statistics, helped to confirm a problem exists and evensuggested what type of problem is occurring.

A tool I found useful in tracking down Linux kernel problems is SystemTap [2]. SystemTap is a

scripting language useful for instrumenting a running Linux kernel. It works by executing a handler

on specified events, such as on entry to or exit from specified kernel functions. One useful feature of

SystemTap is the ability to access and print local context inside the kernel.

For example, this technique was used to track down the read-ahead problem with non-blockingsendfile

in the 2.6.16-18 Linux kernel. Initially, SystemTap was used to understand and track the behaviour of

sendfile into the kernel. After identifying the important functionsand data structures involved, a subset of

the function parameters was printed on entry to these functions. Looking specifically at the output for the

functions involved in managing page-cache read-ahead revealed that read-ahead was being disabled with

non-blockingsendfile. Based on this information, an examination of the relevant source code revealed the

source of the anomaly, a mismatch between the amount of disk I/O and network I/O on calls tosendfile.

Without a tool like SystemTap to trace thesendfile call and narrow the search space, finding the problem

would have taken significantly longer because the Linux kernel is large and complicated.

5.3 Performance Experiments

There are a number of advantages to using the Linux kernel andother open-source software for perfor-

mance experiments. Access to the source is invaluable in tracking down problems and understanding

performance issues. A frequent suggestion when a problem isfound is to upgrade to a newer version.

However, the Linux kernel and open-source software, in general, are moving targets. In many cases, up-

grading to a new kernel does not solve a given problem, and newer versions of the kernel can have their

own problems, leading to performance regressions. For example, Figure 5.1 shows the results of multi-

ple N-copy sharedsymped-nb with readers/writer locks experiments on the Linux kernel 2.6.24-3. The

lines labelled “No patch” are two separate runs of the same experiment, without rebooting the machine in

between runs, with an unpatched version of the kernel. The lines labelled “Patch” are two separate runs

of the same experiment, without rebooting the machine in between runs, with a patched version of the

kernel (the same kernel used for the experiments in Chapter 4, containing the patch in Section A.2). The

results show that the throughput for the unpatched kernel ismuch lower than the patched kernel and the

174

5.3. PERFORMANCE EXPERIMENTS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10000 20000 30000 40000 50000 60000 70000

M
b
p
s

Requests/s

No patch - run 1
No patch - run 2

Patch - run 1
Patch - run 2

Figure 5.1: Experiments unpatched and patched Linux kernel2.6.24-3 - 2 GB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10000 20000 30000 40000 50000 60000 70000

M
b
p
s

Requests/s

No patch - run 1
No patch - run 2

Patch - run 1
Patch - run 2

Figure 5.2: Experiments with unpatched and patched Linux kernel 2.6.32 - 2 GB

175

CHAPTER 5. LESSONS LEARNED

performance of the second run is worse than the first run. The runs with the patched kernel have higher

throughput and the performance is approximately equivalent between runs.

Figure 5.2 contains the same sequence of experiments with a 2.6.32 Linux kernel. The unpatched ker-

nel behaves similarly to the unpatched 2.6.24-3 kernel. With the same patch, experiments with the newer

kernel also show much higher performance. However, experiments with the patched kernel have two

problems. First, there is a significant drop in performance at around 54,000 requests per second. Second,

the second patched run has lower throughput than the first patched run. Without further investigation, it is

unclear whether the problem is with the patch or if there is another problem with the kernel. In either case,

this small experiment illustrates the challenges of working with rapidly changing open-source software

and the fallacy that upgrading to a new version is a fix.

Many performance experiments were run for the thesis. In fact, all of the experiments were run more

than once, and in some cases many times due to various problems. The most important lesson when

running a large number of experiments is to create scripts toautomate the process of running experiments

and summarizing the results as much as possible. Building scripts can be time consuming, but every script

I wrote has been used many times and has ended up saving a largeamount of time.

176

Chapter 6

Conclusion

This thesis examines uniprocessor and multiprocessor web-server architectures for serving static con-

tent to determine the key factors affecting their performance. The uniprocessor architectures examined

are thread-per-connection, SYMPED, shared-SYMPED and pipeline. Knot and Capriccio are used for the

thread-per-connection architecture,µserver for SYMPED and shared-SYMPED, and WatPipe for pipeline.

