
An Experimental Evaluation of Processor Pool-Based
Scheduling for Shared-Memory NUMA Multiprocessors

Timothy B. Brecht

Department of Computer Science, York University
4700 Keele Street, North York, Ontario, CANADA M3J 1P3

URL: http://www.cs.yorku.ca/˜brecht
email: brecht@cs.yorku.ca

Abstract. In this paper we describe the design, implementation and experimental
evaluation of a technique for operating system schedulers called processor pool-based
scheduling [51]. Our technique is designed to assign processes (or kernel threads) of
parallel applications to processors in multiprogrammed, shared-memory NUMA
multiprocessors. The results of the experiments conducted in this research demonstrate
that: 1) Pool-based scheduling is an effective method for localizing application
execution and reducing mean response times. 2) Although application parallelism
should be considered, the optimal pool size is a function of the the system architecture.
3) The strategies of placing new applications in a pool with the largest potential for in-
pool growth (i.e., the pool containing the fewest jobs) and of isolating applications from
each other are desirable properties of algorithms for operating system schedulers
executing on NUMA architectures. The ‘‘Worst-Fit’’ policy we examine incorporates
both of these properties.

1 Introduction
The number of bus-based shared-memory multiprocessors being manufactured

and sold continues to increase at a rapid rate. In fact, the success of these systems has
lead several major computer manufacturers to develop and offer a complete product
line of shared-memory multiprocessors, from single bused systems containing a small
number of processors to larger more scalable systems that contain tens or hundreds of
processors.

The design of larger more scalable shared-memory multiprocessors has
necessitated the need for a departure from single bus-based systems because of the
inherent limits on the bandwidth of the bus. Recent efforts in designing shared-
memory multiprocessors (for even small systems) have focused on more scalable
architectures. Scalable multiprocessor architectures typically distribute memory
modules throughout the system in order to optimize access times to some memory
locations. This approach leads to a class of shared-memory architectures in which

A version of this paper appears in the Proceedings of the IPPS ’97 Workshop on Job
Scheduling Strategies for Parallel Processing, Springer-Verlag, Lecture Notes in Computer
Science, Vol. 1291, Geneva, Switzerland, pp. 139-165, April, 1997.

memory access latencies depend on the relative distance between the processor
requesting the access and the location of the memory module being addressed. Such
systems, called NUMA (Non-Uniform Memory Access) multiprocessors, are a
departure from the more common single bus-based UMA (Uniform Memory Access)
multiprocessors. Some examples of NUMA multiprocessors include the University of
Toronto’s Hector [48], MIT’s Alewife [1], Stanford’s DASH and FLASH [23][21],
Kendall Square Research’s KSR1 [9], SUN Microsystem’s S3.mp [31], the Convex
Exemplar SPP1000/1200 [13] and the Sequent STiNG [25].

The proliferation of more scalable, shared-memory multiprocessors presents new
opportunities for the users and new challenges for the designers of such systems.
Users are granted opportunities to solve much larger problems than previously
possible, with applications that use more processors and more memory, as well as the
opportunity to solve sev eral problems concurrently, by simultaneously executing
parallel applications. One of the challenges that these opportunities present to the
operating system designer, which is the focus of this paper, is the implementation of
scheduling algorithms designed to effectively utilize the processors while enabling the
efficient execution of multiple applications. This multiprogramming of parallel
applications is essential for the effective utilization of all of the processors because in
larger systems not all applications will be capable of efficiently executing on all
processors. [49].

A critical difference between processor scheduling in UMA and NUMA
multiprocessors is that scheduling decisions in NUMA systems must also consider the
time it takes to access different memory locations from different processors. Thus,
NUMA scheduling policies must consider the latency incurred during remote
communication (in some systems determined by the number of levels in the memory
access hierarchy) and to the extent possible preserve the locality of data references
inherent in parallel applications. Therefore, an important aspect of scheduling in
shared-memory NUMA multiprocessors is application placement. That is, how
should the parallel processes of an application be placed in a NUMA multiprocessor?

In this paper we experimentally evaluate a technique, called processor pool-based
scheduling, specifically designed for scheduling kernel threads onto processors in
NUMA multiprocessors. (We use the terms thread and process interchangeably and
intend both to refer to schedulable kernel entities, in our case a kernel thread.) We
examine two central issues related to processor pools. First, how should processor
pools be formed? For example, what influences which processors should belong to
which pool and how closely should pools match the architecture of the system?
Second, how are processor pools used? That is, once we have formed the processor
pools what algorithms should be used in assigning processes of parallel applications
to pools?

The results of our experimental evaluation of this technique show that pools
should be chosen to reflect the architecture of the systems (the clusters inherent in
scalable shared-memory systems) and that the properties of co-locating processes of
the same application and isolating separate parallel applications are keys to obtaining
good performance. We found that the ‘‘Worst-Fit’’ policy we consider for assigning
processes to pools incorporates both of these properties and that the benefits of using

this approach can reduce mean job execution times significantly. Moreover, our
results demonstrate that the benefits obtained from using processor pools increase as
the gap between processor and memory speeds continues to widen.

The remainder of this paper is organized as follows: Section 2 describes the
issues addressed by and the approach used in implementing processor pool-based
scheduling. Section 3 describes the environment in which we experimentally evaluate
our techniques and compare the performance of our algorithms. The applications and
the workload used in our evaluation are described in Section 4. In Section 5 we
discuss and experimentally evaluate a number of issues related to the formation of
processor pools (that is deciding which processors belong to each pool). In Section 6
we outline and compare the performance of algorithms related to the use of processor
pools (i.e., the assignment of threads of parallel applications to pools). In Section 7
we discuss related work and we conclude the paper with a summary of our results in
Section 8.

2 Processor Pools
We believe that the requirements of an operating system scheduler for NUMA

multiprocessors are essentially different from the requirements of processor
schedulers for small-scale UMA multiprocessors. The requirements that we believe
to be critical to the design and implementation of schedulers for multiprogrammed
parallel application workloads executing on NUMA multiprocessors are:

• Localization: Parallel threads of the same application need to be placed close to
each other in order to minimize overhead due to remote communication.

• Isolation: When possible, different applications should be placed in different
portions of the system in order to reduce contention for shared resources such as
buses, memory modules and interconnection networks.

• Adaptability: The system should be able to adapt to varied and changing
demands. A scalable multiprocessor should support the execution of a single
highly parallel application that is capable of utilizing all of the processors, as
well as a number of applications each executing on a smaller number of
processors.

• Scalability: A pervasive requirement of all software designed for scalable
architectures is that the software also scales.

A processor pool is a software construct for organizing and managing a large
number of processors by dividing them into groups called pools. Since the goal of
localization is to place parallel threads of the same application in a manner in which
the costs of memory references are minimized. This implies that the architectural
clusters inherent in NUMA multiprocessors must be considered when forming pools.
The locality of applications is preserved by choosing pools to match the clusters of
the system and executing the parallel processes of an application within a single pool
(and thus a cluster), unless there are performance advantages for it to span multiple
pools. Isolation is enforced by allocating different applications to different pools, thus
executing applications within separate sub-systems and keeping unnecessary traffic
off of higher levels of the interconnection network. Note that it is possible for several
applications to share one pool.

In very large systems (with 100 or more processors), processor pools can be
grouped together to form ‘‘pools of pools’’. These ‘‘pools of pools’’ are chosen and
managed in the same way as the original smaller pools except that they are
constructed and managed in a hierarchical fashion. Hierarchical structuring
techniques have been proposed and studied by other researchers [17][45][15]. In
particular, Unrau, Stumm, and Krieger have used a technique called Hierarchical
Symmetric Multiprocessing to structure operating systems for scalability [45][44].
They hav e demonstrated significant performance improvements in applications
executing on the Hector NUMA multiprocessor whose operating system, Hurricane,
is structured using this approach. We use Hector and Hurricane for our experimental
platform. Hierarchical structuring is therefore not a focus of our study.

