Appears in: First International Workshop on Rack-scale Computing, April 13, 2014 (WRSC 2014)

Designing A Low-Latency Cuckoo Hash Table for
Write-Intensive Workloads Using RDMA

Tyler Szepesi Bernard Wong Ben Cassell Tim Brecht
School of Computer Science, University of Waterloo
{stszepesi, bernard, becassel, brecht}@cs.uwaterloo.ca

ABSTRACT

In this paper, we present Nessie, a low-latency cuckoo hash
table design that uses only one-sided RDMA operations to
perform read and write requests. Nessie makes use of a
self-verifying data-structure to handle reads that occur in
parallel to writes, and atomic RDMA compare-and-swap op-
erations to apply multiple operations with at most one data
modification as a single atomic unit without explicit lock-
ing. In order to perform key migration, a relatively com-
mon housekeeping operation in cuckoo hash tables, using
only one-sided RDMA operations, a Nessie client inserts an
incomplete data entry that can be overwritten but not read,
allowing it to reveal the entry only after the key migration
succeeds. We analytically show that, with a reasonable hash
table load factor, Nessie has lower latency than a single TCP
roundtrip time and can complete write requests in less than
25 microseconds. Finally, we propose extending RDMA to
support Remote Hardware Transactional Memory and out-
line how it can be used to greatly simplify Nessie’s design.

1. INTRODUCTION

Distributed in-memory datastores are increasingly being
used to either augment or replace traditional databases. By
avoiding slow disk and flash drive accesses, they can han-
dle orders of magnitude higher request rates. As a result,
the performance bottleneck of data-intensive and latency-
sensitive datacenter applications (such as realtime analytics
and high-performance scientific computing) shifts from the
storage device to the network. Traditional TCP/IP-based
network communication introduces a significant amount of
latency [13] and requires processing by the storage host’s
CPU to handle every request. At high data-rates, a storage
host has to dedicate a significant amount of its processing
capacity to handling just basic read and write requests [11].

Past work [15, 11, 3] has looked at using RDMA to im-
prove the performance of distributed in-memory datastores.
RDMA is a set of operations available to many high-perform-
ance network adapters (NICs) that provides clients with
direct memory access to a remote server. By using self-
verifying data structures that can detect corrupted reads
due to concurrent writes [11, 3|, a client can use one-sided
RDMA read operations to perform a remote read request
without involving the storage host’s CPU. However, in ex-
isting systems, write requests must still be handled by a
process on the storage host, and RDMA is only used as
a lower latency substitute for TCP/IP [15, 11, 3]. There-
fore, these systems only provide partial solutions for write-
intensive workloads such as a distributed caching layer serv-

ing many concurrently writing clients.

The key challenge to using efficient one-sided RDMA oper-
ations for writes is in providing mutual exclusion to shared
memory with minimal coordination overhead between the
NIC and main CPU. Unlike remote read requests, where
corrupted reads can be detected efficiently by the client
and reissued, a corrupted write due to concurrent remote
writers can be expensive to detect, and failing to detect a
corruption results in data loss. Furthermore, data insert
and delete requests may, depending on the design of the in-
memory datastore, require additional changes to the storage
data-structure. For example, in a cuckoo hash table [12, 4],
an insert request may require additional data movement of
hash-colliding keys. An efficient design should allow a re-
mote client to perform these relatively common housekeep-
ing operations using one-sided RDMA operations.

In this paper, we present Nessie, an RDMA-optimized
cuckoo hash table design that uses only one-sided RDMA
operations for performing both read and write requests. Like
previous work, Nessie stores data using self-verifying data-
structures to avoid reading corrupted data. Nessie, how-
ever, uses atomic RDMA compare-and-swap (CAS) opera-
tions and key-specific version numbers to ensure that mul-
tiple one-sided RDMA operations in a request with at most
one data modification apply atomically. If this is not possi-
ble, the modification is rolled back and the request is reis-
sued. Although a lock-based approach would be easy to im-
plement, it would suffer from a variety of undesirable prop-
erties. Clients that fail while holding a lock, for instance,
would result in deadlocks. Nessie therefore does not use
CAS operations to build locks.