WatPipe was implemented for the thesis and the other servershave been augmented so the implementation

for each architecture is state-of-the-art and uses currentbest practices. The multiprocessor architectures

examined are SYMPED, shared-SYMPED and pipeline. To achieve best performance on a multiproces-

sor, server architectures and implementations must be adjusted to support partitioning of kernel-threads,

subnets and CPUs. The corresponding uniprocessor servers are extended for multiprocessor execution

and also compared against N-copy versions of the servers.

Extensive experiments were run for each server on two workloads, in-memory and heavy disk-I/O,

and for the uniprocessor servers a moderate disk-I/O workload was also tested. These experiments are

used to compare the performance of the servers and to determine the factors that are important to achieve

high throughput.

Regardless of the server architecture or implementation, proper tuning is critical to achieve best server

performance. Furthermore, no single tuning achieves the best performance for all workloads. An im-

portant difference among the servers is the range of parameters over which performance is stable. The

blocking servers tend to be more stable as the number of connections are increased and are less suscep-

tible to large-file timeouts than the non-blocking servers.As well, the servers with shared memory and

asymmetric tasks show better tuning stability as the numberof kernel threads increase than the servers

with symmetric processes. Stability is an important feature as it makes server tuning easier and it allows

a server configuration to operate well over a wide range of workloads.

177

CHAPTER 6. CONCLUSION

One interesting result is the performance difference between non-blocking and blockingsendfile

across the workloads. For in-memory workloads, the most important factor is to keep the execution

overhead of the server small. Hence, the non-blocking servers perform best as they require few kernel

threads. Once there is memory pressure in the system, performance is dictated by the memory footprint

of the server. Since a large number of kernel threads are required to handle blocking disk-I/O, servers

with shared address-space have higher throughput. As the number of kernel threads increases, the use

of asymmetric tasks incur less additional execution overheads compared to symmetric processes, though

the differences are small. Once the server is disk bound, efficient disk access is also an important factor

in determining throughput. Despite having a larger memory footprint and additional overheads, servers

usingsendfile with blocking sockets have better disk efficiency due to different file-access patterns, usu-

ally resulting in higher throughput with disk-bound workloads. For the multiprocessor experiments, the

high throughput of the servers make memory footprint even more important. Even a moderate amount of

memory pressure causes the servers to become disk bound. Unlike the uniprocessor experiments, better

disk efficiency is unable to overcome large memory-footprint problems for some of the servers.

A final factor that is important for the multiprocessor servers is sharing data across CPUs. The ad-

vantage of sharing data is a smaller memory footprint, but the trade off is increased overheads due to

contention and cache coherency. Any server architecture with shared application data must control these

overheads, otherwise they can become a bottleneck. The use of two-tiered locking for the application

cache seems to work reasonably well when there are only a few kernel threads but less well as the number

of threads increase. However, the shared memory designs maymore easily support other kinds of work

within a server, such as dynamic monitoring, load balancingand tuning.

Comparing the performance of the servers across the workloads tested, blocking WatPipe offers the

best performance among the uniprocessor servers and N-copyblocking WatPipe among the multiproces-

sor servers. More importantly, consider the factors that result in these servers having the best overall

performance. Both servers use blockingsendfile, resulting in better disk efficiency when there is heavy

disk-I/O. While all the servers have blocking versions, both servers also have a small memory footprint

even with a large number of kernel threads due to shared address space. Even though N-copy blocking

WatPipe does not have a completely shared address space, theamount of duplication is small as it is pro-

portional to the number of CPUs. The trade off for the larger memory footprint is less contention as there

is no sharing of application data across CPUs. Finally, bothservers use asymmetric tasks, allowing the

server to add tasks where needed without unnecessary overheads, resulting in high throughput even with

the in-memory workload despite a large number of kernel threads.

While no single server or configuration performed the best for all workloads, the difference in peak

throughput among the best version of each server architecture is within 9–13%, across the uniprocessor

and multiprocessor workloads, where at least one server of each kind of architecture appears with these

178

6.1. FUTURE WORK

ranges. Unless highest throughput is critical, secondary factors may determine the appropriate choice

of server architecture, e.g., tuning stability, ease of implementation and debugging, and programming

preference.

6.1 Future Work

There are a number of areas for further work related to the thesis. In addition to examining alternative

architectures, especially for multiprocessors, there area number of other avenues to explore.

