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ABSTRACT

Past work has shown that disk prefetching can be an effec-
tive technique for improving the performance of disk bound
workloads. However, the performance gains are highly de-
pendent on selecting a prefetch size that is appropriate for a
specific system and workload. Using a prefetch size that is
too small can lead to poor overall disk throughput, whereas
prefetch sizes that are too large can lead to data being
evicted before it can be used by a subsequent request.

This paper looks at disk prefetch sizing for HTTP video
streaming servers, such as those used by Apple, Adobe, Net-
flix, YouTube and Microsoft. We evaluate various represen-
tative streaming video workloads and show that the prefetch
size that produces the best throughput can vary from 2 MB
to 12 MB, and can depend on workload and system charac-
teristics such as video bitrate, hard drive specifications, and
memory capacity. A good choice of prefetch size can result
in substantial performance gains, for example up to 3 times
higher throughput than when using a prefetch size that is
too large. We also find that application-level prefetching us-
ing the best prefetch size can provide up to 4 times higher
throughput. In order to take full advantage of disk prefetch-
ing without extensive workload specific experimentation, we
introduce an adaptive algorithm that dynamically selects
an appropriate prefetch size. Most importantly, our results
show our adaptive algorithm selects prefetch sizes that pro-
vide performance rivaling the best sizes determined through
manual tuning, which requires extensive testing over differ-
ent possible sizes.

Categories and Subject Descriptors

H.3.5 [INFORMATION STORAGE AND RE-
TRIEVAL]: Online Information Services— Web-based ser-
vices; D.4.3 [OPERATING SYSTEMS]: File Sys-
tems Management—Access methods; D.4.8 OPERATING
SYSTEMS]: Performance—Measurements
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1. INTRODUCTION

The popularity of HT'TP streaming video is rapidly in-
creasing. Netflix currently accounts for 33% of peak fixed-
line US traffic, YouTube represents 31% of mobile peak
North American traffic, and the proportion of video traf-
fic on the Internet in the United States is projected to rise
to 68% by the end of 2018 [29]. Video workloads cannot typ-
ically fit in memory due to the large average size of video
files and the tendency for video collections to have long tail
popularity distributions. Furthermore, because of the vast
number of videos in these video collections, it is currently not
economically viable for all videos to be stored on SSDs. As a
result, the majority of requests arriving at HT'TP streaming
video servers must be serviced from disk.

Although HTTP streaming video is largely sequential, and
hard drives provide their highest throughput with sequen-
tial workloads, in previous work we found that the operating
system alone may not provide sufficiently efficient disk ac-
cess to service the volume of requests seen by video web
servers [32, 33]. In those papers the application serializes
disk requests and aggressively prefetches data using 2 MB
reads. This is done above and beyond whatever the oper-
ating system is doing to improve system throughput (e.g.,
prefetching and/or read ahead). In this paper we examine
two important questions: what is a good prefetch size for
these workloads and what factors affect that choice.

As expected, our experiments show that prefetching too
little or too much can cause dramatic decreases in through-
put. For example, we find that appropriately-sized prefetch-
ing can perform up to three times better than overly aggres-
sive prefetching. However, choosing this “appropriate” size
typically requires considerable knowledge of system config-
urations and workload characteristics and a large amount
of experimentation. Furthermore, this analysis must be re-
peated any time one of the relevant factors changes.

To simplify the task of providing high performance for
HTTP video streaming, we propose the use of an automated
algorithm for determining the prefetch size. We present one
such algorithm that monitors and uses system measurements



related to memory and disk usage and periodically adjusts
the prefetch size used by the application. The goal is to
improve the overall web server throughput, which increases
the number of clients that can be serviced simultaneously.
The contributions of this paper are:

e We examine the impact of various factors on the best
prefetch size: Amount of system memory, video popu-
larity distribution, video bitrates, and hard drive char-
acteristics.

e We demonstrate the impact that prefetch size has on
HTTP streaming video workloads. The best prefetch
size provides up to 4 times higher throughput than
without application-level prefetching, and up to 3
times higher throughput than a prefetch size that is
too large.

e We introduce a novel analysis that shows that a
prefetch size proportional to the square root of the bi-
trate of each video minimizes the number of disk seeks.

e We develop an algorithm that automatically deter-
mines a prefetch size conducive to high throughput
based on the collection and analysis of system and ap-
plication performance statistics. Our design is vali-
dated through a full implementation on a testbed sys-
tem and experiments with representative streaming
video workloads. Our results show that the server
throughput obtained using the automated algorithm
compares favourably with the best manual tuning.

Our study is conducted by modifying the application
rather than the operating system for a number of reasons:
(1) It is easier to modify, test and debug an application
than the operating system. (2) It is easier to obtain useful
application level information directly from the application
rather than attempt to infer it in the operating system. (3)
Changes made in the application are portable to other op-
erating systems. We treat the operating system as a gray
box and use techniques that augment what the operating
system does with respect to prefetching and/or read ahead.
(4) Once we better understand how to effectively prefetch
HTTP streaming video workloads we can see if the tech-
niques generalize to other applications and workloads and
to then implement them in the operating system.

2. BACKGROUND AND RELATED WORK

Because video files are usually large and the popularity
distribution of the videos is often such that there is a long
tail of infrequently accessed content, HT'TP streaming video
server workloads are commonly disk-bound [17]. There are
two techniques for using system memory to improve per-
formance for disk-bound applications, both of which take
advantage of the locality of reference in workloads. Caching
attempts to take advantage of the temporal locality of data
accesses. Prefetching attempts to take advantage of spatial
locality by reading data into memory before an application
needs to access it. When prefetch sizes are too small or
too large, however, prefetching can have a negligible or even
negative effect on throughput.

Caching can provide some benefits for a streaming video
workload, as measurement studies show that video popular-
ity has a Zipf-like distribution, where some videos are highly
popular and caching these videos can significantly reduce
demand on the disk [4, 13]. However, the effectiveness of

caching is limited because most videos are seldom watched;
studies report that over the course of a day or week, 70-80%
of videos are watched only a single time [13, 37].