Nessie also allows clients to perform key migration, a rel-
atively common housekeeping operation in cuckoo hash ta-
bles, using only one-sided RDMA operations. The main
challenge with key migration is the need to atomically per-
form both an insert and delete request, which involves two
data modifications. Nessie simulates atomicity by inserting
incomplete entries into the table that can be overwritten
but not read until an additional flag is later toggled. This
enables Nessie to delay revealing the results of data modifi-
cations until it can ensure that the key migration does not
need to be rolled back.

Although Nessie is able to provide low-latency reads and
writes using one-sided RDMA operations, its design is sig-
nificantly more complex than other hash tables. Even mi-
nor changes to the design would require substantial effort to
reason about the correctness of the changes. To reduce this
complexity, we propose extending RDMA to support Remote

Hardware Transactional Memory (RHTM) in rack-scale sys-
tems, and outline a version of Nessie that uses RHTM.
Overall, this paper makes three contributions:

e We present Nessie, a novel cuckoo hash table design
that uses one-sided RDMA operations for both read
and write requests.

e We analytically show that, with a reasonable hash ta-
ble load factor of 0.5, Nessie completes read requests
in 2 roundtrips and the majority of write requests in
less than 5.8 roundtrips.

e We describe a new RHTM protocol which greatly sim-
plifies Nessie’s implementation.

2. BACKGROUND AND RELATED WORK

There are two main attractions for using one-sided RDMA
operations: zero-copy data transfer, and CPU bypassing.
Zero-copy data transfer refers to the fact that RDMA op-
erations do not require making a copy of the application’s
data. For example, sending data from a client to a server
over TCP/IP first requires the data to be copied from the
client application’s memory into the client kernel’s memory.
The data is then transferred across the network to the server
kernel’s memory, from which it is copied into the server ap-
plication’s memory. Alternatively, sending data from a client
to a server using RDMA directly moves the data from the
client application’s memory to the server application’s mem-
ory, with no buffering in the kernel.

Although it is possible to reduce the amount of copying
done by using operations such as sendfile and mmap, the ker-
nel is nevertheless responsible for handling the data trans-
fer. The problem with this approach is that it requires the
CPU to be utilized while performing a data transfer. With
one-sided RDMA operations, both the kernel and CPU are
bypassed by having the NIC manage the transfer of data,
thereby freeing the CPU to perform other operations.

The two simplest one-sided RDMA operations are read
and write. A RDMA read fetches the data from a memory
region on the server into a memory region on the client.
Conversely, a RDMA write places data from a local memory
region on the client into a remote memory region on the
server. RDMA also provides an atomic compare-and-swap
(CAS) operation. The CAS operation takes three 64 bit
parameters and compares the value of first parameter with
the value stored at the remote memory region specified by
the second parameter. If the values are equal, the value
of the third parameter is written into the remote address.
Otherwise, the remote memory address is left unchanged. In
either case, the value stored at the remote memory address
is returned as the result of the operation.

Figure 1 demonstrates the latency of one-sided RDMA
operations against that of traditional TCP/IP send and re-
ceive. The experiments are performed using 40 GbE with
RoCE [2] to allow for RDMA over Ethernet. TCP/IP has
an order of magnitude higher latency than any RDMA op-
eration even when there is no contention for CPU resources.
The results also show that, because of the high bandwidth
network, there is negligible difference in latency between a
10B and a 1KB data transfer.

RDMA is not a new technology, but it has received re-
newed interest in recent literature due to its current trend

100
g 10
oy
g
4 1¢
01 8B 1OB 1KB 10B 1KB 10B 1KB
CAS write TCP

Figure 1: RDMA Latency

towards affordability. One common use for RDMA is to im-
prove the performance of file and storage systems [5, 6, 7].
RDMA has also seen use as a communication mechanism,
such as implementations of MPI that leverage RDMA [9, 10,
14].