One of the big problems with the servers in the thesis is the need for hand tuning. Tuning is critical

to server performance, however, no single tuning performs best across all workloads. Ideally, the server

should dynamically adapt to changing workloads as necessary by performing auto tuning. Auto tuning,

however, especially across a number of different parameters, is a difficult problem [11]. As shown in the

thesis, simple heuristics like eliminating idle time are insufficient. Servers must be able to monitor their

behaviour and adjust accordingly. As well, the various architectures examined in the thesis show varying

degrees of sensitivity to the tuning parameters tested, especially for large tuning values. Examining server

architectures specifically with respect to ease of tuning isalso reasonable.

For the experiments in the thesis with heavy disk-I/O, all the servers experienced I/O wait because

blocking disk-I/O becomes a bottleneck once the file-systemcache is sufficiently small. Since the presence

of I/O wait indicates there is extra CPU time in the system, performing extra work in order to reduce the

memory footprint of the servers could result in a higher throughput. All the servers store HTTP headers

in their application cache, resulting in a larger memory footprint. It would be interesting to see the effect

of dynamically generating HTTP headers for each request, especially for the SYMPED servers since

each process has a separate application cache, so the reduction in memory footprint is non-trivial. Other

opportunities to trade additional CPU execution for memorysavings may also exist.

An important result in the thesis is the performance of blocking versus non-blockingsendfile as mem-

ory pressure changes. Rather than basing this choice on workload, it may be be reasonable to dynamically

adjust the behaviour ofsendfile based on file size. For example, using blockingsendfile for large files

and non-blockingsendfile otherwise. Experiments are required to understand the effect of this dynamic

adjustment on disk access-patterns and number of kernel threads, as well as to determine an appropriate

file size for this transition.

There are also interesting areas to explore specifically related to multiprocessor architectures. A first

step is moving to a 64-bit operating system and testing the scalability of various server architectures with

more memory and CPUs. The trend of increasing CPUs and network interface capacity make it likely

179

CHAPTER 6. CONCLUSION

that CPUs will outnumber network interfaces on newer hardware, making partitioning more challeng-

ing. Furthermore, new multiprocessor hardware may requiredifferent approaches for best performance.

For example, instead of partitioning, parallelizing operating-system interrupt-handling code and network

stacks may be required.

Based on working with several server architectures, a couple of small operating system improvements

may help when implementing servers. One problem with some servers (WatPipe, Knot) is the inappropri-

ate scheduling of asymmetric threads by the operating system scheduler, as its general policy is fairness.

However, due to factors such as contention and cache coherency, it may be reasonable to use techniques

like cohort [33] or convoy [60] scheduling, where only a subset of the ready threads are run concurrently.

Unfortunately, these self-scheduling techniques can leadto inefficient CPU utilization due to potentially

blocking operations, such as disk I/O, because it is unknownin advance whether an operation will block,

so the application is unable to determine if it should adjustits current thread schedule. Techniques involv-

ing thread priorities tend to be awkward, difficult to control and may become expensive if priorities need

constant adjusting. Therefore, a reasonable enhancement is for the operating system kernel to wake up

a voluntarily blocked thread when another thread involuntarily blocks. For example, signalling a thread

blocked on a condition variable or providing a special type of yield system-call to allow threads to volun-

tarily delay their execution until a blocking operation occurs.

Another useful extension is to allow minimums to be specifiedfor operations like event polling. In

many cases, it is preferable to wait until a number of events are available to reduce the number of event

polling calls required. For example, if an application has more than one thread, polling for events may

not be an indication that the application has run out of work.Specifying a minimum number of events

with a timeout would still allow for the timely delivery of events while reducing the amount of polling,

but additional tuning would be required to determine this minimum.

As well, once operating systems provide better asynchronous I/O support, it would be interesting to

determine if these mechanisms offer any performance benefits for high-performance web-servers. In-

tegrating asynchronous I/O with existing event mechanismswould present an application with a single

consistent interface for all I/O, simplifying programming[42]. As well, asynchronous I/O could reduce

the memory footprint required for certain server architectures.

Finally, it would be interesting to examine the performanceof the various server architectures with

different types of Internet applications and other workloads because architectures that work best for static

web-servers may not work well for other application domains. For example, other types of servers, such as

video streaming or game servers, and other workloads, such as dynamic workloads and web 2.0 workloads,

have different requirements.

