
Comparing High-Performance Multi-core Web-Server Architectures

Ashif S. Harji Peter A. Buhr Tim Brecht

School of Computer Science
University of Waterloo

asharji,pabuhr,brecht@uwaterloo.ca

Abstract

In this paper, we study how web-server architecture and im-
plementation affect performance when trying to obtain high
throughput on a 4-core system servicing static content. We
focus on static content as a growing numbers of servers are
dedicated to workloads comprised of songs, photos, soft-
ware, and videos chunked for HTTP downloads. Two rep-
resentative static-content workloads are used: one serviced
entirely from the file-system cache and the other requires
significant disk I/O. We focus on 4-core systems as: 1) it is
a widely used configurations in data-centers and cloud ser-
vices, 2) recent studies show large SMP systems may op-
erate more efficiently when subdivided into smaller subsys-
tems, 3) understanding performance with a smaller number
of cores is essential before scaling to a larger number of
cores, 4) and 4-cores may be sufficient for many web servers.

Two high-performance web-servers, with event-driven
(µserver) and pipelined (WatPipe) architectures, are devel-
oped and tested for a multi-core environment. By carefully
implementing and tuning the two web-servers, both achieve
performance comparable to running independent copies of
the server on each processor (N-copy). The new web-servers
achieve high throughput (4,000–6,000 Mbps) with 40,000 to
70,000 connects/second; performance in all cases is better
than nginx, lighttpd, and Apache. We conclude that imple-
mentation and tuning of web servers is perhaps more impor-
tant than server architecture. We also find it is better to use
blocking rather than non-blocking calls tosendfile, when the
requested files do not all fit in the file-system cache.

1. Introduction
One of the biggest problems for many Internet companies
is handling huge volumes of traffic resulting from a large
number of users. With social networking and cloud com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SYSTOR’12, June 4–6, 2012, Haifa, Israel.
Copyright c© 2012 ACM 978-1-4503-1448-0/12/06. . . $10.00

puting growing in popularity, not only is more user gen-
erated and commercial content moving online, ever larger
user-communities are placing increasing demands on servers
while accessing this content. For example, Facebook serves
over 1,000,000 images per second at peak [5]. Delivering
this contenteconomicallyis a growing concern. Theweb-
serveris the software component through which most of this
Internet traffic flows, hence it must provide high through-
put while supporting a large number of concurrent connec-
tions. A major challenge in implementing high-performance
web-servers is exploiting the processing power available on
multi-core servers toefficientlyhandle these loads, which is
increasingly important and is not a solved problem.

To achieve high performance, many sites use highly-
tuned web-servers for various types of traffic. Static con-
tent remains an important and significant component of
web traffic, e.g., software repositories, songs, photos, and
videos chunked for HTTP downloads [6]. Hence, special-
ized servers exist to handle static content [16, 18], possibly
off-site as with Amazon S3 or Akamai. Even for general
web-servers, efficiently handling static content frees up re-
sources for other work or types of traffic, e.g., where sev-
eral web sites or virtual machines are hosted on the same
machine [30]. We believe it is crucial to first understand ef-
ficient servicing of static workloads on a small number of
cores before attempting to scale to many cores or attacking
more complex dynamic workloads.

This paper examines how web-server architecture and im-
plementation affect performance when trying to obtain high
throughput with a large number of connections on a 4-core
system servicing static content across two representative
workloads: one serviced entirely from the file-system cache
and the other requiring significant disk I/O. In contrast, our
previous work [24] only coveredoneworkload on asingle-
core server. Interestingly, the 4–6 core CPU is one of the
most prevalent and widely used configurations available in
data-centers and cloud services [12, 19]. In fact, recent stud-
ies suggest large multi-core systems may operate more effi-
ciently when subdivided into smaller subsystems [27]. This
work shows 4 cores are sufficient to achieve extremely high
throughput (4,000–6,000 Mbps), well beyond what most
web-sites need from a single server (nearly 62 TB would

be transferred over 24 hours at 6,000 Mbps). The goal is
to demonstrate how web-server design and implementation
can achieve this high throughput on a restricted multi-core
platform, and to identify the underlying factors contribut-
ing to this performance. The demonstrated improvements in
web-server efficiency can reduce the size and/or number of
servers needed by commercial sites, cutting procurement,
power, space and maintenance costs. However, optimizing
parallelism requires advanced web-server design and im-
plementation. The transition from single-core to multi-core
introduces complexity both in the web-server and the op-
erating system, e.g., CPU affinities (IRQ/process), memory
footprint, shared processing, and shared memory/contention.
We achieved high performance by using CPU/IRQ affinities
to partition the hardware/web-server, and for workloads re-
quiring disk I/O reduce the memory footprint by sharing
resources, such as the application cache-table, using block-
ing sendfile, and fixing a file-system caching problem in the
Linux kernel.

The contributions of this work are: 1) Two high-perform-
ance web-servers, with event-driven (µserver) and pipelined
(WatPipe) architectures, are extended and tested for shared-
memory multi-core environments; their performance is anal-
ysed and shown to be better than Apache, lighttpd, and Ng-
inx. 2) Both in-memory and disk I/O workloads are exam-
ined, whereas prior multiprocessor work has focused on only
in-memory. 3) In contrast to prior work [34, p. 247], we
demonstrate shared-memory web-servers offer comparable
performance with their non-shared-memory N-copy coun-
terparts across both workloads. 4) In contrast to previous
work [23, 24, 31, 33, 34], we demonstrate server architecture
has only a small effect on performance provided a server is
well-designed, implemented, and tuned. 5) We demonstrate
that server throughput is higher with non-blockingsendfile
when requests are serviced from the file-system cache, while
the use of blockingsendfile provides better performance
when requests require disk I/O. 6) A patch was developed
for a serious file-system caching problem discussed in [15,
§ 2.3], which fixes a problem causing poor disk performance.

2. Background and Related Work
Web-server architectures are often classified by how they
handle potentially-blocking network-I/O. Combining non-
blocking network-I/O (socket) operations with an event
mechanism likeselect or poll allows a server to interleave
processing of tens of thousands of simultaneous connec-
tions. Severalevent-driven serverarchitecture variants exist,
e.g., Single-Process Event-Driven (SPED) architecture [23].