Although the concept of a processor pool is driven by the size and NUMA
characteristics of scalable multiprocessors it is not tied to any particular architecture.
In actually implementing processor pools on a specific system, the NUMA
characteristics of that architecture should be identified and fully exploited. In most
architectures, there are clusters of processors that are good candidates for pools. For
example, in a large-scale KSR1 system [9] containing a number of RING:0
subsystems connected together with a RING:1 at the higher level, pools may be
formed by grouping together the processors in each of the RING:0’s. In the case of
the University of Toronto’s Hector system [48] as well as in Stanford’s DASH [23]
and FLASH systems [21], pools may be formed by grouping the processors of an
individual station or cluster. In the MIT Alewife multiprocessor [1], pools might be
chosen to consist of the four processors forming the smallest component of the mesh
interconnect or a slightly larger set of nearest neighbour processors.

Since the concept of processor pools is proposed to help simplify the placement
problem, processors are grouped together so that the main location decision to be
made is which pool to place the process in. The decision of which processor within
the pool to use, the in-pool scheduling decision, is one that can be made by another
level of software that handles scheduling within the pool. In our implementation we
consider processors within a pool to be indistinguishable, thus simplifying the task of
in-pool scheduling. Once the scheduling server determines which processor to assign
to the thread, the kernel is only responsible for creating it on that processor and for
the subsequent dispatching of threads. Therefore, we focus our attention on the
problem of determining which of the pools to place a process in.

Processor pool-based scheduling algorithms involve making scheduling decisions
based on pools rather than individual processors. In modern multiprocessors
scheduling decisions must be made at each of the following points during a job’s
execution (the issues related to these decision points are discussed more more detail in
Section 6):

1. Arrival: A kernel thread is created and must be assigned to a processor (pool).
The essential problem is which pool to assign the first thread of a new job to
when it is not know how many (if any) children that thread will create. This
decision is referred to as initial placement.

2. Expansion: A job creates a new thread for parallel execution. We call this
decision point job expansion.

3. Contraction: When a thread of a parallel program completes, a processor
becomes available which could be assigned to execute a new thread.

Contraction can be performed by permitting the scheduler to initiate expansion
by contacting one of the executing jobs. Expansion of this type requires coordination
between the scheduler and the user-level thread package’s run-time system.
Alternatively, the scheduler could also contact and coordinate with a job to reduce the
number of threads currently executing in order to reallocate processors to another job
(e.g., a newly arriving job). This this type of dynamic reallocation of processors is
referred to as dynamic repartitioning.

In fact some parallel jobs involve multiple phases of expansion and contraction
and dynamic repartitioning several algorithms have been designed in order to
reallocate processors fairly and/or in order to minimize mean response time
[43][50][8]. This previous work has been conducted under the assumption that
memory access latencies are uniform. Unfortunately, the problem of repartitioning
becomes considerably more complex on clustered, NUMA architectures. We leave
this important and interesting problem as a topic for future research (see [7] for a
more detailed discussion of the problem). In this paper we do not consider the
dynamic repartitioning of processors because of the issues related cache affinity in the
assignment of user-level threads to kernel-level threads [27][28]. This ensures that
the only differences in execution times are due to job scheduling decisions rather than
trying to account for possible differences in execution times due to user-level thread
scheduling decisions.

3 Experimental Environment
The system used to conduct the experiments presented in this paper is a

prototype shared-memory NUMA multiprocessor called Hector, dev eloped at the
University of Toronto [48]. The prototype used contains a total of 16 processors
grouped into four clusters, called stations. Stations are connected with a bit-parallel
slotted ring and each station consists of four processor modules connected with a bus.
Each processor module contains a Motorola MC81000 processor, separate instruction
and data caches and 4 Mbytes of memory for a total of 64 Mbytes of globally
addressable memory. Cache coherence is enforced in software by the HURRICANE
operating system’s memory manager at a 4 Kbyte page level of granularity, by
permitting only unshared and read-shared pages to be cacheable [45][44]. Enforcing
cache coherence in software simplifies the hardware design and has permitted a
simple and elegant design that has relatively mild NUMA characteristics.

Although the prototype Hector system used to conduct the experiments is
configured with sixteen processors, we dedicate one station (the four processors in
Station 0) to the execution of system processes, including the shell scripts used to
generate the workload. This ensures that differences in execution times are due solely
to differences in scheduler placements of application processes.

The NUMAness of a shared-memory multiprocessor can be thought of as the
degree to which memory access latencies are affected by the distance between the
requesting processor and the desired memory location. The degree of NUMAness of
a multiprocessor is affected by: 1) The differences in memory access times between
each of the levels in the memory access hierarchy. 2) The amount of memory (and
number of processors) that are co-located within each level. 3) The number of levels
in the NUMA hierarchy.

The Hector prototype features a set of ‘‘delay switches’’ that add additional
delays to off-station memory requests. Packets destined for a memory module not
located on the same station are held up at the requesting processor for the number of
specified cycles. The range of possible settings are: 0, 1, 2, 4, 8, 16, 32, and 64
processor cycles. The delay switches are used to emulate and gain insight into the
performance of: 1) Systems with faster processors — because processor speeds
continue to increase at a faster rate than memory and interconnection networks, thus
increasing remote memory access latencies. 2) Systems of different designs —
because some systems have larger memory latencies due to the complexity of the
interconnection network or hardware cache coherence techniques. 3) Systems with
more processors — since increases in the number of processors will require larger and
possibly more complex interconnection networks, resulting in increased remote
memory access latencies.

Table 1 shows latencies for local, on-station, and off-station (or ring) memory
accesses in units of 60 nano-second cycles. Off-station requests, or those requiring
the use of the ring are shown for 0, 4, 8, 16, 32 and 64 cycle delays. Note that the
delay switches have no affect on local or on-station requests and that with the delay
switches set to 16 cycles, the off-station access times for Hector are still below those
of other systems that contain faster processors, more processors or mechanisms for
hardware cache-coherence [6]. Off station latencies in DASH and remote node
latencies on the KSR1 are 100 or more processors cycles and latencies to memory on
a remote ring in the KSR1 are about a factor of six times slower [38]. For more
detailed descriptions of Hector see [48][18][41].

Table 1. Memory reference times, in processor cycles, on the 16 processor Hector system

32bit 32bit cache cache Delay
load store load writeback

local 10 10 19 19 —

station 19 9 29 62 —

ring 27 17 37 42 0
35 21 49 58 4
43 25 61 74 8
59 33 85 106 16
91 49 133 170 32

155 81 229 298 64

In the experiments conducted in this paper we consider systems with relatively
mild NUMA characteristics by using a maximum delay setting of 16. The affect that
larger delays have on application performance and on the importance of application
placement is explored more fully in [6]. The results of our experiments show that
ev en for such systems the proper placement of the parallel threads of an application
can significantly affect the execution time of the application.

The HURRICANE operating system also supports page migration and
replication, but these features were disabled while conducting our experiments in
order to ensure that difference in mean response times (and parallel application
execution times) are due only to difference in scheduling algorithms. For the
purposes of this study we simplify the larger problem of scheduling in a NUMA
environment by not considering thread migration. Our scheduler implements a space-
partitioning [43][50] of processors with strong affinity of processes to processors
[42][39][19]. In fact the operating system kernel contains separate ready queues for
each processor. The migration of processes is discouraged because of the cache and
memory contexts that can be associated with each process (recall that besides data and
instruction caches, each processor module also contains local memory).