180

APPENDICES

181

Appendix A

Kernel Patches

A.1 Patch for Linux kernel 2.6.16-18

*** try/linux-2.6.16.18/mm/filemap.c 2006-05-22 14:04:35.000000000 -0400
--- linux-2.6.16.18-rafix/mm/filemap.c 2009-07-03 23:14:58.000000000 -0400

*************** page_ok:

*** 803,809 ****
* When (part of) the same page is read multiple times

* in succession, only mark it as accessed the first time.

*/
! if (prev_index != index)

mark_page_accessed(page);
prev_index = index;

--- 803,809 ----

* When (part of) the same page is read multiple times

* in succession, only mark it as accessed the first time.

*/
! if (prev_index != index | | !offset)

mark_page_accessed(page);
prev_index = index;

183

APPENDIX A. KERNEL PATCHES

A.2 Patch for Linux kernel 2.6.24-3

*** linux-source-2.6.24/fs/splice.c 2008-11-30 17:09:49.000000000 -0500
--- linux-source-2.6.24-cachefix/fs/splice.c 2009-07-24 11:30:07.000000000 -0400

*************** fill_it:

*** 412,417 ****
--- 412,418 ----

if (unlikely(!isize | | index > end_index))
break;

+ mark_page_accessed(page);
/*
* if this is the last page, see if we need to shrink

* the length and stop

184

References

[1] Theµserver home page. HP Labs, 2005. http://www.hpl.hp.com/research/linux/userver/. 7

[2] The SystemTap home page, 2010. http://sourceware.org/systemtap/. 174

[3] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R. Douceur. Cooperative

task management without manual stack management. InATEC ’02: Proceedings of the General

Track of the annual conference on USENIX Annual Technical Conference, pages 289–302, Berkeley,

CA, USA, 2002. USENIX Association. 7, 34

[4] Vaijayanthimala Anand and Bill Hartner. TCPIP network stack performance in Linux kernel 2.4 and

2.5. InProceedings of the 4th Annual Ottawa Linux Symposium, June 2002. 120

[5] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Scheduler

activations: Effective kernel support for the user-level management of parallelism.ACM Trans.

Comput. Syst., 10(1):53–79, 1992. 21

[6] Apache software foundation. The Apache web server. http://httpd.apache.org. 10

[7] Gaurav Banga and Peter Druschel. Measuring the capacityof a web server. InUSITS’97: Proceed-

ings of the USENIX Symposium on Internet Technologies and Systems on USENIX Symposium on

Internet Technologies and Systems, pages 6–6, Berkeley, CA, USA, 1997. USENIX Association. 24

[8] Gaurav Banga and Jeffrey C. Mogul. Scalable kernel performance for Internet servers under re-

alistic loads. InATEC ’98: Proceedings of the annual conference on USENIX Annual Technical

Conference, pages 1–1, Berkeley, CA, USA, 1998. USENIX Association. 19

[9] Gaurav Banga, Jeffrey C. Mogul, and Peter Druschel. A scalable and explicit event delivery mech-

anism for UNIX. In USENIX Annual Technical Conference, pages 253–265, June 1999. 5, 19,

33

185

REFERENCES

[10] Paul Barford and Mark Crovella. Generating representative web workloads for network and server

performance evaluation. InProceedings of ACM SIGMETRICS 1998, Madison, Wisconsin, 1998.

25

[11] Vicenç Beltran, Jordi Torres, and Eduard Ayguadé. Understanding tuning complexity in multi-

threaded and hybrid web servers. InParallel and Distributed Processing, 2008. IPDPS 2008. IEEE

International Symposium on, pages 1–12, April 2008. 28, 179

[12] Silas Boyd-Wickizer, Robert Morris, and M. Frans Kaashoek. Reinventing scheduling for multicore

systems. InProceedings of the 12th Workshop on Hot Topics in Operating Systems (HotOS-XII),

Monte Verità, Switzerland, May 2009. 10

[13] Tim Brecht, David Pariag, and Louay Gammo. accept()able strategies for improving web server

performance. InProceedings of the 2004 USENIX Annual Technical Conference, June 2004. 8, 14,

15, 23, 35

[14] Brendan Burns, Kevin Grimaldi, Alexander Kostadinov,Emery D. Berger, and Mark D. Corner.

