Controlling Garbage Collection and Heap Growth to
Reduce the Execution Time of Java Applications

TIM BRECHT
University of Waterloo
ESHRAT ARJOMANDI
York University
CHANG LI

IBM Toronto

and

HANG PHAM

University of Toronto

In systems that support garbage collection, a tension exists between collecting garbage too
frequently and not collecting garbage frequently enough. Garbage collection that occurs too
frequently may introduce unnecessary overheads at the risk of not collecting much garbage during
each cycle. On the other hand, collecting garbage too infrequently can result in applications
that execute with a large amount of virtual memory (i.e., with a large footprint) and suffer from
increased execution times due to paging.

In this paper, we use a large set of Java applications and the highly tuned and widely used
Boehm-Demers-Weiser (BDW) conservative mark-and-sweep garbage collector to experimentally
examine the extent to which the frequency of garbage collection impacts an application’s execution
time, footprint, and pause times. We use these results to devise some guidelines for controlling
garbage collection and heap growth in a conservative garbage collector in order to minimize ap-
plication execution times. Then we describe new strategies for controlling garbage collection and
heap growth that impact not only the frequency with which garbage collection occurs but also the
points at which garbage collection occurs. Experimental results demonstrate that, when compared
with the existing approach used in the standard BDW collector, our new strategy can significantly
reduce application execution times.

Our goal is to obtain a better understanding of how to control garbage collection and heap
growth for an individual application executing in isolation. These results can be applied in a
number of high-performance computing and server environments, in addition to some single-user
environments. This work should also provide insights into how to make better decisions that
impact garbage collection in multi-programmed environments.

A shorter version of this paper appeared in the Proceedings of the ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pp. 353-
366, October, 2001. Tim Brecht: School of Computer Science, University of Waterloo,
brecht@cs.uwaterloo.ca. Eshrat Arjomandi: Department of Computer Science and Engi-
neering, York University, eshrat@cs.yorku.ca. Chang Li: Toronto Lab, IBM Canada Ltd.,
changl@ca.ibm.com. Hang Pham: Department of Computer Science, University of Toronto,
hangp@cs.utoronto.ca. This work started while all four authors were at York University and
some of it was conducted while Tim Brecht was employed by Hewlett-Packard Labs.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1-33.

2 . Tim Brecht et al.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Memory
Management; Garbage Collection

General Terms: Algorithms, Experimentation, Languages, Measurement, Performance
Additional Key Words and Phrases: garbage collection, heap growth, implementation, Java, mem-
ory management, performance measurement, programming languages,

1. INTRODUCTION

In many programming languages (e.g., Pascal, C, and C++), dynamically allocated
memory must not only be tracked by the programmer but must also be freed when
it is no longer needed. Tracking and freeing dynamically allocated memory is a
time-consuming task performed by programmers who are error-prone. In Lisp and
other languages (e.g., Java, Smalltalk, ML, Self, Modula-3, and Eiffel) the run-
time system keeps track of memory (objects) that has been dynamically allocated
and periodically frees the memory that is no longer being used (i.e., it automat-
ically performs garbage collection). In some of these language implementations,
and in particular several Java implementations (which is the focus of our work),
garbage collection is performed synchronously. That is, the executing program is
suspended for a period of time while garbage collection is performed. Alterna-
tively, some approaches to garbage collection attempt to simultaneously execute
the garbage-collector code and the main application by using a separate thread of
control for garbage collection [Domani et al. 2000; Bacon et al. 2001; Ossia et al.
2002; Barabash et al. 2003; Azatchi et al. 2003]. However, the suspension of the
main application can cause serious problems for users or other programs attempting
to interact with the application.

Time spent reclaiming memory that is no longer in use typically delays the ex-
ecution of the application and, as a result, can increase the execution time of the
application. A tension is therefore created between collecting garbage too frequently
and not collecting garbage frequently enough. Garbage collection that occurs too
frequently may introduce significant and unnecessary overheads by not collecting
much garbage during each collection. On the other hand, collecting garbage too
infrequently can lead to larger heap sizes and increased execution times due to
increased cache and TLB misses and paging.

A number of fundamental decisions must be made when implementing a memory-
allocation and garbage-collection subsystem:

(

(2)

(3) When should garbage collection be performed?

(4) When should the heap be expanded, and by how much should it expand?
()

If the heap is being compacted, when should it be compacted?

Some of these decisions can have a significant impact on the frequency with which
garbage collection occurs and on the overhead incurred in performing garbage col-
lection. Much research has been focused on questions 1 and 2 above. For surveys
of research related to this and other aspects of garbage collection see Wilson [1994],

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 3

[Wilson et al. 1995], and Jones and Lins [1996]. Some research [Fitzgerald and
Tarditi 2000; Attanasio et al. 2001] suggests that no one garbage collector is best
suited for all applications. Additional work, Printezis [2001] proposes and studies
a technique for hot-swapping between a mark-and-sweep and a mark-and-compact
garbage collector. The simple heuristic proposed for deciding when to switch be-
tween the two collectors in effect considers a form of question 5 above.

In this paper, we concentrate on questions 3 and 4 and evaluate their impact on
application performance in the context of the highly tuned and widely used Boehm-
Demers-Weiser (BDW) [Boehm and Weiser 1988; Boehm 2004] conservative, mark-
and-sweep garbage collector. Our goal is to gain a better understanding of the
impact of these decisions on application behavior and to examine techniques for
scheduling garbage collection and heap growth.

Garbage-Collector Performance

Three main metrics arise naturally from how garbage collection impacts an appli-
cation and its execution: the overall execution time of the application; the pause
times introduced due to garbage collection (typically, the measures of interest are
the total, average, maximum, and distribution of pause times); and the footprint
of the application.

In this paper, we concentrate on minimizing the execution time of an application.
Execution time in some ways includes components of the other two metrics because
pause times that are large will increase application execution times and applications
with large footprints are more likely to incur overheads due to paging. While we
do not believe that this is the only metric of importance, we believe that it is an
important metric to a large number of users and that it represents an important
starting point for optimizing garbage-collector performance.

In this work, we also focus on applications executing in isolation. We believe that
it is first necessary to understand how memory-allocation and garbage-collection
decisions impact a single application in order to develop and study techniques de-
signed for environments where multiple applications execute simultaneously (which
we plan to study in future work).

2. EXPERIMENTAL ENVIRONMENT

All experiments are conducted on a 400 MHz Pentium II system with a 16 KB level
1 instruction cache, a 16 KB level 1 data cache, and with 512 KB of unified level 2
cache. The operating system is Windows NT Version 4.0, service pack 3, which uses
a 4 KB page size. We use IBM’s High Performance Java (HPJ), which compiles
Java-byte codes of whole programs into native machine instructions and provides
the run-time system (including the garbage collector). Although the system we
used contains 256 MB of memory, we configure the amount of memory used by the
system at boot time. Since many of the Java benchmarks do not consume large
amounts of memory, this permits us to shrink the amount of memory in the system
in order to place higher demands on the virtual memory subsystem. In practice,
most JVMs are run with enough memory to avoid paging.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 . Tim Brecht et al.

Table I. List of benchmark Java programs used in our experiments, where * denotes a
SPECJVM98 application.
Application Description

compress * A data compression utility that implements a modified version of a compression
technique known as LZW (_201_compress)

db * A database utility that performs multiple database functions on a memory
resident database (_209_db)

€espresso A compiler that translates Java programs using a subset of the language into
byte code

fred An application framework editor

jack * A Java parser generator based on the Purdue Compiler Construction Tool Set
(PCCTS) (228_jack)

jacorb An object broker system based on OMG’s CORBA (Common Object Request

Broker Architecture)

*

javac Common Java compiler JDK1.0.2 (_213_javac)

javacup A parser generator that generates parser code in Java

javalex A lexical analyzer generator for Java

javaparser A parser generator for Java

jaxnjell A parser generator for Java that generates tokenizers from regular expressions
and recursive descent parsers from LL(1) grammars

jess * An expert system shell based on NASA’s CLIP (.202_jess)

jgl A Java virtual machine benchmark that performs array operations and sorting
to test the performance of a Java virtual machine

jobe A Java obfuscation tool that scrambles Java byte code to prevent the reverse
engineering of the byte code

jolt A Java byte code to C translator

mpegaudio * | An application that decompresses audio files that conform to the ISO MPEG
Layer-3 audio specifications (222 mpegaudio)

mtrt * A ray tracer that works on a dinosaur scene (_227 mtrt)
netrexx A new programming language written in Java
toba A Java class files to C translator

2.1 The Applications

The Java applications used in our experiments were obtained from several sources
including SPECIVM98 benchmarks (we exclude _200_check, which is a synthetic
benchmark designed to check features of the Java virtual machine).! Our collection
of programs covers a wide range of application areas, including virtual machine
benchmark programs, language processors, database utilities, compression utilities,
artificial-intelligence systems, multimedia, graphics, and object-broker applications.
In our experiments, all explicit requests to java.lang.System.gc() are ignored in
order to ensure that garbage collections are scheduled only by the algorithm being
tested. Fitzgerald and Tarditi [2000] report that the SPECJVM98 benchmarks run
faster in their environment when they disregard these calls. Table I provides a brief
description of each of the applications used in our experiments. (The SPECJVM98
applications have been studied and described in detail in other work [Kim et al.
2000; Shaham et al. 2000; Fitzgerald and Tarditi 2000].)

We use this relatively large collection of Java applications to evaluate the original

ITwo data set sizes are included for each application: -s10 and -s100, which are denoted by
appending .10 or .100 respectively to the application name.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 5

BDW collector (using a variety of configurations) and to compare each application’s
execution time to that obtained with our new approach to controlling garbage
collection and heap growth. We have made no effort to eliminate applications that
behave similarly or that are not impacted by garbage collection.

3. THE BDW COLLECTOR

We use version 4.11 of the Boehm-Demers-Weiser (BDW) garbage collector and
memory allocator. The BDW collector was originally designed for use with C
and C++ programs where information regarding pointer locations is not known
by the collector at run time. As a result, any reachable location in memory that
contains a bit pattern that could be interpreted as a pointer to heap memory must
conservatively be considered a pointer to reachable memory. Additionally, heap
compaction is not supported.

The BDW collector has been used to form the basis for Geodesic’s REMIDI
product [Geodesic Systems Inc. 2002], integrated with the Apache Web servers
running Amazon.com, and used in a number of Java environments, including the
GNU Java compiler (gcj) and IBM’s HPJ environment used in this study. Because
HPJ is used to compile Java to native machine code prior to executing the program,
we believe that its performance is comparable to modern just in-time compilers. We
now briefly describe those aspects of the BDW garbage collector that are relevant
to our study.