Prefetching, the act of reading beyond data that is re-
quested by a user and storing it in memory for future access,
is a technique for translating the access patterns of applica-
tions into a form that is more efficient for the hard drive to
service. Prefetching can improve both disk and application
performance in a variety of ways [30], three of which are rel-
evant to improving throughput: minimizing CPU stalls by
avoiding file system cache misses, reducing the length of disk
seeks by scheduling in batches, and improving throughput
by reducing the number of seeks made by the disk.

2.1 Minimizing CPU Stalls

Most of the early work on prefetching was designed to
reduce application stalls due to disk access [6, 28, 18, 7].
Much of this work concentrates on reducing a single appli-
cation’s execution time by trying to predict what data will
be requested and copying that data from disk into memory
before it is accessed by the application. This work is not
directly applicable to the problem we are trying to solve,
as web servers are designed to cope with CPU stalls, typ-
ically by using threads [35], events [24], or a combination
of the two [36, 26]. Additionally, HTTP streaming video
clients employ large buffers to compensate for network de-
lays that are much longer than disk I/O delays. In fact, as
we will show, it is occasionally better for HT'TP streaming
video servers to accept increases in file system cache misses
in exchange for higher useful disk throughput.

2.2 Reducing the Length of Disk Seeks

Another area of past research has concentrated on reorder-
ing sequences of disk requests to improve the efficiency with
which the disk is used [34, 9, 25]. Through a combination of
libraries and kernel changes, these studies focus on issuing
fewer, larger requests, or requests that can take advantage
of reading consecutive disk blocks. These papers show that
disk seeks, which dominate I/O time, can be reduced in both
volume and length by using intelligent request scheduling.

Similar approaches can also involve delaying disk requests.
The Linux anticipatory scheduler for instance, refrains from
switching between request streams for short periods of time
to avoid the problem of deceptive idleness [15], where the
disk head moves (seeks to a new location) away from a re-
gion before an application has a chance to issue its next
request (which should have been serviced sequentially for
better performance). Other methods issue more intelligent
requests by utilizing file layout information [22], providing
early reads through application direction [34], or using ac-
cess history to request additional, likely to be read data [9].

2.3 Maximizing Disk Throughput

The main purpose of prefetching within the context of
HTTP video streaming servers is the maximization of disk
throughput. While reducing average seek distances can in-
crease disk throughput, we believe it is more effective to
focus on eliminating seeks entirely through prefetching than
it is to reduce the cost of seeks through scheduling. Our
work in this paper considers how much data to prefetch (the
prefetch size) in order to maximize disk throughput, rec-
ognizing that this choice is constrained by the amount of
available system memory.



Early studies in servicing video streams were based on
scenarios where the server pushes data to the clients, as op-
posed to HTTP streaming video where clients are responsi-
ble for pulling content from the server. Many of these stud-
ies examined scheduling as a means of maximizing through-
put [23, 11, 31] while using minimal system memory.

This problem has also been studied for modern systems
with large amounts of memory [20, 21, 27, 25]. These stud-
ies are not directly applicable to our work, however, be-
cause they focus on different workloads. Some make the
simplifying assumption that each client requests a unique
video [20, 25], while others depend on specific changes to the
cache algorithm in the kernel. Our workload uses a Zipf pop-
ularity distribution for video files, meaning only a few of the
hottest files benefit from in-memory caching. Additionally,
we provide an application-level prefetching implementation
that does not modify the kernel.

2.4 Prefetching and Caching Interactions

There is a limited amount of memory available in a server,
and the two competing uses for it, prefetching and file sys-
tem caching, demonstrate interesting behaviours because of
this constrained nature. Butt, et al. [5] observed that there
are interactions between prefetching and caching that can
have a significant impact on the effectiveness of memory
management algorithms in the kernel.

One approach to addressing this issue is to integrate
prefetching and caching strategies in the kernel memory
management algorithms [6, 28]. In practice, however, ker-
nels do not integrate prefetching and caching, but instead
make prefetching decisions independent of the cache man-
agement algorithms. Because of this, methods for adapting
the cache algorithms to take prefetching into account were
devised [19, 16]. These techniques assume that prefetching
decisions are made in a layer above the memory manage-
ment subsystem, and adjust memory management to best
service the output of the prefetch algorithm.

We take a different approach in this paper. We use
the memory management algorithm in the kernel as-is, and
adapt an application level prefetching algorithm accordingly.
This approach has the benefits of avoiding kernel modifica-
tions and possibly exploiting information that may be more
easily obtained in the application (e.g., the video bitrate).

3. MOTIVATION

Because many HT'TP video servers contain a large amount
of content that is viewed infrequently, many of those re-
quests must be serviced from disk. Therefore, a key factor
in improving HTTP video server throughput is improving
the throughput obtained from disk reads. We now motivate
the need for using serialized aggressive prefetching and for
an algorithm that dynamically adjusts the prefetch size in
order to obtain good disk throughput while also ensuring
that as many clients as possible can be serviced at their de-
sired video bitrates. We assume that each video is stored as
a single file rather than in a series of files containing fixed
size chunks. This mimics how YouTube and NetFlix store
video files, allows for a larger range of prefetch sizes and pro-
vides servers with opportunities for higher throughput [33].
As one would expect there is a delicate balance between
prefetch sizes that are large enough to support high disk
throughput, and sizes that are too large resulting in adverse
consequences such as eviction of useful data from memory.

With this balance in mind, we also describe some of the
problems and metrics that were considered when designing
our automated algorithm.

