
WiTAG: Seamless WiFi Backscater Communication

Ali Abedi
Cheriton School of Computer Science

University of Waterloo
ali.abedi@uwaterloo.ca

Farzan Dehbashi
Cheriton School of Computer Science

University of Waterloo
farzan.dehbashi@uwaterloo.ca

Mohammad Hossein Mazaheri
Cheriton School of Computer Science

University of Waterloo
mh2mazah@uwaterloo.ca

Omid Abari
Computer Science Department

UCLA
omid@cs.ucla.edu

Tim Brecht
Cheriton School of Computer Science

University of Waterloo
brecht@cs.uwaterloo.ca

ABSTRACT

WiFi backscatter communication has the potential to enable battery-

free sensors which can transmit data using aWiFi network. In order

for WiFi backscatter systems to be practical they should be compat-

ible with existing WiFi networks without any hardware or software

modiications. Moreover, they should work with networks that

use encryption. In this paper, we present WiTAG which achieves

these requirements, making the implementation and deployment of

WiFi backscatter communication more practical. In contrast with

existing systems which utilize the physical layer for backscatter

communication, we take a diferent approach by leveraging fea-

tures of the MAC layer to communicate. WiTAG is designed to

send data by selectively interfering with subframes (MPDUs) in an

aggregated frame (A-MPDU). This enables standard compliant com-

munication using modern, open or encrypted 802.11n and 802.11ac

networks without requiring hardware or software modiications to

any devices. We implement WiTAG using of-the-shelf components

and evaluate its performance in line-of-sight and non-line-of-sight

scenarios. We show that WiTAG achieves a throughput of up to 4

Kbps without impacting other devices in the network.

CCS CONCEPTS

· Networks → Network architectures; Wireless access points,

base stations and infrastructure; ·Hardware→Wireless devices;

Wireless integrated network sensors.

KEYWORDS

Battery-free communication; WiFi Backscatter; Internet of Things

(IoT); 802.11 Networks; Sensors

ACM Reference Format:

Ali Abedi, Farzan Dehbashi, Mohammad Hossein Mazaheri, Omid Abari,

and Tim Brecht. 2020. WiTAG: Seamless WiFi Backscatter Communication.

In Annual conference of the ACM Special Interest Group on Data Communica-

tion on the applications, technologies, architectures, and protocols for computer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405866

communication (SIGCOMM ’20), August 10ś14, 2020, Virtual Event, NY, USA.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3387514.3405866

1 INTRODUCTION

Backscatter systems are very attractive as a means of communica-

tion for wireless sensors in applications ranging from implantable

body sensors to farming [21, 31, 32, 38]. Because they do not re-

quire batteries they can have a lower cost, smaller form factor, and

require less maintenance. Traditional backscatter systems (such as

RFIDs) require a specialized reader to read the tag values. The high

cost and large form factor of these readers have made them diicult

to deploy and have limited the adoption of RFID tags in many appli-

cations. To overcome these challenges, researchers have designed

WiFi backscatter systems. The vision is to design backscatter tags

that can be read using WiFi devices, thus reducing the complexity

and cost of deploying backscatter systems by using existing WiFi

infrastructures instead of specialized readers.

Wi-Fi backscatter [14] is the irstWiFi backscatter system that en-

ables communication with commodity WiFi devices. Unfortunately,

due to self-interference between WiFi transmission and backscatter

signals the range of this system is very limited [38]. BackFi [4]

and Passive WiFi [15] try to increase the range of communica-

tion, however they require specialized hardware which hinders the

widespread deployment of these systems. Ideally WiFi backscatter

systems need to satisfy the following key requirements:

• Compatiblewith existingWiFi access points:They should

be compatiblewith already deployed commodity access points

(APs), including 802.11n and 802.11ac standards, without re-

quiring hardware or software changes.

• Work with encrypted WiFi networks: Most WiFi net-

works are secured using encryption. Therefore,WiFi backscat-

ter systems should work with WiFi networks that use WPA

or WEP encryption.

• Battery-free: Similar to traditional backscatter tags (RFIDs),

WiFi backscatter tags need to be extremely low-power so

that they can harvest their energy from the environment

and operate without requiring a battery.

If the above requirements are satisied, we can envision hav-

ing battery-free wireless sensors which do not require specialized

readers and can be deployed in environments with existing WiFi

infrastructure. However, to the best of our knowledge, no current

backscatter system satisies all of these requirements. Recently,

a group of systems namely, FS-Backscatter [38], HitchHike[36],

https://doi.org/10.1145/3387514.3405866
https://doi.org/10.1145/3387514.3405866

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA Ali Abedi, Farzan Dehbashi, Mohammad Hossein Mazaheri, Omid Abari, and Tim Brecht

FreeRider [37], andMOXcatter [39], attempt to enableWiFi backscat-

ter using only commodity WiFi devices. All of these systems relect

the signals onto an adjacent channel to avoid self interference.

Therefore, they require two access points to work. Moreover, they

require software modiications on the second access point to receive

the backscattered packets. Most importantly, because HitchHike,

FreeRider, and MOXcatter modify physical-layer symbols, they do

not work if the network uses encryption.

In this paper, we present WiTAG, a novel WiFi backscatter sys-

tem that communicates data by leveraging MAC-layer features.

WiTAG works with encrypted WiFi networks and does not require

any software or hardware modiication to WiFi access points. More-

over, WiTAG does not require installing a second access point.

WiTAG introduces two key innovations:

1) MAC-Layer Backscatter Communication: WiTAG intro-

duces a new backscatter communication mechanism which utilizes

MAC-layer łframe aggregationž available in 802.11n and 802.11ac

standards. These standards place multiple MAC-layer data units

(subframes) in a large PHY-layer packet (aggregated frame) to im-

prove throughput, as shown in Figure 1. In WiTAG, a WiFi device

sends an aggregated frame to an AP in the network using a physical

rate that is likely to be successfully received. This frame acts as a

query for the tag (e.g., IoT sensor). The tag embeds its data into the

aggregated frame by selectively corrupting some subframes. Then,

the AP sends a block ACK back to the transmitting WiFi device,

indicating which subframes have or have not been successfully

received. The WiFi device extracts the data being communicated

by the tag from the bits in the block ACK. Subframes that are not

corrupted by the tag are received successfully (represented by a 1

in the block ACK) and those that are corrupted are not received

successfully (represented by a 0 in the block ACK). Note that the

AP is completely oblivious to the existence of the tag and does not

require any modiication. Further, because the tag communicates

its data by selectively corrupting subframes in query frames, it does

not relect signals onto a secondary channel and does not require a

second access point. Most importantly, because tags communicate

by corrupting encrypted or unencrypted MAC-layer subframes

WiTAG works with networks that use encryption. Because the sole

purpose of a query packet is to provide the tag with an opportu-

nity to communicate, the actual contents of the query packet are

irrelevant and are discarded by the system whether or not they are

corrupted by the tag.

2) Passive Subframe Corrupting: WiTAG’s second innova-

tion is a technique to passively corrupt subframes. Note that an

active radio which has a transmitter can easily corrupt a subframe

by transmitting an interfering signal. However, a backscatter tag

is a passive device and does not have a transmitter. To solve this

problem, we design a backscatter tag which can modify the wireless

channel during the transmission of a subframe, hence corrupting

that subframe. Because frame aggregation performs channel estima-

tion only once at the beginning of the aggregated frame, modifying

the channel during the transmission of a subframe corrupts the

subframe, therefore, it cannot be decoded.

We have built a prototype of a WiTAG tag using of-the-shelf

components. We evaluate WiTAG using commodity WiFi devices

without hardware or software modiications. We run experiments

in both line-of-sight and non-line-of-sight scenarios. Our results

show that WiTAG is able to send a tag’s data to the querying device

at 4 Kbps with high success rates, even when used in an oice

environment with other networks and devices operating in the

same 2.4 GHz spectrum and while competing with other traic on

the same network.

Our contributions are:1

• The irst battery-free backscatter communication system

which is fully compatible with existing open or encrypted

802.11n and ac WiFi networks without requiring software

or hardware modiications.

• We develop a technique that enables WiTAG tags to selec-

tively corrupt subframes in an aggregated frame without

requiring an active transmitter.

• To support multiple tags that communicate periodically, we

design a new technique for synchronizing query packets

with the time during which a tag is backscattering.