The marking phase starts with the marking of all objects in memory that can
be accessed (reached) by the application. The algorithm begins with root objects
in registers, on the stack, and in static variables. It then recursively marks all
objects that can be reached from the roots. Upon completion of the marking phase,
unmarked objects that cannot be reached are considered garbage and are reclaimed
during the sweep phase. The system supports a distinction between atomic objects
(those not containing pointers) and composite objects (those containing pointers),
and only traces composite objects during the marking phase. Our implementation is
able to distinguish composite and atomic objects. Further, in order to reduce pause
times, an initial sweeping reclaims only blocks consisting completely of unmarked
objects. A lazy sweep technique is used during allocation to incrementally sweep
remaining objects as they are needed. As a result, garbage collection times should
be correlated with the size of the set of reachable composite objects and not the
size of the heap (we’ve found this to be true in our experiments).

For the BDW collector, the decision regarding whether or not to collect garbage is
significantly influenced by a statically defined variable called the free space divisor
(FSD). Figure 1 shows a simplified version of the algorithm used in the BDW
collector to decide whether to collect garbage or to grow the heap (i.e., the algorithm
used to schedule garbage collections). This decision is made when the memory
allocator fails to find a suitable chunk of memory for the object being allocated
by the application. A test is performed to see if the amount of memory allocated
since the last garbage collection is greater than a portion of the heap. The spirit
of this approach is to amortize the cost of a garbage collection by ensuring that
the number of bytes allocated since the last collection is large enough to warrant a
garbage collection. For example, if the FSD is 2, then garbage is collected if more
than roughly half of the heap was allocated since the last garbage collection; if the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 . Tim Brecht et al.

if (cannot_alloc_memory(request_size)) {
if (alloced_since_last_GC > (heap / FSD)) {
collect_garbage()

} else {
grow_heap_by((heap / FSD) + request_size)

}
}

Fig. 1. Simplified pseudo-code for the portion of the BDW collector that impacts scheduling.

FSD is 4, then garbage is collected if more than roughly one quarter of the heap
was allocated since the last garbage collection. If the amount of memory allocated
since the last garbage collection is lower than the threshold determined by the FSD
value, then the heap is grown.

Note that the FSD is also used when the heap is grown. In this case, it is used
to determine how much to grow the heap by. So modifications to the FSD impact
two decision points: whether or not to collect garbage and by how much to grow
the heap. The amount by which the heap is grown also impacts garbage collection
frequency since growing the heap by a large amount can influence the need for
garbage collection.

3.1 BDW Experiments

Table IT illustrates the impact that garbage collection frequency (including turning
garbage collection off) has on the execution of three Java applications. This subset
of applications was chosen from our larger set of Java applications in order to
illustrate the variety of effects that garbage collection frequency can have on an
application. Each application is described in Table I and we consider the full set of
applications later in the paper.

The experiments were conducted using 64 MB of memory so that some of the
applications are using a reasonable portion of memory. This is done by rebooting
the machine so that is it configured to use the specified amount of memory. Once
the operating system and associated applications are loaded, there is roughly 45 -
50 MB of memory available for the application. Note that the variations in available
memory occur only occasionally and are due to the Windows NT implementation.
Initially we found larger variations that occurred more frequently but we were
able to reduce and control the variation by running an application between each
experiment that allocates and uses substantially more memory than is physically
available in the machine. This forced the operating system to try to take pages from
other processes and allowed us to begin each experiment from approximately the
same amount of available memory. In order to ensure that statistically significant
differences in execution times are due to changes in the garbage collector (and
not other factors like differences in the amount of available memory at the start of
the execution) we use multiple executions and compute 90% confidence intervals on
the execution times. Table IT shows averages and 90% confidence intervals obtained
over 19 runs. We executed twenty runs but one of the experiments for one run was
tainted when someone used the machine.

Using the BDW collector, we change the frequency with which garbage is collected
by modifying the statically defined FSD. For comparison, we also include results

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 7

Table II. TImpact of garbage collection frequency using BDW with 64 MB system; times are in
milliseconds and sizes are in MB. The row labelled “Tholds” shows the results obtained with our
new algorithm. This algorithm and the results for it are discussed in Section 4.

Alg Time 90% | GC | Total Avg Max | HG | Foot pf gepf
fred
Off 1654 4 0 0 0 0 8 11.9 7547 0
FSD 1 1671 9 0 0 0 0 8 11.9 7547 0
FSD 2 2174 4 6 495 82 237 11 3.4 5756 9
FSD 4 3035 6 15 1331 88 302 17 1.9 5248 11
FSD 8 4227 6 25 2506 100 323 25 1.4 5155 11
FSD 16 6240 5 40 4472 111 320 38 1.1 5051 11
Tholds 2200 67 1 477 292 314 8 8.0 6150 9
db.100
Off 68823 1146 0 0 0 0 13 54.9 35709 0
FSD 1 71294 2111 0 0 0 0 13 54.9 35653 0
FSD 2 55480 9 13 2260 173 224 9 6.7 7682 18
FSD 4 57044 6 23 3922 170 220 13 4.2 6355 21
FSD 8 62727 8 51 9508 186 223 20 2.6 5462 21
FSD 16 69201 23 88 | 15985 181 221 30 2.1 5170 21
Tholds 55443 5 10 2250 225 231 7 6.7 7265 18
javac.100
Off 463472 40771 0 0 0 0 23 | 134.1 183910 0
FSD 1 452722 26595 1 16012 16012 16012 20 86.5 162761 2965
FSD 2 323418 14149 16 | 92065 5642 | 53188 14 16.7 77897 | 16446
FSD 4 74770 7268 35 | 24162 677 | 10012 21 8.6 21387 2513
FSD 8 61744 265 64 | 27548 424 1126 33 5.8 13677 253
FSD 16 87443 1607 | 120 | 55475 459 943 52 4.2 11525 39
Tholds 64130 4696 24 | 23145 958 3501 12 8.6 17535 1871

obtained using our new algorithm (labelled “Tholds”). The algorithm and these
results are described and discussed in Section 4. In this section, we concentrate on
understanding the impact that different FSD values have on program execution.
We have chosen to run experiments with FSD values of 1, 2, 4, 8, and 16 because
we found that these gaps resulted in a good range in the frequency of garbage
collections. The FSD value is not required to be a power of two and is not required
to be an integer.

The first column in Table IT shows the algorithm used to control garbage collec-
tion and heap growth (when garbage collection is off, we grow the heap as though
an FSD value of 4 is used). The remaining columns show the mean execution time,
including 90% confidence intervals (Time); number of garbage collections (GC);
total time spent in the garbage collector (Total); average time spent per garbage
collection (Avg); maximum time spent on one garbage collection (Max); number of
times the heap was grown (HG); average footprint (Foot);? total page faults (pf);
and page faults that occurred during garbage collection (gepf).

2The average footprint is obtained by using a graph of the amount of live memory (based on how
much memory the conservative collector can not reclaim) versus the amount of total memory allo-
cated and taking an average over 10,000 equally spaced points during the application’s execution.
These points are determined based on the number of bytes allocated to ensure that samples are
taken at the same points in the application’s execution no matter which algorithm is used or how
execution time is impacted. Numbers reported are in MB.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 . Tim Brecht et al.

As can be seen in Table II, the fred application executes fastest when no garbage
collections are performed. As the frequency of garbage collection increases, the
execution times and total garbage collection times increase significantly. With an
FSD value of 16, the application runs more slowly than without garbage collection
by a factor of 3.8. In this case, the 40 garbage collections take a total of 4472
milliseconds. Adding this to the execution time of the application without garbage
collection (1654) accounts for almost all of the extra execution time. With an FSD
value of 4, the default BDW configuration, fred executes 1.8 times more slowly
than without garbage collection (again, the extra time spent collecting garbage
nearly completely accounts for the difference).

When comparing different FSD values, the average (and to a lesser extent the
maximum) garbage collection times increase as the frequency of garbage collection
increases. This is because, in this application, the amount of reachable composite
data grows during execution; in the BDW collector, tracing reachable composite
objects accounts for the significant portion of garbage collection time. The cost
of tracing composite objects dominates other costs because the BDW collector
differentiates atomic objects from composite objects, only traces composite objects,
and utilizes a lazy-sweep technique that efficiently sweeps objects during allocation
(if and when that space is needed).

The fred application executes fastest when garbage collection is turned off be-
cause this application can execute within the memory available in the system (with
garbage collection off, the heap grows to 32 MB). However, as can be seen for appli-
cations with larger memory requirements such as db.100 and javac. 100, turning
garbage collection off can significantly degrade performance. Both applications ex-
ecute slowest when garbage collection is turned off. In the case of db.100, the
slowest execution time is 1.3 times slower than the fastest execution time that is
obtained when an FSD value of 2 is used. In the case of javac.100, the slowest
execution time is a factor of 7.5 times slower than the fastest execution time (that
is obtained when an FSD value of 8 is used).

Unlike the fred application, in which average garbage collection times grow as
the frequency of garbage collection increases, the maximum and average pause
times for db.100 are relatively unaffected by garbage collection frequency. This
is because in db.100 the total size of the reachable composite objects is relatively
stable throughout the execution of the program (around 800 KB during all but the
first few collections). On the other hand, the size of the reachable composite ob-
jects in the fred application grows during the execution. Therefore, increasing the
frequency of garbage collections increases the average pause time (until collections
are so frequent that the asymptote is reached). The db.100 application executes
fastest when an FSD value of 2 is used. Here a sweet spot is obtained. Garbage
collection is frequent enough that paging overheads are relatively low but not so
frequent that overheads due to collection would negatively impact execution time.
When examining the heap size statistics gathered during execution with garbage
collection turned off (not shown in the table), we found the heap grows beyond the
size of physical memory to 121 MB. In the FSD = 2 case the 13 garbage collections
performed limit the heap growth to about 21 MB.

When executing javac.100, average garbage collection times decrease signifi-
cantly as garbage collection frequency increases (up to FSD = 8) even though the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 9

size of the reachable set of composite objects is mainly increasing during execution.
In this case, garbage needs to be collected frequently enough to permit the appli-
cation to execute within the amount of memory available. More frequent collection
keeps the footprint smaller and reduces the number of page faults that are in-
curred both during the execution of the program and during garbage collection (for
FSD = 2, 4, 8, and 16). Note, however, that once the footprint of the application
is reduced to the point where it fits within the amount of memory available, which
occurs when FSD = 8, more frequent collections increase execution time (when
FSD = 16). It is worth pointing out that this is also the only application that
incurs a garbage collection when FSD = 1. As can be seen in the column labelled
Max, the pause time for the one collection is 16012 ms.