Figure 1 shows results obtained while servicing work-
loads with requests for standard definition (SD) and high-
definition (HD) video files. The details of the experimental
methodology are given in Section 6. The individual bars
represent the throughput obtained using a vanilla web server
(labeled “V”) and using web servers that have been modified
to perform their own prefetching (labeled 2, 4, 6, 8, 10 and
12 to denote the prefetch size used in MB). The throughput
obtained from the disk (Disk Tput) and the actual through-
put observed by all clients (Actual Tput) are also shown.
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Figure 1: Throughput versus prefetch size.
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These results reveal that there is a significant performance
difference between the vanilla web server and the modified
web server using the best prefetch size, with a factor of 2.5
improvement with SD videos (prefetch size 4 MB), and a fac-
tor of 3.4 improvement with HD videos (prefetch size 8 MB).
They also show that the 2 MB prefetch size used in our pre-
vious work [32, 33] may have been significantly undersized
for HD video. Additionally, these results demonstrate that
although larger prefetch sizes do increase disk throughput,
at some point the benefits become minimal or non-existent.
Furthermore, the increase in disk throughput does not nec-
essarily translate into improved client throughput (Actual
Tput). As prefetch sizes grow too large, memory pressure
results in reduced server throughput. As the figure illus-
trates, however, what is too large for one workload and sys-
tem configuration (e.g., 8 MB for SD videos in this figure),
may be the best prefetch size for another, motivating the
need for an automated tuning algorithm.

Considering the possible consequences of prefetch sizes
that are too big allows one to obtain insight into the types of
information that would be useful for an automated prefetch-
ing algorithm. Cache evictions occur when prefetched data
evicts data from memory that was retrieved for a previous
client request, before it can be sent in response to a new
client request for the same video. This results in a re-read
of the data from disk that would have otherwise been un-
necessary. Prefetched data can also be evicted from memory
before it is requested by a client. This phenomena, which we
refer to as a prefetch eviction, results in the same data be-
ing prefetched more than once (our current implementation
only initiates prefetches for on demand requests that can
not be serviced from the file system cache). Data that is
prefetched but never requested can be considered a wasted
prefetch. This may occur if users stop watching a video
before the end is reached and the system prefetches data
beyond the point at which the user stops watching.



As seen in Figure 1, for SD videos prefetch sizes larger
than 4 MB reduce total server throughput. Table 1 presents
some statistics, gathered during the execution of the SD
video experiments, using columns with the following mean-
ings: Size: prefetch size; Disk/Requested: ratio of the total
bytes read from disk versus the total bytes requested (values
less than one indicate cache hits and values greater than one
indicate that re-reads were required); Cached/Requested: ra-
tio of bytes read from the file system cache versus bytes re-
quested?!; Evicted/Requested: ratio of bytes evicted versus
bytes requested; Wasted/Requested: ratio of bytes wasted
versus bytes requested. The amount of wasted prefetch bytes
may be slightly inaccurate when the same file is requested
by more than one viewer, as it is difficult in this case to
determine if it was truly a wasted prefetch.

Size Disk Cached Evicted Wasted
(MB) | Requested | Requested | Requested | Requested
\Y% 0.85 0.15 0.00 0.00
2 0.90 0.14 0.00 0.03
4 1.10 0.08 0.10 0.08
6 1.62 0.02 0.52 0.12
8 2.04 -0.02 0.86 0.16
10 2.36 -0.06 1.12 0.18
12 2.63 -0.09 1.34 0.20

Table 1: Extra data read due to prefetching.

As seen in Table 1, once prefetch sizes are too large (in
this case greater than 4 MB) the system does a lot of “ex-
tra work” to service requests. Significantly more data must
be read than is being requested because it must either be
re-read due to file cache or prefetch evictions or because
although a viewer stops watching a video the system has al-
ready prefetched data beyond the point at which the viewer
stopped. Although, cache evictions, prefetch evictions, and
wasted prefetches serve as the limiting factors to the perfor-
mance of increasingly aggressive prefetching, in this exper-
iment the prefetch evictions (Evicted/Requested) cause the
most harm. For example, with a prefetch size of 6 MB the
total number of bytes that have been prefetched and evicted
(and therefore need to be re-read from disk) is greater than
half of the total number of bytes requested. As a result, our
automated algorithm tries to avoid excessive prefetch evic-
tions and the results shown in our evaluations in Section 7
include information about prefetch eviction rates.

4. AUTOMATIC PREFETCH SIZING

Our automated algorithm relies on an underlying
prefetcher that performs serialized aggressive prefetching, in
which the prefetcher reads more data than was requested,
and requests are serviced one at a time by a separate thread.
Prefetches for all files of the same bitrate (the handling of
different bitrates is described in Section 5) are done using
the same prefetch size p except at the end of a file, where
only the remainder of the file is read. The role of the auto-
mated sizing algorithm is to monitor the state of the server

!Unfortunately file cache hit information is not available
from the OS so we calculate an approximation using the
number of requested bytes minus the bytes read from disk
and the number of evicted and wasted bytes. Some values
are negative because of the inaccuracies in wasted prefetches.

and use this feedback to periodically adjust p to improve the
throughput of the system.

In the remainder of this section, we describe the algorithm
we use to adapt the prefetch size, discuss the need to adjust
prefetch sizes slowly, and demonstrate the operation of the
automated algorithm using two example experiments.

4.1 Algorithm for Adjusting Prefetch Size

While the web server is running, we continually calculate a
score S, which represents the amount of work done, and use
a gradient descent algorithm to find the prefetch size that
minimizes S. Past work suggests using file cache misses to
represent the effort required by the server [6, 12, 3]. How-
ever, our objective is to maximize throughput to the client,
which involves both file cache misses and disk transfer times.
Minimizing cache misses irrespective of disk transfer times
can result in poor overall throughput. Therefore, we define
our score as the product of both the time to read from disk
and the file cache miss ratio.