In this work, we are exploring the use of one-sided RDMA
for key-value storage, which has been proposed by other sys-
tems such as Pilaf [11] and FaRM [3]. Pilaf is a key-value
storage system that uses one-sided RDMA reads to access
data that is self-verifying and leaves write operations to the
server. If the server is writing data at the same time that
a client is reading the data, the client recognizes this by
comparing the data against the embedded hash to verify
the correctness of the read. If a client want to perform a
write in Pilaf, it communicates this via an RDMA send to
the server. FaRM makes a similar design decision but relies
on guarantees made by the hardware to allow the clients
to verify the correctness of the read. FaRM provides an
alternative communication primitive for writes that allows
messages to be exchanged between client and server using
only one-sided RDMA operations.

While it is clear from past work that RDMA is a power-
ful tool for improving the performance of key-value storage,
previous systems still rely on the server to handle data mod-
ifications. In this work, we explore the natural, if complex,
next step of leveraging one-sided RDMA write and atomic
compare-and-swap operations to allow the clients to man-
age the data manipulation of the hash table without locks
or interaction with the server.

3. DESIGN

There are two parts to a Nessie hash table: the data ta-
ble (D) and the index table (I). The data table is made
up of data items, and is where the actual key-value pairs
are stored. The data items are stored as a contiguous block
of memory which is accessed via RDMA read or write op-
erations. Because the read operations are not atomic, and
read/write conflicts are possible when a data item is recy-
cled, we store a hash of the data alongside the data itself so
that the client can verify its correctness. Additionally, the
data item may be valid according to the hash, but have a
flag marking the data as invalid (which is set during a write
operation before it is complete). If, during a read (and only
during a read), the data is deemed invalid, the read is re-
peated with exponential backoff to minimize further invalid
reads.

/~ Data Table ™\

7/~ Index Table ™\

Index | Version

\ ——64 Bits——> /

Valid | Key | Value Hash]

~ ~ \ & Bytes—— /

Figure 2: A Sample Nessie Hash Table

The index table consists of entries containing both an in-
dex and a version number. The index is the location in the
data table at which the data item for the corresponding hash
slot is stored. An initial index value of 0 is used to indicate
that the slot is empty. The version number is used to prevent
synchronization issues such as the ABA problem [1] which
could occur if a client reuses a data entry in the data table.
All access to the index table is done using the CAS operation
to ensure that the index retrieved is done so atomically (and
the retrieved value is therefore concurrency-safe). Figure 2
shows a simplified view of a Nessie hash table.

To avoid multiple writers concurrently writing to the same
data item, each client is given ownership over a set of data
items and clients may only update data items that they own.
When a client wants to write a value to the hash table, they
first write the data to a free data item which they own (a
data item that is not referenced by the index table) with a
flag marking the data as invalid. Once the write operation
is complete the index table is updated, and the data is made
valid.

After a data item has been deleted or replaced by a new
write, the client that owns that data item may reuse it for
future write operations. In the simplest case, the client that
owns the data item is also the client that removes the ref-
erence to the data item from the index table. If the client
that deletes the data item is not the owner, it must inform
the owning client that the data item is no longer in use.
At this point, the data item can be used for a future write
operation.

The high-level structure of every operation on the hash
table consists of: reading the primary and secondary indices
for the specified key; performing the operation on the ap-
propriate items at the index in the data table; checking that
the hash locations have not been modified by another client
using CAS on entries of the index table; and setting the
valid bits on any new data items. If at any point during the
operation it is detected that another client is operating on
the same hash location, the operation is halted and retried
with exponential backoff. Notice that halting during a write

operation could leave the hash table with an active and in-
valid data item. This is acceptable as long as the client’s
operation eventually completes because any read operations
for this key will notice either a hash mismatch or an unset
valid bit. In either case, the operation retries with expo-
nential backoffs until the write succeeds. If a client fails, it
is the responsibility of the server to detect the failure, and
clean up any invalid state left behind by that client using a
periodic background process.