On a multiprocessor, a natural extension to SPED is to run
a single-copy of a SPED server on each processor, called an
N-copy server[34]. To deal with blocking I/O, a further ex-
tension is to run multiple server-copies per CPU; when one
process blocks on I/O, another process is available to run.
However, each N-copy process listens for connections on a

different TCP port, thus requiring additional processing to
balance requests across the N copies. To eliminate explic-
itly balancing requests, the concurrent SPED processes can
share a listening socket, called a Symmetric Multi-Process
Event-Driven (SYMPED) server [24]. Another extension to
SPED, to deal with blocking disk-I/O, is the Asymmet-
ric Multi-Process Event-Driven (AMPED) architecture [23],
where helper threads handle blocking system-calls for disk
I/O so the main event-driven process does not block.

Another method for dealing with blocking I/O is to use
threads, called athread-per-connection server(or threaded
server); if a thread blocks, other unblocked threads can ex-
ecute. Each thread handles a single HTTP request before
processing another request. Apache [2] (kernel threads) and
Knot [31] (user and kernel threads) use this approach.

Without kernel support for asynchronous I/O, servers
must employ some form of threading to mitigate the effects
of blocking disk-I/O. (In Linux, asynchronous I/O mecha-
nisms exist but not for performance-critical system-callslike
sendfile.) Furthermore, on multi-core systems, there is evi-
dence that server architectures must incorporate both events
and threads to maximize performance [31, 33].

The pipelined (or hybrid) architecture uses events and
threads, but the number of threads is far fewer than the num-
ber of connections. In this approach, execution is broken into
separate stages, with thread pools to service each stage. The
Staged Event-Driven Architecture (SEDA) [33] is a complex
pipelined architecture used to construct the Haboob web-
server. SEDA extends the pipelined design with a dynamic
resource-controller to adjust thread allocation, scheduling,
and admission control at each stage to meet targets.

Previous multi-core web-server studies show significant
performance benefits by pinning NIC interrupt handlers to
different processors and scheduling the web-server process
handling requests from these NICs on the same proces-
sor [1, 8, 13]. When this occurs, the process and interrupts
affinities are aligned orpartitioned. Specifically, partition-
ing means the threads processing a request execute on the
same CPU handling the network interrupts for the subnet as-
sociated with the request. Partitioning benefits come from
improvements in cache misses, pipeline flushes and locking.

Zeldovichet al. [34] implement libasync-smp to simplify
writing event-driven applications for multiprocessors. They
compare a libasync-smp web-server with Flash (AMPED),
Apache (thread-per-connection) and N copies of a single-
process web-server (N-copy). However, this work does not
consider affinities and partitioning, and only examines one
in-memory workload (i.e., their 100-MB file-set fits into
the file-system cache). Their results show the N-copy server
performs best, implying a performance gap between N-copy
and multiprocessor servers [34, p. 247].

Choi et al. [10] use a simulator compare several web-
server architectures. They conclude the server’s memory
footprint is important in determining its performance, espe-
cially for larger numbers of CPUs. Hence, when using an

N-copy approach on multiprocessors, servers with separate
address-spaces scale poorly compared to servers with shared
address-spaces. They also found contention is a problem in
some servers for larger numbers of threads. However, their
server architectures and simulator do not consider affinities
and partitioning, scalability (outside of file-cache locking),
cache consistency, or other factors in a real system.

Upadhyayaet al. [28] developed Aspen, a language for
building parallel servers. The performance of Flash, Haboob
and a server developed using Flux [9] is compared with
a pipelined server developed using Aspen. The servers are
implemented using different languages and some do not take
advantage ofsendfile to eliminate copying. Their goal is to
show how Aspen can be used to easily implement parallel
servers with comparable performance to existing servers.

Voras and Zagar [32] compare the multiprocessor perfor-
mance of SPED, SEDA, AMPED and SYMPED architec-
tures on theirmdcached application, a memory database.
Their application is a memory database rather than a web
server, the largest response size is 103 bytes, and the server
and clients execute on the same machine (they state this ap-
proach affects their results). Therefore, it is difficult toapply
their findings to web servers.

Complementary to improving multi-core web-server per-
formance is improving multi-core operating-system perfor-
mance, which may indirectly improve concurrent applica-
tion performance. A recent study by Boyd-Wickizeret al.[7]
improves Linux kernel scalability and shows performance
benefits for Apache (among other applications). A sim-
ple workload is used for performance evaluation, where all
clients have non-persistent connections to repeatedly request
a single 300-byte file served from the file-system cache.
While performance improvements over the original Linux
kernel are substantial and performance scales reasonably
well with the number of cores, they only achieve a server
throughput of around 2,000 Mbps using 48 cores over a 10
gigabit NIC. This low throughput is because the card’s inter-
nal receive-packet queue overflows due to the large number
of client packets. With a larger file, they saturated the 10 gi-
gabit network at a “low core count”. This result is consistent
with our findings: a small number of cores can provide very
high throughput. Another recent study by Songet al. [27]
takes a different approach to improving operating-system
scalability. They create clusters of separate Linux kernels
running in different virtual machines on the same physi-
cal machine. They provide a system-call virtualization-layer
above the operating systems to give applications the illusion
each is running on a single operating system. Their system
(Cerberus) is meant to reduce contention on shared resources
by keeping the number of processors used to run each oper-
ating system small. Using Cerberus they report significantly
better scalability for Apache over the standard Linux kernel.
For Apache version 2.2.9 with Apache Bench as a load gen-
erator to request 45 byte files [26], their system achieves a
peak total throughput of 4,000 requests per second per core

using 16 cores, which translates to an aggregate throughput
of only 23 Mbps. In these studies, the focus is operating sys-
tem scalability versus web-server performance. In particu-
lar, their web-server experiments have low throughput with
a large number of cores and a simple workload. In contrast,
our web-server experiments try to achieve high throughput
with a small number of cores and a more realistic workload.
The extension to our work is to start with high-throughput
servers and then to scale the hardware and operating system
while correspondingly scaling server throughput.