The results in Table II demonstrate that for the Java applications shown, the
frequency with which garbage is collected can have a substantial impact on their
execution and that a sweet spot exists in terms of minimizing execution times.
Additionally, we see that for the BDW collector no one FSD value works best for
all applications and that increasing the frequency of garbage collection does not
appear to reduce the time spent on garbage collection for some applications.

Table IIT shows the results of the same experiments conducted on a system with
128 MB of memory (rather than 64 MB as in the previous experiments). Because
the original algorithm does not take into account the memory available in the system
(it is based on the size of the heap), the garbage collection frequency is unchanged
when compared with the 64 MB case. Consequently, the results obtained using
different FSD values for fred are unchanged, since it can easily execute within
the available memory even without garbage collection. In the case of the db.100
application, all measured aspects of the application are unchanged relative to the
64 MB case (within confidence intervals), except for the execution time of the
application and the number of page faults, when garbage collection is turned off
and when using FSD = 1. While the sweet spot is still observed to occur when
FSD = 2, we see that the execution time is only slightly better than when garbage
collection is turned off.

Fairly significant and important differences are seen in the execution of the
javac.100 application with 128 MB of memory when compared with the 64 MB
case. The execution time is significantly reduced in the 128 MB case for all FSD
values except FSD = 16. However, the application now executes fastest when an
FSD value of 2 is used (38 seconds), as compared with the 64 MB case when a best
execution time of 62 seconds is obtained using FSD = 8.

Interestingly, when FSD = 1 is used in the 128 MB case, the overhead incurred
by the one real garbage collection is significantly lower than when the application is
executed on a system with 64 MB of memory. In both cases, the heap size is about
64 MB when collection is triggered (recall that about 45 to 50 MB is available for
the application), so the heap has exceeded the amount of physical memory available
in the 64 MB system. In the 128 MB case, the reachable composite objects can be
traced without incurring many page faults (18 faults are incurred during collection),
while a total of 2965 faults are incurred during collection in the 64 MB case.

In a system with 128 MB of memory, as the collection frequency increases (for
FSD = 2, 4, 8, and 16) the differences in maximum and average garbage collection
times are not nearly as dramatic as in the 64 MB case. In fact when garbage

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 . Tim Brecht et al.

Table ITI. TImpact of garbage collection frequency using BDW with 128 MB system; times are in
milliseconds and sizes are in MB. The row labelled “Tholds” shows the results obtained with our
new algorithm. This algorithm and the results for it are discussed in Section 4.

Alg Time 90% | GC | Total | Avg | Max | HG | Foot pf | gepf
fred
Off 1646 11 0 0 0 0 8 11.9 7546 0
FSD 1 1681 18 0 0 0 0 8 11.9 7546 0
FSD 2 2205 22 6 494 82 236 11 3.4 5755 9
FSD 4 3034 12 15 1328 88 302 17 1.9 5249 11
FSD 8 4228 8 25 2500 100 322 25 1.4 5154 11
FSD 16 6233 9 40 4463 111 320 38 1.1 5050 11
Tholds 1627 6 0 0 0 0 8 11.9 7546 0
db.100
Off 56198 197 0 0 0 0 13 54.9 31755 0
FSD 1 56138 198 0 0 0 0 13 54.9 31788 0
FSD 2 55349 5 13 2254 173 224 9 6.7 7681 18
FSD 4 56921 5 23 3916 170 219 13 4.2 6354 21
FSD 8 62597 7 51 9500 186 226 20 2.6 5461 21
FSD 16 69053 22 88 15959 181 219 30 2.1 5169 21
Tholds 53114 8 1 269 269 269 11 37.2 25103 18
javac.100
Off 405112 7328 0 0 0 0 23 | 1341 190956 0
FSD 1 268804 4031 1 401 401 401 20 86.5 133641 18
FSD 2 38039 147 16 7004 418 | 1013 14 15.3 19248 41
FSD 4 45687 272 36 14596 401 1000 21 8.6 16346 41
FSD 8 58679 230 64 | 27337 424 976 34 5.8 13376 50
FSD 16 87488 1499 121 55667 459 944 52 4.2 11570 44
Tholds 35419 187 3 4563 1156 | 1380 12 34.3 25060 39

collection is less frequent (but not so infrequent as to cause paging), average and
maximum pause times are actually equal to or lower than when collection is more
frequent. For this reason, the algorithm we present in the next section is able to
postpone garbage collection without incurring substantial costs (provided garbage
collection isn’t deferred too long).

When comparing the results in Table IT with those in Table III, we see that for
some applications the best FSD value changes with the amount of memory available
in the system. This motivated us to develop a technique that considers the memory
available in the system in order to attempt to execute each application at or close
to its sweet spot.

4. A NEW APPROACH

After analyzing the results obtained from the experiments conducted in the previous
section, combined with lessons learned from experiments in which we attempted to
produce an improved algorithm, we developed some guidelines that we use in our
new scheduling algorithm:

(1) Tf there is sufficient memory available, garbage should not be collected and the
heap should be grown quite aggressively.

3We currently do not consider the size of the caches and the impact on the TLB.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 11

(2) As the amount of available memory becomes low some should be kept available
in order to avoid paging if possible. This is done by more aggressively (i.e.,
more frequently) collecting garbage and less aggressively growing the heap (i.e.,
growing the heap by smaller amounts).

(3) When the amount of available memory is low, the initiation of garbage collection
can become too aggressive. Therefore, methods are required for ensuring that
frequency is tempered. This can be accomplished by tracking the amount of
memory reclaimed on recent collections and not collecting if recent collections
do not reclaim a sufficient amount of memory.

As mentioned earlier, a significant problem with using the FSD to control garbage
collection and heap growth (and approaches used in other garbage collectors) is that
the amount of memory available in the system is not considered. Our new approach
utilizes thresholds that are based on and determined relative to the amount of
available memory.

When the memory allocator is unable to find a suitable block of memory in
the existing heap for a new request, it must either perform a garbage collection
or grow the heap. Our modified run-time system makes this decision based on
the amount of memory available, whether or not a threshold has been exceeded
since the last garbage collection, and the amount of garbage collected during recent
garbage collections (to ensure that collections are not too frequent and that they
are actually reclaiming memory).

Garbage collection is triggered for the first time when the amount of memory
used by the application exceeds the first threshold. When this or any threshold
is exceeded for the first time, garbage is always collected. During a collection
caused by a memory allocation that results in exceeding threshold T3, the amount
of memory reclaimed is calculated (R;) and is used in deciding whether or not to
collect garbage the next time threshold T; is exceeded. Garbage will be collected if a
sufficient amount of garbage was collected during recent collections. If the amount
of memory reclaimed results in two or more thresholds being crossed, we collect
the next time each of those thresholds is reached. In our current implementation,
we define a sufficient amount of memory that should be collected when crossing
threshold 7; as follows:

51 = T2 - T1 for T1 and
S, =T, —T,_1 for T, wherei > 1.

Note that this approach ties the amount of memory that should be reclaimed in
order to be considered sufficient to thresholds. Although in this paper we have done
this intentionally for simplicity, this is not required and the two could be separated.

In the BDW collector the heap size is never reduced, and once a heap grows, all
decisions are made with respect to that new heap size. Using the original FSD-
based approach to controlling garbage collection and heap growth, if an application
allocated a large amount of data (growing the heap to a point beyond available
memory), even if a subsequent garbage collection reclaimed substantial amounts of
memory, garbage collection would not be invoked again until an allocation request
could not be satisfied from the existing heap. This can potentially result in paging
when it might not be necessary.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 . Tim Brecht et al.

To try to ameliorate this situation we have added another decision point to our
modified run-time system. This decision point considers whether or not garbage
should be collected even if there is a considerable amount of free memory available
in the current heap. That is, even if the requested amount of memory could be
allocated. This new decision point is carefully added to the allocator so as to limit
its impact on the already highly optimized allocation code. We track the memory
used by the application and when an amount of memory is allocated that grows
the total to a point that crosses a threshold, we invoke the garbage collector if a
recent collection reclaimed a sufficient amount of memory. Although this adds a
few instructions to the allocation path (to check if the current threshold is being
crossed) it does not seem to impact the execution time of our applications in a
noticeable way. As will be seen in Section 4.2 our new approach performs quite
well when compared with the original approach.

Finally, when growing the heap, we grow it quite aggressively, targeting a dou-
bling of the heap size on each growth until the heap size reaches the first threshold
(care is taken to grow the heap only up to the first threshold). Subsequent heap
growths are done by growing the heap to the next threshold. We propagate these
targeted growth sizes through the original BDW code, which ensures that the heap
is grown by at least a minimum increment and no more than a maximum increment
(256 KB and 16 MB respectively, as defined in the original version of our BDW
implementation).

Figure 2 shows an example of how thresholds are used to control both garbage
collection and heap growth. In this example, each decision point is marked. A
circle denotes that the heap was grown (points A, B, and E), a square denotes
that garbage was collected, (points C, F, and H) and a diamond denotes that the
decision was to do neither (point J). The program starts with an initial heap (in
our experiments, we used the default initial size used in the BDW collector, 256
KB). As the program allocates memory, the heap is grown as shown by points A
and B. Once the amount of memory used by the application has reached threshold
Ty (at point C), the garbage collector will be invoked because the allocator is not
able to find an appropriate block in the heap to satisfy the request. At point C,
garbage collection reclaims memory to point D. The amount of memory collected
from point C' to D, Ry, is not considered large enough for garbage to be collected
the next time T is reached (because Rj is less than S; = T — Ti). Therefore,
the next time the allocator fails to satisfy the current request (at point E) the heap
is expanded up to the next threshold, T5.

As the application continues to use memory, the collector will be invoked at
point F' because a new threshold, 75, has been reached. This time a substantial
amount of garbage is collected, reducing the amount of memory considered live to
point G. This is considered to be a good collection because it collected more than
Sy = Ty — Tj bytes of memory. Therefore, the next time 77 or T, are reached,
the garbage collector will be invoked. From this point onward, the heap does not
need to be expanded for some time because the heap size is at Ty and it is never
reduced (compaction is not implemented in the BDW collector).

As the program continues to allocate objects, the amount of memory being used
will grow until point H is reached (again at T7). Since our approach is to try to
keep the amount of memory below each threshold (provided the recent collection

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 13

Fig. 2. Example heap growth and garbage collection operation using thresholds.

reclaimed a sufficient amount of memory), garbage collection will be invoked at
point H. Since not a lot of garbage is collected to reach point I, the next time T}
is reached (at point J) the collector is not invoked.

In the example described above, we differentiate garbage collection points C
and F as being initiated as a result of the heap becoming sufficiently utilized and
collection point H as being initiated by the allocator passing a threshold that we
would like to avoid exceeding.