Because both the write and delete operations end the same
way, we describe the process of completing either operation
as a function, finish. The finish function takes three ar-
guments: the hash slot ¢ to be checked, the index i that
should be present in the hash slot, and the data item v to
be made valid. A CAS at ¢ with ¢ as both the compare and
swap values serves to atomically verify the contents of the
hash slot. The resulting value should be ¢, but if it is not,
the entire operation must be retried. If the index is correct,
a write to v is performed to set the valid flag to true and the
operation is complete. A special value of 0 for v indicates
there is no new data to be made valid, and only a check is
necessary to make the operation complete.

Before calling finish, it is sometimes necessary to make a
new data item active (available from the index table) during
a write or to change a hash slot to an index of 0 during a
delete. For these situations we introduce a function called
swap which takes three arguments in addition to the argu-
ments to finish: a hash slot s to be changed, the index j
it should currently contain, and the new index n to be set
in the hash slot. swap first performs a CAS operation on s
to swap j and n. If this fails, the entire operation must be
retried. Otherwise, the function proceeds by calling finish.

3.1 Read

When a client wants to read data, it will first read the
index stored at the key’s primary slot in the hash table. If
the slot is empty, the secondary slot must be checked. As-
suming the slot is not empty, the client proceeds to read the
data stored at the specified index. Because cuckoo hashing
uses multiple potential indices per hash, it is possible that
the data item is for a different key than the one requested
and the client must therefore verify that the key stored in
the data item matches the requested key. If the keys match,
the corresponding value is returned to the client. Otherwise,
the secondary slot must be checked.

When the primary slot does not contain the requested
key, the client reads the index stored at the secondary slot
in the hash table. If the slot is empty, or the key stored
at the secondary slot’s data item does not match the one
requested, the read returns with an empty value. Otherwise,
the corresponding value is returned to the caller.

3.2 Delete

Deleting a specified key k requires checking both the pri-
mary and the secondary hash slots (p and s). First, the
client checks to see if the index ¢ at s is 0, which would in-
dicate that the delete at s is finished. When 14 is not 0, the
client only sets s to 0 if the data item at i corresponds to k.

Once the client is finished with the secondary slot, it
checks the index j stored at p. If j is already 0, or the
data item at j is for a different key, the client simply calls
finish with arguments: s, 0, and 0. Otherwise, the client
calls swap with arguments: p, j, 0, s, 0, and 0. This effec-

tively deletes p and verifies that the operation has completed
successfully.

3.3 Write

For a write operation, the parameters are: the key k being
written to, the value v it should take, and the primary and
secondary slots p and s for k. After writing the key-value
pair to an available data item, the operation attempts to
set p to be the new data item and checks the value stored
at s. If the write to p succeeds, the operation calls the
primary_write function. Otherwise, the data stored at the
primary slot must be checked to see if the active data item’s
key matches k. In the case of a match, the write is aborted
because of a concurrent operation on the primary slot, and
another attempt is made to place the data at the primary
slot. A key mismatch indicates that the write must be per-
formed at the secondary slot, which is achieved by calling
secondary_write.

If the data is being placed at the primary slot, the client
must make sure that s does not also contain a value for k.
Therefore, primary_write must clear the secondary slot if
it contains data for the same key that is being written to
p. primary_write completes by calling either the finish or
swap function, depending on whether or not the secondary
slot must be cleared, which makes the data valid for readers.

Otherwise, if the primary slot is unavailable, data must be

written to the secondary slot. The client calls secondary_write

which ensures that s is either empty or valid for the key k
before completing the write. If s already contains data for
another key, the write aborts and a migration operation is
performed before the write is attempted again.

Algorithm 1 Write

1: function WRITE(k, v, p, s)
2: D[n] =v

> valid flag off

if (d.key !=k) then
SECONDARY_WRITE

10: r = CAS(Ip], i, n)

11: if (r ==1) then

12: PRIMARY_WRITE

13: return Retry

14: end function

3: i = CAS(I[p], 0, n)

4: j= CAS(I[s], 0, 0)

5: if (i==0) then

6: PRIMARY_WRITE > primary is empty
T d = DJj]

8:

9:

> primary already used

> overwrite value

34 Migrate

If a write operation fails because both the primary and
secondary slots are filled with data for different keys, then a
migration must be performed to empty a slot for the write.
The first migration candidate is the data in the key’s pri-
mary slot. If the migration fails because the alternative slot
for the data item being migrated is filled, a second migration
attempt is made to relocate the data item in the secondary
slot. A failure to empty the secondary slot results in a mes-
sage being sent to the server, which must revoke access to its
local memory and perform a chain of migrations or a table
resize before allowing clients to proceed.