• We have implemented WiTAG using of-the-shelf compo-

nents and commodity WiFi devices. Our empirical results

show that WiTAG works in both line-of-sight and non-line-

of-sight scenarios.

2 BACKGROUND

WiTAG takes advantage of MAC-layer frame aggregation (the com-

bining of several subframes to create larger frames) to communicate

data by altering the wireless channel. Therefore, we now provide

background on frame aggregation and PHY layer channel estima-

tion and correction.

2.1 802.11 Frame Aggregation

The IEEE 802.11n and ac standards provide a frame aggregation

mechanism to improve the eiciency of the MAC layer [6, 7]. In

order to avoid overheads such as performing channel sensing and

transmitting an acknowledgment per frame, multiple MAC Proto-

col DATA Units (MPDUs) are combined into a larger aggregated

frame (A-MPDU), as illustrated in Figure 1. By aggregating multiple

subframes, the overhead is amortized over more useful bits and

therefore the eiciency of the MAC layer improves signiicantly.

The receiver of an A-MPDU transmits a block ACK back to the

sender to report the fate of the individual subframes inside the

A-MPDU. A block ACK is similar to the legacy 802.11 acknowledg-

ment, however rather than acknowledging the successful reception

of one frame, it reports the fate of each MPDU using a 64-bit bitmap.

WiTAG leverages this frame aggregation scheme and block ACKs

to allow tags to transmit data to a WiFi device.

M
A

C

he
ad

er

PAYLOAD

M
A

C

he
ad

er

PAYLOAD ...

M
A

C

he
ad

er

PAYLOADPH
Y

he
ad

er

Figure 1: 802.11n/ac A-MPDU structure

2.2 Channel Estimation and compensation

In all 802.11 standards including n and ac, the PHY header starts

with multiple known training symbols. The receiver utilizes these

1This work does not raise any ethical issues.

WiTAG: Seamless WiFi Backscater Communication SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA

symbols to perform channel estimation [6, 7]. The wireless channel

determines how a signal changes as it propagates from transmitter

to receiver. Since the PHY header includes known symbols for each

subcarrier, the receiver can estimate the phase and amplitude per

subcarrier. This is known as Channel State Information (CSI). The

receiver uses the estimated CSI to remove the efect of the channel

from the received signal. In Section 4, we explain how WiTAG

alters the wireless channel for a short period of time during the

transmission of a subframe, resulting in a subframe that can not be

decoded.

3 DESIGN OVERVIEW

WiTAG is a WiFi backscatter system designed for use with existing

WiFi networks. It enables a battery-free tag to communicate data to

existing WiFi devices without requiring any modiications. WiTAG

operates in two steps, as shown in Figure 2.

In the irst step (labelled 1), the client device, transmits an A-

MPDU (consisting of n subframes) to an AP. During the transmis-

sion of each subframe, the tag either does nothing, or it corrupts the

subframe. If the tag does nothing, the subframe will be decodable

at the AP. If the tag corrupts the subframe, it will not be decodable.

Therefore, the tag can encode its data by selectively corrupting

some subframes and not others. In particular, to transmit 1, the tag

does nothing during the transmission of a subframe so it can be

decoded successfully. To transmit 0, the tag corrupts the subframe

so the AP cannot decode that subframe. The result will be a se-

quence of failed or successfully decoded subframes that represent

the bits for the tag’s data. Note that since the sole purpose of query

packets is to get the tag’s data, the client does not use their content

for communication. In Section 4, we describe how a passive tag

can create interference for WiFi subframes in order to corrupt the

frame.

In the second step (labelled 2 in Figure 2), the access point trans-

mits a block ACK to the client device to notify it about the fate of

the subframes in the last A-MPDU. The client device obtains the

tag’s data directly from the block ACK. Note that although we use

the example of a client device transmitting a query packet, the AP

could also initiate this process. More importantly, both the client

and AP obtain the tag’s data irrespective of which device initiates

the query.

InWiTAG communication, there is a chance that some subframes

are corrupted due to other reasons such as path loss and interference

from other sources. Although, WiTAG tries to avoid this by using

a robust PHY-layer transmission rate for the query packet, there is

still a small chance that unintentional subframe corruption happens.

Therefore, similar to any wireless communication system, WiTAG

requires an error detection and/or correction mechanism. Note

that bit errors caused by unintentional subframe corruption are

considered in our bit error rate measurements in Section 8.

WiTAG does not require any modiications to existing WiFi net-

works because the access point receives normal A-MPDUs and

transmits normal block ACKs. Therefore it is not even aware of

backscatter communications. Similarly, the client device transmits

and receives normal 802.11 frames and hence requires no modiica-

tions to the MAC or PHY layer. It only requires an application that

A-MPDU

Block ACK

1

2

Figure 2: WiTAG overview. WiTAG’s tag selectively interferes

with subframes in a query packet transmitted by a client to an

access point. Then, the client device obtains the tag’s data from the

block ACK.

reads the tag’s data from block ACKs. Since WiTAG utilizes MAC-

layer A-MPDU aggregation, it is oblivious to the complexities of the

PHY layer. As a result, it works with any modulation scheme, cod-

ing rate, MIMO coniguration, guard interval, and channel width.

Most importantly, this feature makes WiTAG compatible with new

standards and works with WEP and WPA encrypted packets. In

addition to working with 802.11n and ac networks, WiTAG will

be compatible with the 802.11ax standard because it also supports

A-MPDU aggregation [1].

The next few sections describe the components that contribute

to the design of WiTAG. We start by explaining how WiTAG can

passively corrupt a subframe. We then describe how WiTAG syn-

chronizes a tag and the WiFi devices that transmit query packets.

Finally we explain how these components work together to enable

seamless WiFi backscatter communication.

4 CORRUPTING A SUBFRAME

In the previous section, we explained how WiTAG sends its data to

a WiFi device by corrupting selected subframes. In this section, we

describe how WiTAG corrupts a subframe.

As described in Section 2, an A-MPDU includes a single PHY

header followed by n subframes. The header is used to estimate

the channel. This estimation is then used to correct the channel

for subsequent subframes. Note, in a typical WiFi network, an A-

MPDU transmission lasts a few milliseconds and wireless channels

do not change during this short time [26, 27]. Therefore, a single

channel estimation at the beginning of the A-MPDU is suicient

to successfully correct all sub frames. However, if we modify the

wireless channel during the transmission of a subframe, then the

channel estimation done at the beginning of the A-MPDU will no

longer be valid for that subframe and as a result the subframe will

not be received successfully. Therefore, WiTAG selectively corrupts

desired subframes by changing the wireless channel during their

transmission.

4.1 Changing the Wireless Channel

A wireless channel consists of a direct and multiple indirect paths

created by relectors in an environment. Therefore, if the phase or

amplitude of a signal relected from one of these relectors changes,

the wireless channel will change. A tag in WiTAG uses an antenna

which can be switched between two modes: relective and non-

relective. The antenna is relective when it is short circuited and

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA Ali Abedi, Farzan Dehbashi, Mohammad Hossein Mazaheri, Omid Abari, and Tim Brecht

(a) Tag is in sleep mode

(b) Tag changes the channel

Figure 3: Corrupting subframes. Block ACKs of four A-MPDUs

(with 16 subframes) when a) the tag is doing nothing, and b) the

tag periodically changes the channel between two states.

non-relective when it is open circuited [32]. Therefore, the tag

can quickly change the wireless channel by switching its antenna

between these two modes. Because this switching process can be

done very quickly, the tag can be non-relective during channel

estimation (i.e., the beginning of an A-MPDU), and then become

relective during the transmission of a subframe. This will corrupt

the subframe since the channel estimation is no longer valid for

that subframe.

Figure 3 shows the block ACKs of four A-MPDUs (with 16 sub-

frames) when a) the tag is not active, and b) the tag changes the

channel state. As depicted in Figure 3a when the tag is in sleep

mode, it has no impact on the channel and all subframes can be

received successfully. In contrast, Figure 3b shows the case when

WiTAG’s tag periodically changes the channel. As can be seen,

the ACKs are 0 during the time that the tag changes the channel.

This implies that WiTAG can successfully corrupt subframes by

changing the channel during their transmission.

