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Abstract
Typical VM consolidation approaches re-pack VMs into
fewer physical machines, resulting in energy and cost sav-
ings [13, 19, 23, 40]. Recent work has explored a just-in-
time approach to VM consolidation by transitioning VMs
to an inactive state when idle and activating them on the ar-
rival of client requests [17, 21]. This leads to increased VM
density at the cost of an increase in client request latency
(called miss penalty). The VM density so obtained, although
greater, is still limited by the number of VMs that can be
hosted in the one inactive state. If idle VMs were hosted in
multiple inactive states, VM density can be increased fur-
ther while ensuring small miss penalties. However, VMs in
different inactive states have different capacities, activation
times, and resource requirements.

Therefore, a key question is: How should VMs be tran-
sitioned between different states to minimize the expected
miss penalty? This paper explores the hosting of idle VMs
in a hierarchy of multiple such inactive states, and studies the
effect of different idle VM management policies on VM den-
sity and miss penalties. We formulate a mathematical model
for the problem, and provide a theoretical lower bound on
the miss penalty. Using an off-the-shelf virtualization solu-
tion (LXC [2]), we demonstrate how the required model pa-
rameters can be obtained. We evaluate a variety of policies
and quantify their miss penalties for different VM densities.
We observe that some policies consolidate up to 550 VMs
per machine with average miss penalties smaller than 1 ms.

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design, Distributed Systems

Keywords Virtualization, virtual machines, cloud comput-
ing, VM density, VM consolidation, VM hierarchy
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1. Introduction
Virtual machine (VM) consolidation [13, 19, 23, 40] allows
cloud-providers to pack multiple VM instances running on
underutilized physical machines into fewer machines, en-
abling some machines to be turned off, resulting in energy
and cost savings. This allows cloud-providers to minimize
costs, and maximize profits, while continuing to meet SLAs.

Typical VM consolidation approaches simply re-pack
VMs into fewer physical machines using VM migration. The
VM density (average number of VMs/machine) such meth-
ods yield is bounded by the maximum number of VMs that
can be co-hosted on a single machine. However many VM
workloads exhibit frequent, often long, and uncorrelated idle
periods. Examples of such workloads include certain web-
hosting workloads [21], cyber-foraging workloads [28], and
personal servers [14, 25, 31]. When multiple VMs with such
workloads are co-hosted on a machine, decreasing the re-
source footprint of idle VMs allows for a much denser VM
packing, thus reducing hosting costs for both tenants and
cloud-providers. For such workloads, it is possible to reclaim
resources from idle VMs by transitioning them to inactive
state(s), and activating them on the arrival of client requests.
Table 1 shows inactive states proposed or supported in a few
virtualization solutions. Such a consolidation effort is com-
patible with existing migration-based consolidation methods
since it incurs little network overhead. Moreover, this type of
consolidation is able to leverage transient idle periods to re-
claim resources whereas conventional VM migration-based
consolidation methods rely solely on long idle periods.

Virtualization Solution Inactive states

LXC [2] Frozen(stock) [24], Shutdown (stock)
Xen Suspended, Shutdown (stock), Substrates [35]
VMWare ESXi Suspended, Shutdown (stock), Fast-resume [38, 39]
KVM Suspended, Shutdown (stock)

Table 1: Proposed and natively supported (denoted
“stock”) inactive states for a few virtualization solutions.

Recent work [17, 21] has explored the use of one inactive
state (e.g., substrate [35], fast-resume [38, 39]) for managing
idle VMs. In doing so, VM density is limited by the maxi-
mum number of VMs (per machine) in that inactive state
that can be hosted on a machine. If idle VMs were hosted
in more than one such inactive state (Table 1), VM density



can be increased. Unfortunately, due to differences in their
design and resource requirements, different inactive states
have varying VM activation and deactivation times, and VM
capacities. Consequently, miss penalties for idle VMs in dif-
ferent inactive states vary significantly. This leads to the fol-
lowing questions: 1) How should idle VMs be transitioned
across different inactive states? In other words, when a VM
becomes idle which inactive state should it be transitioned
to? 2) Subsequently, when should an idle VM be transitioned
to other state(s) in anticipation of client requests? Therefore,
what is needed is a policy that governs the transitions of idle
VMs across inactive states so as to minimize the miss penal-
ties and maximize VM density. We refer to these policies as
idle VM management policies. Existing mechanisms (Sec-
tion 2) can then be used to implement such policies and dy-
namically transition idle VMs across the inactive states.

In this work we study the effect of different idle VM
management policies on VM density and miss penalties.
First, we formally model the problem of multiplexing idle
VMs across multiple inactive states. We divide the policy
space into two parts, (i) demand-based (or reactive) poli-
cies, and (ii) proactive policies. Using our model formula-
tion, we provide a lower-bound on the miss penalty incurred
by demand-based policies. Then, by finding similarities be-
tween this problem and the problems of page replacement
and multi-level cache management, we propose SlidingWin-
dow, a proactive policy which leverages inter-arrival time
prediction to further reduce miss penalties. We obtain the
model parameters (i.e., inactive state capacities, and tran-
sition times) for LXC [2], a widely used OS-level virtual-
ization solution. We then use the measured parameters to
evaluate different reactive and proactive policies, while us-
ing personal servers as a sample low duty-cycle workload.
Our evaluation shows that at low-to-medium VM densities,
a simple proactive policy can deliver up to an order of mag-
nitude lower average miss penalty than widely known reac-
tive policies, whereas reactive policies perform better under
higher VM density.

This work makes the following key contributions:
• We present a formal model for idle VM management

policies, and provide a lower bound on the miss penalty
of reactive policies.

• With LXC [2] as our example virtualization solution, we
demonstrate the measurement of model parameters using
microbenchmarks.

• We study a few representative VM management policies,
quantify their miss penalties using a simulation-based
evaluation, and provide insight into their behaviour.

2. Background and Related work

Target Applications: Numerous rapidly-emerging applica-
tions are designed to execute (either completely or in part)
on a per-user VM to provide a variety of services such as
cloud-backed mobile applications (cyber-foraging) [17, 28],

private data collection [16] and mining [25, 31], private on-
line social networks [11], and other private VM-based appli-
cations [20]. Remote management of home sensors [10], and
privacy-preserving community-wide sensing [14] are other
examples. These VM-hosted applications service workloads
where each VM is idle for large periods of time, and at
any instant, only a small fraction (across a given number of
VMs) are actively serving clients. Hence these idle periods
can be leveraged to increase VM density and lower hosting
costs. Similarly, recent work [21] has focused on lower-end
consumers hosting user-facing services with frequent idle-
periods, that can tolerate relinquishing of resources, when
idle, in exchange for lower hosting costs.