As can be seen in the example in Figure 2, we have chosen thresholds so that
as less memory is available the thresholds are closer together. This permits us to
initiate garbage collection more aggressively (i.e., more frequently) and to grow the
heap less aggressively (i.e., by smaller amounts) as the amount of memory available
to the application decreases. Both of these actions are designed to avoid collection
and heap growth overheads when there is an abundance of available memory. More-
over, they are designed to try to free up unused memory and limit heap growth in
order to attempt to execute the application within the amount of memory available
in the system. Bouncing above and below thresholds is prevented by ensuring that
a sufficient amount of memory is reclaimed by the previous collection.

The main differences between our approach, the original approach used in the
BDW collector, and other approaches (see Section 5 on related work for details)
is that we dynamically control the garbage collection frequency and heap growth
in an attempt to adapt to changes in available resources. We avoid garbage col-
lections and aggressively growing the heap while memory is available, and then
more aggressively initiate garbage collections and less aggressively grow the heap
as memory becomes more utilized.

4.1 The Implementation

The new algorithm was implemented within the context of the existing JVM and
garbage collector (as used in the previous experiments), taking care to only mod-
ify the portion of the code that makes decisions about when to perform garbage
collection, when to grow the heap, and how much to grow the heap by.

We used the Win32 call GlobalMemoryStatus() to determine how much physi-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 . Tim Brecht et al.

cal memory was in the system and how much memory is available. Other operat-
ing systems typically provide support for applications to obtain such information.
For example, in Linux this information is available through the proc file system
in /proc/meminfo; in a number of other versions of UNIX, it can be read from
/dev/kmem.

For the purposes of our current experiments, we make an initial call to determine
the amount of physical and available memory and compute static thresholds based
on these values. As the program executes, we track the amount of memory that
has not been reclaimed (i.e., the memory the run-time system considers live) and
use this to determine where the program is executing relative to the thresholds.
This approach circumvents issues related to accurately determining the amount of
available memory during execution. For example, when all physical memory has
been used most operating systems report that the amount of available memory is
near or slightly above 0 bytes (typically, an attempt is made to keep a few MBs
free). Unfortunately, this currently limits our approach to environments where the
application is executing in isolation (e.g., many high-performance computing and
server environments). We plan to explore techniques that will work with multiple
applications in the future, for example, using information about available memory
and page fault rates as has been done by Alonso and Appel [1990] (see Section 5
on related work).

Naturally, the choice of the number of thresholds and their locations can greatly
influence application performance. Although we would prefer a technique that does
not require parameter tuning, we did not find it difficult to choose a set of thresholds
that works quite well across the set of applications used in our experiments. Our
current implementation defines logical thresholds relative to the amount of memory
available in the system. For the experiments conducted with 64 MB of memory, we
used these logical thresholds, defined as a fraction of the system memory:

0.40, 0.55, 0.70, 0.85, 0.92, 1.00, 1.15, and 30.00.

For experiments conducted with 128 MB of memory, we used these logical thresh-
olds, defined as a fraction of the system memory:

0.80, 0.85, 0.90, 0.95, 1.00, 1.05, and 10.00.

The 64 MB thresholds start at 0.40 and were chosen at 15% intervals (a little
under 8 MB) with an additional threshold added roughly half way between the 0.85
and 1.00 thresholds (at 0.92). Without this additional threshold, the last collection
before reaching the physical memory threshold would occur with roughly 8 MB of
memory available, which we found was a little too late for some applications.

The 128 MB thresholds start at 0.80 and were chosen at 5% intervals (around 5
MB). In this case, we did not see a need for an extra interval just before reaching
the physical memory threshold because the threshold comes about 5 MB before
the physical threshold. In both cases, we started with thresholds at 1.00 and
picked the remaining thresholds based on intervals around the physical memory
threshold. Originally, the thresholds for the 64 MB case did not extend as low as
those currently used, but we found that the higher starting threshold was not quite
aggressive enough for some applications.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 15

Note that each set of thresholds includes one threshold at the point equal to
available memory and one slightly above. Again, these are designed to attempt
to collect enough garbage so that the program will execute with some memory
available. However, we set the next threshold (the last threshold) to a point well
beyond available memory (this point was not reached in any of our experiments).
In both the 64 MB and 128 MB case the last threshold has been chosen simply to
ensure that it is large enough so that it no garbage collections would be triggered
after passing the second to last threshold. An interesting question we hope to study
in the future is how to schedule garbage collection in programs where the footprint
far exceeds the physical memory in the system.

4.2 Threshold-based Experiments

One of the goals of this work is to develop an approach to scheduling that results in
faster application execution times than achieved by the existing approaches. Tables
IT and IIT compare details of three applications executing using our threshold-based
approach (the row labelled “Tholds”) with the execution of the same applications
using different FSD values. In the 64 MB case, which is shown in Table II, the run
time obtained using thresholds compares quite favorably when compared with any
single FSD value. Since the FSD is static there is no one FSD value that could be
chosen that does as well over all of the applications shown as the threshold-based
approach. Interestingly, the run time obtained using our approach is in fact quite
close to the best run time obtained over all FSD values (except for the case of fred,
which is discussed in more detail later).

In the 128 MB case, (Table III), the results are more dramatic. The run time
obtained using the threshold-based approach is significantly better than any single
FSD value and surprisingly performs as well or better than the best run time
obtained over all different FSD values.

Note that when executing javac. 100 using our threshold-based approach on a 64
MB system, an average of 24 collections were performed and a mean execution time
of 64 seconds was observed. In contrast, with FSD = 2, 4, and 8 the collector was
invoked an average of 16, 35, and 64 times respectively, while the mean execution
times were 323, 75, and 62 seconds respectively. Although the number of collections
invoked using the threshold-based approach falls on a spectrum somewhere between
FSD = 2 and FSD = 4, the execution time does not lie in the same spectrum (it lies
between FSD = 4 and FSD = 8). As a result, we conclude that in some cases the
benefits obtained from using our threshold-based approach are a result of controlling
the point at which collections occur more so than controlling the frequency.

We now expand our comparisons with a wider variety of programs. We begin
by using an environment with 64 MB of memory and comparing our threshold-
based approach with the original BDW algorithm with FSD = 4, FSD = 2, and
garbage collection turned off. These environments are examined explicitly because
the majority of the applications used in our experiments execute very efficiently
using one of these three scenarios. The results of these experiments are shown
in Figure 3(a), 3(b), and 3(c), respectively. Figure 3(d) compares the execution
times obtained using our threshold-based approach with the minimum execution
times obtained across all FSD values. Additionally, we include detailed statistics
regarding the execution of all applications in the appendix.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 . Tim Brecht et al.

In all graphs in Figure 3, the execution time obtained with our scheduling algo-
rithm averaged over 19 runs is normalized with respect to the mean execution time
over 19 runs of the application when executed using the standard BDW environ-
ment (for the FSD value used). The execution times of our algorithm are shown
using the taller, dark-colored bars. The light portion of each bar indicates the por-
tion of the normalized execution time that the threshold-based approach spent on
garbage collection. As can be seen in Figure 3, in most cases garbage collection
times are negligible.

Figure 3(a) shows that the Java applications used execute quite well using the
threshold-based approach when compared with the standard BDW approach using
FSD = 4 (the default value). Using the threshold-based algorithm, many of the ap-
plications (11 of 26) execute in roughly 80% or less of the time required when using
FSD = 4. Interestingly, one of these applications (espresso) benefits significantly
and executes in roughly 60% or less of the time required when FSD = 4 is used.
Moreover, none of the 26 applications runs more slowly using the threshold-based
approach.

Note that the results for our entire application set are shown even though when
executing with 64 MB, 6 of these 26 applications (compress.10, javalex, javaparser,
jaxnjell, mpegaudio.10, and mpegaudio.100) execute in the same amount of time
whether garbage collection is turned off, FSD = 4, FSD = 2, or our threshold-
based algorithm is used. In these cases, garbage collection is typically invoked only
a few times and collection overheads are very small relative to the total execution
time. That is, they might not be considered to be very good garbage collection
benchmarks for a system with 64 MB but we felt that it would be interesting to
include them since some of them are from the SPECJVM98 benchmark suite.

We also see from Figure 3(c) that 13 of the 26 applications execute fastest with
no garbage collections. We considered using a smaller amount of memory than the
64 MB used for these experiments but when no garbage collections are performed
8 of the applications execute with a total heap size of 8 MB or less, 3 execute with
15-18 MB of heap, and only one requires 33 MB.

When using the threshold-based algorithm and executing with 64 MB of mem-
ory, overheads due to garbage collection are relatively small for all applications
except javac.100 (where it is about 36% of the run time) fred (where it is about
22%), and mtrt.100 (where it is about 10%). For javac.100, execution time is
significantly improved, especially when compared with FSD = 2 (Figure 3(b)) or
turning garbage collection off (Figure 3(c)). We discuss the fred application in
detail shortly.

The results observed in Figure 3(b), which compare the threshold-based algo-
rithm with FSD = 2, are similar to those seen in Figure 3(a) (for FSD = 4), but
they are not as dramatic. For all executions except espresso and javac.100,
the threshold-based algorithm and FSD = 2 yield execution times that are within
approximately 5 to 10% of each other. However, we point out that when using
the threshold-based approach, javac.100 executes in less than 20% of the time
required to execute it with FSD = 2 (a factor of 5 improvement). We also point
out that when comparing the graphs in Figure 3(a) and 3(b), one could conclude
that a default FSD value of 2 would better serve more of the applications in our
test suite than the value of 4 used in the current BDW distribution. However, the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

17

Controlling Garbage Collection and Heap Growth to Reduce Execution Time

4

FSD =

(a)

2

FSD =

b)

(

¢) GC Off

(

Best times over all FSD values

(d)

Fig. 3. Comparing the threshold-based algorithm with the BDW algorithm using different FSD
values on a 64 MB system. These graphs show the execution time of each application when run

using the threshold-based algorithm, normalized with respect to the execution time obtained when

run using the specified FSD value.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 . Tim Brecht et al.

value of 4 appears to be more conservative and prevents any one of the applications
tested from suffering from very poor performance.

Figure 3(c) compares the execution times of the threshold-based algorithms with
those obtained when garbage collection is turned off. By comparing these results
with those in Figure 3(d), we can see that in our environment a number of appli-
cations execute most effectively when garbage collections do not interfere with the
execution of the application. For almost all of these applications, the threshold-
based algorithm is able to ensure that the number of garbage collections is kept to
a minimum and we see that execution times are as good as when no garbage col-
lections occur (and in fact in many cases the garbage collector is not invoked after
its initialization phase). However, for 8 of the 26 applications, the threshold-based
approach provides significant reductions in execution time because without garbage
collection these applications incur considerable overheads due to paging.