We also assume that the parallelism of the application and the number of
processors it is allocated are not known a priori. In our implementation, when an
application wishes to create a thread and thus gain access to another processor, the
library call to create a thread first contacts the scheduling server, which executes
outside of the kernel’s address space. The scheduling server determines if the calling
application should be allocated another processor and if so, which processor it should
be allocated. If the scheduler decides to allocate another processor to the application,
the system call is then passed on to the kernel, which creates the thread on the
processor specified by the scheduler. When a thread finishes executing or is killed by
an exception, the scheduler is notified and updates its internal state. The kernel is
only responsible for dispatching threads. The scheduler, therefore, sees requests for
processors one at a time and assigns them to applications until all processors have
been allocated, at which point requests to create additional processes fail. All of our
applications and workloads have been written to execute in this fashion. We believe
this to be a more realistic approach to scheduling than assuming that the number of
processors required will be known when the application starts. Note that if the
number of processors required by each application is fixed and know at the time of the
job arrival, the problem of determining which processors to allocate is similar to a bin
packing problem with multiple bins.

The use of the Hector multiprocessor and the HURRICANE operating system
provides us with the opportunity to examine the affects that increased memory access
latencies are likely to have on our results. Since we have access to the complete
source code for the HURRICANE operating system, scheduling server, run-time
system and applications, we have the ability to modify the system to support our
experiments. Because this system uses processors with relatively slow clock rates and
contains only 16 processors, remote memory accesses latencies are quite low relative
to systems with newer processors with higher clock rates and systems with larger and
more complex interconnection networks (that support more processors and cache

coherence). Therefore, we believe that our results and conclusions are somewhat
conservative and that the importance of application placement and the decreases in
execution times observed from using processor pool-based scheduling will only
increase as the gap between processor speeds and memory speeds continues to
increase and as the size of scalable NUMA multiprocessors continues to grow.

4 Parallel Applications
The applications comprising the workloads used in our experiments are listed in

Table 2 along with the problem size, precision used, the number of lines of C source
code, and the speedup measured using four processors of one station, S(4). For the
single processor execution time, we use the time required to execute the parallel
application on one processor because we did not have access to a serial version of
each application. More detailed descriptions of each application and how their
execution can be affected by poor processor placement decisions can be found in
[6][7].

Table 2. Summary of the applications used

Name Application / Problem Size Precision Lines of C S(4)

FFT 2D Fast fourier transform
256x256 Single 1300 2.9

HOUGH Hough transformation
192x192, density of 90% Double 600 3.4

MM Matrix multiplication
192x192 Double 500 3.4

NEURAL Neural network backpropagation
3 layers of 511 units, 4 iterations Single 1100 3.8

PDE Partial differential equation solver using successive over-relaxation
96x96 Double 700 3.7

SIMPLEX Simplex Method for Linear Programming
256 constraints, 512 variables Double 1000 2.4

Although the size of the data sets may appear to be relatively small, they were
chosen for a number of reasons: 1) They should execute on four processors in a
reasonable amount of time since multiple executions of each workload are used to
compute means and confidence intervals. 2) The size of the data cache on each
processor is relatively small (16 Kbytes). Consequently cache misses and memory
accesses will occur, even with a relatively small sized problem. 3) The amount of
memory configured per processor is relatively small (4 Mbytes). If problem sizes are
too large, data structures that are designed to be allocated to the local processor may
have to be allocated to a remote processor, resulting in remote memory references
where the application programmer had not intended.

Some of the applications may appear not to execute very efficiently on four
processors. This is due to the relatively small data sets used. Most of the applications
were designed to be used with larger data sets on more processors (i.e., the parallelism
is relatively coarse-grained). However, we believe that these applications represent a
reasonable mix of efficiencies and should provide an adequate workload for the
purposes of our experiments.

5 Forming Processor Pools
The question of how to choose the groupings of processors that form processor

pools (i.e., how many processors should belong to each pool) is one that is potentially
influenced by two main factors, the parallelism of the applications and the architecture
of the system.

Issues related to the specific policies for assigning processors to pools are
considered in detail Section 6. For now we assign newly arriving jobs to the pool
with the largest number of available processors. Other processes of the job are placed
within the same pool if possible. If there are no available processors in that pool then
the pool with the largest number of available processors is chosen. This algorithm
was devised using observations made while conducting experiments for a previous
study [6] and is designed to isolate the execution of different jobs and to allow them
‘‘room to grow’’. This strategy corresponds to the ‘‘Worst-Fit’’ algorithm that is
described in Section 6.

We now conduct a series of experiments designed to further explore the
influences on the choice of processor pools. Although we do not exclude the
possibility of choosing processor pools of different sizes, this work only considers
pools of equal sizes. The goal in this paper is to gain insight into the forming of
pools, the design of policies for their use, and the benefits of processor pool-based
scheduling.

5.1 Determining Processor Pool Sizes

The first experiment is designed to determine if processor pool-based scheduling
improves performance and, if it does, to examine appropriate pool sizes. This is done
by varying the pool size while executing the same workload. Using 12 processors we
compare the mean execution times of applications when executing under a scheduler
that uses: 1 pool of 12, 2 pools of 6, 3 pools of 4, and 6 pools of 2 processors. We
also consider 12 pools each containing one processor. Note that one pool of size 12 is
comparable to not using processor pools and is equivalent to using a central ready
queue from which idle processors grab processes. Because no grouping of pools is
done to form ‘‘pools of pools’’, 12 pools of one processor is also equivalent to not
using pools, with the exception of the overheads required to manage 12 pools. These
overheads, although not significant, are present. Recall that although applications are
permitted to span more than one pool and multiple jobs may execute within a single
pool, our implementation of pool-based scheduling avoids these situations whenever
possible.

When possible, pools are chosen to correspond to the hardware stations in
Hector. Therefore, when pools of size two are used, each of the three stations used
contains two pools, and when pools of size four are used, they exactly correspond to
hardware stations. When two pools of size six are used, Pool 1 contains four
processors from Station 1 and two from Station 2, while Pool 2 contains four
processors from Station 3 and two from Station 2.

5.2 Workload and Results
The workload used for this experiment is comprised of five of the parallel

application kernels FFT, HOUGH, MM, NEURAL, and PDE. The SIMPLEX
application is not used in all of the experiments conducted in this paper because in
order to obtain a reasonably efficient execution, the data set had to be large enough
that it significantly increased the execution time of the entire workload, making
multiple executions in order to obtain confidence intervals difficult.

The workload consists of a number of ‘‘streams’’ of parallel jobs. A stream is
formed by repeatedly executing the five applications, one after another. Since each
stream is implemented using a shell script, there are unpredictable but small delays
between the completion of one application and the start of the next. The delays are
small enough that they do not significantly affect the results. Each stream contains a
different ordering of the five applications and all streams are started at the same time
(recall that one station is dedicated to the execution of system and sequential
processes, including the workload generator). The number of streams is adjusted to
determine the multiprogramming level. The number of streams used is determined by
dividing the number of processors used for the execution of parallel applications (12)
by the parallelism of the applications (in this experiment 4). In the first experiment,
each stream consists of 15 repetitions of the five applications for a total of 75 jobs per
stream. The applications are each allocated four processors, so three streams are used
and the entire workload consists of 225 jobs.

Because the system is relatively small, has very mild NUMA characteristics and
because we are interested in how increases in NUMAness affect the results, we also
run each set of experiments with delay settings of 0, 8, and 16 cycles. The results of
these experiments can be seen in Figure 1. Each line in a graph plots the mean
response time versus the pool size. Graphs are shown for each of the different
applications with the graph labelled ‘‘COMBINED’’ representing the mean response
times over all jobs. The vertical bars represent 90 percent confidence intervals.