Inactive states for VMs: Traditionally, VMs hosted on a
machine are thought of as always being in a booted ac-
tive state, and thus utilizing the host’s CPU, memory, and
disks [13, 19, 23, 40]. Inactive states are additional states
providing a middle ground between the booted and shut-
down states, where VMs consume only a fraction of re-
sources of the booted state. This presents an opportunity for
further increasing VM density. As different states utilize dif-
ferent amounts of each resource, it is possible to have a hi-
erarchy of states where, at any instant, VMs actively serving
workloads are in the booted state, while each idle VM is in
one of the inactive states. Note also that a VM in the shut-
down state only consumes the host’s disk.

Recent work has proposed inactive states for VMs to re-
duce their resource footprint, albeit for different reasons e.g.,
for reducing VM activation time. Wang et al. [35] propose
stateful in-memory VM substrates which are less resource-
intensive than a running VM, and have small VM activa-
tion times. Knauth et al. [22] propose a fast-resume state
which leverages lazy disk reads to lower VM activation time.
Likewise, Twinkle [41] demonstrates the use of different
optimizations–working set estimation, demand prediction,
and free page avoidance, to lower VM resume (from sus-
pended) times. This body of existing work focuses on reduc-
ing resource footprint of inactive VM states and/or reducing
activation times, and does not study the multiplexing of VMs
across inactive states, and its impact on miss penalties and
VM density. To our knowledge, no prior work has studied
the design of policies to transition VMs between different
states, even for a two-state hierarchy.

Just-in-time provisioning of VMs: Existing work has ex-
plored using one inactive state for hosting idle VMs. Dream-
Server [21] demonstrates the use of a lazy, eager, and hy-
brid VM resume [22, 38, 39] for just-in-time provisioning
of VMs for web-hosting workloads exhibiting idle periods.
Similarly, Ha et al. [17] explore just-in-time VM provision-
ing for offloading computation from a mobile device. This
body of existing work leverages only a single inactive state,
which limits VM density to the maximum number of inac-
tive VMs that can co-exist in that particular state. Since inac-



tive states differ in their resource requirements, VM density
can be improved by multiplexing idle VMs across multiple
inactive states, which is the focus of our work.

Existing work has also demonstrated activation of VMs
on request arrival, using different mechanisms, such as a
reverse-proxy server running on the host [21]. Other possible
mechanisms include using a DNS server running on the
host [32], or a host-kernel module which uses the target IP
address in a request to identify and activate the target VM.

Determining VM idleness: The amount of time a VM is
idle depends entirely on the workload it serves. For instance,
if a VM hosts application servers, once an active VM stops
serving clients, it can be classified as being idle. Existing
work has shown how such rules to determine VM idle time
can be created. For instance, in case of server-client work-
loads such rules can use the number of connected TCP
clients [32], or can use CPU and memory utilization [37]
(for a variety of workloads, e.g., involving server-client jobs,
or VM-initiated jobs). Example mechanisms to implement
such rules include VM introspection [18, 32, 37], and client-
request monitoring using a DNS server [32].

3. Model Formulation
Once a VM becomes idle it can either be left in the booted

state, or can be transitioned (either immediately or at a suit-
able later time) to one of the inactive states, depending on
the VM management policy in place. Since different inactive
states, due to differences in their design and resource inten-
siveness, have different transition-to-booted times, the pol-
icy’s actions can significantly affect miss penalties for sub-
sequent requests for this VM. Similarly, because the maxi-
mum number of VMs possible in each state is limited (typi-
cally by a certain system resource), the policy’s actions may
also affect miss penalties for other VMs depending on which
state it chooses to place them in. Due to such implications on
miss penalties, it is important to choose a VM management
policy which minimizes miss penalties across all VMs while
maximizing VM density.

Many cloud environment workloads today exhibit a great
deal of VM heterogeneity. VMs may have varying resource
demands, workloads, and SLAs. In this work, as a starting
point, we study scenarios where VMs are relatively homoge-
neous in resource requirements, workloads, and SLAs (e.g.,
VMs for personal servers in Section 2). We defer the study
of heterogeneous scenarios to future work.

To better understand and reason about different possi-
ble policies, we formulate a simple mathematical model of
the problem. Such a formulation gives a sound theoretical
foundation to the problem, and as we show, can be used to
provide a lower bound on the miss penalty incurred by any
demand-based policy.

Let S1,S2 . . .Sn (as shown in Figure 1) be the n inactive
states, in addition let S0 be the booted state, and Sn+1 be
the shutdown state. Similarly, let V1,V2 . . .Vv be v VMs pro-

visioned on a machine. Let the maximum number of VMs
feasible in state Si be Bi. Let matrix T(n+2)×(n+2) be the time
to transition VMs across different states, i.e. ti, j is time to
transition from Si to state S j where i, j ∈ {0,1, . . .n,n+ 1}.
We realize that in practice, the transition times are stochas-
tic variables (associated with some distribution). Our model
can be viewed as a mean value analysis. We view Bi as a soft
bound, i.e., if the number of VMs in Si exceeds Bi, transition
times (∀ j, ti, j and t j,i) may degrade. To simplify the notation
in a later proof, let ti be the time to transition from Si to S0
(booted), i.e. ti = ti,0, i ∈ {0,1, . . .n,n+1}.

Let VM requests received over a time period t be denoted
as ω = r1,r2 . . .rt , a string of tuples ri, where ri = (Vj,di)
where Vj, and di denotes the duration for which Vj is active
(serving request ri). We refer to ω as the request string. For
a given ω , let Pπ(ω) denote the total miss penalty incurred
by VM management policy π . Thus for an optimal VM
management policy θ , ∀ω∀π,Pθ (ω)≤ Pπ(ω).

Policies can be divided into two classes: i) reactive (or
demand-based) policies, and ii) proactive policies. We now
address each class separately and describe how VM manage-
ment policies are related to other types of resource manage-
ment policies.

3.1 Reactive policies

Reactive policies configure, transition, or provision a system
resource, such as a memory page, only when a demand for
that resource is received, and are also referred to as demand-
based policies. Examples include the widely used demand-
based page replacement policies such as LRU, FIFO, Clock,
and others [12]. Another prominent example is multi-level
cache management policies such as DEMOTE [36]. Be-
lady’s OPT algorithm [9], which simply evicts the page
referenced furthest in the future, is provably the optimal
demand-based policy for single-level caches [7, 15] (e.g.,
page replacement). However the optimal demand-based pol-
icy for multi-level caches remains unknown [15]. Neverthe-
less, we build upon existing results on page replacement and
caching policies and formulate a lower bound on the miss
penalty Pπ(ω) incurred by any demand-based VM manage-
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Figure 1: Hierarchy of VM states.



ment policy π . Policies can be either online, which only use
information about the past, or offline, which also use infor-
mation about the future. Our lower bound assumes knowl-
edge of future arrivals and cannot be implemented in an on-
line fashion. It serves as a theoretical lower bound for com-
parison with other demand-based policies.