Unfortunately, one of the applications, fred, executes more slowly by a factor
of 1.3 when using the threshold-based algorithm than when garbage collection is
turned off (which is when fred executes fastest). This is because fred is a very
short-running program, and the one garbage collection initiated in the threshold-
based algorithm takes a total of 477 ms and inflates execution time by a factor
close to 1.3. One possible remedy for this situation would be to take into account
how long an application has been executing. The idea would be to further delay
collections until an application has executed for a sufficient length of time (assuming
that its rate of memory allocation is not too high). This would ensure that the cost
of garbage collection is amortized over a longer period of time, rather than only
over the amount of memory allocated as is currently done. We have not tried this

approach yet.
As mentioned previously, when designing the threshold-based approach it was

our hope that it would perform as well as the best possible FSD value across all
applications, that is, to perform enough garbage collections to avoid paging for those
applications that use a large amount of memory and to avoid collecting garbage
too frequently for those applications whose execution would be negatively impacted.
Figure 3(d) compares the mean execution time of each application with the mean
execution time obtained with the best standard BDW collection method (i.e., the
minimum mean execution time obtained with garbage collection off and using FSD
values of 1, 2, 4, 8, and 16).*

This graph shows that with the exception of the fred application our approach to
controlling garbage collection and heap growth is reasonably close to the best FSD
value. Most of the applications execute in the same time under both approaches
while a few others execute about 5% faster or slower using the threshold-based
approach. It is worth re-emphasizing that because the FSD value is static, ob-
taining such performance using the original BDW implementation is not possible.
The main comparison of interest is the threshold-based approach versus the de-
fault BDW configuration with FSD = 4 (arguably a good choice). In this case
significant performance improvements are obtained for several applications using
the threshold-based approach.

4For the applications tested, none of the execution times decreased with FSD values of 32 or
higher.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

19

Controlling Garbage Collection and Heap Growth to Reduce Execution Time

4

FSD =

(a)

2

FSD =

(b)

¢) GC Off

(

Best times over all FSD values

(d)

Fig. 4. Comparing the threshold-based algorithm with the BDW algorithm using different FSD
values on a 128 MB system. These graphs show the execution time of each application when

run using the threshold-based algorithm, normalized with respect to the execution time obtained

when run using the specified FSD value.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 . Tim Brecht et al.

To demonstrate that our approach also works with different amounts of physical
memory, we conducted the same set of experiments with 128 MB of memory and
in Figure 4 present a series of graphs similar to those in Figure 3. The observations
in Figure 4 are similar to those made when executing the applications using 64
MB of memory except that the improvements from the threshold-based approach
appear to be slightly more consistent with 128 MB of memory than with 64 MB.
Again we include detailed statistics obtained for all applications in the appendix.
In the 128 MB case, all applications execute in times equal to or slightly better
than the best possible FSD value (Figure 4(d)). Additionally, the portion of the
execution time spent performing garbage collection is negligible in all applications
except javac.100, where it is about 13%.

5. RELATED WORK

Moon [1984] points out that users of some early Lisp machines found that garbage
collection made interactive response time so poor that users preferred to turn
garbage collection off and reboot once the virtual address space was consumed.
He also demonstrates that some applications execute fastest with garbage collec-
tion turned off.

Ungar and Jackson [1988; 1992] conduct a simulation study to examine the im-
pact that tenuring decisions have on the pause times in a generation-based scaveng-
ing garbage collector. They first show that when using a fixed-age tenuring policy
low tenure thresholds (based on the amount of time an object has survived) pro-
duce the most tenured garbage and the shortest pause times. They then introduce
feedback-mediated tenuring in which they base future tenuring decisions upon the
amount of surviving data in the youngest generation. Their work is able to reduce
pause times in their simulated environment which can provide significant benefits
in an interactive environment. However, they do not consider the cost of later col-
lecting the increased amount of memory that has been tenured, nor the impact of
page faults. Our work is concerned with the execution times of applications and
as a result we are willing to tolerate longer pause times if they lead to a decrease
in the total execution time. Although our technique does not attempt to control
pause times directly, our experimental results show that average and maximum
pause times in almost all cases are as low or lower than the alternative approaches
considered.

Cooper et al. [1992] show how the performance of Standard ML can be improved
by applying optimizations to a simple generational collector introduced by Appel
[1989]. In addition to utilizing Mach’s support for sparse address spaces and exter-
nal pagers, they propose and study a modification to Appel’s algorithm for deciding
how to grow the heap. For each of the three applications studied they use a brute
force approach to determine optimal values (i.e., those that produce the fastest
execution time) for the two parameters used by Appel’s algorithm and the three
parameters used by their algorithm. By modifying the algorithm for growing the
heap they are able to significantly reduce the number of page faults and the exe-
cution time of two of the three applications studied (the performance of the third
was not changed significantly). Although this aspect was not the focus of their
study, it is interesting to see that the set of optimal parameters is different for each
application and that it varies with the other approaches used to reduce paging.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 21

Smith and Morrisett [1998] describe a mostly copying collector that collects
garbage whenever the heap is two-thirds full. This roughly corresponds to using
an FSD value of 1.5 in the BDW collector and will suffer from the same drawbacks
that a fixed FSD value were shown to have in Section 3.1. Namely, no one fixed
value works best for different applications and no one fixed value works best for
different physical memory sizes.

Zorn [1990; 1993] points out that the efficiency of conservative garbage collection
can be improved if more garbage can be collected during each collection phase
and suggests that one way to achieve this is to wait longer between collections.
However, he also warns that there is a trade-off between the efficiency of collection
and program address space. In addition, he describes a policy for scheduling garbage
collection that is based on an “allocation threshold.” Namely, the collector runs
only after a fixed amount of memory has been allocated (e.g., after every 2 MB of
memory has been allocated).

A set of experiments conducted in our environment using Zorn’s allocation thresh-
old approach yielded results that are similar to those obtained using the different
FSD values for the BDW collector.” Namely, no one allocation threshold was suit-
able for all applications. Because the amount of memory available is not considered
when initiating garbage collection, some applications exceeded the amount of mem-
ory available and overheads due to paging significantly increased execution time.
While a smaller threshold might reduce the execution time of such an application,
it can increase the execution time of other applications where the overhead due to
frequent collections is significant.

Alonso and Appel [1990] implement an advice server that is used to determine
how to take maximum advantage of memory resources available to a generational
copying garbage collector for ML. After each garbage collection, the application
contacts the advisor process to determine how the application should adjust its heap
size. The advisor process uses vmstat output to monitor the number of free pages
and page fault rates in order to tell each application how to adjust its heap size.
Garbage collections occur only when the free space portion of the heap is exhausted
[Appel 2003]. As a result, control over garbage collection occurs only by modifying
the size of the heap. Unfortunately, this approach cannot be deployed in the BDW
collector because the BDW implementation does not support shrinking the heap.
Although it might be possible to modify the BDW collector to contact an advisor
process when making decisions regarding garbage collection and heap growth, we
believe that our approach obtains significant benefits by occasionally deciding to
collect garbage even when there is sufficient memory available in the heap to satisfy
a request. This is accomplished by carefully adding a simple and efficient check
that occurs during allocation. We believe that the overhead incurred in contacting
an external process to perform such a check would be highly detrimental to the
performance of most applications. However, the work of Alonso and Appel does
demonstrate that garbage collection can be controlled in a number of applications
executing simultaneously to provide reduced execution times.

5To be fair, Zorn devised this algorithm to compare fairly two different garbage collection algo-
rithms while ensuring that the scheduling of garbage collections was done identically in each case
and not to optimize any performance metric.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 . Tim Brecht et al.

Kim et al. [2000] analyze the memory system behavior of several Java programs
from the SPECJVM98 benchmark suite. One of the observations made in their
work is that the default heap configuration used in IBM JDK 1.1.6 results in fre-
quent garbage collection and the inefficient execution of applications. Although
the direct overheads due to garbage collection in their environment appear to be
more costly than in ours (because the entire heap is swept on each collection and
because heap compaction is used), we believe that their results also demonstrate
the need to improve techniques for controlling garbage collection and heap growth.
They point out that although the direct costs of garbage collection decrease as the
available heap size is increased, there exists an optimal heap size that minimizes
total execution time (due to interaction with the virtual memory subsystem).

One of the main differences between our work in this paper and the work de-
scribed above is that we specifically study and devise techniques for controlling
garbage collection and heap growth that consider how much memory is available
in the system and we directly consider the trade-off between execution time and
application footprint.

Dimpsey et al. [2000] describe the IBM DK version 1.1.7 for Windows. This is
derived from a Sun reference JVM implementation and changes were made in order
to improve performance of applications executing in server environments. Their
approach also considers the amount of physical memory in the system. They set
the default initial and maximum heap size to values that are proportional to the
amount of physical memory in the system. However, they do not explain what
values are used or how they were chosen.

They also make modifications to reduce the number of heap growths, because
they are quite costly in their environment. If the amount of space available after a
garbage collection is less than 25% of physical memory or if the ratio of time spent
collecting garbage to time spent executing the application exceeds 13%, the heap is
grown by 17% of the heap size. They report that the ratio based heap growth was
disabled if the heap approached 75% of the size of physical memory but they do not
explain what was done in this case. They report that when starting with an initial
heap size of 2 MB this approach increases throughput by 28% on the VolanoMark
and pBOB benchmarks.

Recent versions of the Sun Java virtual machine include a large collection of
command line options designed to permit users to adjust parameters that impact
heap growth and garbage collection. As well, documents are provided [Sun Mi-
crosystems 2005] that explain that these parameters need to be adjusted for each
application and describe how to read garbage collection trace data in order to tune
these parameters.

Our work in this paper concentrates more on trying to understand what should
influence the decision about when to garbage collect and by how much to grow the
heap. We provide full details of how decisions are made and how they are made
relative to the amount of available memory. In addition, we study a variety of
benchmark applications and demonstrate that we have been able to obtain good
performance across a variety of applications.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 23

6. DISCUSSION

Decreased garbage collection times, whether they are achieved by improving the
implementation used (e.g., by reducing cache misses during collections [Boehm
2000]) or by utilizing a different collector, may mean garbage collection can be
invoked more frequently without negatively impacting an application’s execution
time. While we believe that this would make it easier to obtain a sweet spot in
terms of collection frequency, we suspect that it would still be necessary to prevent
collections from occurring too frequently.