The input to the migration function is the key k to be
migrated, the source slot [to be emptied, and the destination

slot d (which is k’s alternative slot). Algorithm 2 illustrates
the pseudocode for performing a migration. The simplest
situation is that the source slot is already empty when the
migration attempt begins, in which case nothing needs to
be done. In the more likely case that there is an index at
the source slot, the data item is checked to ensure that the
data item’s key matches the key k being migrated, and a
new data item is created with a copy of k’s current value.
The destination slot can now be set to the copied data item
and the source slot cleared (assuming, of course, that the
destination slot is available). As usual, if any of the slots
are not available (for example, if they are being modified by
another client), the operation is aborted.

Algorithm 2 Migration

1: function MIGRATE(k, 1, d)

i = CAS(1]y, 0, 0)

if (i==0) then
return Done

d = DIj

if (d.key !=k) then
return Abort

D[n] =d

j = CAS(I[d], 0, n)

if (j!=0) then

11: return Abort

12: r = CAS(I]1], i, 0)

13: if (r!=1i) then

> source is already empty

> source key does not match
> valid flag off

,_.

> destination not empty

14: return Abort > source changed
15: Make D[n] valid > migration success
16: return Done

17: end function

4. ANALYSIS

Using the guarantee that RDMA operations within a con-
nection are completed in FIFO order, it is possible to pipeline
RDMA operations in certain cases. For example, the first 3
RDMA operations of the write function have no dependen-
cies on one another, and so they can all be issued without
waiting for the previous operation to finish. The advan-
tage of pipelining is that the roundtrip times are overlapped,
thereby reducing the total latency.

To provide a simple assessment of Nessie we calculate the
expected number of roundtrips needed, for a range of load
factors on the hash table, when a single writer is attempting
to add a new key into the key-value store. To simplify the
calculation, we assume that there are no other writers, the
RDMA operations are pipelined whenever possible, and it is
always possible for the client to complete the write (without
contacting the server). The results are shown in Table 1.

Load Factor | Roundtrips
0.1 2.5
0.25 3.5
0.5 5.8
0.75 9.9
0.9 13.3

Table 1: Expected Number of Roundtrips

Notice that when the hash table is 75% loaded the ex-
pected latency to complete the entire write operation is ap-
proximately 100 microseconds, which is less than the latency
to complete a single TCP roundtrip. Of potential concern is
that we have assumed the write is able to succeed without
contacting the server. In other words, the client is able to
migrate a key occupying either its primary or secondary slot
into an alternative empty slot. At a load of 0.75, there is a
70% chance that this will be possible, and further additions
to the migration function would allow the client to handle
more complex situations, such as migrations triggered by
migrations, without having to contact the server.

For many deployment scenarios, the size of the index ta-
ble would be insignificant in comparison to the size of the
actual data. Therefore, a lower load factor such as 0.5 or
0.25 is both reasonable and expected. Under these circum-
stances, Nessie is able to perform writes with significantly
fewer roundtrips.

5. DISCUSSION

Nessie makes use of a myriad of different techniques, such
as RDMA CAS operations, key-specific version numbers,
pre-assigned free memory regions, and incomplete table en-
tries, to essentially provide serializability without involving
the storage host’s CPU. Although these techniques are rel-
atively efficient, they significantly increase the complexity
of the design. Simple design modifications, such as increas-
ing the number of cuckoo hash locations per key or insert-
ing a default value when reading a non-existent key, require
non-trivial changes to how the system uses these techniques.
Reasoning about the correctness of the design is also diffi-
cult. We only provide simple constructive reasoning for the
correctness of our design; a formal proof is beyond the scope
of this paper because of the complexity of the design.