For any given ω , a VM management policy π is a
demand-based policy if, π transitions a VM Vi to the booted
state at time t (if not already booted), only if ∃rt ∈ ω , such
that, rt = (Vi,d) for some duration d. For any given ω , we
define hi, i ∈ {0,1, . . .n,n+1} to be the number of requests
rt ∈ ω , such that the target VM was in state Si on arrival of
the request. On arrival of the request rt the target VM is tran-
sitioned to the booted state from its current state. Since the
maximum number of VMs in each state is limited (Bi), this
transition may require additional transitions for (a) transi-
tioning other VMs from the booted state into inactive states,
and (b) transitioning other VMs from one inactive state to
another. Even if all transitions are conducted in parallel,
these additional transitions, depending upon their duration,
may contribute towards increasing the miss penalty. For in-
stance, an additional transition may take more time than the
time to transition the target VM to the booted state. Thus for
any demand-based VM management policy π ,

Pπ(ω)≥Minπ(ω),

where Minπ(ω) = ∑
n+1
i=0 hi.ti.

3.1.1 Lower bound on demand-based policies

Gill et al. [15] propose a demand-based multi-level cache
management policy which provides the lowest average re-
sponse time and lowest inter-cache bandwidth. Along the
same lines, we define a VM management policy φ such that

∀π,∀ω,Minφ (ω)≤Minπ(ω),

and hence, ∀π,Minφ (ω) ≤ Pπ(ω). That is Minφ (ω) forms
a lower bound on the total miss penalty for any demand-
based VM management policy π , for any request string ω

for length |ω|.
We now compute the lower bound Minφ (ω). First, con-

sider a state hierarchy which consists only of the booted and
shutdown states (i.e., n = 0). Consider the application of Be-
lady’s OPT algorithm on this hierarchy for managing VMs,
i.e., when a VM needs to be transitioned to the booted state
and the number of booted VMs equals B0, the booted idle
VM which will receive a request farthest in the future is shut
down. Using this algorithm on a two-state hierarchy, for any
given ω , let the optimal number of hits hOPT (ω,B0) be the
number of requests in ω such that the target VM is in the
booted state (S0) on arrival of the request, where B0 is the
maximum number of VMs possible in the booted state.

Let φ be a demand-based VM management policy which,
for a reference string ω , for each state Si (i ∈ 0,1, . . .n),

exhibits hi (number of hits to state Si), such that

hi = hOPT (ω,
i

∑
j=0

B j)−hOPT (ω,
i−1

∑
j=0

B j). (1)

We show that amongst all demand-based policies, φ mini-
mizes Minπ(ω), and hence Minφ (ω) forms the lower bound
on the total miss penalty of any demand-based policy.
Lemma I Among all demand-based policies, policy φ max-
imizes ∑

k
i=0 hi,∀k ∈ {0,1 . . .n}.

Proof: Summing (1) over the range i = 0,1 . . .k we get,
k

∑
i=0

hi = hOPT (ω,
k

∑
j=0

B j).

This is the same as operating Belady’s OPT algorithm on
a hierarchy with just two states– booted and shutdown, with
the maximum possible number of VMs in booted equal to
∑

k
j=0 B j. Since Belady’s algorithm is known to be optimal

demand-based policy on a two-state hierarchy, ∑
k
i=0 hi is

maximized.
Lemma II For any ω , no other demand-based policy π has
Minπ(ω)< Minφ (ω).
Proof: We prove by contradiction. Let π̂ be a demand-based
policy (with respective ĥi), such that Minπ̂(ω) < Minφ (ω).
Therefore,

n+1

∑
i=0

ĥi.ti <
n+1

∑
i=0

hi.ti

Or,
n

∑
i=0

ĥi.(ti− tn+1)+(
n+1

∑
i=0

ĥi).tn+1 <

n

∑
i=0

hi.(ti− tn+1)+(
n+1

∑
i=0

hi).tn+1.

Since ∑
n+1
i=0 ĥi = ∑

n+1
i=0 hi = |ω|,

n

∑
i=0

ĥi.(tn+1− ti)>
n

∑
i=0

hi.(tn+1− ti). (2)

Or,
n

∑
i=0

ĥi.(tn− ti + tn+1− tn)>
n

∑
i=0

hi.(tn− ti + tn+1− tn).

Or,
n

∑
i=0

ĥi.(tn−ti)>
n

∑
i=0

hi.(tn−ti)+(
n

∑
i=0

hi−
n

∑
i=0

ĥi).(tn+1−tn).

The second term on right hand side is non-negative because
tn+1 ≥ tn, and by Lemma I, ∑

n
i=0 hi ≥ ∑

n
i=0 ĥi. This means,

n

∑
i=0

ĥi.(tn− ti)>
n

∑
i=0

hi.(tn− ti).

Since the nth term in the summation on either side is zero,
we get,

n−1

∑
i=0

ĥi.(tn− ti)>
n−1

∑
i=0

hi.(tn− ti). (3)



In reducing (2) to (3), the summation reduces from n to
(n−1). Since ∀ j ∈ {1, . . .n}, t j−1 ≤ t j, these steps can be re-
peated until the summation reduces to n= 1. That is, ĥ0.(t1−
t0) > h0.(t1 − t0), which implies ĥ0 > h0, which contra-
dicts Lemma I (which states that φ maximizes ∑

k
i=0 hi,∀k ∈

{0,1, . . .n}).
Note that the lower bound Minφ (ω) assumes future

knowledge and cannot be implemented in an online fash-
ion. Nevertheless, it serves as theoretical lower bound for
comparing with other demand-based policies. In Section 5,
we compare a few widely used demand-based policies with
the lower bound and compare them with proactive policies.

3.2 Proactive Policies

Proactive policies configure, transition, or provision a sys-
tem resource prior to a demand for it being received. They
have previously been explored in the context of page re-
placement, with the goal of producing lower page faults than
demand-based page replacement. Existing work [34] has
shown that Belady’s OPT algorithm is the optimal demand-
based policy that minimizes the number of page fetches but
does not minimize the number of page faults, because it does
not prefetch pages. Trivedi et al. [34] explored the use of
proactive policies to lower the number of page faults, and
proposed and proved DPMIN [34] as the optimal pre-paging
algorithm. DPMIN proceeds as follows: at the time of a
page fault, DPMIN scans the future page reference string
and fetches the first m pages that will be referenced in the
future (including the page that caused the page fault), where
m is the number of memory page frames. For the purposes
of this paper, we define proactive policy as any policy that is
not a demand-based policy (as defined above).

SlidingWindow: We extend the DPMIN algorithm and de-
fine the SlidingWindow policy for managing VMs across
different states. Our rationale is that, since VMs can be tran-
sitioned in parallel, provisioning VMs in anticipation of re-
quests would reduce average miss penalties. SlidingWindow
proceeds as follows: whenever a request rt ∈ ω is received
such that the target VM is not in the booted state, it com-
putes a new state configuration for all VMs. To compute
this new configuration, SlidingWindow scans the future ref-
erence string (illustrated in Figure 2). All VMs that are cur-
rently active are placed in the booted state in the new config-
uration. If A is the number of currently active VMs, the first
(B0−A) VMs that will be requested in the future are placed
into the booted state (S0) (illustrated as a time window W0)
in the new configuration. Similarly, the next B1 VMs that
will be requested next are placed into S1 (illustrated as time
window W1). This process continues up to state Sn (time win-
dow Wn), and the remaining (v−∑

n
i=0 Bi) VMs are placed in

the shutdown state. After the new configuration is computed,
VMs are moved from their existing to this new configuration.