Figure 2 illustrates the trade-off between cache misses
and disk throughput for different choices of prefetch size,
with a prefetch size of “0” representing the results of us-
ing the vanilla version of the web server (i.e., without
application-level prefetching) and relying on the operating
system (FreeBSD) mechanisms for obtaining good through-
put. The left y-axis is used to show the number of millisec-
onds per transaction (mspt), which measures the time to
read from disk, and the right y-axis is used to show the file
cache miss ratio, which measures the ratio of data read from
disk (note that ratios greater than 1 are possible when data
must be read into memory multiple times due to evictions).
From this figure we can see that for some prefetch sizes, ac-
cepting a small increase in the cache miss ratio can greatly
reduce the disk transfer time, and therefore improve overall
throughput to the clients.
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Figure 2: Transaction times versus prefetch size.

Our automated algorithm starts with an initial prefetch
size and continually measures and tries to minimize the score
while the server is running. At regular intervals, the algo-
rithm compares the score at the current prefetch size (p) to
the scores that were previously measured for the next larger
(p1) and smaller (ps) prefetch sizes. If either p; or ps has a
lower score than p, the prefetch size is adjusted towards that
size. If the score has not yet been measured for p; and the
measured score for ps is higher than the score for p, we try
the unmeasured prefetch size, p; (and vice versa if ps has not
been measured). If neither p; nor ps have been measured we
try p;. As will be discussed in Section 4.2, the prefetch size
must be changed gradually. Therefore, we slowly change p



until it is equal to the desired prefetch size.

One of the limitations of gradient descent methods is that
they are prone to finding local minima if random fluctua-
tions in the workload cause the score to be unusually large.
To solve this issue, we deflate the past scores when the al-
gorithm reaches a minimum. The gradual deflation of past
scores will eventually cause the algorithm to retry a previ-
ously rejected prefetch size and recompute the gradient using
the newly measured score. If the algorithm was at a local
minimum, the new gradient will be lower, and the algorithm
will continue to descend towards the global minimum.

While the gradient descent method is suitable under most
conditions, it is not effective when the system is under ei-
ther very light or heavy memory pressure. In the case that
the server is under light memory pressure, increasing the
prefetch size will improve the disk transfer time, but it may
not cause a corresponding decrease in the cache miss ratio.
The result is an oversized p that will cause the server to
perform very poorly when the load increases. Therefore, we
turn off the automated algorithm when the load is deemed
too light. Notice that there is no harm in turning off the au-
tomated algorithm because the server is under loaded and
is therefore able to successfully service all of its clients.

The opposite extreme is when the server is under heavy
memory pressure. In this scenario, the gradient descent
method is incapable of changing the prefetch size quickly
enough to avoid client timeouts. We handle this situation
by quickly changing the prefetch size to a new value calcu-
lated using the prefetch eviction time (the average amount
of time that prefetched data is resident in memory before it
is evicted). By knowing the client request rate, we can calcu-
late the time t before the prefetched data will be accessed.
Therefore, if ¢ is greater than the prefetch eviction time,
then the prefetched data must be re-read from disk when
the client makes its request. By reducing the prefetch size,
we reduce memory pressure, which in turn increases prefetch
eviction time, thereby avoid re-reading the data from disk.

This algorithm is controlled with the following parame-
ters (actual values used while conducting our experimental
evaluation are provided in Section 7):

start_size This is the initial prefetch size used when start-
ing the server. In a production system, we would set
this value to the size in use at the time the server was
last stopped or shut down.

adjust_interval The score and other system performance
information is collected over this interval, then used
to adjust the prefetch size. This interval must be suf-
ficiently long to average out short-term variations in
demand, but short enough that the algorithm will con-
verge on the best prefetch size before the server is over-
loaded.

step_size This is the amount by which the prefetch size is
increased or decreased.

score_deflation_factor This is a deflation factor used to
reduce the value of the scores stored by the algorithm
when it reaches a local minimum.

adjust_busy This sets a minimum threshold for when to
apply the adaptation algorithm in terms of how busy
the prefetcher is. This threshold is used to avoid ad-
justing the prefetch size when the server is under a
light load.

adjust_evict This threshold specifies the amount of
prefetch evictions that are necessary before we use the
prefetch eviction time to set the prefetch size.

4.2 Slowly Adjusting Prefetch Size

There is a practical limitation when using an automated
algorithm for prefetch sizing; changing the prefetch size can
result in server overload if not handled properly. The prob-
lem arises when there are large numbers of videos with the
same bitrate, as is the case for our workloads. To keep up
with each client, the server prefetches data at the client video
bitrate. Therefore, the interval between prefetches is equal
to the prefetch size divided by the video bitrate. We use the
same prefetch size for all clients, so data for all clients must
be prefetched within the prefetch interval.

This can be a problem when we increase the prefetch size.
For example, assume we are currently using a prefetch size
that results in a 60 second interval and we increase the
prefetch size and the result is a 80 second interval. Every
client will require a prefetch within 60 seconds after chang-
ing to the new size (prefetches are issued on demand). How-
ever, a larger amount of data will be prefetched for each
client. If the system was close to overload when prefetch-
ing the smaller amount, it will likely overload while issuing
larger prefetches over the same interval. However, once the
larger amount of data has been prefetched for each client;
subsequent client requests will be spread over an 80 second
interval and will not overload the server.

A similar problem occurs when the prefetch size is re-
duced. Suppose clients are prefetching in a 60 second in-
terval and the prefetch size is decreased, resulting in a 40
second interval. For the first 40 seconds after the change,
we will prefetch data using the smaller prefetch size, then
between 40 and 60 seconds we will prefetch data for both
the remaining clients that are prefetched in the 60 second
interval as well as the clients who have converted to the new
size. This period of doubling of prefetches can also cause
the server to overload.

The solution to both of these problems is to change
the prefetch size gradually, which corresponds to a gradual
change in the interval between prefetches. Slowly adapting
the prefetch size over time limits the additional demand on
the disk for the first requests after the prefetch size changes
(in particular when it increases). Furthermore, a gradual
change in prefetch interval ensures that prefetches using the
new size do not concentrate in the same manner as they
would if the prefetch interval changed rapidly.