We first note that, as expected in a small system with only mild NUMA
characteristics, represented by the lines in the graphs labelled Delay=0, the mean
response times are not significantly improved by using processor pools. However, as
the NUMAness of the system increases, the performance improvements due to pool-
based scheduling increase and are substantial when using a delay of 16 cycles. Also
note that these improvements increase with the NUMAness of the system. The
improvements can be seen by comparing the execution times of the applications using
a pool of size of 12 (the no pool case), with those using other pool sizes. The closer
the pool size is to 4 the better the performance. The exception is the NEURAL
application which, as described in detail in previous work [6], suffers from an
excessive number of system calls which overshadow the locality in the application.

M
e
a
n

R
T

sec.

Pool Size (FFT)

0

2

4

6

8

1 2 4 6 12

Delay = 0
Delay = 8
Delay = 16

Pool Size (HOUGH)

0

2

4

6

1 2 4 6 12

Delay = 0
Delay = 8
Delay = 16

M
e
a
n

R
T

sec.

Pool Size (MM)

0

2

4

6

8

10

12

1 2 4 6 12

Delay = 0
Delay = 8
Delay = 16

Pool Size (NEURAL)

0

2

4

6

1 2 4 6 12

Delay = 0
Delay = 8
Delay = 16

M
e
a
n

R
T

sec.

Pool Size (PDE)

0

2

4

6

8

1 2 4 6 12

Delay = 0
Delay = 8
Delay = 16

Pool Size (COMBINED)

0

2

4

6

8

1 2 4 6 12

Delay = 0
Delay = 8
Delay = 16

Fig. 1. Effects of NUMAness when using pool-based scheduling

Although two pools of six processors may not seem appropriate for the current
workload, it is included for completeness, since it will play a central role in a future
experiment. It also permits us to determine if a small enforcement of localization
improves performance. The results show that even though there is a trend toward
improved performance when using two pools compared with using no pools, those
improvements are not large enough to be considered significant. The degree to which
performance is improved varies from application to application and depends on the
number and frequency of remote memory references. However, the mean response
time over all jobs is improved by using pools, as shown in the graph labelled
‘‘COMBINED’’ in Figure 1.

The graphs in Figure 1 also show that for this set of experiments a pool size of
four yields the best performance. However: 1) The parallelism of each application is
four. 2) Each station in the Hector system contains four processors. Consequently,
we next explore the relative influence of these two factors, application parallelism and
system architecture, on the choice of pool sizes.

5.3 Application Influences on Pool Size

In order to examine the importance of application parallelism in determining an
appropriate pool size, we now vary the parallelism of the applications and perform the
same experiments conducted in the previous section. A delay of 16 cycles is used and
the number of streams is adjusted with the parallelism of the applications (when
possible keeping all processors busy). Figure 2 shows the results obtained when
executing each application with two, four, and eight processes. In the case when the
application parallelism is two, six streams are used, each consisting of 10 repetitions,
for a total of 300 jobs. When the application parallelism is four, three streams are
used, each consisting of 15 repetitions, for a total of 225 jobs. In the case when the
application parallelism is eight, one stream with 25 repetitions is used for a total of
125 jobs. In this case applications are not multiprogrammed because we can not
space-share two applications each using eight processors on 12 processors. The three
lines plotted in each graph represent the mean response times of the applications
obtained with application parallelism of two, four, and eight, versus different pool
sizes. The vertical bars at each data point represent 90 percent confidence intervals.

We first observe that when eight processes are used for each application,
performance is not significantly affected by the pool size. This is because the
placement of eight processes within a 12-processor system does not afford as much
room for localization as applications which use a smaller number of processors.
Next, we observe that when applications are allocated two processors, pools of size
two and four yield the best performance, again with the exception of the NEURAL
application (due to excessive system calls). When the applications each require two
processors, there is no significant difference in performance between using pools of
size two or four because in either case each application is able to execute within one
hardware station. Finally, we observe that when the application parallelism is four,
the mean response time is minimized when pools of size four are used. These results
might suggest that the appropriate choice of pool size might be related to the
parallelism of the jobs (this is explored in the next sub-section).

An interesting outcome of the experiments shown in Figure 2 is that for some
applications, most notably MM, increasing the number of processors the application
uses does not necessarily improve response time. This can be seen in the case of MM
by observing that the mean response time obtained using eight processors is equal to
or higher than the mean response time obtained using four processors, no matter what
pool size is used. These graphs demonstrate that an application’s execution time can
be dramatically affected by the NUMA environment and that in some cases a
localized execution using fewer processors will outperform a necessarily less
localized execution using more processors. Thus, there is a relationship between the
allocation problem (how many processors to allocate to each application) and the

M
e
a
n

R
T

sec.

Pool Size (FFT)

0

2

4

6

8

10

12

1 2 4 6 12

Parallelism = 2
Parallelism = 4
Parallelism = 8

Pool Size (HOUGH)

0

2

4

6

8

10

1 2 4 6 12

Parallelism = 2
Parallelism = 4
Parallelism = 8

M
e
a
n

R
T

sec.

Pool Size (MM)

0

4

8

12

16

1 2 4 6 12

Parallelism = 2
Parallelism = 4
Parallelism = 8

Pool Size (NEURAL)

0

2

4

6

8

10

12

1 2 4 6 12

Parallelism = 2
Parallelism = 4
Parallelism = 8

M
e
a
n

R
T

sec.

Pool Size (PDE)

0

2

4

6

8

10

12

1 2 4 6 12

Parallelism = 2
Parallelism = 4
Parallelism = 8

Pool Size (COMBINED)

0

2

4

6

8

10

12

1 2 4 6 12

Parallelism = 2
Parallelism = 4
Parallelism = 8

Fig. 2. Various pool sizes with application parallelism of 2, 4 and 8, delay = 16

placement problem (which processors to allocate to each application), since the
number of processors to allocate to a job may depend on which processors are
available. In this paper we concentrate on obtaining a first-order understanding of the
issues involved in making placement decisions and in the performance benefits that
can result from making good placement decisions. The relationship between these
problems is discussed in more detail in [7] and is an interesting topic of future
research.

5.4 Architectural Influences on Pool Size

While the experiments shown in Figure 2 suggest that there is a relationship
between pool size and application parallelism, these experiments do not fully explore
the relationship between pool size and the system architecture. To determine the
strength of the connection between pool size and system architecture, we conduct
another experiment in which each application executes using six processors. In this
experiment the HOUGH, MM and SIMPLEX applications were used. The other
applications (FFT, NEURAL, and PDE) are not used because, unfortunately, they are
written in such a way that executing them on six processors is not possible. In these
experiments, we use two streams, each of which executes the three applications 15
times, for 45 jobs per stream and a total of 90 jobs.

The graphs in Figure 3 plot the mean response times for each of the applications
versus different pool sizes. The mean response times over all of the applications is
shown in the graph labelled ‘‘COMBINED’’. The number above each of the bars
gives the percentage improvement when compared with one pool of size 12. A
negative value indicates that the mean response time was increased.

M
e
a
n

R
T

sec.

Pool Size (HOUGH)
0 1 2 4 6 12

0

1

2

3

4

5

6
-2.3

5.5 5.8 4.0 0.0

Pool Size (MM)
0 1 2 4 6 12

0

2

4

6

8

10

12
1.9

20.2 23.8
12.1

0.0

M
e
a
n

R
T

sec.

Pool Size (SIMPLEX)
0 1 2 4 6 12

0

4

8

12

16

20 -0.12.5 3.1 3.7 0.0

Pool Size (COMBINED)
0 1 2 4 6 12

0

2

4

6

8

10

12

14
-1.1

8.3 9.7 6.4
0.0

Fig. 3. Various pool sizes with application parallelism of 6, delay = 16

The main data points of interest in these experiments are the pools of size four,
because this matches the size of a Hector station, and pools of size six, because this
matches the application parallelism. For the HOUGH and SIMPLEX applications,
although we observe slight differences in mean response times when pools of size
four and six are used, the differences are not statistically significant. A pronounced

difference is observed for the MM application. This is somewhat surprising since
exactly the same set of processors is assigned to each application in each case. The
differences in mean response times are, however, due to the placement of processes
within the pools.

