Wi-LE: Can WiFi Replace Bluetooth?

Ali Abedi

University of Waterloo
ali.abedi@uwaterloo.ca

ABSTRACT

Despite the ubiquity of WiFi devices, Bluetooth is widely
used for communication in low-power, low data-rate devices.
This is because Bluetooth consumes much less power than
WiFi which results in longer battery life. The higher power
consumption of WiFi devices is due to overheads from ei-
ther establishing or maintaining connections with the access
point. Surprisingly, Bluetooth devices require nearly three
times as much energy to transmit a bit of data at the physical
layer than WiFi devices.

In this paper, we propose Wi-LE a WiFi-compatible com-
munication system that avoids the power hungry process
of establishing or maintaining a connection. We implement
and evaluate Wi-LE using an off-the-shelf WiFi module. Our
results show that Wi-LE has power consumption similar to
that of Bluetooth Low Energy (BLE). This demonstrates the
potential for Wi-LE to be used in place of BLE.

ACM Reference Format:
Ali Abedi, Omid Abari, and Tim Brecht. 2019. Wi-LE: Can WiFi
Replace Bluetooth?. In HotNets *19: ACM Workshop on Hot Topics

in Networks, November 13—15, 2019, Princeton, Nj, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3365609.3365853

1 INTRODUCTION

Despite the ubiquity of WiFi devices, Bluetooth is still widely
used for communication in many battery-powered devices
such a smart watches, wireless headsets, and IoT sensors. The
reason for this is that Bluetooth communication consumes
orders of magnitude less power than WiFi communication
and hence it enables much longer battery life.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotNets ’19, November 13—15, 2019, Princeton, NJ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7020-2/19/11...$15.00
https://doi.org/10.1145/3365609.3365853

Omid Abari

University of Waterloo
omid.abari@uwaterloo.ca

Tim Brecht

University of Waterloo
brecht@cs.uwaterloo.ca

Interestingly, although Bluetooth requires less energy to
send one bit of information at the application layer, it ac-
tually requires nearly three times as much energy as WiFi
to transmit a bit of data at the physical layer. At the phys-
ical layer the energy required to transmit one bit of data
using Bluetooth is 275-300 nJ/bit [12, 14] while with WiFi
it is 10-100 [10, 13] depending on the bitrate. WiFi devices
require less energy at the physical layer because they use
much more efficient modulation techniques than Bluetooth.
Unfortunately, MAC-layer overheads in WiFi, such as estab-
lishing and maintaining a connection with the access point,
significantly increase the total power consumption. Due to
these overheads, Bluetooth outperforms WiFi in terms of
total power consumption.

The problem is that for applications requiring only peri-
odic WiFi communication with small amounts of data (e.g.,
IoT devices), considerable overheads are incurred to establish
and maintain the connection to the access point. For exam-
ple, consider a battery-powered wireless temperature sensor
which spends most of its time in sleep mode to save energy
but periodically wakes up (e.g., every 10 minutes) to send its
temperature reading to a base station. If this sensor utilizes
a WiFi radio, upon waking from sleep mode, it must re-
associate with the base station before transmitting data. As a
result, in order to transmit a few bytes of actual data, many
management frames including probe request/response and
association request/response frames have to be exchanged.
This consumes a significant amount of energy while the de-
vice establishes a connection and contributes to a relatively
high amount of energy being consumed.

Given the fact that at the physical layer WiFi is fundamen-
tally more energy efficient than Bluetooth, this paper exam-
ines possibilities for lowering the overall power consumption
of WiFi in order to enable WiFi-compatible communication
for 10T devices that only require intermittent communica-
tion. The goal is to devise techniques that would enable a
low data-rate IoT device to communicate using WiFi with
power consumption that is comparable to that of Bluetooth
Low Energy (BLE).

In this paper, we conduct an in depth study of where and
why so much energy is consumed when communicating us-
ing WiFi devices and examine several different approaches to
reducing overall power consumption. We propose WiFi Low

https://doi.org/10.1145/3365609.3365853
https://doi.org/10.1145/3365609.3365853

Energy (Wi-LE), a novel approach that enables WiFi com-
munication using power consumption levels that rival Blue-
tooth Low Energy (BLE). Wi-LE eliminates several overheads
incurred by the 802.11 protocol while maintaining WiFi com-
patibility. This enables low-power IoT devices to periodically
transmit their data without the need for re-association while
still allowing the devices to enter power-saving sleep mode.
Wi-LE achieves this without any change in the physical layer
or MAC layer, and it works with existing WiFi devices.