Flux: A language for programming high-performance servers. In Proceedings of the 2006 USENIX

Annual Technical Conference, pages 129–142, 2006. 11, 14, 17

[15] Anupam Chanda, Khaled Elmeleegy, Romer Gil, Sumit Mittal, Alan L. Cox, and Willy Zwaenepoel.

An efficient threading model to boost server performance. Technical Report TR04-440, Rice Uni-

versity, 2004. 21

[16] Abhishek Chandra and David Mosberger. Scalability of Linux Event-Dispatch mechanisms. In

Proceedings of the 2001 USENIX Annual Technical Conference, 2001. 8, 19, 20

[17] Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz, and Chita R. Das.A multi-threaded pipelined web server

architecture for SMP/SoC machines. InWWW ’05: Proceedings of the 14th international conference

on World Wide Web, pages 730–739, New York, NY, USA, 2005. ACM. 2, 11, 16

[18] Melvin E. Conway. Design of a separable transition-diagram compiler. Communications of the

ACM, 6(7):396–408, July 1963. 34

[19] Ryan Cunningham and Eddie Kohler. Making events less slippery with eel. InHOTOS’05: Proceed-

ings of the 10th conference on Hot Topics in Operating Systems, pages 3–3, Berkeley, CA, USA,

2005. USENIX Association. 7

[20] Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Mazières, and Robert Morris. Event-

driven programming for robust software. InProceedings of the 10th ACM SIGOPS European Work-

shop, pages 186–189, New York, NY, USA, 2002. ACM. 7

186

REFERENCES

[21] Ulrich Drepper. The need for asynchronous, zero-copy network I/O. In Proceedings of the 8th

Annual Ottawa Linux Symposium, July 2006. 21

[22] Ulrich Drepper and Ingo Molnar. The native POSIX threads library for Linux.

http://people.redhat.com/drepper/nptl-design.pdf. 11

[23] Khaled Elmeleegy, Anupam Chanda, Alan L. Cox, and WillyZwaenepoel. Lazy asynchronous I/O

for event-driven servers. InUSENIX Annual Technical Conference, General Track, pages 241–254,

2004. 21

[24] Annie Foong, Jason Fung, and Don Newell. An in-depth analysis of the impact of processor affinity

on network performance. InNetworks, 2004. (ICON 2004). Proceedings. 12th IEEE International

Conference on, volume 1, pages 244–250 vol.1, Nov. 2004. 120

[25] Hubertus Franke, Rusty Russell, and Matthew Kirkwood.Fuss, futexes and furwocks: Fast user-level

locking in Linux. InOttawa Linux Symposium, June 2002. 38, 128

[26] Louay Gammo, Tim Brecht, Amol Shukla, and David Pariag.Comparing and evaluating epoll,

select, and poll event mechanisms. InProceedings of the 6th Annual Ottawa Linux Symposium, July

2004. 19

[27] Philipp Haller and Martin Odersky. Actors that Unify Threads and Events. InProceedings of the

9th International Conference on Coordination Models and Languages (COORDINATION), pages

171–190. Springer, 2007. 7

[28] James C. Hu, Irfan Pyarali, and Douglas C. Schmidt. Measuring the impact of event dispatching and

concurrency models on web server performance over high-speed networks. InGlobal Telecommuni-

cations Conference, 1997. GLOBECOM ’97., IEEE, volume 3, pages 1924–1931 vol.3, Nov 1997.

20

[29] Philippe Joubert, Robert King, Richard Neves, Mark Russinovich, and John Tracey. High-

performance memory-based Web servers: Kernel and user-space performance. InProceedings of

the USENIX 2001 Annual Technical Conference, pages 175–188, 2001. 1, 14, 20

[30] Jupiter Research. Retail website performance: Consumer reaction to a poor online shopping experi-

ence.http://www.akamai.com/4seconds, 2006. 26

[31] Maxwell Krohn. Building secure high-performance web services with OKWS. InATEC ’04: Pro-

ceedings of the annual conference on USENIX Annual Technical Conference, pages 15–15, Berkeley,

CA, USA, 2004. USENIX Association. 1

187

http://www.akamai.com/4seconds

REFERENCES

[32] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. Events can make sense. InATC’07: 2007