Finally, Veal and Foong [29] and RouteBricks [11] de-
scribe the importance of having scalable hardware as well
as software. The RouteBricks and Boyd-Wickizeret al. pa-
pers both point out the importance of partitioning, and each
makes modifications to the Linux kernel to partition the mul-
tiple queues for the 10 gigabit NICs to different cores.

3. Experimental Environment
The experimental environment consists of eight client ma-
chines and a single server. A client machine contains two 2.8
GHz Xeon CPUs, 1 GB of RAM, a 10,000 RPM SCSI disk
and four one-gigabit Ethernet cards. A client machine runs a
2.6.11.1 SMP Linux kernel and two copies of the workload
generator, which permits each client load-generator to runon
a separate CPU. The server machine contains two quad-core
E5440 2.83 GHz Xeon CPUs, 4 GB of RAM, two 10,000-
RPM 146-GB SAS hard-drives and ten one-gigabit Ethernet
ports. Four of the ports are on-board, four more are from a
quad-port Intel PRO/1000 PT PCI-E card and the remaining
two are from a dual-port Intel PRO/1000 PT PCI-E card.

To achieve maximum performance, the server is config-
ured with 4 cores on a single CPU, eliminating communica-
tion issues among CPUs. To examine overheads due to inter-
CPU communication, experiments were conducted with 2
cores× 2 CPUs hardware configuration instead of the nor-
mal 4 cores× 1 CPU. For all servers in Section 6, the alter-
nate configuration is only marginally slower, indicating any
sharing in the servers does not result in a performance prob-
lem despite the fact the hardware utilizes bus communication
rather than faster interconnects available in newer hardware.

The clients, server, network interfaces and switches have
been sufficiently provisioned to ensure the network and
clients are not the bottleneck. Over provisioning required
multiple gigabit Ethernet-interfaces per machine organized
into separate subnets, allowing for explicit load balancing
of requests. Eight subnets are used to connect the server
and client machines. Each client runs two copies of the load
generator, with each copy using a different subnet to simu-
late multiple users sending requests to and getting responses
from the web server. The subnets are distributed so the
clients are equally spread over the eight interfaces available
on the server. Hence, the clients and server communicate
using fast, reliable network links. Based on a netperf exper-
iment, the server achieved throughput of 7,500 Mbps. Our

 0

 1000

 2000

 3000

 4000

 5000

 40000 45000 50000 55000 60000 65000 70000

M
b

p
s

Requests/s

2.6.24.3+patch run 1
2.6.36.2+patch run 1
2.6.36.2+patch run 2

2.6.36.2 run 1
2.6.36.2 run 2

Figure 1. Throughput of different kernel versions - 2 GB

best web-server experiments are 17% below this throughput,
indicating there is ample network and bus headroom.

The server runs a 2.6.24.3 SMP Linux kernel in 32-bit
mode. However, a page-caching problem was discovered in
this kernel resulting in poor disk performance. This problem
is discussed in detail in [15, § 2.3], but the Linux kernel-
patch was developed as part of the work for this paper.
The patch improves disk throughput from approximately
11,000 blocks-in per second (1 block = 1024 bytes) for non-
blockingsendfile and 20,000 blocks-in per second for block-
ing sendfile to approximately 28,000–30,000 blocks-in per
second forbothnon-blocking and blockingsendfile. As well,
the patch reduced the variation in throughput for repeated
experiments. Therefore, the performance of all experiments
requiring disk-I/O improved with the patch. Kernel 2.6.24.3
is also run in 32-bit mode as the physical address extension
(PAE) and 64-bit modes resulted in lower performance, and
PAE experiments did not yield repeatable results. As a re-
sult, available memory is limited to 4 GB. While 64-bit mode
supports more memory, there is no expectation of better per-
formance, and adding more memory only postpones when
disk I/O occurs. Our experimental results are still relevant if
the workload, bus, and memory increase proportionally.

As work progressed, newer kernels were examined, but
each introduced new problems and/or instabilities with re-
spect to this work. For example, kernel version 2.6.36.2 (re-
leased December 2010) has I/O performance problems with
workloads having significant disk I/O (the problem exists
back to at least version 2.6.32, released December 2009),
but did have slightly better performance with our in-memory
workload (10% faster) resulting from more efficient han-
dling of soft-IRQs. Figure 1 shows some representative ex-
periments, similar to the experiments in Section 8, solely to
illustrate the I/O problem found in recent kernels. The graph
compares throughput obtained with our patched 2.6.24.3
kernel, the recent 2.6.36.2 kernel with the same patch ap-
plied and an unpatched 2.6.36.2 kernel. The graph shows the
patched 2.6.36.2 kernel has significantly higher throughput
at the given rates than its unpatched counterpart; however,
throughput drops substantially for higher request rates. Re-

peating the experiment shows an example of the large insta-
bility that occurs, demonstrating a kernel problem. Similar
instability occurs for the unpatched 2.6.36.2 kernel but with
lower throughput. The instability in disk I/O performance in
recent kernels made generating verifiable results impossible
for the disk-bound workloads. In comparison, our patched
2.6.24.3 kernel is stable with significantly higher throughput.
To allow comparable results between in-memory and disk-
bound workloads, a single kernel version is required. These
problems and our reasons for using version 2.6.24.3 rather
than a newer kernel are described in detail in [15]. The key
reasons are, its stability after patching, the time required to
optimize and tune server performance, and the uncertainty
and problems encountered with the newer kernels.

4. Multiprocessor Web-Servers
Along with web-server threading, the following factors con-
tribute significantly to high performance on a multiproces-
sor: CPU affinities (IRQ/process), memory footprint, shared
processing, and shared memory/contention. As discussed in
Section 2, using CPU affinities can improve performance,
with partitioning dominating web-sever design. When there
is memory pressure, a smaller web-server memory-footprint
reduces the amount of disk I/O by making more memory
available to the file-system cache. Shared processing can re-
duce the number of system calls and computational duplica-
tion, though potentially at the cost of additional contention.