Low power WiFi communication provides significant ad-
vantages over BLE such as: easy integration with the growing
number of ubiquitous WiFi devices, reduced costs for manu-
facturers by potentially eliminating the need for Bluetooth
functionality in some devices, and enabling the use of the 5
GHz spectrum (allowing devices to avoid the increasingly
crowded 2.4 GHz spectrum used by BLE).

The key contributions of this paper are:

e We propose and develop Wi-LE, a WiFi-based commu-
nication system that has similar power requirements
and obtains data rates comparable with Bluetooth Low
Energy (BLE).

e We implement a prototype of Wi-LE using an off-the-
shelf micro-controller that includes integrated WiFi.
We characterize the power consumption of Wi-LE
and compare it with other approaches to reducing
power consumption of WiFi devices (e.g., using differ-
ent power saving modes). Our results show that Wi-LE
achieves energy efficiency of 84 pJ per message while
the best alternative WiFi approach achieves 19.8 mJ
per message.

e Wi-LE enables a wider range of deployment scenar-
ios than previously possible with either Bluetooth or
WiFi. For example, when available, Wi-LE can utilize
existing WiFi infrastructure (which Bluetooth cannot),
or in environments with no WiFi infrastructure such
as farms Wi-LE enables wireless communication di-
rectly between IoT devices and a WiFi device such as
a smartphone.

2 RELATED WORK

WiFi-based backscatter technology has recently been pro-
posed to enable low-power WiFi communications [3, 19-21].
Although the low power consumption of these technolo-
gies is very attractive, they suffer from multiple practical
issues. First, the range of these systems is very limited. In
order to work, the backscatter devices have to be placed very
close (i.e., within a meter) to the WiFi transmitter or receiver.
Second, these systems require software or hardware modifi-
cation to WiFi access points and devices. Finally, they require
at least two WiFi devices to be able to operate. In contrast
to backscatter technologies, Wi-LE uses active transmission

and is different in three key aspects: first, the range of Wi-LE
is much higher than WiFi-based backscatter systems. In fact,
the range of Wi-LE is the same as typical WiFi. Second, Wi-
LE does not require two WiFi devices to operate. A single
WiFi device or an access point is enough for Wi-LE to com-
municate. Finally, since Wi-LE can be implemented using
off-the-shelf devices, and is compliant with WiFi standard, it
does not require any modifications to existing WiFi devices.

The work closest to ours is a technique called WiFi beacon-
stuffing [6, 18]. This technique overloads some fields in the
802.11 beacon and other management frames with data con-
taining information such as location-specific advertisements.
Specifically, a WiFi access point embeds additional data into
its beacons for the purpose of multi-casting information to
nearby devices. In contrast with that work, Wi-LE injects
WiFi beacons to eliminate the need for the power-hungry
re-association process and hence enables low power WiFi
communication for low data-rate IoT devices.

One of the advantages of Wi-LE is that it does not re-
quire any WiFi infrastructure to operate. This feature is
also present in WiFi direct [4, 17], which enables WiFi de-
vices to communicate directly with each other without an
access point. However, in a fashion similar to that used in
infrastructure-based WiFi networks, WiFi direct requires
exchanging several management frames to establish a con-
nection. Despite the power management schemes of WiFi
direct, its power consumption is similar to that of WiFi [5].

Similarly, WiFi ad-hoc networks do not require any infras-
tructure to operate. Empirical measurements have shown
that ad-hoc WiFi communication consumes even more power
than when using infrastructure mode [8, 9]. This is mainly
because overheads are still incurred to establish and maintain
an ad-hoc connection. Moreover, ad-hoc nodes are addition-
ally responsible for some tasks that are otherwise performed
by an access point when operating using infrastructure mode.
Examples of such tasks are generating beacons and handling
time synchronization between nodes.