When VM Vi becomes idle, SlidingWindow re-scans the
future reference string to compute tnext , i.e., the time at which

Vi will be requested next. If tnext falls in the time window Wj
it transitions Vi into S j, and one VM from Sk to Sk−1 (the one
that is referenced the soonest) ∀k ∈ { j, j−1, . . .1}. In effect,
it slides the windows W0,W1 . . .Wj−1 to the right. If tnext falls
in the window W0, Vi remains in the booted state.

Similar to DPMIN, our SlidingWindow policy assumes
knowledge of the future reference string, and cannot be im-
plemented in an online fashion. Therefore, in addition to the
offline implementation of the policy, we provide an online
implementation (called SlidingWindow+ARMA) which uses
a predictor to estimate tnext , and uses the predicted value to
perform its proactive VM provisioning. We describe Sliding-
Window+ARMA in further detail in Section 5.2, and com-
pare with demand-based policies in Section 5.5.

W0 W1

VM Idle

tnext

t
WN WS

VM Request

Figure 2: Proactive management, SlidingWindow policy.

4. Obtaining Model Parameters
Our formal model (described in Section 3) relies on a few
input parameters, namely the transition times (T(n+2)×(n+2))
and the maximum number of VMs possible in each state
(Bi). We use LXC [2], a widely used OS-level virtualization
solution, as an example virtualization solution, and conduct
an experimental analysis to obtain the model parameters.
Note that we continue to refer to execution environments
created using LXC as VMs, since our formal model (Sec-
tion 3) is applicable to any virtualization solution. We now
describe our methodology in detail and justify our choices.

4.1 LXC as a Case Study

OS-level virtualization approaches have been shown to incur
40-50% lower virtualization overhead than other approaches
such as Xen paravirtualization [27, 33], thus promising po-
tentially higher density. Example OS-level virtualization so-
lutions include LXC [2], OpenVZ [3], and VServer [5]. We
choose LXC as our example virtualization solution for sev-
eral reasons: i) it is open source, allowing easy analysis of
its implementation, ii) it is in production use and is part of
the mainstream Linux kernel, iii) it offers a low latency in-
active VM state called “frozen”, iv) it is being used in other
projects which can benefit from increased VM density, such
as Docker [1] (to provide “frozen in state apps”), and Confi-
dential Commuting [14] (to provide per-user private VEEs).

As noted, in addition to the booted (S0) and shutdown
state (S2), LXC implements a frozen state (S1) which forms
a middle ground between booted and shutdown states. When
an idle VM in the booted state is transitioned to the frozen
state, it retains its memory and disk footprint, while relin-
quishing CPU cycles. In addition, frozen-to-booted tran-
sition times are significantly smaller than shutdown-to-



booted transitions. Thus, LXC provides us with a three-
state hierarchy with the booted, frozen, and shutdown states.
Menage [24] provides a detailed description of the imple-
mentation of the frozen state.

4.2 Experimental Setup

We use LXC [2] (v.0.8.0) to create VMs. VMs are hosted on
a machine which has four Intel Xeon processors with six
3.46 GHz cores each, and 128 GB RAM. It uses a 7200
RPM 1 TB SATA hard disk to store VMs OS images. All
experiments are repeated 50 times and experiment results are
reported using averages with 95% confidence intervals.

VMs in an OS-level virtualization solution, such as LXC,
share the host kernel’s process pool, data structures, and de-
vices. Therefore, when increasing VM density, some host
kernel parameters need to be increased. For instance, since
all processes of all LXC VMs share the host kernel’s pool
of open file descriptors (FD) the total number of open FDs
allowed by the host kernel limits the number of VMs. Simi-
larly, the kernel’s maximum allowed process identifier (PID)
(set to a default of 32,767), and the number of Unix98 pseu-
doterminals (set to a default of 4,096), also limit the number
of VMs. For conducting our experiments we increased these
values to 14,000,000, 65,535, and 8,000 respectively.

4.3 Quantifying Density

We first determine the maximum number of booted, frozen,
and shutdown VMs that can be supported in our testbed.

Shutdown VMs: The only system resource consumed by
shutdown VMs is disk space. It is required for storing their
OS image, applications, and libraries. In our testbed, each
VM consumes 476 MB of disk space. Thus, 2,000 VMs can
be created on a 1 TB disk, using the EXT4 filesystem.

Booted VMs: To determine the maximum number of booted
VMs (B0) we conduct a simple experiment where the num-
ber of booted but idle VMs on the machine is gradually in-
creased, while all other VMs are shutdown. VMs are tran-
sitioned from shutdown to booted sequentially, with a delay
of 30 seconds between successive VMs to ensure that the
system reaches a steady state; essential for recording system
measurements. Measurements are recorded using vmstat.

We observe that the system memory consumption in-
creases steadily with increasing number of VMs. This is be-
cause each additional VM consumes approximately 42 MB
of memory for initializing its processes (such as its SSH
server, and other daemons). Figure 3 shows the CPU system
time (time spent running kernel code), and CPU idle time
(time spent idle) averaged over all 24 cores on the server
machine, with increasing number of booted idle VMs. We
observe that up to 250 VMs, the CPU is largely idle. This
is because idle VMs do not perform any significant com-
putation, and only a few VM processes (such as udevd, and
other daemons) are running, causing a small increase in CPU
idle time, while other processes remain blocked. Note that,

all VM processes are in user space. However, beyond 250
VMs, we observe an increase in CPU system time, eventu-
ally reaching 100% at 450 VMs. At this stage, no additional
VMs can be booted as all 24 cores are completely busy. We
believe that this is because of the inability of LXC’s cgroup
handler [24] to scale with increasing number of processes.
LXC uses the cgroup handler for bookkeeping of resources
used by processes of different VMs and to maintain isola-
tion. As a result, this limits the number of booted idle VMs
to approximately 250.
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Figure 3: CPU utilization versus booted VMs.

Frozen VMs: We now determine the maximum number of
frozen VMs (B1), by conducting a simple experiment where
the number of frozen VMs on the machine is gradually
increased. Each VM is booted, allowed to initialize, and then
transitioned to frozen. To determine when a VM has finished
booting, we use netcat to detect if the VM’s SSH server has
started. We measure the time taken to boot-up the VM and
start its SSH server. All other VMs remain in the shutdown
state.