4.2 Maximizing the Channel Change

In order to increase the likelihood that a tag corrupts a subframe, we

want to maximize the channel change caused by the tag. Wireless

channels can be modelled using complex numbers. Figure 4 shows

the impact that WiTAG has on the wireless channel, where S is the

transmitted signal. In (a), the tag is not relecting. In this case the

received signal is simply h.S , where h is the channel coeicient. In

(b), the tag is relecting. In this case the received signal is (h +h
′
).S ,

where h
′
is the amount of channel change created by the tag. We

want to maximize the channel change because a larger change

increases WiTAG’s ability to successfully corrupt subframes.

Previous studies [18, 33] propose a technique to change the phase

of a relected signal to improve the performance of WiFi networks.

We build on that technique to maximize the amount of channel

change for backscatter communication. Instead of switching the

tag’s antenna between relecting and non-relecting modes, we de-

sign and implement a tag which is always relecting, but which

can switch the phase of the relected signal between 0 and 180

degrees.2 Figure 4 (b) and (c) show the change in the wireless chan-

nel when the tag is relecting with 0 and 180 degrees, respectively.

When the tag is relecting with 0 degrees, the channel changes by

2Note, this can be implemented simply by connecting two short circuited cables with
diferent lengths to the output of the switch. The diference between the length of
these cables is one quarter of the wavelength and therefore they create a 180 degree
phase diference.

WiFi AP

Transmitted	signal:	S Received	signal:	h.S +	h’.S=(h + h’).S	

(a) Tag is not relecting

WiFi AP

Transmitted	signal:	S Received	signal:	h.S +	h’.S=(h + h’).S	

(b) Tag is relecting with 0 degree phase change

WiFi AP

Transmitted	signal:	S Received	signal:	h.S -	h’.S=(h - h’).S	

(c) Tag is relecting with 180 degree phase change

Figure 4: Maximize the change in wireless channel. WiTAG

maximizes the change in wireless channel by always relecting, and

switching the phase of the relected signal between 0◦ and 180◦.

I (Real)

Q
 (I

m
ag

in
ar

y)

180°

h

h-h′

h+
h′ -h′

+h′

Figure 5: Passive packet corruption in WiTAG

+h
′
and when the tag is relecting with 180 degrees, the channel

changes by −h
′
. Therefore, the channel diference between these

two stages will be always 2h
′
, regardless of the value of h (as shown

in Figure 5). In particular, the tag relects with 0 degrees during

the channel estimation (done at the beginning of an A-MPDU), and

then relects with 180 degrees during the transmission of a sub-

frame. This increases the impact of WiTAG’s tag on the channel by

a factor of two, increasing WiTAG’s ability to successfully corrupt

a subframe since the channel estimation is no longer valid for that

subframe. We utilize this technique in ourWiTAG prototype, which

we empirically evaluate in Section 8.

WiTAG: Seamless WiFi Backscater Communication SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA

0 1 2 3 4 5 6 7 8
Distance between tag and client (m)

5

10

15

20

25

30

35

40

SI
N

R
 (d

B
)

256 QAM

64 QAM

16 QAM

QPSK
SISO
MIMO

(a) Client to AP distance: 8 m

0 2 4 6 8 10 12
Distance between tag and client (m)

5

10

15

20

25

30

35

40

SI
N

R
 (d

B
)

256 QAM

64 QAM

16 QAM

QPSK
SISO
MIMO

(b) Client to AP distance: 12 m

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Distance between tag and client (m)

5

10

15

20

25

30

35

40

SI
N

R
 (d

B
)

256 QAM

64 QAM

16 QAM

QPSK
SISO
MIMO

(c) Client to AP distance: 20 m

Figure 6: Impact of WiTAG’s tag on the SINR at the AP side.

4.3 Efectiveness in Corrupting a Subframe

WiTAG selectively corrupts WiFi subframes by changing the wire-

less channel. Therefore, it is important to understand how efective

WiTAG is at changing the channel and if that change is suicient

to corrupt a WiFi subframe. In order to answer this question, we

present an analytical characterization of a tag’s impact on the SINR

(Signal to Interference and Noise Ratio) of WiFi signals at the AP.

The SINR is deined as

SINR =
PClient

PTaд + PNoise
(1)

where PClient is the power of WiFi signal from the client device,

PTaд is the power of backscattered signal, and PNoise is the power

of the noise. PClient can be obtained from the free-space propaga-

tion model [5], while PTaд can be obtained from the radar relection

model [29]:

PClient =
PCGCGAλ

2

(4π)2DCA

PTAG =
PCGCGAσλ

2

(4π)3D2
TC

D2
TA

(2)

where GC and GA are the antenna gains of the WiFi client and

the AP, respectively. PC is the transmission power of the WiFi

client. DTC and DTA are the distances between the tag and the

WiFi client and AP, respectively. DCA is the distance between the

WiFi client and the AP and σ is the Radar Cross-Section (RCS) of

the tag’s antenna. This indicates how much of the incident signal

is re-radiated. The RCS of a typical 2.4 GHz dipole antenna with

an open circuit load is around 0.015 dBm2 [10]. Finally, λ is the

wavelength of the WiFi 2.4 GHz signal.

Next, we use Equation 1 to plot the SINR for diferent distances

between a tag, the WiFi client and the AP. We assume the antenna

gains GC and GA are 3 dBi and the transmission power (PC) is

30 dBm. We also assume the power of the noise (PNoise) for a 20

MHz channel is -97 dBm which is a typical noise loor for WiFi

devices. Figure 6 shows the SINR versus the distance between the

tag and the client, for diferent client to AP distances. The igure

also shows the minimum SINR required to successfully decode

packets transmitted using diferent modulation schemes [34, 35].

For example, WiFi requires an SINR of at least 21 dB and 26 dB to be

able to decode 16 QAM and 64 QAMmodulations, respectively. The

graphs in Figure 6 show that when a single stream is used (SISO),

the SINR of the WiFi signal (i.e., the blue curve) is mostly above the

minimum required SINRs for most modulations (i.e., the gray lines).

This means that in a single stream system, the only scenarios where

a tag is able to degrade the SINR to a point below that required

for successful decoding is when it is very close to the AP or the

client, or when dense modulation schemes (such as 256 QAM) are

used. Note, that inWiFi networks, the 256 QAMmodulation scheme

works only when the AP is relatively close to the client (i.e., less

than a few meters). Hence, these results show that if the client and

AP are using only a single stream to communicate, a backscatter

tag is not capable of creating enough interference to corrupt a WiFi

packet unless the tag is very close to one of the two WiFI devices.

To solve this problem and improve the range of our system, we

exploit the noise ampliication characteristics of MIMO systems. It

is known that MIMO systems sufer from the noise ampliication

problem where they amplify the noise and interference, and hence

degrade the efective SINR at the receiver [23]. We now briely

describe how noise is ampliied in MIMO systems and how that

ampliication beneits WiTAG.

AMIMO system can be described using the formulay = Hx+∆y,

where x and y are the transmitted and received signals, respectively.

The matrixH represents the channels between pairs of transmitting

and receiving antennas, and ∆y is the noise and interference. In a

typical MIMO system, the receiver receives y and estimates x using

the equation x = H−1(y − ∆y). The efect of ∆y on x is ampliied

by the inverse of the channel matrix. In a MIMO system that uses

the zero-forcing3 MIMO decoding algorithm, prior work [23] has

shown that this noise ampliication can be formulated as:

| |∆x | |

| |x + ∆x | |
≤ κ(H)

| |∆y | |

| |y | |
(3)

where | |.| | represents the 2-norm. ∆x and ∆y are the change in the

output and input of the MIMO decoder, respectively, and κ(H) is the

condition number of the matrix H , deined as κ(H) = | |H | | | |H−1 | |.

Based on Equation 3, prior work has also shown that MIMO systems

reduce the upper-bound on the SINR by κ2. This reductions is

typically between 10 and 30 dB, depending on the channel condition

and the number of streams (the reduction increases with the number

of streams) [2, 23].

WiTAG takes advantage of this characteristic of MIMO systems,

making it possible to corrupt subframes at larger distances than in

SISO scenarios. Figure 6 plots the efective SINR when MIMO is

used (shown using the red curves). To compute the SINR, we use

3Zero-forcing is a standard MIMO decoding algorithm that solves the MIMO system
equation eiciently [19].

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA Ali Abedi, Farzan Dehbashi, Mohammad Hossein Mazaheri, Omid Abari, and Tim Brecht

Equation 1 while we consider the impact of MIMO noise ampliica-

tion. Note that in our calculations, we assume κ2 = 10 dB which is

very conservative.