Assuming a balanced load,partitioned N-copyachieves
good performance for existing server architectures by run-
ning multiple copies of a server on a multiprocessor, parti-
tioning the NICs, network interrupt-handling, and server.An
example of N-copy partitioning in our environment (8 sub-
nets, 4 CPUs, 4 server copies) has affinities set so CPUi , i =
0..3 handles IRQ processing for subnets 2i and 2i + 1, and
server copySi handles requests on subnets 2i and 2i +1, and
its kernel threads have CPU affinityi. Hence, each server
copy executes on a single CPU and handles the two distinct
subnets associated with that CPU. In general, N-copy should
give excellent performance [34] by eliminating data sharing
among CPUs at the application level and good CPU-cache
utilization due to consistent partitioning of subnets in the OS
and application. However, N-copy can be inefficient due to
memory duplication and the inability to consolidate certain
user and kernel operations through sharing across processes.
The inefficiency varies depending on the type of server.

An alternative to N-copy is to incorporate partitioning
into existing web-server architectures, resulting in shared-
memory server-architectures. These servers can take advan-
tage of techniques to improve performance involving shar-
ing, such as reducing memory footprint (e.g., by sharing the
application cache-table) and aggregating operations (e.g., by
sharing file descriptors so a single call toepoll within the
server process replaces per process polling in N-copy). As
well, balancing the load across processes is not required. Fi-

nally, collecting global information for secondary features
like cache management, client preferences, or service throt-
tling does not require communication among processes. This
work examines these benefits and how they increase server
throughput by developing two web-servers:µserver shared-
SYMPED (event-driven), and WatPipe (pipelined).

In [24], we extended theµserver SYMPED server to
shared-SYMPED using a single application cache-table
shared among the server processes to reduce data dupli-
cation. This cache-table contains only open file-descriptors
and headers to efficiently supportsendfile. For this paper,
µserver shared-SYMPED is extended for multiprocessor ex-
ecution by: 1) replacing the single listening-socket with sep-
arate sockets for each subnet; 2) partitioning processes and
subnets (like N-copy), but all processes share an application
cache-table across CPUs; 3) replacing the single global lock
protecting the shared application cache-table with two-tiered
locking to increase parallelism, where a reader-writer lock
provides simultaneous file-name lookup (reads) but mutual
exclusion for adding new file names (write), and a mutex
lock per cache entry protects updating file data.

In [24], we developed a pipelined server, WatPipe, where
each stage handles a portion of the processing of an HTTP
request. Specifically, the WatPipe implementation consists
of 5 stages, with each stage serviced by a separate pool of
threads (implemented by Pthreads). The Accept stage ac-
cepts connections, the Read Poll stage uses an event mecha-
nism to poll for read events, the Read stage reads and parses
incoming HTTP requests, the Write Poll stage uses an event
mechanism to poll for write events, and the Write stage per-
forms the actual writes. For this paper, WatPipe is extended
for multiprocessor execution by introducing queues to com-
municate between stages when explicit communication is
required. Synchronization and mutual exclusion is required
when communicating between stages and when accessing
global data (e.g., open file-descriptor cache). As well, the
Read and Write stages of the pipeline are partitioned. Each
reader or writer thread has its affinity set to a particular CPU
and only handles requests from the subnets associated with
that CPU. To reduce contention, there is a separate queue
per CPU for the Read and Write stages of the pipeline. The
number of writer threads is one of the parameters that is var-
ied to achieve the best performance. Having multiple threads
performing writes allows server processing to continue even
when a thread is blocked waiting for disk I/O, and it takes
advantage of the multiple cores. Finally, a separate listening
socket is created for each subnet with one acceptor thread
per subnet, reducing contention in the server and OS. There
are still only two threads handling polling across all subnets,
one for read events and one for write events. The Acceptor,
Read, and Write Poll threads have no affinities set so they
are free to execute on any CPU. As WatPipe shares a single
application cache-table across CPUs, its cache-table locking
is modified in a fashion similar toµserver shared-SYMPED.

While the extended WatPipe seems similar to N-copy, it
has some significant differences. Aside from the separate
per-CPU entry-queues in the Reader and Writer stages of the
pipeline, the data structures used to track connections and
requests are shared and there is a single, shared application
cache-table. Hence, the implementation has a smaller mem-
ory footprint than the N-copy version. Some threads are al-
lowed to float across CPUs (acceptor, Read and Write Poll),
giving the scheduler flexibility to perform some load balanc-
ing to better handle small variations in load [14, pp. 140–
141]. Finally, some activities are handled by a single thread
instead of having a separate thread per subnet or CPU.

To ensure a fair performance comparison among server
architectures, all are implemented using the following best
practices: 1) multi-accept, i.e., draining the socket’s accept-
queue on an event notification for a listening socket, 2) an ef-
ficient event notification mechanism (edge-triggeredepoll),
3) zero-copysendfile, 4) socket corking and no-delay to en-
sure small replies are sent in one packet, 5) caching open-file
descriptors to avoid file-system overheads and contention,6)
caching reply headers to avoid generating them for each re-
ply, 7) minimizing dynamic allocation (malloc/free) by pre-
allocating data structures, 8) preforking processes/threads,
9) minimizing the number of kernel threads, 10) minimiz-
ing user-level processing to allow more time for kernel op-
erations. To minimize implementation bias the servers are
made as consistent as possible: WatPipe was developed from
the µserver C code-base, except for small sections written
in C++, sharing many common components, e.g., application
cache-table of file descriptors and HTTP headers; as well, all
compilations and runs use consistent options.

5. Experimental Methodology
The experiments measure throughput of the server architec-
tures. The set of client requests and the number of CPUs is
constant across experiments; server architectures and mem-
ory is varied (less memory results in disk I/O). To achieve
the best server throughput, hundreds of experiments were
run across a range of server parameters totuneeach server.

The clients run httperf [20] to request a set of static files.
The httperf load generator is used with session files to sim-
ulate a large number of users and to implement apartially-
open loop system[25]. This permits httperf to produce over-
load conditions [3], generate multiple requests from persis-
tent HTTP/1.1 connections, and include both active and in-
active off periods to model browser processing times and
user think times [4].