USENIX Annual Technical Conference on Proceedings of the USENIX Annual Technical Conference,

pages 1–14, Berkeley, CA, USA, 2007. USENIX Association. 7

[33] James R. Larus and Michael Parkes. Using cohort-scheduling to enhance server performance. In

ATEC ’02: Proceedings of the General Track of the annual conference on USENIX Annual Technical

Conference, pages 103–114, Berkeley, CA, USA, 2002. USENIX Association. 10, 11, 12, 180

[34] Hugh C. Lauer and Roger M. Needham. On the duality of operating systems structures. InProceed-

ings of the 2nd International Symposium on Operating Systems, IRIA, October 1978. 7

[35] Jonathan Lemon. Kqueue - a generic and scalable event notification facility. In USENIX Annual

Technical Conference, FREENIX Track, pages 141–153, 2001. 19

[36] Chuck Lever, Marius Eriksen, and Stephen Molloy. An analysis of the TUX web server. Technical

report, University of Michigan, CITI Technical Report 00-8, Nov. 2000. 14

[37] Ren Liyong and Wang Tao. Study and implementation of a heavy server architecture. InWireless

Communications, Networking and Mobile Computing, 2006. WiCOM 2006.International Conference

on, pages 1–4, Sept. 2006. 9, 38

[38] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, andEvangelos P. Markatos. First-class user-

level threads. InSOSP ’91: Proceedings of the thirteenth ACM symposium on Operating systems

principles, pages 110–121, New York, NY, USA, 1991. ACM. 21

[39] David Mosberger and Tai Jin. httperf tool for measuringweb server performance.SIGMETRICS

Perform. Eval. Rev., 26(3):31–37, 1998. 24

[40] Erich Nahum, Tsipora Barzilai, and Dilip D. Kandlur. Performance issues in www servers.

IEEE/ACM Trans. Netw., 10(1):2–11, 2002. 20

[41] Jakob Nielsen.Designing Web Usability. New Riders, 2000. 26

[42] Michal Ostrowski. A mechanism for scalable event notification and delivery in Linux. Master’s

thesis, Department of Computer Science, University of Waterloo, November 2000. 180

[43] John K. Ousterhout. Why threads are a bad idea (for most purposes), January 1996. Presentation

given at the 1996 USENIX Annual Technical Conference. 7

[44] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and portable Web server.

In Proceedings of the USENIX 1999 Annual Technical Conference, 1999. 2, 7, 8, 9, 10, 13, 15, 33

188

REFERENCES

[45] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, and Amol Shukla. Comparing the performance of

web server architectures. InEuroSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2007, pages 231–243, New York, NY, USA, March 2007. ACM.

15, 30, 37, 62

[46] KyoungSoo Park and Vivek S. Pai. Connection conditioning: Architecture-independent support for

simple, robust servers. InProceedings of the Third Symposium on Networked Systems Design and

Implementation (NSDI 2006), San Jose, CA, May 2006. 14, 23

[47] Niels Provos and Chuck Lever. Scalable network I/O in Linux. In Proceedings of the USENIX

Annual Technical Conference, FREENIX Track, June 2000. 19

[48] Red Hat, Inc.TUX 2.2 Reference Manual, 2002. 14

[49] Amol Shukla, Lily Li, Anand Subramanian, Paul A. S. Ward, and Tim Brecht. Evaluating the

performance of user-space and kernel-space web servers. InCASCON ’04: Proceedings of the 2004

conference of the Centre for Advanced Studies on Collaborative research, pages 189–201. IBM

Press, 2004. 14

[50] Standard Performance Evaluation Corporation.SPECWeb99 Benchmark, 1999. http://-

www.specbench.org/osg/web99. 23

[51] Sun Microsystems. Sun Fire X4150, X4250, and X4450 server architecture. Whitepaper, 2008,

OPTnote = , OPTannote = . 140

[52] David Tam, Reza Azimi, and Michael Stumm. Thread clustering: Sharing-aware scheduling on

SMP-CMP-SMT multiprocessors. InEuroSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007, pages 47–58, New York, NY, USA, 2007. ACM.