3 BACKGROUND
3.1 Establishing an 802.11 Connection

In this section, we provide a brief description of the required
steps for establishing a connection with a WiFi access point.
First, a WiFi client device requires some information about
the access point before attempting to connect. The client
either needs to wait to receive a beacon frame from the AP
or actively probe the AP by sending a probe request to the
AP. The AP responds by sending a probe response. The probe
response includes information about the capabilities of the
AP such as supported transmission rates.

In the next step, the client transmits an authentication re-
quest to the AP. Upon receiving the authentication request,

the AP first sends an ACK and then sends an authentication
frame to the client to indicate successful authentication. The
client then acknowledges the reception of the authentica-
tion frame. Next, the client and the AP exchange association
request and response frames. If the access point has encryp-
tion enabled, another step is required to validate the shared
key. In this example, we assume that the AP uses 802.1x
authentication [1] which is the case for the Google WiFi
AP [2] we utilize in our tests. A four-way handshake is per-
formed using the 802.1x protocol to confirm that the client
has the shared-key. At least 8 frames are exchanged during
this process.

In addition to these 20 MAC-layer frames, 7 higher-layer
frames including DHCP and ARP have to be transmitted
before a client device can transmit to the AP. Transmitting
all of these frames consumes a significant amount of power
in order to establish a WiFi connection.

3.2 Maintaining an 802.11 Connection

Maintaining an 802.11 connection is also a power-hungry
process. A client has to listen on the wireless channel to
receive packets from the AP. Otherwise, the AP concludes
that the client has disconnected. Unfortunately, the WiFi
radio consumes a lot of power even when not transmitting
or receiving packets. To alleviate this problem the 802.11
standard incorporates a power saving mechanism that en-
ables clients to significantly reduce their power consumption
while staying connected to the AP.

At a high level, while using this power saving mechanism,
a client turns off its radio when it has no packets to transmit
and only wakes up periodically to receive the beacon frames
transmitted by the AP. Since the transmission of the beacons
is periodic, a client can accurately calculate when to wake
up. The access point indicates in the beacon if it has any
packet for each connected client. If a client finds out that
there are packets queued for it at the AP, it then asks the AP
to transmit the packets, otherwise it goes back to sleep. This
procedure significantly reduces the power consumption of
the device while in the idle mode. Despite this significant
reduction in power consumption, the cost of maintaining a
WiFi connection is still extremely high for a battery-operated
IoT device. In Section 5, we show how the power draw while
in power-saving mode impacts the overall power consump-
tion.

4 Wi-LE

Wi-LE is a WiFi-based communication system for low data
rate IoT applications. It significantly reduces the power con-
sumption of WiFi by taking a different approach to the com-
munication protocol. In WiFi networks, establishing a con-
nection to an access point involves multiple steps including

authentication, association, and encryption. These steps are
required for network management reasons and to prevent
unauthorized users from accessing services such as connect-
ing to the Internet. These steps impose extra overhead on the
WiFi protocol by exchanging many messages at the time a
connection is established which consequently increases the
power consumption. However, an IoT device that provides
a service (e.g., reporting the temperature) may not need to
consume the energy required to establish a connection.

In Wi-LE, an IoT device broadcasts WiFi packets to send its
data without joining any WiFi network. This feature is called
“packet injection” and is supported by many WiFi chipsets.
Nearby WiFi devices such as smartphones can receive the
injected packet. However, since this packet does not belong
to the WiFi network that the smartphone is connected to, it
will be dropped at the MAC layer, unless the WiFi chip is
in the monitor mode. Unfortunately, monitor mode is not
supported by all WiFi cards. For smartphones and tablets
running Android or iOS, it also requires rooting the device
in order to put the WiFi card into monitor mode.

We solve this problem by injecting fake WiFi beacon
frames that carry the IoT device’s data. In other words, the
IoT device pretends to be an access point. This beacon frame
is received by all nearby WiFi devices. Upon receiving a WiFi
beacon frame, the MAC layer forwards it to higher layer to
notify the operating system and thereby the user about the
existence of the WiFi network. Operating systems typically
use this information to show a list of APs (SSIDs) the user
can connect to. Therefore, an IoT device can transmit its
data to nearby WiFi devices by injecting WiFi beacon frames.
For instance, Figure 1 shows a temperature sensor that em-
beds its data in 802.11 beacon frames. The advantage of this
approach is that it requires no software or hardware mod-
ifications (e.g., rooting the phone) on the receiving device
which can be a smartphone, a tablet, or a computer. Instead a
simple Android or iOS application or other software running
on a host can retrieve the sensor’s data. This application
looks for special beacon frames transmitted by IoT devices
and extracts their data from the beacon frames.