By adapting slowly, the automated algorithm avoids
server overload conditions that could otherwise occur. De-
spite the fact that it changes gradually, however, it remains
effective at converging towards effective prefetch rates, as
will be seen in Section 7.

4.3 Prefetch Algorithm in Action

We present the results of two different experiments to
demonstrate the operation of the automated algorithm and
to motivate some of its features. These experiments show
that the algorithm can adapt regardless of whether the start-
ing prefetch size is higher or lower than the best size. They
also show the utility of the score deflation feature and of
using the prefetch time to set the prefetch size.

Figure 3 shows the operation of the algorithm during the
execution of an experiment using HD video files. The figure



shows the throughput of data delivered to the client, the
value of the score, and the prefetch sizes chosen by the algo-
rithm over time. The throughput is plotted using the right
y-axis, while both the value of the score and the prefetch
size are plotted using the left y-axis (which, for clarity, has
only a single axis labelling, for prefetch size). The request
rate builds over the experiment, starting at 80% of the max-
imum load and increasing in 5% steps over 2700 seconds. It
then remains at the maximum load for 1200 seconds.
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Figure 3: Dynamic prefetch size adjustments using
HD videos.

The algorithm starts with a prefetch size of 4 MB, which
is smaller than the best prefetch size for this workload. The
prefetch size remains at 4 MB until the system experiences
enough load, which begins to occur at around the 500 second
mark. The algorithm increases the prefetch size in response
to lower scores until the algorithm reaches a local minimum
at about 1000 seconds. The stored scores are gradually de-
flated until the algorithm retries the higher prefetch size and
measures a lower score. The algorithm continues to increase
the prefetch size until it reaches 7.5 MB.

Figure 4 shows an example of an experiment where
prefetch evictions are used to more quickly adjust the
prefetch size. This experiment uses SD video files and starts
with a prefetch size of 8 MB, a size that worked well with the
HD videos in the previous experiment, but is too large for
this workload. The y-axis on the right is used to show work-
load throughput in MB/s as well as the average prefetch
eviction times in seconds. After about 500 seconds have
elapsed with the increasing workload, the large prefetches
begin to cause prefetch evictions. The algorithm uses the
average prefetch eviction time of about 60 seconds and the
average bitrate of 0.05 MB/s to calculate a new prefetch size
estimate of 3 MB. After the prefetch size reaches 3 MB, the
prefetch size is close to the best value, and the gradient de-
scent algorithm reacts to the rise in workload throughput as
the experiment continues.

These experiments demonstrate that the algorithm is able
to converge to a good prefetch size even if it starts at a
prefetch size significantly higher or lower than the well-
performing alternative. They also demonstrate the ability
of the algorithm to adapt well with different workloads.

5. MIXED BITRATES

For most, but not all, experiments in this paper we con-
sider environments in which only standard definition (SD)
bitrate videos are being requested. This is because YouTube
workload characterization studies found that although dif-
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Figure 4: Dynamic prefetch size adjustments using
SD videos.

ferent bitrates were available, the large majority of requests
were for SD videos [13, 10] and because to our knowledge
there do not exist workload characterization studies that
can be used to construct representative benchmarks that in-
clude mixed bitrates. We do examine the impact of larger
files by conducting some experiments with requests for only
HD videos.

However, as shown in Figure 1, the bitrate of videos can af-
fect the choice of prefetch size. Additionally, for some work-
loads, different clients request videos of different bitrates, so
an interesting question is what prefetch size should be used
for each bitrate. Some researchers have proposed methods
for handling mixed-rate workloads [12, 28], but these meth-
ods require feedback from customized kernel memory man-
agement algorithms, so they cannot be implemented in the
web server.

We present a novel analysis for computing the prefetch
size to use for each bitrate by minimizing the number of disk
seeks. Minimizing the number of seeks allows more time for
reading data, thereby increasing throughput. The number of
seeks is not the only factor that affects disk throughput, but
this simplified analysis is effective at improving throughput.

Let b; be the bitrate of video i, and p; denote the prefetch
size used for that video. Let V' be the average time a client
spends viewing a video, which is assumed to be independent
of bitrate. The average number of seeks required to read
the video is then Vb;/p;. There is a limit to the amount of
memory that can be used for prefetching, which is a fraction
f of the total amount of system memory M. So the problem
of determining the prefetch size for a collection of videos with
different bitrates can be expressed as:

R Vb, .
minimize E — subject to E pi=fM
. P i

where the sum is taken over the videos concurrently stream-
ing from disk. This equation can be solved using the method
of Lagrange multipliers:

minimize A(pi, A) = Z

i

Vb

i

e A(Zm — M)

The partial derivatives of this function are zero when:

. Vb; Vb;
Vi, pT =Alorp;, = \

i

From this analysis, we can conclude that the number of
seeks is minimized when the prefetch sizes are proportional
to the square root of the video bitrates. To implement a dif-




ferent prefetch size for each bitrate, we specify the prefetch
size for the highest bitrate video and proportionally scale
down the prefetch size for lower bitrate videos.

This analysis is at odds with the work by Gill and Ba-
then [12], who show that the optimal prefetch size is pro-
portional to the bitrate, rather than the square root. The
goal of their analysis is essentially to optimize the cache hit
rate, whereas our goal is to minimize the number of seeks.
In Section 7.4 we examine workloads with different bitrates
and conduct experiments to compare these two alternatives,
as well as other possibilities. In all of our experiments the
same prefetch size is used for all videos of the same bitrate.

6. EXPERIMENTAL METHODOLOGY

6.1 Server and Client Configurations

The equipment and environment we use to conduct our
experiments were selected to ensure that network and pro-
cessor resources are not a limiting factor in the experiments.
The server machine is an HP DL380 G5s containing two
four-core Intel E5400 2.8 GHz processors and 32 GB of
RAM. We configure the kernel to enable different amounts
of physical RAM. Experiments use 4 GB of RAM unless
otherwise specified. The main disk drive used for the ex-
periments is a 1.0 TB Western Digital Red drive (model
WDI10EFRX). We also use a 1.0 TB Seagate drive for com-
parison (model ST 1000DMO003). The operating system uses
a separate disk from that for the video data. Bugs in the
Linux implementation of sendfile [14] led to our use of
FreeBSD 9.1-RELEASE on the server.