Given that these techniques are used to provide serializ-
ability, an alternative lock-free hash table design is to use
hardware transactional memory (HTM). HTM is becoming
increasingly available; the latest Intel Haswell processors
already provide support for HTM with three new explicit
instructions: XBEGIN, XEND, and XABORT. There has
been recent work [8, 16] on using these instructions to im-
plement efficient in-memory storage systems. Unfortunately,
although RDMA memory accesses can safely interact with
hardware transactions since RDMA operations respect cache
coherence, current NICs cannot actively initiate a transac-
tion. Therefore, with current hardware, it is not possible to
use HTM to simplify a hash table design that only uses one-
sided RDMA operations to perform read and write requests.
Adding support for remote hardware transaction memory
(RHTM) to RDMA requires changes that, even with signif-
icant industry support, may take several years to come to
market.

However, in a rack-scale system, proprietary changes to
the hardware and can be quickly added if there is appli-
cation demand. Adding RHTM support would at least re-
quire introducing high-speed cache to NICs to store uncom-
mitted writes, and remote versions of XBEGIN, XEND and
XABORT. Although these are non-trivial hardware changes,
they are within the scale of architectural changes that are
common in specialized high-performance rack-scale systems.
Therefore, in the next section, we explore using RHTM to
implement a hash table and outline changes to Nessie to take
advantage of RHTM.

5.1 Hash Table Design UsingRHTM

A naive approach to using RHTM in a hash table design
is to surround both read and write operations with remote
XBEGIN and XEND operations. This approach follows the
philosophy of transactional memory, but is unlikely to work
well in any hardware transactional memory implementation.
This is because HTM implementations generally use high-
speed cache to buffer uncommitted writes; performing many
large, concurrent RDMA reads and writes will lead to cache
eviction on the NIC, which in turn increases the transaction
abort rate. Therefore, even with RHTM, it is still impor-
tant to use self-verifying data-structures and pre-assign free
memory regions to clients. This will allow the large and
highly concurrent reads and writes to be non-transactional,
and only the reads and writes to the index table need to be
inside a transaction.

It is relatively straightforward to modify Nessie to use
RHTM. The basic structure of the hash table remains the
same with a separate index and data table. Reads and writes
to the data table also remain the same. However, there is no
longer a need for a valid flag in the self-verifying data struc-
ture. This is because multiple modifications to the index
table can now be performed atomically using a transaction,
which obviates the need for a mechanism to delay revealing
an uncommitted write. Entries in the index table no longer
require version numbers since the ABA problem cannot oc-
cur when using transactions; any modifications to an entry
will be detected and cause the transaction to abort. More
importantly, the terminating CAS instructions in Nessie op-
erations, which detect conflicting modifications by another
request, are also unnecessary.

These changes not only reduce the complexity of the de-
sign, but they also improve performance by immediately
aborting a transaction when there is a conflict, and reduc-
ing the number of RDMA round trips by eliminating CAS
operations used only for conflict checking.

6. CONCLUSIONS

The prevalence of RDMA in high-performance NICs pro-
vides system designers with a tremendous opportunity to re-
evaluate current performance-critical systems, such as dis-
tributed in-memory hash table, and rebuild them with RDMA
to reduce both latency and system overhead. In this paper,
we build on past work to design Nessie, a low-latency cuckoo
hash table that allows remote clients to not only perform
read requests using one-sided RDMA operations, but also
write requests. Nessie makes use of techniques such as self-
verifying data-structures, atomic RDMA CAS operations,
and incomplete table entries to ensure that requests are se-
rialized without building or using locks. Our analytic results
show that with a reasonable hash table load factor, Nessie
can complete most read requests in only two roundtrips and
most write requests in under 5.8 roundtrips. Finally, in or-
der to reduce the complexity of our hash table design, we
propose extending RDMA with RHTM and outline a sim-
pler version of Nessie that uses RHTM.