Garbage collection overheads that have been reported in the literature are still
sufficiently large that our approach might prove useful if used with other garbage
collectors. Experiments conducted by Fitzgerald and Tarditi [2000] show that for
one application (cn2) garbage collections account for a minimum of 30% of the
total execution time across three different collectors used in their experiments. Ad-
ditionally, garbage collections account for roughly 15 to 25% of the execution time
for several combinations of applications and collectors they studied. They point
out that for some of their applications reducing the number of garbage collections
by half roughly halves the time spent in garbage collection. While this does provide
evidence that our techniques might work in conjunction with other garbage collec-
tors these results and the results from our paper were both obtained using Java to
native instruction compilers. It is possible that slower execution of the Java appli-
cation code inside the context of a virtual machine might render garbage collection
times inconsequential. However, just-in-time hot-spot technologies should compete
well with compiled code. In the future we hope to examine our technique in the
context of an optimized virtual machine that supports different garbage collectors.

Of course, our technique may not work with all garbage collectors. A benefit of
the mark and lazy-sweep approach that differentiates atomic and composite objects
used in the BDW collector is that delaying garbage collection does not appear to
significantly increase the time spent in garbage collection (because pause times are
correlated with the size of the composite object set size). While this is true for the
BDW collector used in our experiments, this is not true for all garbage collectors.
For example, the mark-and-sweep copying collector reported on by Kim et al. [2000]
incurs overheads proportional to the amount of garbage being collected. It is unclear
what impact delaying garbage collection would have in such environments.

Several previous studies have pointed out the importance of, studied, and im-
proved the cache and TLB hit rates within the context of garbage collected sys-
tems [Zorn 1991; Wilson et al. 1991; 1992; Grunwald et al. 1993; Chilimbi and
Larus 1998; Smith and Morrisett 1998; Boehm 2000; Shuf et al. 2001]. Our results
described in this paper do not consider or contain information regarding the impact
on cache and TLB hit rates. In future work it would be interesting to determine
both the impact our approach has on caches and the TLB and to examine if adding
new thresholds corresponding to the size of the level two or greater caches could be
used to improve execution times (especially for systems with large caches).

As discussed in Section 5, Alonso and Appel [1990] demonstrate that garbage
collection can be effectively controlled in a number of simultaneously executing
applications. Although we intentionally focus on understanding how to minimize
the run time of one application executing in isolation, we have tried to keep multi-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 . Tim Brecht et al.

programmed environments in mind. In such environments the amount of available
memory is reduced and presumably thresholds are reached sooner. Such an en-
vironment might also require us to adjust our thresholds dynamically because we
have found that for some applications it is important to be more aggressive about
collecting garbage when less memory is initially available. This is reflected in the
differences in thresholds used for 64 MB and 128 MB systems (see Section 4).

Lastly, the choice of thresholds is very important in our experiments. The values
used in this paper were chosen through trial and error and yield good results for
all applications when compared with results obtained using different FSD values.
It is worth noting that we do not expect that the set of thresholds used here will
always work so well for all applications. This combined with the fact that we tuned
the thresholds differently for each memory configuration and that different memory
configurations would likely also require tuning, point out the need for techniques
that either do not require tuning or that tune themselves. Some work has shown
some potential in this area [Andreasson et al. 2002] by deploying machine learning
techniques in order to determine when to garbage collect.

7. CONCLUSIONS

In this work, we evaluate the performance of, compare, and design algorithms
specifically to control the scheduling of garbage collection and heap expansion.

We have conducted a detailed study of the impact of these scheduling decisions on
the execution of several Java applications (26 different executions using 19 different
applications) while using the highly tuned and widely used conservative mark-and-
sweep Boehm-Demers-Weiser (BDW) garbage collector and memory allocator. Our
goal is to obtain a better understanding of how to control garbage collection and
heap growth for an individual application executing in isolation. These results
can be applied in a number of high-performance computing and server environ-
ments, in addition to some single user environments. This work should also provide
insights into how to make better decisions that impact garbage collection in multi-
programmed environments.

From the experiments conducted in our environment we observed the following:

—The execution times of many of the applications we tested vary significantly with
the scheduling algorithm used for garbage collection.

—No one configuration of the BDW collector results in the fastest execution time
for all applications. That is, no one static FSD value can be used to obtain the
fastest execution time for all applications. In fact, choosing the wrong FSD value
can significantly and unnecessarily increase the execution time of an application
relative to the best FSD value.

—The best scheduling algorithm for an application (the one that results in the
fastest execution of an application) also varies with the amount of memory avail-
able in the machine on which the application is executing.

—Making decisions about whether to perform garbage collection or grow the heap
based primarily on how much of the current heap is used is not a good choice
when the heap does not shrink (as is the case in the BDW collector). We argue
that in order to minimize the execution time of an individual application it is
better to base such a decision on how much memory is currently available.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 25

We use these observations to design, implement, and experimentally evaluate a
threshold-based algorithm for controlling garbage collection and heap growth. Our
experiments demonstrate that when compared with the execution time obtained
with the method used by the standard BDW implementation (i.e., when FSD = 4),
our new approach can match or significantly reduce the execution time of every
application. Additionally, our approach is preferable to any other single FSD value
and interestingly, the run times compare favorably (in all but one case) with the best
run time obtained across all FSD values. We believe that this benefit is obtained
by taking into account the amount of memory available to the application when
determining whether to collect garbage or to grow the heap, carefully controlling
heap growth when memory resources become scarce, and by considering the amount
of memory reclaimed in previous collections.

In the future, we plan to test our approach using different garbage collectors
and to consider multiple applications executing simultaneously, dynamic threshold
values, and techniques that do not require tuning.

ACKNOWLEDGMENTS

We thank Richard Paige, Natalie Polikashov and Szymon Stachniak at York Univer-
sity for their fruitful discussions and Ben Korvemaker and the anonymous referees
for their comments which have helped to improve this paper.

We thank the Natural Sciences and Engineering Research Council (NSERC) of
Canada for grants and scholarships that partially supported this research. Addi-
tionally, we are grateful for support received from the IBM Center for Advanced
Studies (CAS) and for the efforts of and interactions with members of CAS and
the developers of HPJ. In particular we thank, Patrick Gallop, Josée Lajoie, Bill
O’Farrell, Albert Rothenstein, Ven Seshadri, Clark Verbrugge and Dean Williams.

APPENDIX

This section contains a number of the statistics that were collected while executing
all 26 versions of our applications. These tables compare the impact of garbage
collection frequency using the BDW algorithms and our new threshold-based algo-
rithm (the rows labelled Tholds). The first set of results were obtained using a 64
MB system and are shown in Tables IV, V, and VI. The second set of results were
recorded using a 128 MB system and are shown in Tables VII, VIII, and IX. All
times are reported in milliseconds and sizes are reported in kilobytes.

The results shown are the average observed over 19 runs. The columns shown in
each table are the algorithm used (Alg), application execution time (Time) and 90%
confidence interval for the execution time (90%), the number of garbage collections
(GCs), the total time spent garbage collecting per run (Total), the average time
spent garbage collecting per collection (Avg), the maximum time spent garbage
collecting per run (Max), the average memory footprint of the application (Foot),
the total number of page faults that occurred during execution (pfs) and the total
number of page faults that occurred during garbage collections (GC pfs). Although
in all cases at least one garbage collection is reported, the first call is for initialization
purposes only and no garbage is collected.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 . Tim Brecht et al.
Table IV. 64 MB
Alg Time 90% | GC | Total | Avg | Max | HG | Foot pf | gepf
compress.10
Off 6992 5 0 0 0 0 6 4.4 4028 0
FSD 2 6901 6 2 16 8 11 7 3.9 3972 18
FSD 4 6940 4 6 44 7 8 8 3.0 3856 21
Tholds 6999 6 0 0 0 0 6 4.4 4028 0
compress.100
Off 139741 1326 0 0 0 0 11 52.7 | 41554 0
FSD 2 75313 30 7 59 8 10 6 13.2 9847 18
FSD 4 75759 15 12 96 8 9 7 11.0 8290 21
Tholds 75956 57 7 64 8 13 6 12.3 8962 18
db.10
Off 1992 9 0 0 0 0 6 2.7 4288 0
FSD 2 2066 7 3 65 21 43 7 1.6 3832 18
FSD 4 2173 6 6 160 26 70 11 1.2 3818 21
Tholds 1975 6 0 0 0 0 6 2.7 4288 0
db.100
Off 68823 1146 0 0 0 0 13 54.9 | 35709 0
FSD 2 55480 9 13 2260 173 224 9 6.7 7682 18
FSD 4 57044 6 23 3922 170 220 13 4.2 6355 21
Tholds 55443 5 10 2250 225 231 7 6.7 7265 18
espresso
Off 786 5 0 0 0 0 7 4.7 3661 0
FSD 2 1029 5 5 237 47 119 8 1.9 2969 10
FSD 4 1258 5 10 470 47 119 12 1.2 2721 10
Tholds 788 6 0 0 0 0 7 4.7 3661 0
fred
Off 1654 4 0 0 0 0 8 11.9 7547 0
FSD 2 2174 4 6 495 82 237 11 3.4 5756 9
FSD 4 3035 6 15 1331 88 302 17 1.9 5248 11
Tholds 2200 67 1 477 292 314 8 8.0 6150 9
jack.10
Off 4158 6 0 0 0 0 8 14.7 9672 0
FSD 2 4310 4 13 247 19 32 8 1.8 3428 18
FSD 4 4564 4 30 515 16 28 10 0.9 2874 21
Tholds 4137 5 1 31 31 31 8 8.3 7130 18
jack.100
Off 122918 5240 0 0 0 0 22 122.4 | 89167 0
FSD 2 33781 25 36 916 24 38 9 4.7 5029 18
FSD 4 34278 23 72 1530 21 35 13 2.8 3974 21
Tholds 33254 22 13 451 34 44 8 9.4 7097 18
jacorb
Off 1874 16 0 0 0 0 8 10.4 6834 0
FSD 2 2166 14 9 307 34 49 8 1.5 2745 9
FSD 4 2607 20 21 698 33 49 11 0.8 2496 9
Tholds 2006 21 1 58 58 57 8 8.4 6201 9