We use a modified userver web server, which implements
prefetching at the application layer. This is accomplished
using FreeBSD’s sendfile flag SF_NODISKIO, which causes
sendfile to return EBUSY if the data needs to be read from
disk. When sendfile returns EBUSY we forward a prefetch
request to a single worker thread and allow the main process-
ing loop to continue with other requests. The worker thread
simply issues a read system call to read data from disk into
a single buffer using the specified prefetch size. This has the
side effect of placing the prefetched data in the file system
cache. After the helper thread completes the prefetch, it
notifies the main processing loop which retries the sendfile
call. At this point, it fills the socket buffer with data from
the file cache and sends the data. We refer to this server ar-
chitecture as asynchronous, serialized, aggressive prefetching
(ASAP). Serializing requests to the disk is critical for obtain-
ing high disk throughput by avoiding additional seeks due to
request decomposition and interleaving that can otherwise
occur with large, concurrent reads. Prefetching at the appli-
cation level allows us to monitor data that is evicted before
it is used (prefetch eviction), the time between prefetching
and eviction (eviction time), and data that is prefetched
but never requested (wasted prefetches). These and other
metrics are used in our automated prefetching algorithm,
described in Section 4.

We use 10 machines to generate client requests. All clients
are connected to the server via multiple 1 Gbps network
links through multiple 24-port switches to ensure that the
network is not a bottleneck. Each system contains either
dual 2.4 or dual 2.8 GHz Xeon processors and 3 GB of
memory. The dual processors and memory are required to
support the workload generator (httperf) and to emulate
different types of networks used to access video servers using

dummynet. Using dummynet is critical to obtaining practical
results [32]. Each instance of httperf can potentially gen-
erate hundreds of concurrent sessions requesting streams of
individual videos.

6.2 Workload

The workloads and benchmarks used in this paper are
based on methodologies developed previously [32] to rep-
resent YouTube video and client characteristics that were
measured in 2011 [10]. Videos have a Zipf popularity distri-
bution with an alpha value of 0.8 being used for all experi-
ments except where otherwise noted.

Client sessions consist of a series of requests for consecu-
tive 10 second segments of a video. The initial three requests
are issued in succession, with each request issued immedi-
ately after the previous reply has been completely received
(to simulate a play out buffer), while subsequent requests
are issued at 10 second intervals. We chose a 10 second seg-
ment duration because it is the value used by Apple’s HTTP
Live Streaming implementation, and it is longer than the
2 second segments used by Microsoft’s Smooth Streaming
implementation [2]. For our experiments we consider fixed
encoding bit rates of 419 Kbps (a common bit rate observed
for YouTube), and 2095 Kbps (sufficient to support higher
definition video). We call these SD and HD videos, respec-
tively. For these bitrates, ten seconds of video is equal to
0.5 MB and 2.5 MB of data, respectively. Video data is
stored consecutively in one file per video and clients issue
HTTP range requests for the portion of the video that will
be viewed next. As we have shown in previous work [33],
storing videos in a single file rather than dividing the video
into chunks and storing them in separate files is essential for
providing opportunities for high server throughput.

Each disk contains 20,000 SD files and 8,000 HD files,
evenly distributed over the entire disk. The average length
of a video is 267 seconds. Therefore, SD and HD files have
an average size of 13 MB and 66 MB, respectively. The aver-
age duration spent watching a video is 162 seconds. For the
SD experiments, the clients request 92 GB worth of data in
12,000 viewing sessions with the number of concurrent ses-
sions peaking at 650. 69% of videos are only requested once
and the average number of views per video is 2.1. For the
HD experiments, the clients request 148 GB worth of data in
4,000 sessions with a peak of 250 concurrent sessions. 72%
of videos are requested only once, and the average number
of views per video is 1.9.

The primary quality criterion for video clients is the re-
buffering rate of videos. We use a simple timeout as a proxy
for rebuffering: httperf ends a connection and counts it as
a failure whenever the response time exceeds 10 seconds (the
time required to refill a client’s buffer before it is drained).
For each experiment, we determine the highest request rate
that can be serviced without any client timeouts (failures).
This is the maximum failure-free rate.

7. EXPERIMENTAL EVALUATION

In the following sections, we present results from a suite of
experiments that test the effectiveness of the automated al-
gorithm. For each experiment, we determined the maximum
failure-free throughput the userver could achieve for a range
of fixed prefetch sizes (representing a manual tuning), and
compare those results to the automated algorithm, as well as
the vanilla web server (labeled “V”). In all cases, we present



the throughput of the userver (Actual Tput), the hard disk
(Disk Tput), and prefetch evictions (Evictions Tput).

For the automated algorithm, in addition to the parame-
ters shown in Table 2, we also choose a starting prefetch size,
which we determined based on work done by Li et al. [20].
Their analysis shows that the prefetch size should be set
so that the time required to transfer the data from disk is
equal to the average seek time. Based on that analysis we
experimentally determined that the WD Red drive should
use a starting prefetch size of 3 and 4 MB for the SD and
HD workloads, respectively. Similarly, for the Seagate drive,
we use a starting prefetch size of 2 and 3 MB for the SD
and HD workloads, respectively. While other starting sizes
are possible, these were chosen using previously established
best practices and because good estimates for the starting
size help to control the duration of experiments (recall that
adjustments in prefetch sizes must be done gradually over
time). Note that in many cases these starting sizes are not
good choices and that despite having to slowly make prefetch
size adjustments, our algorithm does converge on sizes that
are appropriate for the system and workload.