There are 21,600 files that could be requested across 650
directories, occupying about 2.2 GB, distributed over the
server’s two hard drives to achieve high throughput for disk
I/O. The experiments are run with 16 clients, each running
a copy of httperf (one copy per CPU), requiring a set of 16
log files with requests conforming to a Zipf distribution. A
client times-out if the server does not complete a request

% Requests 10 30 50 70 80 90 95 100
Memory (MB) 0.5 1.5 8.4 12.2 20.1 94.3126.5 2,291.6

File Size (B) 409 716 4,096 5,120 7,168 40,96051,200 921,600

Table 1. Cumulative memory for requests by file size

within 10 seconds. 10 seconds is chosen because: 1) in
Windows XP, the TCP/IP stack is tuned to wait 9 seconds
to establish a connection before timing out, 2) based on
user studies, Nielsen [22] suggests 10 seconds is the upper
limit on acceptable response. Newer studies [17] suggest this
value may be lower for certain types of sites.

An experiment consists of running a server with request
rates ranging from 25,000 to 70,000 requests per second;
each rate takes about 5 minutes to complete. There are 2 min-
utes of idle time between rates and between experiments to
allow connections in the TIME-WAIT state to clear. Server
throughput is measured both at peak and after saturation
(i.e., after peak). Peak indicates the level of client requests
the server can handle and after peak indicates if a server de-
grades gracefully (i.e. is capable of handling slashdotting).
The performance metric of concern for users is response
time. Although the graphs are not shown, the response times
for all the servers average 1–2 seconds at peak loads.

Two workload scenarios are created by reconfiguring the
server with different amounts of memory: 4 GB and 2 GB.
While the workload does not change, for ease of reference
these 2 scenarios are called the 4 GB and 2 GB workloads,
respectively. The two workloads correspond to in-memory
(4 GB) and disk-I/O (2 GB). Due to the Zipf distribution,
only a small amount of memory is needed to service a sig-
nificant percentage of requests. Table 1 shows the cumula-
tive memory required to satisfy the specified percentage of
requests; e.g., 95% of the requests come from 126.5 MB of
the file set and 95% of the requests are for files less than or
equal to 51,200 bytes. Interestingly, with 2 GB of memory,
significant disk-I/O occurs (28-30 MB/sec across both disks)
due to high throughput resulting from multiple processors.

For each server and workload combination, rigorous in-
dependent tuning was conducted to determine the best per-
formance for each server. Proper tuning is critical to attain
best server performance and no single tuning achieves the
best performance for all servers. As the number of tuning
parameters is large, only the most important subset of pa-
rameters is selected: maximum number of simultaneous con-
nections supported by the server, level of concurrency, and
blocking versus non-blockingsendfile. (Blocking sendfile
and non-blockingsendfile refer to whether a socket is in
blocking or non-blocking mode whensendfile is called.) Af-
ter selecting the type ofsendfile, a range of values for both
the maximum connections and the level of concurrency is
chosen. In order to see the effect of each individual param-
eter change, an experiment is run for the cross product of
each parameter combination of the two ranges. Ranges are
chosen to be sufficiently large so that the full spectrum of
performance is covered. Only the best tuning-configurations

for each server are analysed (see [14] for details on all tuning
experiments).

Tuning also involvedverifying the servers based on two
criteria. First, preliminary experiments are run to verify
server correctness (i.e., no bugs) by having each client com-
pare the bytes returned by the server with a copy of the
file requested. Due to the large overhead, correctness ver-
ification is disabled during the performance experiments.
Second, quality of service is checked to ensure the server
achieves an acceptable response across the range of client
requests, i.e., it is not cheating by explicitly rejecting spe-
cific requests. The criteria used to establish this range en-
sures files of differing sizes are equally serviced; otherwise,
a server can ignore certain requests to achieve performance
benefits such as higher throughput or lower response times.
These criteria focus on the percentage of requests that time
out both cumulatively across all files and for each file size.
Client requests that time out before being accepted or read
by the server are not counted because the server has not
seen the request. Note, since the final server comparisons
are based on throughput, servers that process fewer connec-
tions (seen or unseen) will have lower throughput. While
client timeouts are permitted across all file sizes, verification
ensures that each size receives a reasonable level of service.
The criteria are: the maximum percentage of timeouts for all
files does not exceed 10%; the timeout percentage for each
file size is below a certain threshold: 5% for an individual
client and 2% across all clients; for each file size, the timeout
percentage is not larger than the mean timeout percentage of
all files plus a threshold: 5% for an individual client and
5% across all clients. The quality-of-service check does not
affect throughput as it is run after the experiment completes.

6. 4 GB Workload
This section considers the performance of web-server archi-
tectures when the entire file set fits into the file-system cache
by configuring the server with 4 GB of memory; however,
the kernel, required daemons, and hardware mapped devices,
leave only 3.6 GB available. Eliminating memory pressure
highlights the multiprocessor characteristics of the architec-
tures without focusing on disk I/O.

Figure 2 presents the best performing configuration for a
selection of the server-architecture implementations (see [14]
for details on all servers):µserver N-copy non-blocking
SYMPED, N-copy blocking WatPipe,µserver non-blocking
shared-SYMPED with partitioning, non-blocking WatPipe
and blocking WatPipe. In addition, theµserver non-blocking
SYMPED server without partitioning is included (network-
interrupt partitioning is performed, but only a single listen-
ing socket is used) to contrast its performance with the parti-
tioned servers. The blocking SYMPED and blocking shared-
SYMPED experiments (N-copy and non-N-copy) are ex-
cluded as their memory footprint is too large, preventing the
file-system cache from storing the entire file-set, resulting

 0

 1000

 2000

 3000

 4000

 5000

 6000

 40000 45000 50000 55000 60000 65000 70000

M
b
p
s

Requests/s

ncopy-symped-nb-100K-4p
watpipe-nb-100K-4w

ncopy-watpipe-b-80K-400w
sharedsymped-nb-part-60K-4p

watpipe-b-80K-400w
symped-nb-80K-4p

Figure 2. Throughput of different architectures - 4 GB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 40000 45000 50000 55000 60000 65000 70000