We observe a steady increase in the system memory con-
sumption (at approximately 42 MB per VM; figure omit-
ted due to space constraints). This is because processes in a
frozen VM retain their memory footprint (due to the absence
of memory pressure). Moreover, we observe that the time to
transition a VM from shutdown to booted (before transition-
ing to frozen) increases considerably as the number of frozen
VMs on the machine increases. This is because many system
calls used by LXC for booting a VM, such as fork, wait, and
open, take more time to complete, as the number of frozen
VMs increases. As described in Section 4.4, this increase in
transition time eventually limits the number of frozen VMs
(to approximately 300 frozen VMs).

4.4 Impact of Density on Transition Time

We study the effect of VM density in each state on the
transition times. We vary the number of booted VMs and
measure the different state transition times (while keeping
the number of frozen VMs at zero). Similarly we vary the
number of frozen VMs and measure the transition times.

Varying Number of Booted VMs: The number of booted
VMs is increased in steps of 50. At each step the different
transition times are measured (for a given VM). All other
VMs are in the shutdown state.
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Figure 4: Transition times with increasing number of booted VMs.

Figure 4a shows the shutdown-to-booted (denoted t2)
and frozen-to-booted (denoted t1) transition times. We ob-
serve that up to 250 VMs, the shutdown-to-booted transition
time remains largely constant. However, beyond 250 booted
VMs we see a considerable increase in boot-up time. This
is due to a surge in CPU system time at 300 VMs and be-
yond (as explained in Section 4.3, Figure 3), which reduces
available CPU time to zero. Figure 4b shows the frozen-
to-booted transition time (denoted t1 in Figure 4a), with a
magnified time axis. We observe that frozen-to-booted tran-
sition times increase only slightly with increasing number of
booted VMs, and is considerably smaller than shutdown-to-
booted transition time (because frozen-to-booted is a com-
paratively faster and less resource-intensive transition). The
abrupt rise beyond 300 booted VMs, is attributed to the surge
in CPU system time, as explained in Section 4.3. Along the
same lines we also measure the booted-to-shutdown (t0,2)
and booted-to-frozen (t0,1) transition times with increasing
number of booted VMs. However, we do not observe any
significant variation in these transition times, remaining con-
stant at approximately 640 ms and 0.15 ms respectively (not
shown).

Varying Number of Frozen VMs: In a fashion similar
to the previous experiment, the number of frozen VMs is
gradually increased, and the different transition times are
measured.

Figure 5a shows the shutdown-to-booted (denoted t2) and
frozen-to-booted (denoted t1) transition times. We observe
that the shutdown-to-booted transition time increases only
slightly up to 300 frozen VMs, and are considerably larger
beyond that point. This is because, as discussed in Sec-
tion 4.3, certain system calls used by LXC for booting, re-
quire more time to complete when the number of frozen
VMs increases, leading to increased transition times. Fig-
ure 5b shows the frozen-to-booted transition times (denoted
as t1 in Figure 5a) with a magnified time axis. We ob-
serve that below 300 VMs, the transition time is largely
constant. However, beyond 300 frozen VMs, the transition
time increases considerably. This is because LXC’s cgroup
freezer [24] mechanism begins consuming more time for un-
freezing a VM, and hence does not scale. Therefore, the
number of frozen VMs is limited by this increased transi-

tion time, to approximately 300. As in the previous experi-
ment, we find that the booted-to-shutdown (t0,2) and booted-
to-frozen (t0,1) transition times do not change significantly
with increasing number of frozen VMs (measured at approx-
imately 642 ms, 0.17 ms respectively, which is nearly identi-
cal to their values in case of varying number of booted VMs).

4.5 Deriving Model Parameters

Using the experimental analysis (described above), we de-
rive the model parameters as follows.

Due to observed density and transition time with in-
creasing number of booted VMs (as explained above, Fig-
ures 3, 4), we define the maximum number of VMs possible
in the booted state (B0) to be approximately 250. Similarly,
given the variation in transition times with increasing num-
ber of frozen VMs (Figure 5), the maximum number of VMs
possible in the frozen state (B1) is approximately 300. Note
that both B0 and B1 values derive from limitations in LXC’s
design and implementation (described above). While it may
be interesting to explore these limitations in greater detail
(and alleviate them), it lies outside the scope of this work.

We compare the shutdown-to-booted (t2) and frozen-to-
booted (t1) transition times in the two sensitivity analysis
experiments (i.e., Figure 4a and Figure 5a). Interestingly,
we find that within the operating range of up to 250 booted
VMs, and up to 300 frozen VMs, the respective transition
times in either experiments differ insignificantly. For in-
stance, shutdown-to-booted transition time when varying
only the number of booted VMs (up to 250 booted VMs,
Figure 4a), is comparable to shutdown-to-booted transition
time when varying only the number of frozen VMs (up to
300 frozen VMs, Figure 5a). Other transitions times (frozen-
to-booted t1,0, booted-to-frozen t0,1, and booted-to-shutdown
t0,2) exhibit similar behaviour. Thus, we believe that within
this operating range (up to 250 booted, 300 frozen VMs) all
transition times remain largely constant, regardless of the
number of booted and frozen VMs. Therefore, we represent
the average transition times (within the operating range) as
the transition matrix T3×3 (shown in Table 2, where ti, j=time
to transition from state Si to S j). To transition a frozen LXC
VM to shutdown (and vice versa), it must first be transi-
tioned to booted.
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Figure 5: Transition times with increasing number of frozen VMs.

PPPPPPPPFrom
To

Booted (S0) Frozen (S1) Shutdown (S1) Bi

Booted (S0) 0.00 ms 0.17 ms 641.64 ms 250
Frozen (S1) 4.43 ms 0.00 ms - 300

Shutdown (S2) 802.16 ms - 0.00 ms 2000 (Disk limited)

Table 2: Transition matrix (T3×3) and Bi values for LXC.

5. Policy Comparison
Using the parameters obtained above we study the effect of

different policies using a simulation-based analysis, which
makes exploring a large design space feasible.

In the next section, we discuss the design and implemen-
tation of our simulator, followed by the description of the
policy implementations (Section 5.2), personal server work-
loads (Section 5.3), our evaluation metric (Section 5.4), and
simulation results (Section 5.5).

5.1 Simulator Design and Implementation

Our simulator consists of a policy module, a cost-model
module, and a workload module. The cost-model module
encapsulates the VM hierarchy parameters (Bi and T3×3).
The policy module encapsulates all logic pertaining to a par-
ticular policy and maintains any in-memory state required
for implementing that policy, e.g., any per-VM bookkeep-
ing. The workload module encapsulates all logic required
for simulating the VMs’ workloads such as distributions for
request inter-arrival time and request durations. Such modu-
larity allows us to easily extend the simulator to study differ-
ent workloads, different VM management policies, as well
as different VM hierarchies, simply by implementing the re-
spective module. The simulator maintains the current state
assignment for each VM. In addition, it contains a single
time-sorted event queue, and a single thread which processes
events in this queue. Events are either of type VMrequest or
VMidle.