Figure 6 shows that MIMO systems help the tag to reduce the

SINR, and hence it makes it easier to corrupt a subframe. For ex-

ample, when the client and the AP are 8 metres apart (shown in

Figure 6(a)), the tag can always reduce the SINR to a level below that

required for 64 QAM decoding. This means, that for this example,

a tag can successfully corrupt subframes and hence embed its data

in the query packet for any location between the tag and the AP.

Figures 6(b) and 6(c) also show results for when the client and the

AP are 12 m and 20 m apart, respectively. These graphs show that

as the distance between the AP and the client increases, it becomes

harder for the tag to corrupt packets. In particular, when the AP

and the client are 20 m apart, the distance between the tag and the

AP or the tag and the client must be less than 4 meters to be able

to corrupt 64 QAM packets. However, as long as the AP and the

client are less than 12 m apart (as shown in Figure 6(b)), the tag

will be able to corrupt 64 QAM packets at any line-of-sight location

between the client and AP. Note that MIMO systems with larger

numbers of streams will further increase the tags ability to corrupt

subframes and extend the range at whichWiTAG can communicate.

In summary, if the client and AP are capable of MIMO commu-

nication, WiTAG utilizes MIMO to increase its range. However, if

MIMO communication is not available, WiTAG leverages dense

modulation schemes to enable WiFi backscatter communication for

SISO systems.

5 SYNCHRONIZATION

So far we have explained how WiTAG corrupts subframes to com-

municate its data to a WiFi device. IoT devices typically measure

physical variables (such as temperature and occupancy) periodi-

cally, and need to transmit it to a nearby WiFi device. In this paper,

we refer to the data that a tag wants to transmit as tag’s message. In

this section, we explain how WiTAG synchronizes a query packet

with a tag’s message.

One solution to synchronizing a query packet with a tag’s mes-

sage is to have the tag detect and distinguish query packets from

other WiFi packets. This can be done by transmitting a speciic,

known bit pattern in the payload of the irst few subframes (trigger

subframes) of a WiFi packet to indicate that the packet is a query

packet. This distinguishes query packets from packets being trans-

mitted by other devices and allows the tag to measure the subframe

lengths. The tag then uses a power detector and a comparator to

detect the trigger subframes (i.e., the beginning of the query packet)

and to determine the timing between two consecutive subframes.

This is how previous backscatter systems detect the beginning of a

WiFi packet.

This approach signiicantly limits the practicality of backscatter

communication. The problem is that low-power power detectors

have low sensitivity and therefore require the tag to be very close to

the transmitter to work (i.e., tens of centimeters).4 Although, there

4Unlike WiFi backscatter, traditional backscatter tags (such as RFID) use low-power
detectors and still can achieve a reasonable range (a few meters). This is because
RFID operates at much lower frequency than WiFi and hence their signals experience
less attenuation, and RFID readers use directional antennas while WiFi devices uses
omni-directional antennas.

exist power detectors with higher sensitivity, they have high power

consumption (i.e., several miliwatts) which is much higher than the

power budget of a battery-free device. Therefore, using a power

detector is not feasible for WiFi backscatter tags. Although previous

WiFi backscatter systems utilize low-power power detectors in

their designs, their implementations use power detectors with high

sensitivity which have power consumption as high as 21 milliwatts

[20, 22, 37, 39].

In the rest of this section, we describe how WiTAG shifts the

responsibility of synchronization entirely to the transmitter of the

query packet. This eliminates the need for power hungry power

detectors and ensures a simple design for the tag. Speciically, in-

stead of having the tag detect the beginning of a query packet,

WiTAG synchronizes query packets with the tag’s messages which

are programmed to be periodic.

5.1 Synchronizing a Query with a Tag’s
Message

To synchronize a query packet with a tag’s message, WiTAG works

as follows. The tag wakes up periodically and tries to embed its

data. The querying device estimates the wake-up time of the tag

and tries to overlap its query packet with tag’s wake-up time. To

estimate the wake-up times of the tag, the querying device needs

to know the tag’s irst wake-up time and its duty cycle. As we will

explain in Section 6.1, the querying device (i.e. AP) discovers these

two parameters in the initialization stage. However, there are still

two main challenges which need to be addressed to synchronize

a query packet with a tag’s message. First, the tag’s clock drifts.

The drift makes it diicult for the WiFi device to estimate the exact

tag’s wake-up times. Second, sending a WiFi packet at a given time

is not guaranteed due to the random nature of channel access. For

example, if the querying device estimates that the tag will send its

next message at time t0, it is impossible to know when the query

packet must be generated to ensure that it is being transmitted at t0.

This is because the query packet experiences random delays due to

channel access protocols. As a result, there is a chance that the tag

starts corrupting during the preamble of the query packet, which

would be problematic.

To address this problem, instead of transmitting one query packet,

the WiFi device transmits multiple query packets during a windows

of time that includes t0, as shown in Figure 7. Further, the tag re-

peats its message multiple times during its wake-up time. This

increases the probability of overlapping a tag’s message with at

least one of the query packets. Further, the length of each query

packet is chosen to be double the tag’s message length. In this case,

if the tag’s clock slightly drifts or if the query packets experience

some delays, there will be at least one query packet which overlaps

with a tag’s message. In Section 8, we show measured distributions

of the drift and channel access delay. These distributions are used to

determine the number of times a tag’s message and query packets

need to be repeated.

5.2 Synchronizing a Subframe with a Tag’s Bit

So far, we have explained howWiTAG synchronizes a query packet

with a tag’s message. However, for WiTAG to work, we also need

to make sure that each bit of tag’s message is synchronized with

WiTAG: Seamless WiFi Backscater Communication SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA

Query Packets:

Tag’s Messages:

1: Messages may drift in time

2: Transmission time of query packets is adjusted

Figure 7: WiTAG synchronization mechanism. The tag wakes up periodically and repeats its message multiple times (4 times in the

igure) and the WiFi device also repeats query packets multiple times (5 times in the igure). The WiFi devices adjust the time of query

packets based on the tag’s clock drift.

1

......
... ...0 1

✗ ✔✔

1

......
... ...0 1

? ?✔Query Packets:

Tag’s Messages:
(a) Perfect Synchronization (b) No Synchronization

i j k i j k

Figure 8: Synchronization of query subframes and tag’s bits

a query’s subframe. As shown in Figure 8(a), if the tag’s bits are

synchronized with the query’s subframes, it can interfere with a

particular subframe accurately. Hence, the WiFi device can decode

the tag’s message from the block ACK. On the other hand, when a

tag’s bit is not aligned with a query’s subframe, the tag’s bit will

overlap with two subframes (i.e., j and k in Figure 8(b)). In this case,

there is a chance that both or none of the subframes get corrupted,

and hence the block ACK will not present the tag’s data correctly.

To overcome this problem, we add redundancy bits to the tag’s

messages. Speciically, instead of assigning a single subframe to

each data bit, we assign k consecutive subframes to each data bit.

In particular, if the tag wants to send the bit 0, it corrupts k conse-

quent subframes, and if it wants to send bit 1, it does nothing for

k consecutive subframes. In this case, even when the bits are not

aligned with the query subframes, the WiFi device still can decode

the message because there is always at least one subframe that is

completely corrupted. Finally, it is worth mentioning that k needs

to be at least 2 for the system to work. Larger values of k improve

the robustness of WiTAG at the expense of lower efective data

rates.

6 OTHER SYSTEM DETAILS

The previous sections presented the two main components of

WiTAG, namely, corrupting a subframe, and synchronization. How-

ever, a number of system details must be addressed in order to

combine these components. In particular: How do we discover the

existence of a tag and its duty cycle? How can WiTAG support

multiple tags? What is the impact of WiTAG on other WiFi traic?

This section explains how we address these issues.

6.1 Initialization

In the initialization phase, the WiFi device discovers active tags

and their duty cycles. Speciically, the WiFi device transmits query

packets back to back to receive the message from all tags within

range. When the WiFi device discovers all tags, WiTAG switches

to the normal operation mode in which the WiFi device transmits

query packets only when it expects a tag backscattering a message.

The question that remains is how WiTAG discovers the duty cy-

cle (i.e., interval between consecutive wake-ups) of each tag. One

approach is to have the WiFi device discover the duty cycle of the

tags. In this approach, the WiFi device sends back to back query

packets until it receives two diferent messages from the same tag.