M
b
p
s

Requests/s

watpipe-nb-100K-4w
nginx 0.8.54

N-copy lighttpd 1.4.28
Apache 2.2.17

Figure 3. Comparison with open-source servers - 4 GB

in disk I/O. The legend in Figure 2 is ordered from the best
performing server at the top to the worst at the bottom. Lines
are labelled by server name, maximum number of connec-
tions, and processes or writer threads, e.g., ncopy-symped-
nb-100K-4p isµserver N-copy non-blocking SYMPED with
100,000 connections and 4 processes. The two numbers rep-
resent the cumulative total across all copies of the server
with the values distributed equally across the server copies,
i.e., there are 4 server copies, one per CPU, and each copy
is run with 1 process and 25,000 connections. Peak server
throughput varies by 739 Mbps (5,463–6,202 Mbps). The
key observation is that well implemented and tuned versions
of these architectures perform well (high peak and degrade
gracefully after saturation). Between the best performing
versions of the server architectures, the difference is only
2% at peak, and across all servers the difference is 14%.

To better understand the performance of the servers, the
best configuration of each server is profiled. Data is gathered
by running OProfile and mpstat during an experiment, using
a load of 56,000 requests per second; the peak performance
for most of the servers. At this request rate, even with the
overhead of profiling, all the servers pass verification. As
no unnecessary programs or services are running on the
machine during an experiment, all profiling samples can be
legitimately attributed to the server’s execution, including
those in kernel and library code. Performance data for these
experiments are summarized in Table 2. (Throughput values
in the tables are incomparable due to inconsistent OProfile
overheads across servers.)

In the table, each server is represented by a separate col-
umn, and its performance data is divided into three sections.
The first section gives the server architecture, the configura-
tion parameters, and the server performance in terms of both
reply rate and throughput in megabits per second. The la-
bel “s-symped” means shared-SYMPED, and “part” means a
single shared-SYMPED server with process affinities set so
that its processes can be partitioned similar to N-copy. The
second section is a summary of OProfile sampling data, con-
sisting of the percentage of samples occurring in a particular

function. The data for these functions are grouped into the
Linux kernel (vmlinux), Ethernet driver (e1000), application
(user space) and C library (libc). All remaining functions fall
into the “other” category, which mostly represents OProfile
execution. The last section contains mpstat sampling data
(every 5 seconds), where the data is an average of the sam-
pled values. The row labelled “softirq” is the percentage of
time spent servicing software interrupts. Only values where
there is a large difference among the servers are discussed.

As expected, with no memory pressure, N-copy servers
provide an upper bound on performance. However, unlike
previous work [34], the non-N-copy servers achieve per-
formance close to their corresponding N-copy server, espe-
cially for the non-blocking servers with partitioning. Since
the best performance occurs with 1 process per CPU, N-
copy SYMPED and N-copy shared-SYMPED are equiva-
lent. When comparing N-copy and non-N-copy servers, con-
tention related to sharing data across CPUs is a factor. Yet,
for the non-blocking servers, which only require a small
number of threads, given appropriate data structures and
locking (e.g., using readers/writer locks in the application
cache-table), moving from N-copy to non-N-copy has little
effect even when data is shared across CPUs. On the other
hand, moving from N-copy to non-N-copy has a larger effect
for the blocking servers as many kernel threads are sharing
data structures across CPUs. Specifically for WatPipe, these
sharing overheads result in a drop of 6% in peak perfor-
mance from N-copy to non-N-copy blocking WatPipe ver-
sus 2% from N-copy to non-N-copy non-blocking WatPipe.
(The N-copy non-blocking WatPipe server is not in Figure 2
but its peak is 6196 Mbps.) The larger performance differ-
ence for blocking WatPipe is a result of the large number of
kernel threads sharing data across CPUs because all other
server differences are consistent between the blocking and
non-blocking versions. WatPipe is able to achieve excellent
throughput despite additional overheads from sharing data
across CPUs because it does not partition all stages (e.g.,
polling) or pin all threads to specific CPUs. Therefore, by
allowing some threads to float, the scheduler has some flex-

EXPERIMENT Server userver WatPipe userver userver WatPipe WatPipe
Arch symped pipeline symped s-symped pipeline pipeline
Write Sockets non-block block non-block non-block non-block block
Max Conns 100K 80K 80K 60K 100K 80K
Processes/Writers 4p 400w 4p 4p 4w 400w
Other Config N-copy N-copy part
Reply rate 47,474 48,116 43,329 49,717 49,886 45,666
Tput (Mbps) 5,666 5,729 5,176 5,944 5,944 5,448

OPROFILE vmlinux total % 81.70 81.65 81.38 81.94 79.33 80.84
e1000 total % 11.23 10.45 11.90 10.82 10.91 10.36
user-space total % 5.33 3.95 5.01 5.49 5.44 4.71
libc total % 0.90 1.10 0.88 0.89 1.16 1.06
other total % 0.84 2.85 0.83 0.86 3.16 3.03

MPSTAT softirq % 58 58 61 59 58 56

Table 2. Server performance statistics gathered under a load of 56,000 requests per second - 4 GB

EXPERIMENT Server WatPipe WatPipe userver userver WatPipe WatPipe
Arch pipeline pipeline s-symped s-symped pipeline pipeline
Write Sockets non-block block non-block block non-block block
Max Conns 50K 60K 50K 50K 50K 60K
Processes/Writers 100w 500w 60p 300p 100w 500w
Other Config N-copy N-copy part part
Reply rate 37,902 41,161 38,253 38,139 37,489 39,951
Tput (Mbps) 4,511 4,905 4,560 4,562 4,461 4,756

OPROFILE vmlinux total % 82.50 81.37 83.35 81.81 81.40 80.24
e1000 total % 8.81 9.49 9.13 9.38 8.83 9.38
user-space total % 3.90 4.18 4.41 4.94 4.69 5.08
libc total % 0.90 1.02 0.78 1.15 0.93 1.03
other total % 3.89 3.94 2.33 2.72 4.15 4.27

VMSTAT waiting % 23 7 21 17 20 5
file-system cache (MB) 1,519 1,476 1,530 1,364 1,556 1,522
blocks-in/sec 29,620 30,399 28,523 31,748 27,908 27,553

MPSTAT softirq % 43 49 47 45 42 49

Table 3. Server performance statistics gathered under a load of 56,000 requests per second - 2 GB

ibility to perform a small amount of load balancing to better
handle small variations in load.