4.1 How to Avoid Spamming

If IoT devices are in the vicinity of another WiFi device their
transmitted data would make it appear as an access point
to that WiFi device (potentially spamming the list of access
points available to that device). Users would see a long list of
fake access points on their phones or computers which can
adversely impact the user experience. To avoid this problem,
Wi-LE utilizes the “hidden SSID” mechanism in the 802.11
standard. The hidden SSID feature allows users to hide their
WiFi networks by not advertising the name of their SSID. As
a result, the access point is not shown on the list of available

WiFi Beacon

L g

Temperature Sensor

Temperature =17 C

Figure 1: In Wi-LE, an IoT device sends out fake WiFi
beacon frames. All nearby WiFi devices receive these
beacons and can extract the IoT device’s data.

WiFinetworks. Since the SSID field must be null in the hidden
SSID mode, Wi-LE must place IoT devices’ data in other fields.
The “vendor specific” information element field in the 802.11
beacon frame is a suitable place for our purposes. This field
can be up to 253 bytes [6] and does not have any specific
format and can therefore be used to transmit an string.

In Wi-LE, an IoT device inserts its data into the vendor
specific field of a fake 802.11 beacon frame and broadcasts
it using frame injection. Using this technique nearby WiFi
devices to not see any additional access points in their list of
available WiFi networks. Therefore, Wi-LE does not interfere
with the normal operation of WiFi networks. However, the
beacons transmitted by IoT devices can be retrieved from
the operating system.

By utilizing the beacon injection technique, Wi-LE avoids
the overheads of establishing and maintaining a WiFi con-
nection. The microcontroller can enter sleep mode between
the periodic transmissions. When the microcontroller wakes
up, it embeds its data in a beacon frame, transmits it imme-
diately and goes back to sleep. Note that Wi-LE does not
associate with an AP for transmission.

5 EVALUATION

5.1 Experiment Setup

We use a Google WiFi access point [2] and an off-the-shelf
ESP32 WiFi/BLE [7] as an IoT device to perform our experi-
ments . This module is a low-cost and low-power system-
on-chip microcontroller with integrated Bluetooth and WiFi
chips. The Bluetooth chip supports Bluetooth v4.2 BR/EDR
and BLE. The WiFi chip operates at 2.4 GHz and supports
the IEEE 802.11 b/g/n standards. The chip also supports WiFi
packet injection which is critical for the implementation of
Wi-LE. The module’s microcontroller is an Xtensa dual-core
32-bit LX6 microprocessor, operating at up to 240 MHz. To
reduce power consumption, we set the default frequency to

! To eliminate unnecessary power draw on the ESP32 evaluation PCB board,
we removed the voltage regulator and LED from the board and provide a
clean 3.3 volt DC source of power directly from a power supply.

80 MHz which is the lowest frequency required for WiFi and
Bluetooth functionality. The microcontroller also provides
a few power saving modes namely, deep sleep, light sleep,
and automatic light sleep, that are critical for implementing
ultra-low-power systems. In deep sleep mode, the CPU and
RAM are disabled and only a timer is active to wake up the
microcontroller. The current draw in deep sleep mode is as
low as 2.5 pA. In light sleep mode, we have full RAM reten-
tion so the wake up procedure is much faster than when in
deep sleep mode at the cost of higher power consumption.
The current draw during light sleep mode can be as low as
0.8 mA. The WiFi radio is disabled in both light and deep
sleep modes. The ESP32 also supports an automatic light
sleep mode in which the WiFi radio and microcontroller go
to sleep in between WiFi beacon frames and wake up only to
receive beacon frames in order to maintain the connection.
The current draw while in automatic light sleep mode with
active WiFi is about 5 mA.