10

[53] Gautam Upadhyaya, Vijay S. Pai, and Samuel P. Midkiff. Expressing and exploiting concurrency

in networked applications with Aspen. InPPoPP ’07: Proceedings of the 12th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 13–23, New York, NY, USA,

2007. ACM. 11, 17, 23

[54] Bryan Veal and Annie Foong. Performance scalability ofa multi-core web server. InANCS ’07:

Proceedings of the 3rd ACM/IEEE Symposium on Architecture for networking and communications

systems, pages 57–66, New York, NY, USA, 2007. ACM. 123

[55] John Vert. Writing scalable applications for Windows NT, 1995. 19

189

REFERENCES

[56] Rob von Behren, Jeremy Condit, and Eric Brewer. Why events are a bad idea for high-concurrency

servers. In9th Workshop on Hot Topics in Operating Systems (HotOS IX), 2003. 7, 35

[57] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer. Capriccio: Scal-

able threads for Internet services. InSOSP ’03: Proceedings of the Nineteenth ACM Symposium on

Operating Systems Principles, pages 268–281, New York, NY, USA, 2003. ACM Press. 2, 10, 11,

14, 15, 23, 33, 34

[58] Ivan Voras and MariǒZagar. Characteristics of multithreading models for high-performance IO

driven network applications.The Computing Research Repository (CoRR), abs/0909.4934, Septem-

ber 2009. 17

[59] Matt Welsh, David Culler, and Eric Brewer. SEDA: An architecture for well-conditioned, scalable

Internet services. InSOSP ’01: Proceedings of the eighteenth ACM symposium on Operating systems

principles, pages 230–243, New York, NY, USA, 2001. ACM Press. 2, 11, 12,13, 23, 33

[60] Matt Welsh, Steven D. Gribble, Eric A. Brewer, and DavidCuller. A design framework for highly

concurrent systems. Technical report, University of California at Berkeley, Berkeley, CA, USA,

2000. 12, 180

[61] Nian-Min YAO, Ming-Yang ZHENG, and Jiu-Bin JU. Pipeline: a new architecture of high perfor-

mance servers.SIGOPS Oper. Syst. Rev., 36(4):55–64, 2002. 2, 11

[62] Nickolai Zeldovich, Alexander Yip, Frank Dabek, Robert T. Morris, David Mazières, and Frans

Kaashoek. Multiprocessor support for event-driven programs. InProceedings of the USENIX 2003

Annual Technical Conference, pages 239–252, June 2003. 1, 2, 7, 8, 15, 23, 38, 131

[63] Zeus technology. Zeus web server. http://www.zeus.com/products/zws. 7

[64] George K. Zipf. Human Behavior and the Principle of Least Effort: an Introduction to Human

Ecology. Addison-Wesley, Cambridge, MA., 1949. 24

190

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Contributions
	Thesis Outline

	Background and Related Work
	Handling an HTTP Request
	Server Architectures
	Event-Driven Architecture
	Thread-Per-Connection Architecture
	Pipeline Architecture

	Uniprocessor Performance Comparisons
	Multiprocessor Performance Comparisons
	File-System Cache
	API Improvements
	Scalable Event-Polling
	Zero-Copy Transfer
	Asynchronous I/O

	Summary

	Uniprocessor Web-Server Architectures
	File Set
	Response Time
	Verification
	Tuning
	Environment
	Cache Warming
	Table Calculation
	Servers
	Knot and Capriccio
	server
	SYMPED Architecture
	Shared-SYMPED Architecture
	WatPipe

	Static Uniprocessor Workloads
	1.4 GB
	Tuning Knot
	Tuning server
	Tuning WatPipe
	Server Comparison

	4 GB
	Tuning Knot
	Tuning server
	Tuning WatPipe
	Server Comparison

	.75 GB
	Tuning Knot
	Tuning server
	Tuning WatPipe

	Server Comparison
	Comparison Across Workloads
	Summary

	Multiprocessor Web-Server Architectures
	Overview
	File Set
	Environment
	Affinities
	Scalability
	4 GB
	Tuning N-copy
	Tuning server
	Tuning WatPipe
	Server Comparison

	2 GB
	Tuning N-copy server
	Tuning N-copy WatPipe
	Tuning server
	Tuning WatPipe
	Server Comparison

	Comparison Across Workloads
	Summary

	Lessons Learned
	Implementing Web Servers
	WatPipe

	Performance Problems
	Performance Experiments

	Conclusion
	Future Work

	APPENDICES
	Kernel Patches
	Patch for Linux kernel 2.6.16-18
	Patch for Linux kernel 2.6.24-3

	References