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 27
Table V. 64 MB
Alg Time 90% | GC | Total | Avg | Max | HG | Foot pf gepf
javac.10
Off 1274 6 0 0 0 0 7 5.8 5004 0
FSD 2 1455 5 6 188 31 59 8 1.5 3433 18
FSD 4 1698 19 14 430 29 55 10 0.8 2863 21
Tholds 1269 6 0 0 0 0 7 5.8 5004 0
javac.100
Off 463472 40771 0 0 0 0 23 134.1 183910 0
FSD 2 323418 14149 16 | 92065 | 5642 53188 14 16.7 77897 | 16446
FSD 4 74770 7268 35 | 24162 677 | 10012 21 8.6 21387 2513
Tholds 64130 4696 24 | 23145 958 3501 12 8.6 17535 1871
javacup
Off 536 4 0 0 0 0 6 3.3 3039 0
FSD 2 587 3 5 63 12 27 8 0.9 2312 9
FSD 4 742 4 14 214 15 35 9 0.5 2048 12
Tholds 535 3 0 0 0 0 6 3.3 3039 0
javalex
Off 713 3 0 0 0 0 5 1.2 1795 0
FSD 2 721 3 3 16 5 11 4 0.4 1446 10
FSD 4 742 4 8 39 4 7 3 0.3 1338 10
Tholds 713 2 0 0 0 0 5 1.2 1795 0
javaparser
Off 1717 2 0 0 0 0 6 2.7 2490 0
FSD 2 1734 2 7 37 5 12 4 0.6 1333 9
FSD 4 1773 3 15 72 4 7 3 0.4 1231 9
Tholds 1721 3 0 0 0 0 6 2.7 2490 0
jaxnjell
Off 4343 4 0 0 0 0 4 0.9 1517 0
FSD 2 4354 3 2 20 10 13 5 0.4 1433 9
FSD 4 4380 2 5 45 9 15 6 0.3 1390 9
Tholds 4341 4 0 0 0 0 4 0.9 1517 0
jess.10
Off 1381 5 0 0 0 0 6 2.9 3390 0
FSD 2 1466 3 5 94 18 29 6 0.8 2533 17
FSD 4 1534 5 10 166 16 28 7 0.5 2371 21
Tholds 1382 3 0 0 0 0 6 2.9 3390
jess.100
Off 310286 19105 0 0 0 0 29 181.3 | 294003 0
FSD 2 27205 9 7 3443 44 53 9 2.9 4244 17
FSD 4 33321 54 | 233 9610 41 49 11 1.1 3208 21
Tholds 25274 8 21 1280 60 66 8 8.7 7184 17
igl
Off 42722 1564 0 0 0 0 17 82.5 48635 0
FSD 2 15118 4 148 1056 7 14 5 0.7 1490 9
FSD 4 15716 4 | 258 1723 6 14 6 0.5 1459 9
Tholds 14323 5 8 145 18 23 8 9.6 6318 9

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 . Tim Brecht et al.
Table VI. 64 MB
Alg Time 90% | GC | Total | Avg | Max | HG | Foot pf | gepf
jobe
Off 3207 6 0 0 0 0 8 10.4 6580 0
FSD 2 3572 10 6 369 61 178 11 3.3 5009 11
FSD 4 4171 5 15 971 64 173 15 1.7 4272 11
Tholds 3387 7 1 189 189 189 8 9.2 6229 11
jolt
Off 5919 214 0 0 0 0 8 14.2 8690 0
FSD 2 5812 44 14 339 24 38 8 1.3 2603 10
FSD 4 6555 150 42 977 23 37 9 0.6 1890 12
Tholds 5373 49 1 45 45 44 8 7.9 6104 10
mpegaudio.1
Off 14502 6 0 0 0 0 3 0.4 2096 0
FSD 2 14530 6 1 8 8 8 4 0.3 2098 18
FSD 4 14557 5 3 23 7 10 4 0.2 2094 21
Tholds 14502 4 0 0 0 0 3 0.4 2096 0
mpegaudio.100
Off 131137 22 0 0 0 0 3 0.3 2049 0
FSD 2 131328 25 1 8 8 9 3 0.2 2056 18
FSD 4 131427 45 2 14 7 8 3 0.2 2056 21
Tholds 131128 13 0 0 0 0 3 0.3 2049 0
mtrt.10
Off 3529 3 0 0 0 0 8 13.2 8840 0
FSD 2 3889 5 7 381 54 192 11 3.9 6826 18
FSD 4 4549 6 17 1033 57 202 16 2.3 5711 21
Tholds 3714 4 1 209 209 208 8 8.6 7083 18
mtrt.100
Off 65330 5740 0 0 0 0 19 103.9 | 64117 0
FSD 2 37562 27 16 2103 130 213 12 10.2 9668 18
FSD 4 43623 71 55 8016 145 204 16 3.8 5817 21
Tholds 39358 133 20 3944 193 210 8 6.5 7160 18
netrexx
Off 33209 858 0 0 0 0 12 45.3 | 32858 0
FSD 2 6098 23 19 961 50 72 10 4.3 6015 12
FSD 4 6765 17 35 1665 47 67 13 2.4 4546 15
Tholds 5510 18 5 369 73 84 9 9.0 7759 12
toba
Off 1943 7 0 0 0 0 8 13.2 8112 0
FSD 2 2113 7 15 256 17 22 7 1.1 2092 10
FSD 4 2546 29 39 634 16 23 7 0.6 1591 10
Tholds 1936 8 1 36 36 35 8 8.1 6251 9

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 29

Table VII. 128 MB

Alg Time 90% | GC | Total | Avg | Max | HG | Foot pf | gepf
compress.10
Off 6989 3 0 0 0 0 6 4.4 4027 0
FSD 2 6903 4 2 15 7 9 7 3.9 3971 18
FSD 4 6947 4 6 44 7 9 8 3.0 3855 21
Tholds 6990 3 0 0 0 0 6 4.4 4027 0
compress.100
Off 79048 97 0 0 0 0 11 52.7 29205 0
FSD 2 75365 11 7 59 8 12 6 13.1 9781 18
FSD 4 75501 19 12 96 7 10 7 10.9 8290 21
Tholds 75548 10 1 10 10 10 9 37.1 23722 22
db.10
Off 1976 8 0 0 0 0 6 2.7 4286 0
FSD 2 2065 5 3 65 21 43 7 1.6 3831 18
FSD 4 2161 6 6 159 26 70 11 1.2 3817 21
Tholds 1961 6 0 0 0 0 6 2.7 4287 0
db.100
Off 56198 197 0 0 0 0 13 54.9 31755 0
FSD 2 55349 5 13 2254 173 224 9 6.7 7681 18
FSD 4 56921 5 23 3916 170 219 13 4.2 6354 21
Tholds 53114 8 1 269 269 269 11 37.2 25103 18
espresso
Off 767 3 0 0 0 7 4.7 3660 0
FSD 2 1005 3 5 241 48 120 8 1.9 2968 10
FSD 4 1245 3 10 472 47 119 12 1.2 2721 10
Tholds 771 4 0 0 0 0 7 4.7 3660 0
fred
Off 1646 11 0 0 0 0 8 11.9 7546 0
FSD 2 2205 22 6 494 82 236 11 3.4 5755 9
FSD 4 3034 12 15 1328 88 302 17 1.9 5249 11
Tholds 1627 6 0 0 0 0 8 11.9 7546 0
jack.10
Off 4104 3 0 0 0 0 8 14.7 9671 0
FSD 2 4286 3 13 246 18 32 8 1.8 3428 18
FSD 4 4551 5 30 510 16 28 10 0.9 2873 21
Tholds 4105 3 0 0 0 0 8 14.7 92671 0
jack.100
Off 132019 1579 0 0 0 0 22 122.4 101951 0
FSD 2 33615 25 34 873 24 38 9 5.0 5277 18
FSD 4 34163 26 72 1517 20 34 13 2.8 3946 21
Tholds 33292 21 2 147 73 73 12 41.3 25134 25
jacorb
Off 1923 26 0 0 0 0 8 10.4 6833 0
FSD 2 2212 42 9 308 34 49 8 1.5 2744 9
FSD 4 2617 27 21 697 33 50 11 0.8 2496 9
Tholds 1894 20 0 0 0 0 8 10.4 6833 0

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 . Tim Brecht et al.

Table VIII. 128 MB

Alg Time 90% | GC | Total | Avg | Max | HG | Foot pf | gepf
javac.10
Off 1247 4 0 0 0 0 7 5.8 5003 0
FSD 2 1441 5 6 188 31 59 8 1.5 3432 18
FSD 4 1617 10 13 363 27 55 10 0.9 2906 21
Tholds 1250 3 0 0 0 0 7 5.8 5003 0
javac.100
Off 405112 7328 0 0 0 0 23 134.1 190956 0
FSD 2 38039 147 16 7004 418 1013 14 15.3 19248 41
FSD 4 45687 272 36 14596 401 1000 21 8.6 16346 41
Tholds 35419 187 3 4563 1156 1380 12 34.3 25060 39
javacup
Off 533 3 0 0 0 0 6 3.3 3038 0
FSD 2 584 4 5 63 12 27 8 0.9 2312 9
FSD 4 735 4 14 213 15 35 9 0.5 2047 12
Tholds 540 6 0 0 0 0 6 3.3 3038 0
javalex
Off 708 2 0 0 0 0 5 1.2 1794 0
FSD 2 720 2 3 15 5 9 4 0.4 1445 10
FSD 4 737 2 8 38 4 11 3 0.3 1337 10
Tholds 709 3 0 0 0 0 5 1.2 1794 0
javaparser
Off 1712 2 0 0 0 0 6 2.7 2489 0
FSD 2 1727 2 7 37 5 7 4 0.6 1332 9
FSD 4 1768 2 15 71 4 9 3 0.4 1230 9
Tholds 1711 2 0 0 0 0 6 2.7 2489 0
jaxnjell
Off 4340 3 0 0 0 0 4 0.9 1516 0
FSD 2 4352 2 2 19 9 13 5 0.4 1432 9
FSD 4 4379 3 5 44 8 13 6 0.3 1389 9
Tholds 4342 3 0 0 0 0 4 0.9 1516 0
jess.10
Off 1370 2 0 0 0 0 6 2.9 3389 0
FSD 2 1457 2 5 92 18 29 6 0.8 2532 17
FSD 4 1523 4 10 165 16 28 7 0.5 2370 21
Tholds 1372 2 0 0 0 0 6 2.9 3389
jess.100
Off 267384 13254 0 0 0 0 29 181.3 | 304567 0
FSD 2 27035 3 77 3425 44 53 9 2.9 4243 17
FSD 4 33126 57 | 233 9555 40 48 11 1.1 3207 21
Tholds 24658 8 4 449 112 119 12 40.5 25120 17
igl
Off 28340 721 0 0 0 0 17 82.5 48304 0
FSD 2 15043 4 148 1036 7 14 5 0.7 1489 9
FSD 4 15645 4 258 1688 6 15 6 0.5 1458 9
Tholds 14364 5 1 58 58 58 12 41.5 24241 9