As illustrated in Figure 2, we utilize a Keysight 34465A
digital multimeter [11] to measure the current draw from the
ESP 32 WiFi module. This multimeter is capable of taking
50,000 samples per second with pico ampere (pA) accuracy
which enables us to measure the power consumption very
accurately. To measure the total current draw by ESP32 mod-
ule, we place the multimeter in series with the 3.3 volt DC
power source and the module.

Digital Multimeter

33v R, . L
power supply ESP32

Figure 2: Experiment setup

5.2 Understanding Wi-LE Operation

In this section, we examine the power consumption required
to establish an 802.11 connection and compare that value
with Wi-LE’s connection-less approach. As described in Sec-
tion 3.1, a WiFi client device has to exchange many MAC
and network layer messages with the WiFi access point in
order to establish a WiFi connection. Establishing the con-
nection is a necessary step in today’s WiFi networks in order
to transmit a data packet.

Figure 3a shows the current consumed by the ESP32 WiFi
module when transmitting a data packet after waking up
from deep sleep mode. The ESP32 disables the WiFi radio in
deep sleep mode to save energy. Therefore, it has to establish

T T
MC/WiFi init

T T
Probe/Auth./Associate

T

T T
DHCP/ARP Tx Sleep —

g 250 | Sleep
= 200 | |
5 150 =
2 100 i
g
S 50 .
(@] 0 i

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (Second)
(a) WiFi
2

z 00 Sleep MC/WiFi init _ Tx Sleep
E 1s0f g
z
o
Ao 100 - i
=
g 50 R
3
O 0 | 1 l 1 | l l l

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (Second)

(b) Wi-LE

Figure 3: The current consumed by WiFi and Wi-LE for transmitting a frame

the WiFi connection after coming out of sleep mode. In the
first phase (i.e., from time 0.2 to 0.85 s), the microcontroller
executes the start up procedure which involves reading from
the persistent storage (i.e., flash). It then initializes the WiFi
module to prepare it for connecting to an AP. In the sec-
ond phase (i.e., from time 0.85 to 1.15 s), the WiFi module
exchanges the MAC management frames such as probe, au-
thentication, association request and response frames. It also
exchanges several messages to pass the WPA2 encryption
mechanism. The spikes we observe in this phase correspond
to transmission and reception of these management frames.

In the next phase, DHCP and ARP messages are exchanged
so that the client device receives an IP address and finds the
MAC address of the destination (i.e., the AP) for the data
packet it wants to transmit. As you can see in the figure,
the current draw drops to 20-30 mA for most of this phase.
We have enabled Dynamic Frequency Scaling (DFS) and
automatic light sleep as described in Section 5.1 to reduce the
transmission power when the microcontroller and the WiFi
module are idle. As can be seen in the figure there are fairly
long wait times for network layer messages such as DHCP,
therefore the modules enters its power saving mode. Finally,
the WiFi module becomes ready to transmit the data packet.
It only takes a few milliseconds for the data transmission
to finish as depicted by red arrow in Figure 3a. After the

transmission, the microcontroller re-enters the deep sleep
mode.

Figure 3b shows the current consumed by Wi-LE for trans-
mitting a data packet. Similar to the WiFi experiment, in
the first phase the microcontroller and the WiFi module
have to be initialized. Interestingly this step is shorter when
compared with the WiFi case. This is because of a simpler
initialization phase for Wi-LE. Specifically, in Wi-LE, the
chip does not need to prepare to connect to the AP as a
client; it can simply enable the WiFi radio to inject a packet
without any association. Finally, the WiFi module broadcasts
the beacon frame as described in Section 4 and goes back
to the sleep mode. These figures clearly show that Wi-LE
significantly reduces the total time and energy required to
transmit a packet.

5.3 Scenarios Studied

We study different WiFi and BLE communication scenarios
to compare the efficacy of Wi-LE in reducing the power
consumption of WiFi.

WiFi Power Saving (WiFi-PS): In this scenario, the WiFi
chip associates with an access point and maintains the con-
nection by utilizing aggressive power saving mode. In this
mode, during the idle time, the WiFi device skips receiving
some beacon frames. Specifically, the WiFi chip wakes up

only for every third beacon frame. Finally, the microcon-
troller is in the automatic light sleep mode which reduces
its clock frequency and utilizes clock gating to reduce the
power consumption considerably.