Parameter Value
adjust_interval 180 seconds
step_size 0.5 MB
score_deflation_factor 5%
adjust_busy 60%
adjust_evict 5%

Table 2: Automated Algorithm Parameters.

7.1 Effect of System Memory

We performed experiments with three different amounts
of system memory by changing the hw.physmem kernel pa-
rameter for 2 GB, 4 GB and 8 GB of physical memory. The
SD workload, as shown in Figure 5, is quite sensitive to the
amount of system memory. Disk throughput increases with
prefetch size regardless of the amount of system memory,
but if there is too little system memory available to store
the prefetched data, the extra disk throughput results in
evictions rather than actual throughput. The throughput
when using the automated algorithm (labeled “A”) is within
5% of the throughput when using the best fixed prefetch size,
demonstrating that the performance with the automated al-
gorithm is comparable to that of hand tuning.
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Figure 5: Comparing prefetching techniques for SD
video while varying system memory.
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These results also provide insight into reasons why in-
creasing system memory improves throughput. For example,
with a 2 MB prefetch size, increasing system memory from

2 GB to 8 GB increases the amount of memory available for
caching, and results in a 54% increase in throughput. Fur-
thermore, throughput increases by an additional 35%, when
we increase the prefetch size from 2 MB to 4 MB.

We repeated the experiments using an HD video workload
and obtained the results shown in Figure 6. Compared to the
SD video workload, the eviction throughput is lower for all
system memory configurations when using the same prefetch
size. This is because the bitrate of HD video is 5 times
higher than SD video, so only 1/5 as many HD clients can
be serviced for a given throughput. Less system memory is
required to store prefetched data for the fewer (HD) clients,
because the amount of memory needed to store prefetched
data is equal to the number of concurrent clients multiplied
by the prefetch size. As a result, there are fewer evictions
for a given prefetch size. Additionally, the improvements
in throughput with larger system memory sizes are mainly
due to increasing the number of cache hits. Comparing the
best prefetch size of 6 MB using 2 GB of system memory
to the best prefetch size of 12 MB using 8 GB of system
memory, there was a 28% improvement in throughput from
improved caching and an additional 15% improvement due
to the increase in prefetch size.
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Figure 6: Comparing prefetching techniques for HD
video while varying system memory.
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For most of the test configurations, the actual throughput
of the automated algorithm is similar to using the best fixed
prefetch size. In the worst case, when using 8 GB of sys-
tem memory, throughput is 16% lower. This is because the
starting prefetch size of 4 MB is a poor estimate compared
to the best fixed prefetch size of 12 MB, and the experiment
is too short to allow the adaptive algorithm to converge on
a better prefetch size.

7.2 Effect of Popularity Distribution

The distribution of the workload directly impacts the ef-
fectiveness of caching. Changing the a parameter of the
Zipf popularity distribution affects the number of requests
for the most popular files. Workloads with higher a val-
ues more frequently request popular files and should benefit
more from the file system cache.

Although prefetching is not directly affected by the popu-
larity distribution, caching and prefetching compete for sys-
tem memory. In order to determine if the best prefetch size
is sensitive to the popularity distribution, we generated two
additional workloads: one with a = 0.6 and the other with
a = 1. These are compared with the standard workload that
uses a = 0.8. All three workloads use the same SD video
file set, and files have the same popularity rank in all the
distributions. This ensures that, to the extent possible, the



same videos are requested in each workload.

Figure 7 shows the maximum failure-free rates that could
be achieved across the different workloads, using 4 GB of sys-
tem memory. These results demonstrate that, with a larger
« parameter, the actual throughput is improved across all
prefetch sizes. In contrast, across the range of values for a,
there is little or no change in disk and eviction throughput
for a given prefetch size. For these experiments, the work-
load distribution has little impact on the amount of system
memory available for prefetching, so the best throughput is
achieved using the same 4 MB prefetch size, regardless of
the o parameter. Instead, the increase in actual throughput
is caused by an increased cache hit rate.
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Figure 7: Different popularity distributions («),
with SD videos and 4 GB of memory.

The automated algorithm works well with these work-
loads. With the @ = 1 workload, the automated algorithm
provides 14% higher throughput compared to the best fixed
prefetch size. The automated algorithm was able to achieve
higher throughput because it converged on a prefetch size of
3 MB, which is not one of the fixed prefetch sizes that was
evaluated in our manual tuning process.

7.3 Effect of Hard Drive Characteristics

The experiments presented so far use a 1.0 TB 5,400 RPM
Western Digital Red drive, chosen because it is advertised
to be energy efficient while still providing high throughput.
As a point of comparison, we repeat the SD and HD video
experiments of Section 3 using a 1.0 TB 7,200 RPM Seagate
drive with lower seek latencies. The drives have the same
capacity and we carefully populate the drives with files of the
same size in the same locations to ensure results obtained
using these drives can be directly compared [33].

The differences in the speeds of these disks are reflected
in Figure 8, which shows the results of prefetch size exper-
iments using 4 GB of system memory. The results for the
Red drive were previously shown in Figure 1 and are in-
cluded here for convenience.

Due to the higher transfer rate and shorter seek times, the
Seagate drive is able to achieve higher throughput when us-
ing small prefetch sizes. In addition, the higher throughput
of the Seagate drive allows the userver to support about
twice as many concurrent clients. The tradeoff is that, by
doubling the number of concurrent clients, the memory re-
quired to store all of the prefetched data is also doubled.
The increased memory pressure causes more evictions when
using the Seagate drive. The differences between the drives
are smaller when using the HD workload, shown in Figure 9.
When servicing HD video, there are fewer concurrent clients,
which reduces memory pressure and the eviction rates when
compared with the SD video case.
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Figure 8: Comparing prefetching techniques on dif-
ferent disks with SD videos and 4 GB memory.
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Figure 9: Comparing prefetching techniques on dif-
ferent disks with HD videos and 4 GB memory.
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When comparing the improvements due to asynchronous
serialized aggressive prefetching with the Vanilla case, the
throughput increases are larger when using the Seagate drive
than when using the WD Red Drive. For the WD Red drive
the improvements are as large as a factor of 2.4 and 3.4 for
the SD and HD workloads, respectively. However, for the
Seagate drives the improvements are as large as a factor of
3.6 and 5.2 for the SD and HD workloads, respectively. The
throughput using the automated algorithm is close to the
throughput using the best tested prefetch size, ranging from
11% lower for the SD workload on the Seagate drive to 7%
higher for the SD workload on the Red drive.