At initialization time, the workload module generates
the simulated VMrequest events for the required number
of VMs, and populates the event queue. When processing
a VMrequest event, the simulator passes the current state
assignment, the request event, and event queue to the policy
module, and receives the updated state assignment. It then
compares the updated state assignment with the current one,
and computes a list of required VM transitions. It then com-

putes the time required to perform the transitions, updates
the state assignment, and enqueues a VMidle event with a
later timestamp (derived using the request duration in the
VMrequest event) into the event queue. Note that, all invo-
cations of the policy module are serialized. For instance, if a
VMrequest event occurs while the policy module is comput-
ing the updated VM state assignment, it is processed after
the policy module finishes its computation. Lastly, when
computing the time taken to perform a set of transitions, the
simulator assumes that different VMs’ transitions take place
in parallel. This assumption is justified because in doing so
we are able to measure the best case behavior of any policy.
Any additional overhead in the system in performing parallel
transitions would only serve to increase the transition times,
and the miss penalty so obtained would still be bounded by
the best case scenario. VMidle events are processed in the
same fashion as VMrequest events. However, certain poli-
cies (e.g, demand-based policies) may choose to not take
any action when a VM becomes idle.

Implementation: We have implemented the simulator using
C# over the .NET v4.5 framework. We have implemented
policy modules for different reactive and proactive policies,
the workloads described in the next section, and a cost-
model module for LXC. We validate the simulator using
sample deterministic workloads and state hierarchies. The
implementation is publicly available online [4].

5.2 Policy Implementations

LRU: Least Recently Used (or LRU) [12] is a policy that is
widely studied for page replacement. We apply it to idle VM
management in a cascaded fashion. For each VM, it main-
tains the timestamp of the last request (tr). All VMs are ini-
tially in the shutdown state. As requests for different VMs
start arriving, they are transitioned to the booted state. Even-
tually, as the number of VMs in the booted state (i.e., includ-
ing active and idle VMs) reaches the limit B0, for each VM
transitioning into booted thereafter, LRU chooses to tran-
sition the booted VM with the minimum tr into the frozen
state. In effect, for each VM it uses the “time since last re-
quest” to estimate the likelihood that it will be requested
again. Similarly, as the number of VMs in the frozen state
reaches B1, for each VM transitioning into frozen thereafter,
the frozen VM with the minimum tr is shut down. Note that,



unlike traditional implementations of LRU (e.g., in page re-
placement) where all timing information of the resource is
deleted after its eviction, we maintain tr for each VM after
eviction in order to apply it across multiple states.
Cascaded Belady’s OPT: This policy is simply an exten-
sion of Belady’s OPT algorithm to multiple states. We apply
it to idle VM management. That is, when number of VMs in
any state Si exceeds Bi, the VM that is referenced the furthest
in the future is transitioned to Si+1. This version of Belady’s
OPT algorithm is known to suboptimal [15]. However, we
implement it in order to compare it with demand-based poli-
cies that have no future knowledge (e.g., LRU) and the lower
bound Minφ (ω). To the best of our knowledge, such a com-
parison has not been conducted in previous work.
Lower Bound on demand-based policies: As explained in
Section 3.1.1, Minφ (ω) forms the lower bound on demand-
based policies. We first obtain the h0, h1, h2 values for LXC
as per Eq. 1 for the different workloads we study (i.e., differ-
ent ω values). For each ω , we obtain h0 = hOPT (ω,B0),
h1 = hOPT (ω,B0 + B1)− hOPT (ω,B0), and h2 = |ω| −
h0 − h1. We then determine the lower bound Minφ (ω) =
(h0.t0 +h1.t1 +h2.t2).

SlidingWindow: As explained in Section 3.2, our Sliding-
Window policy requires knowledge of the future. Therefore
we provide an online implementation of this policy (called
SlidingWindow+ARMA) which implements a predictor to
predict the inter-arrival time for each VM, and updates the
prediction model at each request for that VM. We employ
the widely-used auto regressive moving average (ARMA)
time-series model for predicting the inter-arrival times. To
find the order of the ARMA model we employ the Bayesian
information criterion and at each model update we perform
a maximum likelihood fit on the inter-arrival times. The pol-
icy then uses the predicted inter-arrival time for each VM
to perform its proactive actions. Therefore, its miss penalty
greatly depends on the prediction error of the ARMA model.

To evaluate SlidingWindow+ARMA, we also implement
the offline version of SlidingWindow which uses knowledge
of the future (called SlidingWindow+GroundTruth).

5.3 Workload Analysis: Personal Servers

In order to perform a comparison of the miss penalties in-
curred by different policies, we chose the personal server
workload. As outlined in Section 2, in these workloads
each user owns and controls a separate private VM, which
hosts application instances that serve client requests from
that user. We chose this workload because a) they are low
duty-cycle in nature [32], i.e. private VMs have uncorre-
lated idle times, thus allowing greater multiplexing across
inactive states, b) they are a topic of active research with
numerous applications such as privacy-preserving online so-
cial networks [11, 29, 30], private sensor data collection and
processing [14, 16, 31], and privacy-preserving offloading
from mobile devices [17].

We use three categories based on the requests’ inter-
arrival and duration times. We believe that such categoriza-
tion (as opposed to a mixed workload) allows us to better
understand the behavior of different policies.
Fixed inter-arrival time, Fixed duration: A common use
of personal VMs is for periodic and fixed amount of data up-
loads from in-home sensors [31], or a user’s smartphone [14,
25]. This leads to a request sequence where requests have
fixed inter-arrival times and durations. For such requests
both the arrival and departure of requests are highly pre-
dictable, and form an interesting point of comparison be-
tween proactive and reactive policies.
Stochastic inter-arrival time, Fixed duration: Recent
work has proposed using personal VMs as virtual individual
servers [11, 29, 30] where users host their private instances
of common application servers. Due to the user-facing na-
ture of these application servers, the requests they receive
have stochastic inter-arrival times, and commonly involve
downloading or uploading fixed amounts of data, thus lead-
ing to requests with a relatively fixed duration.
Stochastic inter-arrival time, Stochastic duration: A new
and evolving use of personal VMs is as personal data and
compute environments, which host and process user data.
Examples include private data analytics [31], VM-backed
mobile applications [28], and other similar applications [20].
In these applications the requests are user-generated, and
thus have stochastic inter-arrival times. In addition these
requests have a varying nature, e.g., size of data processed,
and type of computation performed, which results in them
having stochastic durations.

5.4 Metric

In order to compare different policies for a request string ω ,
we use the average miss penalty incurred by any policy π .

Average miss penalty =
Pπ(ω)

|ω|
.

This metric i) captures the miss penalty across all VMs in the
system, ii) allows us to observe the behavior of any policy
with increasing number of total VMs, and iii) allows us to
easily observe the differences between reactive and proactive
policies. Note that the lower bound on average miss penalty
of reactive policies is simply Minφ (ω)

|ω| .

5.5 Simulation Results

We now study the effect of increasing VM density on the av-
erage miss penalty for different policies. The request string
ω in all simulations contains 100 arrivals per VM, i.e.,
|ω|=Total #VMs × 100.