The delay between these two messages represents the tag’s duty

cycle. Although this approach requires sending query packets back

to back during initialization, it does not signiicantly impact other

clients on the network since initialization happens only once. A

second approach is to use a predeined duty cycle for all tags which

is known to the WiFi device. This approach is preferred when the

duty cycle is long to minimize the impact on other WiFi devices

during initialization. Note that when a new tag is added, the system

needs to perform an initialization sequence for that tag to detect

the time at which it transmits and its duty cycle.

6.2 Support for Multiple Tags

WiTAG supports multiple active tags to enable applications such

as smart home monitoring that require multiple sensors. To distin-

guish tags from each other, all tags add their ID to the messages

they backscatter so that the WiFi device knows which tag gener-

ated a received message. This ID can be hardcoded into tags during

manufacturing or can be programmed possibly using USB during

the initialization phase. Each sensor starts at a random time, there-

fore it is unlikely that two sensors choose to backscatter at exactly

the same time. If this happens, the drift of clocks on the colliding

sensors will eventually separate their backscattering times. In Sec-

tion 8, we evaluate the eicacy of WiTAG in supporting multiple

sensors using experimental measurements and simulation.

7 IMPLEMENTATION

7.1 Hardware

We implemented a WiTAG tag on a printed circuit board (PCB)

using of-the-shelf components, as shown in Figure 9. The design

includes a micro-controller and two RF switches. For the micro-

controller, we used ATtiny44 which does not require any external

oscillators [3], and it controls the state of the RF switches. For the

RF switches, we used SKY 13314-374LF [30]. One switch is used for

the 2.4 GHz WiFi band and the other is used for 5 GHz band. Each

RF switch is connected to an antenna and two lanes with the length

of zero and a quarter of the wavelength. The switch connects the

antenna to one of these lanes depending on the control signal to

create changes of 0 and 180 degrees in the phase of the backscattered

signal (as described in Section 4.2). In all experiments, we use a

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA Ali Abedi, Farzan Dehbashi, Mohammad Hossein Mazaheri, Omid Abari, and Tim Brecht

Figure 9: Our custom designed board for WiTAG’s tag

typical omni-directional WiFi antenna for the tag. Our tag costs

$5.6 USD, which can be dramatically reduced with mass production.

In our evaluations, the WiFi access point is a Google Wii access

point [8] that utilizes the Qualcomm IPQ 4019 [25] chipset (Wave 2

802.11ac). The WiFi client device is a desktop with a TP-Link TL-

WDN4800 wireless N adapter. It supports up to three streams (i.e., a

3x3:3MIMO coniguration), and is equippedwith standard antennas.

All devices used in our evaluations are unmodiied commodityWiFi

adapters.

7.2 Software

To implement WiTAG, we have developed a C program that runs

on a WiFi device that generates query packets. We have made no

changes to the hardware or driver of the WiFi device. The WiTAG

software has twomain components: 1) a query packet generator and

2) the tag’s message tracker and decoder. In our implementation,

these two components are executed in two separate threads.

The WiFi traic generator has been implemented using the pk-

tgen [24] kernel module available in Linux. Note that other ap-

proaches such as iperf [16] and custom traic generators are also

conceivable for generating query packets. We have chosen pktgen

because it can generate WiFi traic with low overhead. Since our

query packets carry no useful payload, we set the payload size

to zero bytes in our implementation to increase the number of

subframes we can transmit. This improves the throughput of our

system and minimizes the impact on other WiFi devices.

To implement the message decoder component, we utilize TCP-

DUMP [17] to receive the block ACKs (of query packets). Similar to

the traic generator component, there are other options for read-

ing the block ACKs but we have chosen TCPDUMP because it is

available on many platforms and it does not cause any noticeable

overhead. The only drawback of using TCPDUMP is the delay it

incurs for delivering the packets to our software. In Section 8.1, we

investigate this delay and show that it does not cause problems in

our prototype.

The TCPDUMP data is fed into the message decoder component

of our program that handles two main tasks. The irst task is to

keep track of the timing of tags’ messages including any possible

drift in their time and to schedule the next round of query packet

generation accordingly. The second task is to detect and extract tags’

messages from block ACKs. To support multiple tags, we include a

tag ID in the tag’s messages to distinguish messages coming from

diferent tags.

8 EVALUATION

8.1 Synchronization Timing Accuracy

Tag timing accuracy: Instead of using a power detector to detect

the beginning of query packets, a tag periodically wakes up, and

the WiFi device synchronizes its query packets with the tag’s mes-

sage. Therefore, it is important to make sure that the tag’s clock

is accurate and hence the tag’s messages do not experience large

drifts. We measure the accuracy of our micro-controller’s built-in

clock. Speciically, the tag wakes up every second for 20 ms and

goes back to sleep. Figure 10 shows the distribution of the error

in timing of tag. The igure shows that the maximum error is 200

microseconds. This is much shorter than the duration of a query

sent by the WiFi device. Therefore, the tag’s message will always

collide with the query.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-200 -150 -100 -50 0 50 100 150 200

P
D

F

Drift per Second (Microsecond)

Figure 10: Timing accuracy of tag’s clock

Query timing accuracy: Next, we evaluate the accuracy of the

WiFi device in scheduling its queries. Speciically, we empirically

measure the delay between generating a WiFi packet and when the

packet is actually transmitted. We run 1000 measurements and plot

the CDF of variations in the delay. Figure 11 shows the results of this

experiment. As can be seen, the delay varies from 50 ms to 200 ms.

Therefore, in order to make sure that query packets always collide

with a tag’s trigger, we must request a 150 ms query, 50 ms prior to

the expected trigger time. Since the query timing accuracy mostly

depends on the WiFi NIC and the operating system, measuring the

accuracy once during the initialization of the WiTAG system is

enough for calibration.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

Query Timing Accuracy (Millisecond)

Figure 11: Timing Accuracy of Query Packets

WiTAG: Seamless WiFi Backscater Communication SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA

TAG

WiFi AP
WiFi device

8 m

1 m

(a) Line-of-sight experiments

WiFi AP

A

B

C

D

E

F

G

H

I

J

10 m

18 m

(b) Non-line-of-sight experiments

A B C D E F G H I J

38 50 37 41 30 36 35 34 31 19
(c) SNR (dB) for non-line-of-sight locations

Figure 12: Our test bed. (a) line-of-sight experiment, where the

AP and client are 8 meters away and the tag is placed between them.

(b) non-line-of-sight experiments, where we tested the tag in 10

diferent locations (A through J). (c) SNR (dB) in each non-line-of-

sight location.

8.2 WiTAG’s BER and Throughput

We conduct our experiments in lab and oice spaces in a building

on a university campus as illustrated in Figure 12. We conduct

experiments in both line-of-sight and non-line-of-sight scenarios

while students move in the vicinity of AP and client devices.

(a) Line-of-sight Scenario: First, we evaluate the performance

of WiTAG in terms of bit error rate (BER) and throughput. We

place the AP on one side of the room and the WiFi client 8 meters

away on the other side, as shown in Figure 12(a). We place the tag

between the AP and the client. The WiFi client device continuously

transmits A-MPDUs packets, andWiTAG embeds its data into these

packets. Query packets are transmitted at the physical layer bitrate

of 130 Mbps (i.e., three stream MIMO, 20 MHz channel, and index

5). The AP receives the packets and transmits the block ACKs

for the packets to the client. The client extracts the tag’s data by

examining the block ACK bitmap. We compare the decoded bits

with the expected bits to measure the BER. In each measurement,

the tag sends data for one minute. We run each experiment 8 times

for each of the 7 diferent locations to compute the BER.

Figure 13(a) shows the BER of WiTAG along with the 95% coni-

dence interval when the tag is placed at diferent distances from the

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 2 3 4 5 6 7

B
E
R

Distance of tag to client (m)

(a) Bit error rate

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7
T
h
ro

u
g
h
p
u
t

(K
b
p
s
)

Distance of tag to client (m)

(b) Throughput

Figure 13: BER and throughput of WiTAG in the line-of-

sight scenario. The client and AP are 8 meters apart.

client. The results show that WiTAG achieves a low BER at all loca-

tions between the AP andWiFi client. Speciically, the BER is as low

as 0.005 when the tag is close to the AP or the WiFi client. However,

it slightly increases when the tag is half way between the AP and

client. This is because the strength of a relected signal (received at

the receiver) is proportional to 1
D2
s×D

2
r

, where Ds and Dr are the

distance between the relector object and the sender and receiver,

respectively [28]. If the relector is between the sender and receiver

then Ds + Dr is constant and is equal to the distance between the

sender and receiver. In this case, 1
D2
s×D

2
r

is minimized when the

relector is exactly in the middle of the sender and receiver (i.e.,

Ds = Dr). Therefore, because the strength of the relected signal

(received at the receiver) is minimized, the BER is slightly increased.