WiFi Duty Cycle (WiFi-DC): In this scenario, the WiFi
chip disconnects from the AP after transmitting its data
and goes to sleep to save power. The microcontroller goes
to the deep sleep mode to reduce the power consumption
to the lowest level possible. A timer is set to wake up the
microcontroller for the next transmission. The WiFi device
has to re-associate with the AP before its next transmission.

Bluetooth Low Energy (BLE): In this scenario, the BLE
chip is in the slave mode, and periodically transmits a data
packet to another BLE device which is in the master mode.
The microcontroller goes into the deep sleep mode between
the transmissions.

Wi-LE: In this scenario, the WiFi chip injects a beacon
frame without associating with any access point. The AP
(i.e. another WiFi card) is in the monitor mode to receive
and verify these beacon frames. The microcontroller goes
into the deep sleep mode between the transmissions. Note
that BLE and Wi-LE are compared under identical scenarios.
Specifically, both techniques periodically transmit a packet
(i.e., one-way communication) and spend the rest of the time
in sleep mode.

5.4 Energy per Packet

In this section, we study the energy to transmit a data packet
using different technologies. This is an important metric be-
cause each time the IoT device wants to transmit, it needs
to sent at least one message regardless of how small its data
is. To calculate the required energy per packet, we measure
the time the microcontroller and WiFi module are on while
transmitting a packet. We also measure the average power
consumption during this time. We then multiply these num-
bers to calculate the energy. We also measure the current
consumed while in idle mode (i.e., in-between transmissions).
Table 1 summaries our measurements for all scenarios stud-
ied.

We consider two WiFi modes: 1) the WiFi client always
stays connected to the AP and it is in power saving mode
(WiFi-PS) 2) the WiFi client disconnects from the AP and
goes into deep sleep mode in between transmissions (WiFi-
DC). Table 1 shows that when the client stays connected
to the AP (WiFi-PS) the energy it requires to transmit a
packet is an order of magnitude smaller than when the client
needs to re-associate. On the other hand, the idle current
consummation is about 2000 times more in WiFi-PS since the
microcontroller is in the automatic light sleep mode instead
of the deep sleep mode.

Although our ESP32 module supports BLE, we do not use
it as our reference for BLE power consumption because their
Bluetooth implementation is inefficient in terms of power
consumption (i.e., it is close to WiFi power consumption)
and still under development. Instead, we use a CC2541 [16]
which is an ultra-low power BLE module as our reference for
power consumption. Table 1 presents the power consump-
tion results from a report [15] published by the chipset’s
manufacturer. We observe that the energy per packet for
BLE is almost three orders of magnitude lower than WiFi-PS.
This is why BLE modules can run on a small button battery
for over a year.

We previously observed that in Wi-LE, the transmission
time of a packet is mostly spent waiting for the microcon-
troller and the WiFi card to become ready before it can trans-
mit a packet. These steps are unavoidable for regular WiFi
because it requires powerful and complex microcontrollers
and WiFi modules to implement the full protocol stack in
order for WiFi to operate. On the other hand, Wi-LE does not
require the entire protocol stack since it only broadcasts an
802.11 beacon frame without any connection. The content
of the packet including all of headers can be pre-computed
and then only the IoT device’s data needs to be inserted into
the packet. As a result, Wi-LE can be implemented very effi-
ciently in hardware to significantly reduce the initialization
and setup time. To compute the energy per packet for Wi-LE
in Table 1, we consider only the time required to transmit
the packet and multiply that by the power consumption mea-
sured from the ESP32 modules. We find that Wi-LE’s energy
per packet is 84 uJ which is very close to that of BLE. For
this measurement, we use a physical bitrate of 72 Mbps at
transmission power of 0 dBm which has a similar range as
BLE at the same transmission power (i.e., a few meters). We
believe that an application-specific integrated circuit (ASIC)
implementation will have much lower power consumption.

| Wi-LE | BLE | WiFi-DC | WiFi-PS
Energy/packet | 84 pJ | 71y | 238.2mJ | 19.8 m]
Idle current | 25 pA | 1.1 pA | 2.5 uA | 4500 A
Table 1: Energy required to transmit a message using
different technologies and their idle current compari-
son

5.5 Average Power Consumption

An important factor for low-power systems is the average
power consumption. We use the following formula to com-
pute the average power consumption:

1 (Ptx+ Pidte)

— = (1)
INT \T,. ' INT - Tyy

Pavg =

where P;, and P;yj. are the power consumption in trans-
mission and idle mode. T;y is the duration of transmission
including all overheads such as the initialization of the mi-
crocontroller. The interval between transmissions is denoted
by INT.