First, we briefly review the pool placement policy in order to understand why the
placements are different. Then we explain why the resulting execution times are
different. The first process of each job is placed in the pool with the largest number
of available processors. Subsequent processes of that job are placed in the same pool
as the first process until all of the processors in the pool are used. If more processors
are required, the next pool with the most available processors is chosen. One of the
goals in the design of processor pools is to form groups of processors that can be
managed easily and uniformly within the pool. Therefore, we place processes
randomly within pools and point out that if placement within processor pools affects
performance significantly, the pools have not been chosen to appropriately reflect the
architecture.

Figure 4 illustrates a scenario in which the response times of the same
applications would differ using pools of size four and six. Figure 4a shows an
example placement of two applications, A and B, when using pools of size four. In
this case the first four processes of application A (A1, A2, A3 and A4) are placed
randomly on Station 1 and the remaining processes (A5 and A6) are placed on Station
2. The first four processes of application B (B1, B2, B3 and B4) are placed randomly
in Pool 3 on Station 3, since that is the pool with the largest number of available
processors, and the remaining two processes (B5 and B6) are placed in Pool 2 on
Station 2.

Pool 1 Pool 2

Station 1 Station 2 Station 3

Station 1 Station 2 Station 3

Pool 3Pool 2Pool 1

(a)

(b)

A4A1A2 A3 B6A5A6B5 B4 B2 B1 B3

B1B4B3B5B2B6A6A3A5 A2 A4 A1

Fig. 4. Individual process placement using processor pools of size 4 and 6

Figure 4b shows an example placement when pools of size six are used. In this
case each application fits entirely within a single pool. Application A is placed and
executed in Pool 1 and application B is placed and executed in Pool 2. In previous

work [6] we observed that if the first process of an application (the parent) is located
on a station that is different from the rest of the processes of the application, the
response time can be affected significantly because of the substantial memory context
often associated with the first process of an application. Note that in the case when
pools of size four are used, as many children as possible will be placed in the same
pool as the parent. However, under closer inspection we determined in that the same
is not always true when the pool size is six.

The results of this experiment, the details of which can be found in [7], show that
there is a difference between using three pools of size four and two pools of size six
when allocating six processors to each application. Three pools of size four yield
better performance, indicating that in this case it is more important to choose pool
sizes to reflect the architecture of the system than the parallelism of the applications.
Also, matching pools to the architecture is likely to be relatively straightforward
while, in general, a workload will consist of a number of applications with different
(and possibly changing) degrees of parallelism, making it difficult to match pool sizes
with application parallelism.

6 Using Processor Pools
One motivation for processor pool-based scheduling is to ease placement

decisions by reducing the number and types of considerations required to make good
placement decisions. This is accomplished by making placement decisions that
consider pools rather than individual processors when scheduling parallel
applications. An important aspect of pool-based scheduling is the strategy used for
making placement decisions. We first outline the types of placement decisions that
are made during the lifetime of an application and briefly point out how these
decisions may influence placement strategies before examining actual strategies.

• Initial Placement: Before an application begins execution it must be assigned to
a processor. The decision of where to place the first process of an application is
an important one that can influence not only the placement of the remaining
processes of the application but also the placement of other applications.

• Expansion: Once a parallel application begins execution, it will, at some point,
create and execute a number of processes. We call this creation of new processes
expansion. How to properly place these processes is a key consideration in
preserving the locality of an application. As a result, it is essential to consider
where the existing processes of the application are located. As noted in the
previous section, the first (parent) process of an application may contain
significant cache and memory context thus making it desirable to place as many
of the child processes of that application as close as possible to the parent.

• Repartitioning with Pools: A change in the number of processors allocated to
each application may require a dynamic repartitioning of the processors
[43][24][50][29]. An important and difficult problem is how to repartition the
processors while maintaining the locality of the executing applications.

The topic of repartitioning with pools is discussed in more detail in [7] and is an
interesting topic for further research. In this paper we examine the first two decision
points more carefully, present algorithms for making these decisions and, when
possible, evaluate their performance. We begin by examining the problem of
application expansion.

6.1 Expansion

Processor pool-based scheduling strategies for supporting application expansion
are relatively straightforward. The desirable properties of an expansion policy are:

1. Place new processes as close to existing processes of the application as possible.
This is accomplished by placing new processes in pools that are already occupied
by the application. In so doing, processes are placed close to the shared data
being accessed.

2. If there are no available processors in the pools already occupied by the
application, choose new pools so there is as much room for future expansion as
possible and interference with other applications is minimized.

Property one above is quite easy to satisfy by keeping track of where the job is
already executing and assigning new processes only to pools that are already occupied
by that job (using the pool containing the fewest processes). Since property two has
similar requirements to the problem of initial placement, this phase of expansion can
use the same algorithms as those used for initial placement. All of our experiments
use the same strategy for this phase of expansion as that used for initial placement.

6.2 Initial Placement

The main considerations for making an initial placement decision (for the first
process of an application) are:

1. Give the new application as much room as possible for the future creation of
processes. That is, provide as much room for expansion as possible.

2. Try to isolate the execution of each application to the extent possible. That is, try
to reduce the possibility of interfering with the execution of other applications by
placing each application in its own portion of the system.

The problem of placing applications into pools has similarities to the problem of
allocating memory in non-paged systems. An especially notable similarity is the
desire to avoid fragmentation, since fragmenting processes of an application across
different pools will hurt localization. Because of these similarities, we briefly
consider a number of possible strategies for initial placement adapted from well
known placement policies for non-paged memory systems [37].

• First-Fit: Pools are listed in a predetermined order by simply numbering each
pool. The first process of an application is then placed in the first pool with an
available processor.

• Best-Fit: The first process of an application is placed in a pool with the smallest,
non-zero number of available processors.

• Worst-Fit: The first process of an application is placed in a pool with the largest
number of available processors.

Of these techniques the Best-Fit and the First-Fit policies do not isolate
applications from each other and may not provide room for the expansion of
applications within a pool. For example, if three applications arrive in an empty
system, all three may be initially placed within the same pool, thus leaving little room
for the localized placement of subsequently created parallel processes of each
application (recall that the number of processors an application will use is not known
a priori). However, the Worst-Fit policy would place each of these three applications
into different pools, thus permitting each to execute in their own portion of the
system.

A comparison of the performance of the First-Fit and Worst-Fit policies is shown
in Figure 5. A workload of three streams of applications of parallelism four is used,
with each of the five applications FFT, HOUGH, MM, NEURAL and PDE being
repeated in different orders within each stream. Each stream consists of 15 repetitions
of the five applications for a total of 75 jobs per stream and a grand total of 225 jobs.
Pools of size four are chosen to correspond to the hardware stations and a delay of 16
cycles is used to emulate systems that have stronger NUMA characteristics than our
small, mildly NUMA prototype. The normalized mean response times of each of the
five applications and the overall mean response time (the bars labelled COMBINED)
are shown. The mean response times obtained using the Worst-Fit policy are
normalized with respect to the mean response times obtained using the First-Fit
policy.

N
o
r

m.