On the other hand, the strength of the relected signal increases as

the relector is moved closer to the AP or the client, and hence the

BER is decreased.

Figure 13(b) plots the average throughput at the seven loca-

tions along with the 95% conidence interval. The igure shows

that WiTAG achieves a throughput of about 4 Kbps when the tag

is closer to the AP or client. The throughput decreases to about 3

Kbps when the tag is in between the AP and client due to higher bit

error rates. However, this throughput is still suicient for enabling

battery-free communication for many IoT devices such as tempera-

ture, occupancy, and light sensors. Finally, it is worth mentioning

thatWiTAG achieves much longer range thanWiFi Backscatter [14]

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA Ali Abedi, Farzan Dehbashi, Mohammad Hossein Mazaheri, Omid Abari, and Tim Brecht

which achieves a very limited range.5 Moreover, although some ex-

isting WiFi-based backscatter systems, such as HitchHike, achieve

a range similar to WiTAG, and provide throughput of up to 300

Kbps, they require modiication to the existing WiFi networks and

are not compatible with networks that use security protocols such

as WEP and WPA.

Note, that although WiTAG operates with very low spectrum

eiciency compared with WiFi, it has only a negligible impact on

the performance of other devices that use the same band. This

is due to the fact that WiTAG has been designed primarily for

devices (such as temperature or moisture sensors) that only require

intermittent communication. In Section 8.3, we show that when two

tags transmit as frequently as every 10 seconds, the performance

of nearby devices that are streaming video is not impacted.

(b) Non-line-of-Sight Scenarios: Next, we evaluate the ro-

bustness and performance of WiTAG in non-line-of-sight scenarios.

We place the tag one meter from the client and the AP in another

room. We run 15 measurements, each lasting for one minute. We

repeat our experiment for ten diferent tag locations (A through J)

as shown in Figure 12. The table in this igure shows the SNR of

the WiFi signal (when WiTAG is not operating) at each of these

locations. As seen from the values in this table, this experiment

covers a wide range of signal qualities from 19 to 50 dB. During

these experiments, students work in the lab and move around in

the vicinity of the AP and the client. The line-of-sight path between

the AP and the client is obstructed by metal cabinets, concrete and

wooden walls, and doors.

Figure 14(a) shows the average BER and 95% conidence intervals

for all ten locations. This igure shows that WiTAG achieves low

BERs at all times, even in the presence of obstacles and people

that are moving. The BER at location J is slightly higher because

there are more obstacles blocking the line of sight and therefore the

signal is signiicantly attenuated. However, WiTAG’s performance

is very stable over an extended period of time even when the AP and

client device are 17 meters apart and the line of sight is completely

blocked. Note that the BERs measured in the non-line-of-sight

experiments are lower than those measured in the line-of-sight

experiments (shown in Figure 13(a)). This is because in non-line-of-

sight experiments, the tag is always 1 meter from the WiFi client

while in the line-of-sight experiments the distance between the tag

and client varies from 1 to 7 meters (as shown in Figure 12).

Figure 14(b) presents the throughput of WiTAG in the non-line-

of-sight experiments. The achieved throughput is about 4 Kbps in

all locations except location J. At this location, a lower transmission

rate had to be used when sending query packets because of the

obstacles between the AP and WiFi device. Speciically, the query

packets are transmitted at 144.4 Mbps (MCS 15) in all locations,

except at locations E and J where the transmission rate is 130 (MCS

20) and 86.7 Mbps (MCS 12), respectively. Since lower transmission

rates are used at location J, we can transmit fewer query packets

5The range of WiFi Backscatter [14] is very limited because it tries to detect minor
changes caused by the relected signal in the amplitude of the original WiFi signal.
Therefore, when the distance between the tag and the WiFi device is large, this change
is very small, and hence, not detectable by a WiFi receiver. In contrast, WiTAG uses
backscatter signals to change the channel. Although this change can be very small
when the tag is far from the WiFi device, it is still large enough to make the subframe
undecodable since WiTAG automatically picks a transmission rate that breaks with
small changes in the channel.

 0

 0.01

 0.02

A B C D E F G H I J

B
E
R

Location

(a) Bit error rate

 0

 1

 2

 3

 4

 5

A B C D E F G H I J
T
h
ro

u
g
h
p
u
t

(K
b
p
s
)

Location

(b) Throughput

Figure 14: BER and Throughput of WiTAG in the non-line-

of-sight scenario. The tag and WiFi device are placed in diferent

locations of the testbed (shown in Figure 12).

(i.e., subframes) per second. Therefore, the throughput is lower in

this location (given that the BER is similar to other locations). The

stable throughput in all locations shows that WiTAG enables robust

backscatter communication even in non-line-of-sight scenarios.

8.3 WiTAG System Performance

We now evaluate the performance of the WiTAG system as a whole.

We place the AP and WiFi device about 2.5 m apart, where there

is no line of sight between them. Both AP and WiFi device utilize

unmodiied 802.11ac cards with 2x2 and 3x3 MIMO capabilities,

respectively. Moreover, to evaluate the eicacy and robustness of

WiTAG, we have chosen a channel which is heavily utilized by

our campus WiFi network. Speciically, we observed 4 other active

APs. We also observed a few microwave ovens, one Xbox controller,

one Bluetooth device and 4 other non-WiFi devices. We place two

tags about 50 cm from the WiFi device. Each tag transmits 10-bit

messages every 10 seconds. TheWiFi device synchronizes the query

packets with the tags’ messages as described in Section 5.1. We run

this experiment for 17 minutes.

We perform this evaluation for four diferent scenarios (S1 to S4).

In S1 and S3, one and two tags are active, respectively. In S2 and

S4, we preform the same evaluations as S1 and S3, but in addition

to the existing background WiFi traic, we inject traic to further

increase channel utilization. Speciically, we add two WiFi devices

that stream videos from YouTube for the duration of the experiment.

WiTAG: Seamless WiFi Backscater Communication SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

S1 S2 S3 S4

M
e
s
s
a
g
e
 S

u
c
c
e
s
s

Scenarios

Tag A Tag B

Figure 15: Performance of WiTAG with one and two tags.

Figure 15 shows the percentage of the tag’s message that are

successfully received by the AP. Despite all the background and

injected traic which increases the delay in channel access, WiTAG

delivers all messages successfully when there is one tag. The mes-

sage success rate decreases slightly when there are two tags. How-

ever, the message success rate is still over 92%.

Impact on other clients: Although WiTAG transmits data at

4 Kbps, its impact on the available bandwidth for other users is

negligible. This is because WiTAG targets applications such as

sensors that read their values infrequently (i.e., every few seconds

or minutes). Therefore, occupying the channel for a few millisecond

every few seconds has almost no impact on the available bandwidth

for other users. Finally, although there is a chance that the tag

embeds its messages in packets of other WiFi devices which are

close to the tag, its impact on their data rate is negligible since tag’s

messages are very infrequent. To evaluate the impact of WiTAG

on other clients in the network, we monitor the QoS for the clients

that stream video on the same channel. We noticed no bufering or

degradation of video quality during any of the experiments when a

message is backscattered every 10 seconds in these experiments.

8.4 Studying WiTAG Tag Density

As the density of WiTAG tags increases, the probability of two (or

more) tags waking up and attempting to backscatter communication

at the same time increases. If such a collision occurs the device

transmitting the query packet will not be able to correctly decode

either message. In this section, we examine a range of deployment

scenarios including increasing the density of tags and increasing the

frequency of tag communication while studying the probability of

such collisions. If tags were capable of communicating at precisely

the correct interval in time each and every time, as long as theywere

initialized to start at diferent times there would be no collisions.

Unfortunately, due to clock drift, even tags that start with diferent

initial times may eventually overlap and cause collisions.