In order to simulate stochastic inter-arrival times, we use
the request inter-arrival times from publicly available web
trace data [8], since it has been used in evaluating on-demand
VM provisioning in existing work [21]. Similarly in order
to simulate stochastic request durations, we use the web
connection duration characterization provided by Newton et



al. [26], since we believe it to be a representative request
duration characterization for personal servers. Lastly, we
use the respective mean values from the two datasets for
generating the fixed inter-arrival time (of 50 s) and fixed
duration (of 10 s) workload. Table 3 shows the variability
of inter-arrival times for the three cases we study. We do not
include details for duration because the policies we consider
do not utilize duration (policies that do so will be considered
in future work). In each workload experiment (below), we
start the x-axis at 250 VMs since it is the maximum number
of VMs possible in the booted state (and there are no miss
penalties below 250 VMs). We increase VM density to the
point that the total number of simultaneously active VMs
increases above 250 (equal to B0) and cannot be hosted using
this hierarchy. Note that this limit is a result of the current
workload (longer idle times would increase this limit).

Case Mean Standard Min Max
Duration Inter-arrival deviation

Fixed Fixed 50.0 s 0.0 s 50.0 s 50.0 s
Fixed Stochastic 50.0 s 160.5 s 10.0 s 941.2 s

Stochastic Stochastic 50.0 s 163.0 s 0.9 s 941.2 s

Table 3: Variation of inter-arrival times.
5.5.1 Fixed inter-arrival time, fixed duration

Figure 6 shows the average miss penalty for a request string
ω with a fixed inter-arrival time of 50 seconds, and a fixed
request duration of 10 seconds, for different policies with
increasing VM density. Figure 6 also shows the shutdown-
to-booted and frozen-to-booted transition times for compar-
ison. For each VM, the time at which its first request is re-
ceived is chosen uniformly at random from [0,50 s]. Later in
this section, we analyze the behavior of policies under other
inter-arrival time and duration values.
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Figure 6: Fixed inter-arrival time and duration.
We first explain the behaviour of the reactive policies.

We observe that at a VM density of 250, both reactive poli-
cies, LRU and Cascaded Belady’s OPT, incur the same av-
erage miss penalty which matches the lower bound. This
is because in this case, all reactive policies transition each
VM into booted once its first request is received, and no
idle VMs need to be transitioned out of the booted state
thereafter, since VM density equals B0. As VM density in-
creases further, not all VMs can remain booted. Depending

on the policy, some VMs are transitioned to frozen (when
idle), and are transitioned to the booted state when their re-
quest arrives, which increases the average miss penalty. Sim-
ilarly, as VM density increases beyond 550, not all VMs
can be in either booted or frozen states. That is, all other
VMs are transitioned to the shutdown state (when idle), and
are brought into the booted state when their request arrives,
which contributes to increase the average miss penalty. Since
shutdown-to-booted transition times are significantly higher
than frozen-to-booted (approximately 800 ms vs. 4 ms), we
see a much larger increase in the average miss penalty at
VM density ≥ 550 (than at 250 VMs). Note that, LRU has
significantly higher average miss penalty than the cascaded
Belady’s algorithm because LRU has no knowledge of the
future reference string. In case of LRU, when VM density
is greater than 550, at each request the target VM is al-
ways in the shutdown state thus incurring the maximum miss
penalty. This is because in this workload, between two con-
secutive requests to any VM Vi, there are (v-1) requests for
other VMs (i.e., one per VM). Since LRU evicts the least
recently used VM from booted to frozen, and frozen to shut-
down, when v > 550, Vi will get transitioned to shutdown
after the intermediate (v-1) requests are serviced.

We now explain the behavior of proactive policies. Due
to easily predictable fixed request inter-arrival times and
durations, the average miss penalty of the SlidingWindow
policy using our ARMA predictor (denoted ‘SlidingWin-
dow+ARMA’) equals that of SlidingWindow with future
knowledge (denoted ‘SlidingWindow+Ground Truth’). We
observe that either policy incurs a significantly lower aver-
age miss penalty than the reactive policies. This is because
whenever a request whose target VM is not in the booted
state is received, in addition to transitioning that VM to
booted, SlidingWindow also transitions other VMs (as many
as possible) to booted and frozen states (as explained in Sec-
tion 3.2). Note that the proactive transitions in SlidingWin-
dow are triggered by a request whose target VM is not in
the booted state. Therefore, as VM density increases up to
550, VMs span the booted and frozen states, and beyond
550, VMs span all three states. This increases the average
miss penalty (since the shutdown-to-booted transition time
is significantly larger than the frozen-to-booted time). More-
over, the number of idle VMs that SlidingWindow can proac-
tively transition to booted, depends on the number of active
VMs at that instant (since the number of active booted + the
number of idle booted = 250). As VM density increases, the
number of simultaneously active VMs increases, and hence
the number of VMs that can be proactively transitioned to
booted decreases. This reduction in the number of possible
proactive transitions also contributes to increase the average
miss penalty.

For this workload, comparing the two online (imple-
mentable) policies (LRU and SlidingWindow+ARMA), we
conclude that SlidingWindow+ARMA incurs the lower av-



erage miss penalty. It increases VM density from 250 to
550 (a gain of more than 2.2×), while keeping average miss
penalty under 1 ms, for a fixed inter-arrival time of 50 sec-
onds and fixed duration of 10 sec. Note that each VM is
active for 10 sec, then becomes idle for 40 seconds before
being active again, i.e., a mean duty-cycle of 20%. If the
maximum number of frozen VMs was not limited to 300
by LXC’s implementation, for up to 250 simultaneously ac-
tive VMs, a maximum of 250

0.2 or 1250 VMs can be hosted
using this state hierarchy while keeping the average miss
penalty under 1 ms. Similarly, for an idle time of 10 sec-
onds and active time of 40 seconds (duty cycle=0.8), the
maximum VM density with average miss penalty under 1
ms, would be 250

0.8 or 312 VMs. To generalize, maximum
VM density, for average miss penalty ≤1 ms with maxi-
mum number of simultaneously active VMs ≤ 250, equals
MIN

(
B0 +B1,

B0
mean duty-cycle

)
.

5.5.2 Stochastic inter-arrival time, fixed duration

Figure 7 shows the average miss penalty for a request string
ω with stochastic inter-arrival time (as described above),
and a fixed request duration of 10 seconds, for different
policies with increasing VM density. Figure 7 also shows the
shutdown-to-booted and frozen-to-booted transition times
for comparison.
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Figure 7: Stochastic inter-arrival time, fixed duration.

We observe that the behaviour of reactive policies in this
case is similar to that in the case of fixed inter-arrival fixed
duration workloads (as described above in Section 5.5.1).
That is, their average miss penalty is equal and lowest at
VM density of 250 VMs, thereafter it increases with VM
density (and remains higher than the lower bound). Miss
penalty is significantly higher at VM density level of 550
VMs (and more) than that at 250-550 VMs. This is because
at VM density more than 550, VMs span booted, frozen, and
shutdown states (and shutdown-to-booted transition time is
significantly larger than frozen-to-booted time).