M
e
a
n

R
T

0

0.2

0.4

0.6

0.8

1

FFT HOUGH MM NEURAL PDE COMBINED

Worst-Fit
First-Fit

Fig. 5. Comparing Worst-Fit with First-Fit placement strategies, pool size = 4, delay = 16

As expected the Worst-Fit policy performs significantly better than the First-Fit
policy and in fact it reduces the mean response times of three of the five applications
by 20% or more. By examining the execution traces obtained when using the First-Fit
policy (shown in Figure 6), we observe that the different applications are not always
placed within one pool (and therefore one station). Figure 6 shows a number of

snapshots of the allocation of processes of an application to pools and thus to stations.
The numbers in parentheses to the left of each column represent, and are used to refer
to, specific snapshots taken over regular time intervals. Threads within an application
are labelled with the same letter of the alphabet and an unallocated processor is
represented with a dash. Processors within a pool (and thus station) are grouped
together by by leaving a space between pools. For example, line (1) shows that all
processors are unallocated and line (16) shows that four processes of the same
application (represented by ‘‘u’’) are allocated to the first four processors (the first
pool corresponding to Station 1), the next four processors (the second pool
corresponding to Station 2) are idle and the last four processors (the third pool
corresponding to Station 3) are all allocated to the same application (represented by
‘‘t’’). From the trace in Figure 6, we can see a period of execution where each of the
applications is executing within a separate station, in lines (12) through (17). Each
application is therefore localized and isolated from the others. Lines (22) and (23)
show an example of how all three applications can each have one process executing in
the same station (‘‘a’’, ‘‘b’’ and ‘‘z’’ each have a processes on Station 2). These
snapshots and the results of the previous experiment demonstrate that although
placements using the First-Fit policy are not always bad placements, the mean
response time is significantly improved by using the Worst-Fit policy.

Stn1 Stn2 Stn3 Stn1 Stn2 Stn3 Stn1 Stn2 Stn3
(1) ---- ---- ---- (10) mooo mnmm nnno (19) xwxw yyyy wxxw
(2) ---- ---- f--- (11) -ooo p--- ---o (20) xwxw yyyy wxxw
(3) ghhh ghgg ffff (12) ---- pppp q--- (21) xwxw ---- wx--
(4) ghhh ghgg ffff (13) rrrr pppp qqqq (22) abab zbab zzaz
(5) ghhh ghgg iiii (14) rrrr ssss q--- (23) abab zbab zzaz
(6) k--- jjjj iiii (15) uuuu ssss tttt (24) abab -bab cca-
(7) kkkk jjjj l--- (16) uuuu ---- tttt (25) dede cede ccdc
(8) kkk- ---- llll (17) uuuu vvvv tttt (26) dede cede ccdc
(9) m--- mnmm nnno (18) xwxw vvvv wxxw

Fig. 6. Sample execution trace, over time, using First-Fit initial placement policy

Other possible initial placement strategies are numerous. For example, the first
process might be placed only in pools that are empty, and new applications would
wait for a pool to become empty before being permitted to begin execution. Another
method is a Worst-Fit policy based on the number of applications executing in a pool
rather than the number of processes executing in the pool. That is, a count of the
number of jobs executing within each pool is maintained and rather than assigning
new jobs to the pool containing the fewest processes, they would be assigned to the
pool containing the fewest jobs. This policy may be more suited to isolating
applications and providing room for expansion under certain types of workloads. We
believe that this last approach is likely be an improvement over our existing Worst-Fit
policy. Howev er, both algorithms behaved similarly under our current workloads.

7 Related Work
The notion of grouping processors to enhance scalability has also been proposed

by other researchers [4][17][16][2][15]. Feitelson and Rudolph’s distributed
hierarchical technique is designed to also gang-schedule and load balance multiple
applications in large multiprocessor systems [17][16][15]. Their evaluation of this
technique does not take into account NUMA multiprocessors. They do point out that
this technique could be used in NUMA systems. However, they do not describe how
to map their tree structured distributed hierarchy onto NUMA architectures, although
in a symmetric tree structured architecture the mapping is direct and should preserve
locality. One advantage offered by processor pools is that they are explicitly designed
to preserve the locality of parallel applications in a fashion that is not tied to a
particular architecture. Furthermore, they are also designed to isolate the execution of
multiple applications from one another. The combination of these two properties is
intended to reduce the cost of remote references to shared data and to reduce the
likelihood of contention for the interconnection network. Other work has also used
the concept of clustering for different purposes. For example, Chapin et al. [12] use
their notion of clusters (called cells) to prevent faults that occur in one cell from
propagating to other cells, thus containing or localizing hardware and software faults.

Recent work has recognized that applications can build considerable cache
context, or footprints [42] and that it may be more efficient to execute a process or
thread on a processor that already contains relevant data in the processor’s cache.
Much of this work is concerned with the design and evaluation of techniques that
attempt to track where processes or threads may have established cache context and to
use this information to try reuse this context [39][46][19][27][28][40][26][3][35].
Our work in this paper is complementary to processor-cache affinity and lightweight
thread scheduling techniques for improving locality of data references. While these
previous studies investigate the importance of scheduling techniques for reducing the
number of memory accesses by co-locating processes with processor caches that
contain the data being accessed, our work investigates the importance of scheduling
techniques for reducing the cost of required memory accesses (i.e., those references
that are not cached).

Another area of work concerned with reducing remote memory access latencies
concentrates on virtual memory management techniques for migrating and/or
replicating pages of virtual memory. The goal of this research is to place the data
being frequently referenced close to the processor or processors requesting the data
[20][14][22][5][11][47]. Again, we view our work as complementary to these
techniques, since it is our goal to locate the kernel threads of an application as close to
each other as possible. A localized placement of processes of an application and the
isolation of different applications from each other by placing them in different
portions (clusters) of the system will reduce, but not eliminate, the need for migration
and replication. More importantly, it will reduce the costs of migration and
replication operations because of the already close proximity of processes to the data
being accessed and because contention for shared resources, such as the
interconnection network, will be reduced.

Several scheduling studies have recognized that that the execution time of
parallel applications are affected not only by how many processors they are allocated
but also by how much memory they are allocated and require. New techniques for
determining how many processors to allocate are considering the memory
requirements of such applications [34][30][36][33]. The techniques we present and
evaluate in this paper are not concerned with the problem of how many processors to
allocate but rather which processors to allocate to a job. Although we’ve previously
discussed the relationship between the problems of allocation (how many processor to
allocate) and placement (which processor to allocate) [7], the work in this paper
concentrates on first gaining an understanding of the issues related to the placement
problem before concerning ourselves with the interplay between the allocation and
placement problems.

Chandra et al. [10] add cache-affinity and cluster-affinity to a UNIX scheduler by
modifying the traditional priority mechanisms. Using a sixteen processor DASH
system they found that while a sequential workload benefited significantly from the
improved locality, this approach did not improve execution times when compared
with the baseline UNIX scheduler for parallel workloads. They also compare the use
of gang scheduling [32], processor sets [4], and process control [43] scheduling
policies for executing parallel workloads. While they exploit cluster level locality in
their implementations of each of these policies, they do not fully explore the strategies
used in exploiting locality for parallel workloads nor how effective these strategies are
at localization. In this paper we focus on developing guidelines and algorithms
designed specifically to enforce localized placements and on evaluating the benefits of
such algorithms.

In previous work Zhou and Brecht [51] present the initial concept of processor
pools and conduct a simulation study which demonstrates the potential benefits
obtained from using processor pools for scheduling in NUMA multiprocessors. Since
then [6] we have implemented and executed a number of parallel applications on a
sixteen node multiprocessor to demonstrate the significant decreases in execution
times that can be obtained by considering the architecture of NUMA systems when
making application placement decisions. Motivated by both of these previous studies
the work in this paper undertakes an operating system level implementation and an
experimental performance evaluation of processor pool-based scheduling. This work
differs from the simulation study in that it focuses on the relationships between the
choice of processor pool sizes and architectural clusters and pool sizes and the
parallelism of the jobs being executed. While the concept of processor pools has not
changed significantly from the previous paper, the algorithms, system and workload
assumptions are different in several key ways:

• In the simulation model, arriving jobs request a predetermined number of threads
and the scheduler permits the creation of possibly fewer threads (proportional to
the number requested). In this paper the number of threads desired by a job is
not known a priori (as is the case in most multiprogrammed multiprocessors).
Also, we limit the number of threads in the system to be equal to the number of
processors. This avoids unnecessary overheads due to context switching and
improves processor affinity.