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time

31

Table IX. 128 MB
Alg Time 90% | GC | Total | Avg | Max | HG | Foot pf | gepf
jobe
Off 3160 13 0 0 0 0 8 10.4 6579 0
FSD 2 3549 10 6 369 61 178 11 3.3 5021 11
FSD 4 4153 6 15 978 65 175 15 1.7 4273 12
Tholds 3158 4 0 0 0 0 8 10.4 6579 0
jolt
Off 5661 67 0 0 0 0 8 14.2 8695 0
FSD 2 5580 15 14 339 24 38 8 1.3 2602 10
FSD 4 6377 99 42 977 23 37 9 0.6 1889 12
Tholds 5484 45 0 0 0 0 8 14.2 8701 0
mpegaudio.1
Off 14494 4 0 0 0 0 3 0.4 2095 0
FSD 2 14524 5 1 8 8 8 4 0.3 2097 18
FSD 4 14557 5 3 23 7 11 4 0.2 2093 21
Tholds 14497 3 0 0 0 0 3 0.4 2095 0
mpegaudio.100
Off 131142 19 0 0 0 0 3 0.3 2048 0
FSD 2 131306 24 1 8 8 9 3 0.2 2055 18
FSD 4 131439 35 2 14 7 10 3 0.2 2055 21
Tholds 131147 21 0 0 0 0 3 0.3 2049 0
mtrt.10
Off 3497 3 0 0 0 0 8 13.2 8839 0
FSD 2 3861 3 7 377 53 189 11 3.9 6822 19
FSD 4 4536 11 18 1040 57 202 16 2.3 5710 22
Tholds 3500 3 0 0 0 0 8 13.2 8839 0
mtrt.100
Off 50485 1542 0 0 0 0 19 103.9 | 61691 0
FSD 2 37472 24 16 2138 131 213 12 10.2 9667 19
FSD 4 43657 134 55 8146 146 203 16 3.8 5816 22
Tholds 36019 15 2 454 227 254 12 37.8 | 25108 18
netrexx
Off 5430 14 0 0 0 0 12 45.3 | 26132 0
FSD 2 5996 25 18 939 49 80 10 4.4 6012 12
FSD 4 6704 19 35 1658 47 66 14 2.4 4577 15
Tholds 5592 15 1 193 193 193 12 40.9 | 24902 11
toba
Off 1983 26 0 0 0 0 8 13.2 8111 0
FSD 2 2144 19 15 254 16 23 7 1.1 2091 10
FSD 4 2573 27 39 630 16 22 7 0.6 1590 10
Tholds 1959 25 0 0 0 0 8 13.2 8111 0

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 . Tim Brecht et al.

REFERENCES

ALoNsO, R. AND APPEL, A. W. 1990. Advisor for flexible working sets. In Proceedings of the 1990
ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems. Boulder,
May 22-25. ACM Press, 153-162.

ANDREASSON, E., HOFFMANN, F., AND LINDHOLM, O. 2002. Memory management through machine
learning: To collect or not to collect? In Useniz Java Virtual Machine Research and Technology
Symposium (JVM ’02). San Francisco, CA.

APPEL, A. 2003. Personal communication.

APPEL, A. W. 1989. Simple generational garbage collection and fast allocation. Software Practice
and Experience 19, 2, 171-183.

AtTaNnasio, C. R., Bacon, D. F., CoccHr, A., AND SMITH, S. 2001. A comparative evaluation of
parallel garbage collectors. In Fourteenth Annual Workshop on Languages and Compilers for
Parallel Computing. Lecture Notes in Computer Science. Springer-Verlag, Cumberland Falls,
KT.

AzatcHi, H., LEvaNoNI, Y., Paz, H., AND PETRANK, E. 2003. An on-the-fly mark and sweep
garbage collector based on sliding view. In OOPSLA’03 ACM Conference on Object-Oriented
Systems, Languages and Applications. ACM SIGPLAN Notices. ACM Press, Anaheim, CA.

Bacon, D. F., Artanasio, C. R., LEg, H. B., RajaN, V. T., AND SMITH, S. 2001. Java without
the coffee breaks: A nonintrusive multiprocessor garbage collector. In Proceedings of SIGPLAN
2001 Conference on Programming Languages Design and Implementation. ACM SIGPLAN
Notices. ACM Press, Snowbird, Utah.

BaraBAsH, K., Ossia, Y., AND PETRANK, E. 2003. Mostly concurrent garbage collection revisited.
In OOPSLA’08 ACM Conference on Object-Oriented Systems, Languages and Applications.
ACM SIGPLAN Notices. ACM Press, Anaheim, CA.

BoenM, H.-J. 2000. Reducing garbage collector cache misses. In ISMM 2000 Proceedings of the
Second International Symposium on Memory Management, T. Hosking, Ed. ACM SIGPLAN
Notices, vol. 36(1). ACM Press, Minneapolis, MN.

BoeHM, H.-J. 2004. A garbage collector for C and C++. Hans Boehm’s Web page for his garbage
collector, http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

BoEHM, H.-J. AND WEISER, M. 1988. Garbage collection in an uncooperative environment. Soft-
ware Practice and Fxperience 18, 9, 807-820.

CuiLivBr, T. M. anD Larus, J. R. 1998. Using generational garbage collection to implement
cache-conscious data placement. In ISMM’98 Proceedings of the First International Symposium
on Memory Management, R. Jones, Ed. ACM SIGPLAN Notices, vol. 34(3). ACM Press,
Vancouver, 37-48.

COOPER, E., NETTLES, S., AND SUBRAMANIAN, I. 1992. Improving the performance of SML garbage
collection using application-specific virtual memory management. In Conference Record of the
1992 ACM Symposium on Lisp and Functional Programming. ACM Press, San Francisco, CA,
43-52.

DivpPsEY, R., ARORA, R., AND KUIPER, K. 2000. Java server performance: A case study of building
efficient, scalable JVMs. IBM Systems Journal 89, 1, 151-174.

Domani, T., KOLODNER, E., AND PETRANK, E. 2000. A generational on-the-fly garbage collector
for Java. In Proceedings of SIGPLAN 2000 Conference on Programming Languages Design
and Implementation. ACM SIGPLAN Notices. ACM Press, Vancouver.

F1TZGERALD, R. AND TARDITI, D. 2000. The case for profile-directed selection of garbage collectors.
In ISMM 2000 Proceedings of the Second International Symposium on Memory Management,
T. Hosking, Ed. ACM SIGPLAN Notices, vol. 36(1). ACM Press, Minneapolis, MN.

Geodesic Systems Inc. 2002. REMIDI. Geodesic Systems Inc. http://www.geodesic.com/-
solutions/remidi.html.

GRUNWALD, D., ZorN, B., AND HENDERSON, R. 1993. Improving the cache locality of memory
allocation. In Proceedings of SIGPLAN’93 Conference on Programming Languages Design and
Implementation. ACM SIGPLAN Notices, vol. 28(6). ACM Press, Albuquerque, NM, 177-186.

JONES, R. E. AND Lins, R. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. Wiley.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Controlling Garbage Collection and Heap Growth to Reduce Execution Time . 33

KM, T., CHANG, N., AND SHIN, H. 2000. Bounding worst case garbage collection time for embed-
ded real-time systems. In Proceedings of the Sizth IEEE Real Time Technology and Applications
Symposium (RTAS 2000).

Moon, D. A. 1984. Garbage collection in a large LISP system. In Conference Record of the 1984
ACM Symposium on Lisp and Functional Programming, G. L. Steele, Ed. ACM Press, Austin,
TX, 235-245.

Oss1a, Y., BEN-YITZHAK, O., GOFT, 1., KOLODNER, E. K., LEIKEHMAN, V., AND OWSHANKO, A.
2002. A parallel, incremental and concurrent GC for servers. In Proceedings of SIGPLAN 2002
Conference on Programming Languages Design and Implementation. ACM SIGPLAN Notices.
ACM Press, Berlin, 129-140.

PrINTEZIS, T. 2001. Hot-swapping between a mark & sweep and a mark & compact garbage
collector in a generational environment. In Proceedings of the Java Virtual Machine Research
and Technology Symposium. USENIX.

SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. 2000. On the effectiveness of GC in Java. In
ISMM 2000 Proceedings of the Second International Symposium on Memory Management,
T. Hosking, Ed. ACM SIGPLAN Notices, vol. 36(1). ACM Press, Minneapolis, MN.

SHUF, Y., SERRANO, M., GUPTA, M., AND SINGH, J. P. 2001. Characterizing the memory behavior
of Java workloads: A structured view and opportunities for optimizations. In SIGMETRICS’01.

SUN MICROSYSTEMS. 2005. Tuning garbage collection with the 5.0 Java virtual machine.
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html.

SMITH, F. AND MORRISETT, G. 1998. Comparing mostly-copying and mark-sweep conservative
collection. In ISMM’98 Proceedings of the First International Symposium on Memory Man-
agement, R. Jones, Ed. ACM SIGPLAN Notices, vol. 34(3). ACM Press, Vancouver, 68—78.

UNGAR, D. M. AND JACKSON, F. 1988. Tenuring policies for generation-based storage reclamation.
ACM SIGPLAN Notices 23, 11, 1-17.

UNGAR, D. M. AND JACKSON, F. 1992. An adaptive tenuring policy for generation scavengers.
ACM Transactions on Programming Languages and Systems 14, 1, 1-27.

WILsoN, P. R. 1994. Uniprocessor garbage collection techniques. Tech. rep., University of Texas.
Jan.

WiLson, P. R., JOHNSTONE, M. S., NEELY, M., AND BOLEs, D. 1995. Dynamic storage allocation: A
survey and critical review. In Proceedings of International Workshop on Memory Management,
H. Baker, Ed. Lecture Notes in Computer Science, vol. 986. Springer-Verlag, Kinross, Scotland.

WiLson, P. R., Lam, M. S., AND MoHER, T. G. 1991. Effective static-graph reorganization to
improve locality in garbage collected systems. ACM SIGPLAN Notices 26, 6, 177-191.

WiLson, P. R., Lam, M. S., AND MoHER, T. G. 1992. Caching considerations for generational
garbage collection. In Conference Record of the 1992 ACM Symposium on Lisp and Functional
Programming. ACM Press, San Francisco, CA, 32-42.

ZORN, B. 1990. Comparing mark-and-sweep and stop-and-copy garbage collection. In Conference
Record of the 1990 ACM Symposium on Lisp and Functional Programming. ACM Press, Nice,
France.

ZORN, B. 1991. The effect of garbage collection on cache performance. Tech. Rep. CU-CS-528-91,
University of Colorado at Boulder. May.

ZORN, B. 1993. The measured cost of conservative garbage collection. Software Practice and
FEzxperience 23, 733-756.

Received June 2002, revised May 2004, accepted March 2005.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