The biggest factor affecting performance is whether the
server supports affinities and partitioning, which reduces
overheads, especially related to networking. When the kernel
spends more time processing network packets, as indicated
by the e1000 and softirq values, it is due to either higher
throughput (more processing time is required to handle more
packets per second) or the inefficient handling of pack-
ets. When comparing the poor performing non-partitioned
µserver non-blocking SYMPED server (throughput of 5,176
Mbps) and the much better performingµserver N-copy non-
blocking SYMPED server (throughput of 5,666 Mbps), the
only differences between them are affinities and partition-
ing. Despite these significant differences in throughput, they
spend a similar amount of time executing e1000 (11.9%
versus 11.2%) and softirq code (61% versus 58%) to pro-
cess network packets. Hence,µserver N-copy non-blocking
SYMPED is more efficient and processes a larger number of
network packets than non-partitionedµserver non-blocking
SYMPED. This shows the increased overheads incurred as
a result of not partitioning the processes, subnets and CPUs.

Overall, for in-memory workloads, non-blocking servers
achieve the best performance as they require few kernel
threads, and incur less overhead.

7. Comparison with Other Servers
According to Netcraft’s October 2011 survey [21], the mar-
ket share for the top servers were Apache 58.9%, Microsoft
12.5%, nginx 11.3%, Google 8.1%, while lighttpd (used
here) was popular and appeared in the December 2010 sur-
vey. nginx has increased in popularity due to its good perfor-
mance on static workloads when compared with Apache,
illustrating the importance of this workload. To demon-
strate that our servers provide good performance relative to
other available servers, three of these web servers are run in
our environment (nginx 0.8.54, lighttpd 1.4.28 and Apache
2.2.17). Each server is configured for performance, to use a
minimum footprint, and tuned to find the best configuration
for the environment and workload being used. (The Apache
MPM worker module was selected based on reported best
performance, and tuned for our environment.) Support in
lighttpd for theserver.max-worker configuration parameter
and partitioning are weak resulting in poor shared-memory
performance so it is run using an N-copy configuration. Fur-
thermore, lighttpd had to be modified to increase open files
and connections as the original limit was 65,536 open files
and roughly half as many simultaneous connections.

Figure 3 compares our best performing non-N-copy
server from the 4 GB experiment with the three open-source

 0

 1000

 2000

 3000

 4000

 5000

 6000

 40000 45000 50000 55000 60000 65000 70000

M
b

p
s

Requests/s

ncopy-watpipe-b-60K-500w
watpipe-b-60K-500w

ncopy-watpipe-nb-50K-100w
watpipe-nb-50K-100w

sharedsymped-nb-part-50K-60p
sharedsymped-b-part-50K-300p

ncopy-symped-nb-50K-32p

Figure 4. Throughput of different architectures - 2 GB

servers. This experiment is used solely to place our servers
in context with other well-known servers. It would be ex-
tremely difficult to draw any conclusions about server archi-
tecture given the differences in code base among the servers.
Ranking the servers from best to worse: watpipe-nb-100K-
4w, nginx, lighttpd, and Apache, with peaks of 6070, 5316,
4207, 2097 Mbps, respectively, an overall difference of 65%.
All servers perform well after peak. Apache’s poor perfor-
mance under high load (also shown by [23, 31, 33]) results
from the thread-per-connection architecture, using a 1-to-
1 threading model (Pthreads), which incurs high overhead
due the large number of kernel threads. (We believe the
thread-per-connection architecture is not viable for high-
performance servers without a highly-efficient M-to-N user-
level thread package for multiprocessors [31].) As well, the
Apache footprint leaves only 1.67 GB of memory for the file-
system cache, resulting in disk I/O, while the other servers
cache all files (2.2 GB).

8. 2 GB Workload
This section considers the performance of web-server archi-
tectures when the entire file set does not fit into the file-
system cache (i.e., there is memory pressure) by configuring
the server with 2 GB of memory. While the memory pres-
sure seems low relative to the 2.2 GB file set, given the high
request rates, even a small percentage of requests requiring
disk I/O results in significant disk activity; hence, these ex-
periments have lower throughput.

Figure 4 presents the best performing configuration for
each server-architecture implementation (more details onall
servers can be found in [14]). The legend in Figure 4 is or-
dered from the best performing server at the top to the worst
at the bottom. Peak server throughput varies by about 20%
(4,012–5,012 Mbps), a range of 1,000 Mbps. Performance
of these servers can be loosely grouped into pairs, except for
the bottom server. The top two performers are N-copy block-
ing WatPipe and blocking WatPipe, which have approxi-
mately the same peak throughput of 5,000 Mbps and the
same overall performance. The remaining server pairs have
approximately the same peak throughput of 4,600 Mbps,

but different performance after saturation. The next two
servers are the non-blocking versions of those servers, which
have the same performance with only a small decline after
peak, approximately 9% lower than N-copy blocking Wat-
Pipe. The next two servers (shared-SYMPED non-blocking
and blocking with partitioning) have the largest decline af-
ter peak, approximately 19% and 42% lower than N-copy
blocking WatPipe, respectively. The last server (µserver N-
copy non-blocking SYMPED) has the lowest peak through-
put of 4,012 Mbps, approximately 20% lower than N-copy
blocking WatPipe with stable performance after peak.

Table 3 shows the same OProfile data as the 4 GB work-
load (excluding N-copyµserver non-blocking SYMPED),
plus a third section for vmstat sampling data (every 5 sec-
onds), consisting of data about processes, memory, I/O, CPU
activity, etc., where the data is an average of the sampled val-
ues. There are three rows in the vmstat data labelled: “wait-
ing %”, the CPU time spent waiting for IO, “file-system
cache”, the average size of the Linux file-system cache
in megabytes, and “blocks in/sec”, the average number of
blocks read per second. Note, a non-zero I/O wait value in-
dicates that the profiling data must be scaled because it only
accounts for time when the CPU is executing, so it does not
include I/O wait. For example, if the I/O wait is 30%, then
the profiling data still adds up to 100% but only covers the
70% of the time the CPU is in use.