• The simulation model used a single ready queue per processor pool and
scheduled threads within each pool in a round-robin fashion. Our
implementation uses one ready queue per processor, thus providing strong
processor affinity and eliminating contention for a shared pool-based queue.

• We’v e eliminated the ‘‘tunable parameters’’ present in the algorithms used in the
simulation and concentrated on algorithmic decisions that are relatively easy to
implement. For example, the degree of pool-spanning which is a control on the
extent to which threads of the same job are permitted to be assigned to different
pools is not present in the implementation. Instead the number of pools a job is
permitted to span is tempered only by the parallelism of the job and the number
of available processors.

• Obviously the system model and most components of the workload model used
in this paper are more realistic than those used in the simulation.

8 Summary
In this paper we have proposed algorithms for scheduling in NUMA

multiprocessors based on the concept of processor pools. A processor pool is a
software construct for organizing and managing processors by dividing them into
groups called pools. The main reasons for using processor pools are to preserve the
locality of an application’s execution and to isolate the execution of multiple
applications from each other. The locality of applications is preserved by executing
them within a pool when possible, but permitting them to span pools if it is beneficial
to their execution. Isolation is enforced by executing multiple applications in separate
pools (to the extent possible). This reduces execution times by reducing the cost of
remote memory accesses. We also expect that processor pools reduce contention for
the interconnection network, although we were not able to observe this on our small-
scale, mildly NUMA multiprocessor. (Reducing the distance required to obtain
remote memory references should reduce the use of the interconnection network.) It
is expected that the scalability of the system will also be enhanced because processors
within a pool can be treated equally.

We hav e conducted a series of experiments that explore desirable attributes of
processor pool-based scheduling. In particular, we hav e found:

• Pool-based scheduling is an effective method for localizing application execution
and reducing mean response time.

• Optimal pool size is a function of the parallelism of the applications and the
system architecture. However, we believe that it is more important to choose
pools to reflect the architectural clusters in the system than the parallelism of the
applications, especially since the parallelism of an application may not be known
and may change during execution.

• The strategies of placing new applications in a pool with the largest potential for
in-pool growth (i.e., the pool containing the fewest jobs) and of isolating
applications from each other seem to be desirable properties of algorithms for
using pools. The Worst-Fit policy incorporates both of these properties.

An observation made in [6] that is also apparent when analyzing the experiments
conducted in this work is that the proper placement of processes of an application is
critical and localized placements are essential for the efficient execution of parallel
applications. As well, the importance of placement decisions and the improvements
resulting from proper decisions increase as the size of NUMA multiprocessors
increase and as the gap between processor and remote memory access speeds
continues to widen.

9 Acknowledgments
This work was conducted while at the University of Toronto. I would like to

thank the members of the Hector and HURRICANE projects there for their dedication
and hard work in implementing, debugging and tuning the system hardware and
software, most notably: Ron White, Michael Stumm, Ron Unrau, Orran Krieger, Ben
Gamsa, and Jonathan Hanna. I wish to also thank Songnian Zhou, Ken Sevcik, and
the other members of the scheduling discussion group for many discussions related to
scheduling in multiprocessors. James Pang, Deepinder Gill, Thomas Wong and Ron
Unrau contributed some of the parallel applications. I am also grateful to the Natural
Sciences and Engineering Research Council for the support they provided during the
course of this work.

10 References
[1] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara, B.

Lim, G. Maa, and D. Nussbaum, ‘‘The MIT Alewife Machine: A Large-Scale
Distributed-Memory Multiprocessor’’, Scalable Shared Memory
Multiprocessors, ed. M. Dubois and S. S. Thakkar, Kluwer Academic
Publishers, Norwell, Massachusetts, pp. 239-261, 1991.

[2] I. Ahmad and A. Ghafoor, ‘‘Semi-Distributed Load Balancing for Massively
Parallel Multicomputer Systems’’, IEEE Transactions on Software Engineering,
Vol. 17, No. 10, pp. 987-1004, October, 1991.

[3] F. Bellosa, ‘‘Locality-Information-Based Scheduling in Shared-Memory
Multiprocessors’’, Job Scheduling Strategies for Parallel Processing, ed. D. G.
Feitelson and L. Rudolph, Vol. 1162, Springer-Verlag, Lecture Notes in
Computer Science, pp. 271-289, April, 1996.

[4] D. L. Black, ‘‘Scheduling Support for Concurrency and Parallelism in the Mach
Operating System’’, IEEE Computer, pp. 35-43, May, 1990.

[5] W. Bolosky, M. Scott, R. Fitzgerald, and A. Cox, ‘‘NUMA Policies and their
Relationship to Memory Architecture’’, Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 212-221, April, 1991.

[6] T. Brecht, ‘‘On the Importance of Parallel Application Placement in NUMA
Multiprocessors’’, Proceedings of the Fourth Symposium on Experiences with
Distributed and Multiprocessor Systems (SEDMS IV), San Diego, CA, pp. 1-18,
September, 1993.

[7] T. Brecht, ‘‘Multiprogrammed Parallel Application Scheduling in NUMA
Multiprocessors’’, Ph.D. Thesis, University of Toronto, Toronto, Ontario,
Technical Report CSRI-303, June, 1994.

[8] T. Brecht and K. Guha, ‘‘Using Parallel Program Characteristics in Dynamic
Processor Allocation Policies’’, Performance Evaluation, Vol. 27 & 28, pp.
519-539, October, 1996.

[9] H. Burkhardt, S. Frank, B. Knobe, and J. Rothnie, ‘‘Overview of the KSR1
Computer System’’, Kendall Square Research, Boston, Technical Report KSR-
TR-9202001, February, 1992.

[10] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum, ‘‘Scheduling
and Page Migration for Multiprocessor Compute Servers’’, Proceedings of the
International Conference on Architectural Support for Programming Languages
and Operating Systems, San Jose, CA, pp. 12-24, October, 1994.

[11] J. Chapin, S. Herrod, M. Rosenblum, and A. Gupta, ‘‘Memory System
Performance of UNIX on CC-NUMA Multiprocessors’’, Proceedings of the
1995 ACM SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems, Ottawa, ON, May, 1995.

[12] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta,
‘‘Hive: Fault Containment for Shared-Memory Multiprocessors’’, Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles, pp. 12-25,
December, 1995.

[13] Convex, Convex: Exemplar SPP1000/1200 Architecture, Convex Press, 1995.

[14] A. Cox and R. Fowler, ‘‘The Implementation of a Coherent Memory Abstraction
on a NUMA Multiprocessor: Experiences with Platinum’’, Proceedings of the
Twelfth ACM Symposium on Operating Systems Principles, pp. 32-43, December,
1989.

[15] D. Feitelson and L. Rudolph, ‘‘Evaluation of Design Choices for Gang
Scheduling using Distributed Hierarchical Control’’, Journal of Parallel and
Distributed Computing, Vol. 35, No. 1, pp. 18-34, May, 1996.

[16] D. G. Feitelson and L. Rudolph, ‘‘Mapping and Scheduling in a Shared Parallel
Environment Using Distributed Hierarchical Control’’, 1990 International
Conference on Parallel Processing, pp. I1-I8, 1990.

[17] D. G. Feitelson and L. Rudolph, ‘‘Distributed Hierarchical Control for Parallel
Processing’’, IEEE Computer, pp. 65-77, May, 1990.

[18] B. Gamsa, ‘‘Region-Oriented Main Memory Management in Shared-Memory
NUMA Multiprocessors’’, M.Sc. Thesis, University of Toronto, Toronto,
Ontario, September, 1992.

[19] A. Gupta, A. Tucker, and S. Urushibara, ‘‘The Impact of Operating System
Scheduling Policies and Synchronization Methods on the Performance of Parallel
Applications’’, Proceedings of the 1991 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, San Diego, CA, pp. 120-132,
May, 1991.