7.4 Effect of Mixed-Bitrate Workloads

The workloads in the experiments prior to this point have
used a single bitrate for all videos. In Section 5, we devised
a method for handling workloads with mixed bitrates, and
we now test our method using a workload that contains 50%
HD videos and 50% SD videos.

Some of the results of experiments we have conducted with
this mixed workload are shown in Figure 10. The labels just
below the x-axis (.1, .2, .45, .75 and 1) specify a scaling factor
that is used to determine the prefetch size of the SD videos
when compared with the size used to prefetch HD videos.
The other labels on the x-axis (6 MB, A, and V) show the
prefetch size used for the HD videos. “A” denotes the auto-
mated algorithm and “V” identifies the vanilla server.

The scaling factors of key interest are 1 and 0.45. A fac-
tor of 1 means that the same prefetch size is used for SD
videos as HD videos. A factor of 0.45 is calculated using
our seek-minimizing rule: the prefetch size should be pro-
portional to the square root of the bitrate. Since HD videos
have a 5 times higher bitrate than SD videos, by our anal-
ysis, the scale factor for SD videos should be /1/5 = 0.45.



Therefore, when the HD video prefetch size is 6 MB the
SD prefetch size is 2.7 MB. We include a scaling factor of
0.2 because previous work has determined that it is optimal
to prefetch an amount proportional to the bitrate [12] and
the SD bitrate is 20% of the HD bitrate. In addition, 0.1
and 0.75 are included to examine the sensitivity of the re-
sults to the scaling factor. We show only the results for a 6
MB HD prefetch size because that is the prefetch size that
obtains the best throughput. Note that the best prefetch
size for this workload is close to that for the purely HD
workload. This is not surprising because the throughput
required to service the HD requests dominates that for the
SD requests; although there are equal numbers of clients re-
questing SD and HD videos, HD videos account for 5/6 of
the total throughput.
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Figure 10: Varying scaling factors and prefetching
technique while using 50% SD videos and 50% HD

videos on WD Red drive.

We observe that the the differences in throughput are
fairly small across the different scaling factors, for this work-
load and system configuration. However, the throughput
obtained with the scaling factor of 0.45 is as good or better
than that achieved with the other scaling factors. In future
work it would be interesting to determine if there are cir-
cumstances under which the differences are larger. Finally,
we note that the automated algorithm is also comparable to
the best fixed prefetch sizes on this workload.

8. DISCUSSION

Our results show the importance of having sufficient server
memory to support a large prefetch size. For example, with
the scenarios considered in Figure 5, increasing the server
memory from 2 to 8 GB enables a doubling of the through-
put. Although these results are for a single disk system,
appropriate scaling by the number of disks can yield insight
applicable to the common deployment scenario in which an
HTTP streaming video server is configured with many disks.

It might be possible to reduce the amount of system mem-
ory required by improving the memory management algo-
rithms and reducing prefetch evictions. For our experiments,
we use the FreeBSD memory management algorithms as-is,
but other studies have shown there are benefits from treating
prefetched memory specially [19, 3, 12] and by using video-
specific caching algorithms such as interval caching [8]. In
future work, we plan to investigate these techniques, which
can be applied in concert with our automated algorithm.

Another possible area of future work concerns stream-
specific adjustments to prefetch size. Our results show the
potential benefit of using a prefetch size scaling factor based
on the bitrate of the video being streamed. Considering

additional characteristics might yield further benefits. For
example, using a smaller prefetch size for new streams could
be beneficial when there is a relatively high rate of termi-
nation by the user early in the video playback, as is often
observed in practice [10, 1]. One might also take into ac-
count the video or user identity, for example prior work has
observed that some users are “serial” early-quitters [1]. Fi-
nally, our workloads have not included use of HT'TP adap-
tive streaming, wherein clients can adaptively switch among
different versions of a video with different bitrates, since the
data on video and client characteristics [10] that we use for
our workloads was measured for a system not employing
this technique. In HTTP adaptive streaming systems, the
prefetch size for a stream might be adjusted based on the
estimated likelihood that the client will soon be switching
to a different version.

9. CONCLUSIONS

HTTP-based video streaming is increasingly common, and
it is important that web servers be able to efficiently support
this type of service. Large file sizes and content popularity
characteristics that often entail a long tail of lukewarm or
cold content result in HTTP streaming video servers fre-
quently being disk-bound [17]. It is important that disks in
such systems be used efficiently, and large sequential reads
on video file data accomplish this.

In this paper we addressed the issue of selecting
the prefetch size to use with aggressive application-level
prefetching. We showed that performance is quite sensi-
tive to this factor, with the best prefetch size providing up
to 4 times higher throughput than without application-level
prefetching, and up to 3 times higher throughput than with a
prefetch size that is too large. Our experiments also demon-
strated that the best choice of prefetch size varies consider-
ably depending on the system characteristics as well as the
video bitrates. For this latter factor, we provided an analysis
that suggests that with a workload mix including videos of
different bitrates, the prefetch size for each video should be
chosen proportional to the square root of the video bitrate.

We devised an automated algorithm that considers both
memory and disk statistics to choose prefetch sizes. We
demonstrated the effectiveness of this algorithm and showed
that it could successfully determine appropriate prefetch
sizes for different workloads or system configurations. Ag-
gressive application-level prefetching, using our automated
algorithm for prefetch sizing, enables greatly improved per-
formance without the need for manual tuning.
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