WiFi-PS —+— WILE
WiFi-DC —¢— BLE
103 T T T T T T T T T

102 _

10t B]

100 |

101§]

Power (mw)

102 ¢ |

10-4: I I I I I I \ \ \
0 05 1 15 2 25 3 35 4 45 5

Transmission Interval (Minute)

Figure 4: The comparison of overall power consump-
tion for different transmission intervals

Figure 4 shows the average power consumption for dif-
ferent transmission intervals (i.e., INT). The average power
consumption generally decreases as we increase the interval
between transmission. This is because fewer power hun-
gry transmissions happen over a given period of time. We
observe that if a device transmits its data more than once
per minute WiFi-PS outperforms WiFi-DC due to the high
overhead of association in WiFi-DC. However, if the trans-
mission period is longer, WiFi-DC performs better because
the idle transmission power used in WiFi-PS outweighs the
overhead of re-association. This figure also shows that the
power consumption of Wi-LE is close to that of BLE and
generally about 3 orders of magnitude lower than any of the
WiFi solutions.

6 DISCUSSION

In this paper, we have investigated the possibility of replac-
ing Bluetooth with WiFi. Our preliminary results show that
Wi-LE is a promising technique that enables WiFi commu-
nication at power consumption levels that rival Bluetooth
Low Energy (BLE). Nevertheless, in order to enable a full
communication system the following topics require further
study:

Network of IoT devices: We implement and evaluate
Wi-LE for one IoT device. Extending this work to a network

of 10T devices is the subject of future work. The messages
generated by IoT devices must contain unique identifiers so
that they can be distinguished from each other. The possibil-
ity of concurrent transmissions from multiple devices and
the mitigation mechanism need to be studied. We believe
that if two devices happen to transmit at the same time and
they have the same transmission period, their transmissions
will automatically differ away from each other due to the
jitter of their clocks.

Two-way communication: In this paper, we focus on
the transmission of data from an IoT device to nearby WiFi
devices. Although this is sufficient for many applications
that require one-way communication, it would be ideal if
Wi-LE supports two-way communication. The challenge of
receiving WiFi packets efficiently is that the receiver needs
to actively wait for packets and this is a power hungry pro-
cess. One way to solve this challenge is that the IoT device
specifies when the packets destined to the device should be
transmitted. For instance, an IoT device that utilizes Wi-LE
can indicate in some beacon frames that it will be ready to
receive packets for a short time slot after the current bea-
con. This way the waiting period will be limited to the time
slots specified by the IoT device and therefore the power
consumption is reduced significantly.

Security: Currently, since Wi-LE systems communicate
by injecting raw packets with no encryption all devices
within range of the sender can obtain the transmitted data
by monitoring the channel. However, security can be easily
provided by encrypting the data prior to its transmission.

7 CONCLUSION

In this paper, we present Wi-LE a low-power WiFi communi-
cation system that avoids the overheads of establishing and
maintaining a WiFi connection. Instead, it injects 802.11 bea-
con frames that can be received by all nearby WiFi devices.
Wi-LE is suitable for IoT applications where a device needs to
periodically transmit some data to a base station or a smart-
phone. Our evaluations show that the power consumption
of Wi-LE is similar to that of Bluetooth low energy.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful feed-
back. We also thank the Natural Sciences and Engineer-
ing Council of Canada (NSERC) for partial funding for this
project.

REFERENCES

[1] 2010. IEEE 802.1X-2010. https://standards.ieee.org/standard/802_1X-
2010.html.
[2] 2019. Google Wifi. https://store.google.com/product/google_wifi.

[3] Ali Abedi, Mohammad Hossein Mazaheri, Omid Abari, and Tim Brecht.