[20] M. Holliday, ‘‘Reference History, Page Size, and Migration Daemons in
Local/Remote Architectures’’, Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
104-112, April, 1989.

[21] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J.
Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J.
Hennessy, ‘‘The Stanford FLASH Multiprocessor’’, Proceedings of the 21st
Annual International Symposium on Computer Architecture, pp. 302-313, April,
1994.

[22] R. LaRowe Jr., C. Ellis, and L. Kaplan, ‘‘The Robustness of NUMA Memory
Management’’, Proceedings of the Thirteenth ACM Symposium on Operating
Systems Principles, Pacific Grove, CA, pp. 137-151, October, 1991.

[23] D. Lenoski, J. Laudon, T. Joe, D. Nakahari, L. Stevens, A. Gupta, and J.
Hennessy, ‘‘The DASH Prototype: Implementation and Performance’’, The
Proceedings of the 19th Annual International Symposium on Computer
Architecture, pp. 92-103, May, 1992.

[24] S. T. Leutenegger and M. K. Vernon, ‘‘The Performance of Multiprogrammed
Multiprocessor Scheduling Policies’’, Proceedings of the 1990 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
Boulder, CO, pp. 226-236, May, 1990.

[25] T. Lovett and R. Clapp, ‘‘STiNG: A CC-NUMA Computer System for the
Commercial Marketplace’’, Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pp. 308-317, May, 1996.

[26] E. P. Markatos, ‘‘Scheduling for Locality in Shared-Memory Multiprocessors’’,
Ph.D. Thesis, Department of Computer Science, University of Rochester,
Rochester, New York, May, 1993.

[27] E. P. Markatos and T. J. LeBlanc, ‘‘Load Balancing vs. Locality Management in
Shared-Memory Multiprocessors’’, 1992 International Conference on Parallel
Processing, pp. 258-267, August, 1992.

[28] E. P. Markatos and T. J. LeBlanc, ‘‘Using Processor Affinity in Loop Scheduling
on Shared-Memory Multiprocessors’’, Proceedings of Supercomputing ’92,
Minneapolis, MN, pp. 104-113, November, 1992.

[29] C. McCann, R. Vaswani, and J. Zahorjan, ‘‘A Dynamic Processor Allocation
Policy for Multiprogrammed, Shared Memory Multiprocessors’’, ACM
Tr ansactions on Computer Systems, Vol. 11, No. 2, pp. 146-178, May, 1993.

[30] C. McCann and J. Zahorjan, ‘‘Scheduling Memory Constrained Jobs on
Distributed Memory Parallel Computers’’, Proceedings of the 1995 ACM
SIGMETRICS Joint International Conference on Measurement and Modeling of
Computer Systems, Ottawa, ON, pp. 208-219, May, 1995.

[31] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, B. Radke, and S.
Vishin, ‘‘The S3.mp Scalable Shared Memory Multiprocessor’’, Proceedings of
the International Conference on Parallel Processing, 1995.

[32] J. K. Ousterhout, ‘‘Scheduling Techniques for Concurrent Systems’’,
Proceedings of the 3rd International Conference on Distributed Computing
Systems, pp. 22-30, October, 1982.

[33] E. Parsons and K. Sevcik, ‘‘Coordinated Allocation of Memory and Processors in
Multiprocessors’’, Proceedings of the 1996 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Philadelphia, PA, pp. 57-67,
May, 1996.

[34] V. Peris, M. Squillante, and V. Naik, ‘‘Analysis of the Impact of Memory in
Distributed Parallel Processing Systems’’, Proceedings of the 1994 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
Nashville, TN, pp. 5-18, May, 1994.

[35] J. Philbin, J. Edler, O. Anshus, C. Douglas, and K. Li, ‘‘Thread Scheduling for
Cache Locality’’, Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, Cambridge, MA,
pp. 60-71, October, 1996.

[36] S. Setia, ‘‘The Interaction Between Memory Allocations and Adaptive
Partitioning in Message-Passing Multiprocessors’’, Job Scheduling Strategies
for Parallel Processing, ed. D. G. Feitelson and L. Rudolph, Vol. 949, Springer-
Verlag, Lecture Notes in Computer Science, pp. 146-164, April, 1995.

[37] A. Silberschatz and P. Galvin, Operating System Concepts, Addison-Wesley,
Reading, Massachusetts, 1994.

[38] J. P. Singh, T. Joe, A. Gupta, and J. Hennessy, ‘‘An Empirical Comparison of the
Kendall Square Research KSR-1 and Stanford Dash Multiprocessors’’,
Proceedings of Supercomputing ’93, Portland, OR, pp. 214-225, November,
1993.

[39] M. S. Squillante, ‘‘Issues in Shared-Memory Multiprocessor Scheduling: A
Performance Evaluation’’, Ph.D. Thesis, Department of Computer Science and
Engineering, University of Washington, Seattle, Washington, Technical Report
90-10-04, October, 1990.

[40] M. S. Squillante and E. D. Lazowska, ‘‘Using Processor Cache Affinity
Information in Shared-Memory Multiprocessor Scheduling’’, IEEE Transactions
on Parallel and Distributed Systems, Vol. 4, No. 2, pp. 131-143, February, 1993.

[41] M. Stumm, Z. Vranesic, R. White, R. Unrau, and K. Farkas, ‘‘Experiences with
the Hector Multiprocessor’’, Proceedings of the International Parallel
Processing Symposium Parallel Processing Fair, pp. 9-16, April, 1993.

[42] D. Thiebaut and H. S. Stone, ‘‘Footprints in the Cache’’, ACM Transactions on
Computer Systems, Vol. 5, No. 4, pp. 305-329, November, 1987.

[43] A. Tucker and A. Gupta, ‘‘Process Control and Scheduling Issues for
Multiprogrammed Shared-Memory Multiprocessors’’, Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles, pp. 159-166, December,
1989.

[44] R. Unrau, ‘‘Scalable Memory Management through Hierarchical Symmetric
Multiprocessing’’, Ph.D. Thesis, University of Toronto, Toronto, Ontario,
January, 1993.

[45] R. Unrau, M. Stumm, and O. Krieger, ‘‘Hierarchical Clustering: A Structure for
Scalable Multiprocessor Operating System Design’’, Proceedings of the USENIX
Workshop on Micro-Kernels and Other Kernel Architectures, Seattle, WA, pp.
285-303, April, 1992.

[46] R. Vaswani and J. Zahorjan, ‘‘The Implications of Cache Affinity on Processor
Scheduling for Multiprogrammed, Shared Memory Multiprocessors’’,
Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles,
Pacific Grove, CA, pp. 26-40, October, 1991.

[47] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, ‘‘Operating System
Support for Improving Data Locality on CC-NUMA Compute Servers’’,
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, Cambridge, MA, pp. 279-289,
October, 1996.

[48] Z. Vranesic, M. Stumm, D. Lewis, and R. White, ‘‘Hector: A Hierarchically
Structured Shared-Memory Multiprocessor’’, IEEE Computer, Vol. 24, No. 1, pp.
72-79, January, 1991.

[49] S. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, ‘‘The SPLASH-2
Programs: Characterization and Methodological Considerations’’, Proceedings of
the 22nd Annual International Symposium on Computer Architecture, pp. 24-36,
1995.

[50] J. Zahorjan and C. McCann, ‘‘Processor Scheduling in Shared Memory
Multiprocessors’’, Proceedings of the 1990 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Boulder, CO, pp. 214-225,
May, 1990.

[51] S. Zhou and T. Brecht, ‘‘Processor Pool-Based Scheduling for Large-Scale
NUMA Multiprocessors’’, Proceedings of the 1991 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, San Diego,
CA, pp. 133-142, May, 1991.