We now explain the behaviour of the proactive poli-
cies. Due to reasons explained above in Section 5.5.1, the
average miss penalty of the SlidingWindow with future
knowledge (denoted ‘SlidingWindow+Ground Truth’) in-
creases as VM density increases. The increase is large at

VM density of more than 550 VMs due to the shutdown-to-
booted transition time being significantly larger than frozen-
to-booted. Our online implementation of SlidingWindow
which uses the ARMA predictor, SlidingWindow+ARMA,
incurs a higher average miss penalty than SlidingWin-
dow+GroundTruth. This is because SlidingWindow+ARMA
uses the predicted inter-arrival time for each VM to make
proactive transition decisions, and thus error in prediction
causes some VMs to be transitioned to sub-optimal states,
which increases the average miss penalty. We observe signif-
icantly larger average miss penalties beyond VM density of
550 VMs, even though the normalized root mean square er-
ror of the prediction remains largely constant (at 0.04) with
increasing VM density. This is because beyond a VM density
of 550, VMs span all three booted, frozen, shutdown states
(as compared to only booted and frozen below 550), and the
shutdown-to-booted, booted-to-shutdown transition times
are significantly higher than the frozen-to-booted, frozen-
to-shutdown transition times respectively. Hence, with in-
creasing number of VMs, for a relatively constant degree
of mis-predictions, the number of VMs that get transitioned
sub-optimally to the shutdown state due to a mis-predicted
inter-arrival time increases. It is the large transition times
for the shutdown state that causes the significant increase in
average miss penalty. Due to this increase the average miss
penalty of SlidingWindow+ARMA exceeds that of reactive
approaches (beyond 560 VMs).

For this workload, when comparing the two online poli-
cies, LRU and SlidingWindow+ARMA, we conclude that
for a desired VM density of up to 550 VMs (2.2 × the den-
sity of current solutions), SlidingWindow+ARMA incurs a
much lower average miss penalty (less than 4 ms). However,
for all VM density levels larger than 560, LRU outperforms
SlidingWindow+ARMA. At these density levels, some idle
VMs need to be in the shutdown state (which has large tran-
sition times), and any error in inter-arrival time prediction,
causes a significant increase in the average miss penalty.

5.5.3 Stochastic inter-arrival time, stochastic duration

Figure 8 shows the average miss penalty for a request string
ω with stochastic inter-arrival time and stochastic duration,
for different policies with increasing VM density. Figure 8
also shows the shutdown-to-booted and frozen-to-booted
transition times for comparison.

We observe that the stochastic request duration has little
effect on the average miss penalty, which is very similar to
that in case of stochastic inter-arrival time and fixed dura-
tion (described above in Section 5.5.2). We believe that this
is because both the reactive and proactive policies we study
(LRU, Cascaded Belady’s algorithm, and SlidingWindow),
only use request inter-arrival time in making their reactive
or proactive transition decisions. It may be possible to for-
mulate policies which also take expected request durations
into account, which we defer to future work. The behaviour



of our current policies can be explained using reasoning sim-
ilar to that in Section 5.5.2.
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Figure 8: Stochastic inter-arrival time and duration.

5.5.4 Summary of Simulation Results

The key findings of the policy comparison (described above)
can be summarized as follows:

• Online proactive policies such as SlidingWindow+ARMA
are highly sensitive to prediction error. Thus for any
given hierarchy, to ensure low miss penalties such poli-
cies should be used only when the desired VM density is
such that all VMs can be accommodated within inactive
states with low transition times. That is, when the penal-
ties for mis-predictions are relatively small. Under all
other conditions (e.g., larger VM density levels), reactive
and stateless policies such as LRU should be used.

• Miss penalties of proactive and reactive (online or of-
fline) policies which only make use of request inter-
arrival times, are largely unaffected by request durations
being fixed or stochastic.

• For certain workloads, using an online per-VM predictor
based proactive policy results in up to a 2.2× gain in VM
density with average miss penalty less than 1 ms.

6. Discussion, Limitations, and Future Work
We demonstrate multiplexing of idle VMs across inac-
tive states using LXC as our example virtualization solu-
tion. However, our model formulation and lower bound on
demand-based policies (Section 3) is applicable to any vir-
tualization solution. Similarly, our experimental analysis to
determine the model parameters (Section 4) can also be
adapted to any virtualization solution. Our simulator can
then easily be used (after encoding a cost-model module),
to observe the effect of policies on any VM hierarchy, and
policies already implemented can be re-used. We defer such
extension of this work to other virtualization solutions (e.g.
Xen, KVM) to future work. Nevertheless, we believe our
evaluation of VM density and miss penalty can benefit ex-
isting projects [1, 14] which use LXC.

Our work is not without limitations. We have imple-
mented only a few sample, well-known, reactive and proac-
tive policies (i.e., LRU, Cascaded Belady’s, SlidingWindow,
SlidingWindow+ARMA), and have studied only one exam-

ple workload (i.e., personal servers). Our goal in this work
was to understand and compare the behaviour of reactive and
proactive policies for idle VM management, and to compare
reactive policies with our theoretical lower bound, on a given
workload. We chose the personal server workload since they
are a topic of active research in many areas [11, 14, 29, 31]
(Section 5.3). Using this workload, we provide valuable in-
sights into the behaviour of a few policies. However, we plan
to extend our work to a broader range of policies and work-
loads in future work. Our modular simulator design, which
isolates policy, workload, cost-model modules (Section 5.1),
ensures that such a broader analysis can be conducted easily.

We have provided only one online implementation of the
SlidingWindow policy (using the ARMA model). We chose
the ARMA predictor since it delivered relatively small pre-
diction error for the current workload. To use the Sliding-
Window policy on other workloads other prediction meth-
ods may need to be considered, while demand-based policies
such as LRU can be applied directly.

We model the problem by using a mean value analysis
of transition times. Hence we derive the model parameters
by defining an operating range of state capacities within
which transition times are largely constant. We also assume
that different VMs transitions can take place in parallel, and
transition times remain unchanged. Stochastic analysis can
be leveraged to model any variations in transition times.
However, additional experimental analysis of density and
transition times will be required to obtain parameters for a
stochastic value model, which we defer to future work. Ad-
ditionally, our current experimental analysis of LXC (Sec-
tion 4) identifies a number of barriers to state capacities in
LXC, which we plan to address in future work.

7. Conclusion
We examine the problem of multiplexing idle VMs across a
hierarchy of inactive states. Our simulation-based evaluation
and comparison of different policies, shows that VM den-
sity can be increased by multiplexing VMs across multiple
inactive states, at the cost of a negligible increase in client
request latency. Therefore, we encourage virtualization so-
lution providers to natively support such inactive states, to
allow cloud providers to increase VM density, leading to re-
duced hosting costs for providers (by increasing consolida-
tion levels) and tenants (through fine-grained billing based
on VM active time [6]).
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