7. ACKNOWLEDGMENTS

We thank the Natural Sciences and Engineering Research
Council of Canada and GO-Bell scholarship for funding. Ad-
ditionally, this work benefited from the use of the CrySP
RIPPLE Facility at the University of Waterloo.

8.
1]

2]

3]

[4]

[5]

7l

8]

REFERENCES

ABA problem.
http://en.wikipedia.org/wiki/ABA_problem,
January 2014.

Rdma over converged ethernet (roce).
http://www.mellanox.com/page/products_dyn?
product_family=79, March 2014.

A. Dragojevié¢, D. Narayanan, and M. Castro. FaRM:
Fast Remote Memory. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design
and Implementation, Seattle, WA, April 2014.

B. Fan, D. Andersen, and M. Kaminsky. MemC3:
Compact and Concurrent MemCache with Dumber
Caching and Smarter Hashing. In Proceedings of the
10th USENIX Symposium on Networked Systems
Design and Implementation, Lombard, 1L, April 2013.
J. Huang, X. Ouyang, J. Jose, M. Rahman, H. Wang,
M. Luo, H. Subramoni, C. Murthy, and D. Panda.
High-Performance Design of HBase with RDMA over
InfiniBand. In Proceedings of the 26th International
Parallel and Distributed Processing Symposium,
Shanghai, China, May 2012.

N. Islam, M. Rahman, J. Jose, R. Rajachandrasekar,
H. Wang, H. Subramoni, C. Murthy, and D. Panda.
High Performance RDMA-based Design of HDF'S over
InfiniBand. In Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, Salt Lake City, UT,
November 2012.

B. Li, P. Zhang, Z. Huo, and D. Meng. Early
Experiences with Write-Write Design of NFS over
RDMA. In Proceedings of the IEEE International
Conference on Networking, Architecture, and Storage,
Zhang Jia Jie, Hunan, China, July 2009.

X. Li, D. Andersen, M. Kaminsky, and M. Freedman.
Highly Concurrent Hash Tables Need More Than
Naive Use of Hardware Transactional Memory. In
Proceedings of the Furopean Conference on Computer
Systems, Amsterdam, The Netherlands, April 2014.
J. Liu, W. Jiang, P. Wyckoff, D. Panda, D. Aston,

D. Buntinas, W. Gropp, and B. Toonen. Design and
Implementation of MPICH2 over InfiniBand with
RDMA Support. In Proceedings of the 18th
International Parallel and Distributed Processing
Symposium, Santa Fe, NM, April 2004.

J. Liu, J. Wu, and D. Panda. High Performance
RDMA-Based MPI Implementation over InfiniBand.
International Journal of Parallel Programming,
32(3):167-198, June 2004.

C. Mitchell, Y. Geng, and J. Li. Using One-Sided
RDMA Reads to Build a Fast, CPU-Efficient
Key-Value Store. In Proceedings of the USENIX
Annual Technical Conference, San Jose, CA, June
2013.

R. Pagh and F. Rodler. Cuckoo Hashing. Journal of
Algorithms, 51(3):122-144, May 2004.

S. M. Rumble, D. Ongaro, and R. Stutsman. It’s Time
for Low Latency. In Proceedings of the 13th Workshop
on Hot Topics in Operating Systems, Napa, CA, May
2011.

G. Shipman, T. Woodall, R. Graham, A. Maccabe,
and P. Bridges. Infiniband Scalability in Open MPI. In

(15]

(16]

Proceedings of the 20th International Parallel and
Distributed Processing Symposium, Rhodes Island,
Greece, April 2006.

P. Stuedi, A. Trivedi, and B. Metzler. Wimpy Nodes
with 10GbE: Leveraging One-Sided Operations in
Soft-RDMA to Boost Memcached. In Proceedings of
the USENIX Annual Technical Conference, Boston,
MA, June 2012.

Z. Wang, H. Qian, J. Li, and H. Chen. Using
Restricted Transactional Memory to Build a Scalable
In-Memory Database. In Proceedings of the European
Conference on Computer Systems, Amsterdam, The
Netherlands, April 2014.