[10

(11

[12

[13

[14

[15

[16

[17

[18

[19

[20

[21

=

—

—

=

=

]

—

—

=

= =

]

2018. WiTAG: Rethinking Backscatter Communication for WiFi Net-
works. In HotNets. 148-154.

D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano. 2013. Device-to-
device communications with Wi-Fi Direct: overview and experimenta-
tion. IEEE Wireless Communications 20, 3 (2013), 96-104.

Daniel Camps-Mur, Xavier Pérez-Costa, and Sebastii Sallent-Ribes.
2011. Designing Energy Efficient Access Points with Wi-Fi Direct.
Comput. Netw. 55, 13 (Sept. 2011), 2838-2855.

R. Chandra, J. Padhye, L. Ravindranath, and A. Wolman. 2007. Beacon-
Stuffing: Wi-Fi without Associations. In Eighth IEEE Workshop on
Mobile Computing Systems and Applications. 53-57.

Espressif Systems 2019. ESP32 datasheet. Espressif Systems.
https://www.espressif.com/sites/default/files/documentation/
esp32_datasheet_en.pdf.

L. M. Feeney and M. Nilsson. 2001. Investigating the energy con-
sumption of a wireless network interface in an ad hoc networking
environment. In INFOCOM. 1548-1557.

R. Friedman, A. Kogan, and Y. Krivolapov. 2013. On Power and
Throughput Tradeoffs of WiFi and Bluetooth in Smartphones. IEEE
Transactions on Mobile Computing 12, 7 (2013), 1363-1376.

Daniel Halperin, Ben Greenstein, Anmol Sheth, and David Wetherall.
2010. Demystifying 802.11N Power Consumption. In Proceedings of the
2010 International Conference on Power Aware Computing and Systems
(HotPower’10).

Keysight technologies [n. d.]. 34465A Digital Multimeter. Keysight
technologies. https://literature.cdn.keysight.com/litweb/pdf/
5991-1983EN.pdf?id=2318052.

Konstantin Mikhaylov, Nikolaos Plevritakis, and Jouni Tervonen. 2013.
Performance Analysis and Comparison of Bluetooth Low Energy with
IEEE 802.15.4 and SimpliciTI. Journal of Sensor and Actuator Networks
2(2013), 589-613.

S. K. Saha, P. Deshpande, P. P. Inamdar, R. K. Sheshadri, and D. Kout-
sonikolas. 2015. Power-throughput tradeoffs of 802.11n/ac in smart-
phones. In 2015 IEEE Conference on Computer Communications (INFO-
COM). 100-108.

M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen. 2012. How
low energy is bluetooth low energy? Comparative measurements with
ZigBee/802.15.4.In 2012 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW). 232-237.

Texas Instruments 2012. Measuring Bluetooth Low
Energy Power Consumption. Texas Instruments.
http://www.ti.com/lit/an/swra347a/swra347a.pdf.

Texas Instruments 2013. CC2541: 2.4-GHz Bluetooth low en-
ergy and Proprietary System-on-Chip. Texas Instruments.
http://www.ti.com/lit/ds/symlink/cc2541.pdf.

WiFi Alliance [n. d.]. Wi-F-Direct. WiFi Alliance. https://www.wi-
fi.org/discover-wi-fi/wi-fi-direct.

S. Zehl, N. Karowski, A. Zubow, and A. Wolisz. 2016. LoWS: A complete
Open Source solution for Wi-Fi beacon stuffing based Location-based
Services. In 2016 9th IFIP Wireless and Mobile Networking Conference
(WMNC). 25-32.

Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and Sachin Katti. 2016.
HitchHike: Practical Backscatter Using Commodity WiFi. In SenSys.
Pengyu Zhang, Colleen Josephson, Dinesh Bharadia, and Sachin Katti.
2017. FreeRider: Backscatter Communication Using Commodity Ra-
dios. In CoNEXT.

Jia Zhao, Wei Gong, and Jiangchuan Liu. 2018. Spatial Stream
Backscater Using Commodity WiFi. In MobiSys.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Establishing an 802.11 Connection
	3.2 Maintaining an 802.11 Connection

	4 Wi-LE
	4.1 How to Avoid Spamming

	5 Evaluation
	5.1 Experiment Setup
	5.2 Understanding Wi-LE Operation
	5.3 Scenarios Studied
	5.4 Energy per Packet
	5.5 Average Power Consumption

	6 Discussion
	7 Conclusion
	References