We now describe a simulation study where we examine the

probability of collisions with dense deployments of tags (e.g., up to

20 tags), diferent time intervals at which they wish to communicate

(e.g., as short as every 10 seconds), and over varying periods of time

(e.g., up to 24 hours). We use simulations for this study because we

can more easily study wider varieties and combinations of these

parameters. In our simulation, each tag repeatedly tries to embed

its message for 20 millisecond. Simulations are conducted using

three diferent time intervals for the tag’s sleep/wake cycle. Every

10 minutes, every minute and every 10 seconds. The start time for

each tag is determined using a uniform distribution in the time

interval being used.

We model the per second clock drift of the tag’s microprocessor

using a normal distribution with a mean of 0 and standard devi-

ation of 83.3 microseconds. These values were obtained from the

experiments discussed in Section 8.1. If the interval over which

a tag wakes and backscatters (20 ms) overlaps with one or more

other tags the simulator naively assumes that those messages are

corrupted and cannot be decoded. In Figure 16, our experiments

report the percentage of times that one or more tags overlap during

the 20 ms window in which they are backscattering. The results

shown are the averages of 10 runs with each run simulating a 24

hour period (except for the 10 second interval case which simulates

3 hours).

The results in Figure 16 show that even with a dense deploy-

ment of 20 tags and extremely frequent communication of every 10

seconds, the tags’ message failure rate is less than 8%. As expected,

the percentage of overlaps decreases as the interval between tag

messages increases. For many applications we expect the commu-

nication intervals to be signiicantly higher (e.g., every 1 minute or

10 minutes). In these case there are very few overlaps even with as

many as 20 tags in the system.

0

2

4

6

8

1 5 10 15 20

Number of Active Sensors

10 seconds
1 minute

10 minutes

Figure 16: Packet drop rate in percent proportion to the num-

ber of active WiTAG tags.

8.5 WiTAG Power Consumption

A WiTAG’s tag consists of two components: RF switch and data

modulator. The RF switch (SKY 13314-374LF [30]) consumes 9 µW.

The data modulator component generates data and the control

signal for the RF switch. Previous studies report that the power

consumption of such a data modulator is 1 µW when implemented

in 45nm ASIC technology [36]. As a result, the power consumption

of an ASIC implementation of WiTAG will be 10 µW which is

much lower than the ASIC implementation of HitchHick [36] and

PassiveWiFi [15] which consume 33 µW and 59.2 µW, respectively.

The major source of power consumption in pastWiFi backscatter

tags is their clock generation block, which is typically an oscilla-

tor [38]. An oscillator’s power consumption is proportional to the

square of the clock frequency (i.e., the higher the clock frequency,

the higher the power consumption). Prior work such as Hitch-

Hike [36], FreeRider [37], and MOXcattter [39] need to shift the

backscatter signal to another channel. As a result, they require an

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA Ali Abedi, Farzan Dehbashi, Mohammad Hossein Mazaheri, Omid Abari, and Tim Brecht

oscillator to operate at a minimum of 20 MHz. The power con-

sumption of high-precision oscillators in the MHz range is higher

than 1 mW, rendering battery-free implementation impractical [38].

Therefore, instead of using high-precision oscillators, these studies

use ring oscillators which consume only tens of micro watts. How-

ever, ring oscillators sufer from low accuracy and their frequency

is signiicantly impacted by temperature.6 Therefore, these systems

work only in environments where the temperature is very stable.

In contrast, because WiTAG does not require shifting the signal to

another channel, it does not require a high-frequency oscillator.

Finally, it worth mentioning that WiTAG can be coupled with

existing technologies for harvesting RF energy from WiFi signals.

Gudan et al. [9] and Abd et al. [13] design WiFi RF harvesting sys-

tems that provides 36.6 µW and 43.8 µW of power, respectively,

which are more that the energy requirement of WiTAG. Depending

on the use case, WiTAG can also utilize alternative energy harvest-

ing technologies such as indoor or outdoor solar harvesting. A small

solar panel can provide 26 mW/cm2 and 15 µW/cm2 in outdoor and

indoor environment, respectively, which are more than the energy

requirements of WiTAG.

9 RELATED WORK

Backscatter communication systems have gained signiicant atten-

tion in the recent years [11, 12]. These systems typically require

a specialized reader to generate the trigger signal and to receive

the backscattered data. The high cost and large form factor of these

readers have made them diicult to deploy and have limited the

adoption of RFID tags in many IoT applications. Recent work such

as WiFi Backscatter [14], BackFi [4] and Passive WiFi [15] have

proposed WiFi backscatter technology which eliminates the need

for specialized readers by utilizing WiFi devices instead. However,

these systems either have a very limited range [14], require spe-

cialized hardware, or require modiications to WiFi devices [36, 37].

Therefore, deploying these systems is costly and impractical for

many IoT applications.

More recently, a new category of backscattered systems has

been explored that utilizes only commodity WiFi devices. In Hitch-

Hike [36], a WiFi device transmits an 802.11b packet that is received

by an access point (AP 1) and a tag. The tag embeds its data in the

packet by changing the transmitted 802.11b symbols to other valid

symbols. The tag also shifts the signal to a non-overlapping channel

where another access point (AP 2) receives the backscattered signal.

Finally, AP 1 and 2 transfer the received packets to a host where

the original and backscattered packets are compared in order to

extract the data embedded by the tag.

Although HitchHike utilizes commodity WiFi devices, it is not

compatible with existing WiFi networks for a number of reasons:

1) HitchHike can not be used with networks that use security pro-

tocols such as WPA and WEP because after HitchHike modiies

existing symbols in the encrypted packet, it can no longer be de-

crypted. 2) The CRC of backscattered packets fail due to modifying

the packet payload. Access points would normally drop such pack-

ets assuming that these packets are corrupted. Therefore, HitchHike

requires modiications to access points to make sure they do not

6For example, a 5°C change in the temperature can shift the frequency by 600 KHz,
which signiicantly increases the error rate of backscatter systems [38].

drop these packets. 3) HitchHike only works with 802.11b net-

works, while most of today’s WiFi networks are 802.11n and ac.

802.11b devices use the direct-sequence spread spectrum (DSSS)

communication scheme which is fundamentally diferent from the

frequency-division multiplexing (OFDM) scheme used in 802.11n

and ac networks. 4) In order to decode backscatter packets, Hitch-

Hike requires receiving both the original and backscatter signal.

Therefore, it requires an additional access point.

More recent work like FreeRider [37] and MOXcatter [39], pro-

pose using similar backscatter communication systems for 802.11g

and 802.11n standards. In order for the tag to work with 802.11g net-

works, FreeRider changes an OFDM symbol to another valid OFDM

symbol by changing the phase of the signal. For example, no phase

ofset represents zero and a 180 degree phase ofset represents one.

MOXcatter proposes a backscatter system that works with WiFi

networks that utilize MIMO communication such as 802.11n and ac.

Due to the complexity of MIMO signals MOXcatter cannot perform

the phase ofset on individual OFDM symbols. Therefore, to trans-

mit 0s and 1s, it instead changes the phase of the signal for each

packet. Since FreeRider and MOXcatter relect the original signal to

a secondary channel, they have the same compatibility limitations

and shortcomings as HitchHike. FS-Backscatter [38] also shifts the

backscatter signal to an adjacent channel to avoid self interference.

In FS-Backscatter, a tag transmits its data by relecting or not re-

lecting WiFi packets to another channel. As a result, this system

also requires a second access point (with software modiications)

to receive the backscattered packets.

In contrast with previous systems, WiTAG alters the wireless

channel to communicate data by leveraging MAC-layer features. As

a result,WiTAG is compatible with existingWiFi networks, requires

no modiications to access points, and works with both open and en-

crypted networks. In addition, becauseWiTAG does not backscatter

to a secondary channel, it does not require high-frequency com-

ponents, resulting in signiicantly lower power consumption than

previous systems. Finally, in contrast to past studies which use

power hungry power detector to detect the beginning of a WiFi

packet, WiTAG introduces a synchronization method, eliminating

the need for power detectors.

10 CONCLUSION

This paper presents WiTAG, a system that enables backscatter WiFi

communication using existingWiFi networks without any software

or hardware modiication to WiFi access points. WiTAG leverages

802.11 frame aggregation to enable WiFi backscatter which works

with the latest WiFi standards (802.11ac and ax), and does not

require a second access point. Most importantly, it is compatible

with both open and encryptedWiFi networks. Our results show that

WiTAG tags are able to communicate their data to a WiFi device,

even when used in an oice environment with other networks and

devices operating in the same channel.

ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences and Engineer-

ing Research Council of Canada (NSERC), the Canada Foundation

for Innovation (CFI), the Ontario Research Fund (ORF), and Google.

We also thank the anonymous reviewers for their helpful feedback.

WiTAG: Seamless WiFi Backscater Communication SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA

REFERENCES
[1] M. S. Afaqui, E. Garcia-Villegas, and E. Lopez-Aguilera. 2017. IEEE 802.11ax:

Challenges and Requirements for Future High Eiciency WiFi. IEEE Wireless
Communications 24 (2017).

[2] Narendra Anand, Ryan E. Guerra, and Edward W. Knightly. 2014. The Case for
UHF-Band MU-MIMO. In MobiCom. 29ś40.

[3] Atmel 2015. 8-bit AVR Microcontroller. Atmel.
[4] Dinesh Bharadia, Kiran Raj Joshi, Manikanta Kotaru, and Sachin Katti. 2015.

BackFi: High Throughput WiFi Backscatter. In SIGCOMM.
[5] H. T. Friis. 1946. A Note on a Simple Transmission Formula. Proceedings of the

IRE 34, 5 (1946), 254ś256.
[6] Mattew S. Gast. 2012. 802.11n: A Survival Guide. O’Reilly.
[7] Mattew S. Gast. 2013. 802.11ac: A Survival Guide. O’Reilly.
[8] Google 2019. Google Wii. Google. https://store.google.com/product/google_wii.
[9] K. Gudan, S. Chemishkian, J. J. Hull, M. S. Reynolds, and S. Thomas. 2012. Feasi-

bility of wireless sensors using ambient 2.4GHz RF energy. In SENSORS.
[10] R. Harrington and J. Mautz. 1967. Straight wires with arbitrary excitation and

loading. IEEE Transactions on Antennas and Propagation 15, 4 (1967), 502ś515.
[11] HaithamHassanieh, JueWang, Dina Katabi, and Tadayoshi Kohno. 2015. Securing

RFIDs by Randomizing the Modulation and Channel. In NSDI.
[12] Vikram Iyer, Vamsi Talla, Bryce Kellogg, Shyamnath Gollakota, and Joshua Smith.

2016. Inter-Technology Backscatter: Towards Internet Connectivity for Implanted
Devices. In SIGCOMM.

[13] E. A. Kadir, A. P. Hu, M. Biglari-Abhari, and K. C. Aw. 2014. Indoor WiFi energy
harvester with multiple antenna for low-power wireless applications. In 2014
IEEE 23rd International Symposium on Industrial Electronics (ISIE).

[14] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota, Joshua R. Smith, and David
Wetherall. 2014. Wi-i Backscatter: Internet Connectivity for RF-powered Devices.
In SIGCOMM.

[15] Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and Joshua R. Smith. 2016.
Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions. In NSDI.

[16] ESnet / Lawrence Berkeley National Laboratory. 2019. iPerf - The ultimate speed
test tool for TCP, UDP and SCTP. http://sourceforge.net/projects/iperf/.

[17] Lawrence Berkeley National Laboratory. 2019. TCPDUMP.
http://www.tcpdump.org/.

[18] Zhuqi Li, Yaxiong Xie, Longfei Shangguan, Rotman Ivan Zelaya, Jeremy Gumme-
son, Wenjun Hu, and Kyle Jamieson. 2019. Towards Programming the Radio
Environment with Large Arrays of Inexpensive Antennas. In NSDI.

[19] Kate Ching-Ju Lin, Shyamnath Gollakota, and Dina Katabi. 2011. Random Access
Heterogeneous MIMO Networks. In SIGCOMM. 146ś157.

[20] Linear Technology 2010. 50MHz to 3GHz RF Power Detector with 60dB Dynamic
Range. Linear Technology. Rev. C.

[21] Yunfei Ma, Nicholas Selby, and Fadel Adib. 2017. Minding the Billions: Ultra-
wideband Localization for Deployed RFID Tags. In MobiCom.

[22] Maxim Integrated 2010. LF-to-2.5GHz Dual Logarithmic Detector/Controller for
Power, Gain, and VSWR Measurements. Maxim Integrated. Rev. 1.

[23] Konstantinos Nikitopoulos, Juan Zhou, Ben Congdon, and Kyle Jamieson. 2014.
Geosphere: Consistently TurningMIMOCapacity into Throughput. In SIGCOMM.
631ś642.

[24] Pktgen. 2019. https://wiki.linuxfoundation.org/networking/pktgen.
[25] Qualcomm Technologies, Inc 2019. IPQ4019. Qualcomm Technologies, Inc.
[26] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly. 2002. Opportunistic Media

Access for Multirate Ad Hoc Networks. In MobiCom.
[27] Wei-Liang Shen, Yu-Chih Tung, Kuang-Che Lee, Kate Ching-Ju Lin, Shyamnath

Gollakota, Dina Katabi, and Ming-Syan Chen. 2012. Rate adaptation for 802.11
multiuser MIMO networks. In Mobicom.

[28] M.I. Skolnik. 2008. Radar Handbook, Third Edition. McGraw-Hill Education.
[29] M. I. Skolnik. 1980. Introduction to Radar Systems /2nd Edition/ (2 ed.). McGraw

Hill Book Co., New York.
[30] Skyworks 2013. SKY13314-374LF: 0.1 to 6.0 GHz GaAs SPDT Switch. Skyworks.
[31] Deepak Vasisht, Guo Zhang, Omid Abari, Hsiao-Ming Lu, Jacob Flanz, and Dina

Katabi. 2018. In-body backscatter communication and localization. In SIGCOMM.
132ś146.

[32] Ju Wang, Liqiong Chang, Shourya Aggarwal, Omid Abari, and Srinivasan Keshav.
2020. Soil moisture sensing with commodity RFID systems. In Proceedings of
the 18th International Conference on Mobile Systems, Applications, and Services.
273ś285.

[33] Allen Welkie, Longfei Shangguan, Jeremy Gummeson, Wenjun Hu, and Kyle
Jamieson. 2017. Programmable Radio Environments for Smart Spaces. InHotNets.

[34] Yong Xi, Qingyan Huang, JiboWei, and Haitao Zhao. 2007. Rate adaptive protocol
for multirate IEEE 802.11 networks. Journal of Electronics (China) 24 (05 2007),
289ś295.

[35] Y. Xi, B. Kim, J. Wei, and Q. Huang. 2006. Adaptive Multirate Auto Rate Fall-
back Protocol for IEEE 802.11 WLANS. In MILCOM 2006 - 2006 IEEE Military
Communications conference. 1ś7.

[36] Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and Sachin Katti. 2016. HitchHike:
Practical Backscatter Using Commodity WiFi. In SenSys.

[37] Pengyu Zhang, Colleen Josephson, Dinesh Bharadia, and Sachin Katti. 2017.
FreeRider: Backscatter Communication Using Commodity Radios. In CoNEXT.

[38] Pengyu Zhang, Mohammad Rostami, Pan Hu, and Deepak Ganesan. 2016. En-
abling Practical Backscatter Communication for On-body Sensors. In SIGCOMM.

[39] Jia Zhao, Wei Gong, and Jiangchuan Liu. 2018. Spatial Stream Backscater Using
Commodity WiFi. In MobiSys.

	Abstract
	1 Introduction
	2 Background
	2.1 802.11 Frame Aggregation
	2.2 Channel Estimation and compensation

	3 Design Overview
	4 Corrupting a Subframe
	4.1 Changing the Wireless Channel
	4.2 Maximizing the Channel Change
	4.3 Effectiveness in Corrupting a Subframe

	5 Synchronization
	5.1 Synchronizing a Query with a Tag's Message
	5.2 Synchronizing a Subframe with a Tag's Bit

	6 Other System Details
	6.1 Initialization
	6.2 Support for Multiple Tags

	7 Implementation
	7.1 Hardware
	7.2 Software

	8 Evaluation
	8.1 Synchronization Timing Accuracy
	8.2 WiTAG's BER and Throughput
	8.3 WiTAG System Performance
	8.4 Studying WiTAG Tag Density
	8.5 WiTAG Power Consumption

	9 Related Work
	10 Conclusion
	References