All servers have a non-zero I/O wait value for their best
configuration, indicating an opportunity to improve perfor-
mance by utilizing unused CPU time. One way to eliminate
I/O wait is to increase connections and/or kernel threads, al-
lowing the server to overlap processing with disk-I/O. Un-
fortunately, increasing these parameters also increases ex-
ecution overheads (e.g., lock contention) and the memory
footprint of the server. These changes cause the I/O wait to
decrease or increase, but for all the servers it causes through-
put to decrease as both the overheads and the memory foot-
print of the server increase (see [14] for more details).

While there is a performance difference resulting from
blocking/non-blockingsendfile (discussed next), differences
resulting from memory usage among the servers using the
same kind ofsendfile (blocking versus non-blocking) are
discussed first. An important aspect of memory usage is the
Linux file-system cache used to cache data from disk, in-
cluding meta-data, directory information and file data. The
size of the file-system cache is determined by the amount
of memory unusedby the kernel and server, which dic-
tates the amount of disk I/O required during an experiment
(i.e., a larger file-system cache can hold more file data so
fewer requests require file data to be read from disk). The
servers in Table 3 achieve their best performance with sim-
ilarly sized file-system caches, implying similar memory
footprints. However, the configuration parameters at which
the servers achieve their best performance is not consis-
tent among the servers. Specifically, the servers with lower

throughput are configured with fewer kernel threads due to
less efficient memory scaling.

In detail, the memory allocated by each server when
adding kernel threads is:Msymped = c × 810 + p ×

(7,667,536 + s),Msharedsymped= c× 806+ p× (216,100+
8× c+ 20× p+ s) + N × 8,404,368, andMwat pipe = c×
934+N×9,798,888+ p×s, wherec is the number of con-
nections,p is the number of kernel threads,N is the number
of copies (N = 1 for non-N-copy servers), ands is the thread
stack-size (between 16 KB and 64 KB is typically accessed,
with 32K used in this analysis). Note, these estimates are an
upper bound as real memory usage is often lower because it
depends on pages accessed versus pages allocated, but this is
difficult to model. The increase in memory footprint for all
the servers is similar as connections are added (810, 806, 934
bytes), though WatPipe requires about 15% more memory
per connection. However, the footprint of the servers scales
differently as kernel threads are added. For the SYMPED
servers, every kernel thread is a completely separate process,
so its memory footprint grows quickly, resulting in lower
throughput; SYMPED grows by about 7.3 MB per additional
process, with around 6.4 MB of that coming from the sepa-
rate application cache (open file-descriptors and file headers)
in each process. For shared-SYMPED, the processes share a
single application cache, so its memory footprint grows less
quickly; shared-SYMPED grows by about .6 MB per addi-
tional process. The size of WatPipe increases only by about
.03 MB for each writer as the address space is shared. These
values are small per kernel thread, but with 500 or more ker-
nel threads, they can result in large differences in memory
footprint, e.g., with 500 kernel threads the increase is 3,672
MB for SYMPED and 314 MB for shared-SYMPED and 16
MB for WatPipe. Therefore, WatPipe can add writers with
only a small increase in memory footprint from the thread
stacks. With the additional kernel threads, WatPipe can over-
lap more computation with blocking disk I/O, reducing I/O
wait, resulting in higher throughput. Comparing the N-copy
and non-N-copy servers (excluding SYMPED, which is al-
ready N-copy), the N-copy servers have only a small in-
crease in memory because it is proportional to the number
of cores, i.e., for the 4-copy shared-SYMPED experiment
the increase is 24 MB per copy, and for the 4-copy WatPipe
experiment it is 28 MB per copy. For thread-per-connection
servers,p is equal toc, so memory for stacks isc× s, e.g.,
for 50,000 connections 1,563 MB is needed just for stacks,
which should adversely affect performance. For large SMP
computers, increasing total memory decreases the effect of
these differences, but increasing CPUs requires more kernel
threads to support higher loads, using more memory.

An important clue to understand why the blockingsendfile
versions of WatPipe perform so well is found in the amount
of time each spends waiting on I/O. In Table 3, the vm-
stat line “waiting %” shows these servers spend signifi-
cantly less time waiting for disk I/O than the corresponding

non-blocking servers. However, since the blocking servers
require more threads and as a result have larger memory
footprints, the expectation is that they could spend more
time waiting for I/O. Part of the lower I/O wait times can
be attributed to additional overhead incurred by the block-
ing servers. Low I/O wait combined with higher throughput
indicate that blockingsendfile accesses the disk more effi-
ciently than non-blockingsendfile for this workload. After
analysing the disk request patterns for N-copy non-blocking
and blocking WatPipe, some interesting differences were
found. The blocking server makes disk-I/O requests on fewer
distinct files, and for larger files, these requests tend to be
contiguous, allowing the server to take advantage of file
read-ahead caching. The result is the blocking server makes
fewer disk requests overall compared to the non-blocking
server and is hence able to service more requests. Therefore,
the remaining part of the lower I/O wait can be attributed to
more efficient disk access for the blocking servers.

The difference between the two servers is the duration
over which file data in the file-system cache is accessed.
As this cache is managed using an LRU algorithm, when
there is memory pressure in the system, blocks accessed to-
gether in time are likely to be evicted together. With blocking
sendfile, each kernel thread blocks while sending an entire
file, so the file blocks are usually accessed over a relatively
small period of time. Subsequently, these file blocks age to-
gether, and hence, are likely to be evicted together. With non-
blockingsendfile, each kernel thread interleaves the sending
of large files with the sending of many other files. (Large
files are sent in chunks, where the size of each send is con-
strained by the space available in the socket buffer.) As a re-
sults, portions of many files have similar access times and
different portions of a large file have access times differ-
ent from each other. Subsequently, pieces of different files
age together, and hence, are likely to be evicted together,
leaving other pieces of the large file still in the cache. The
benefit is realized when a file is accessed again. For block-
ing sendfile, if any portion of the file must be reread from
disk, it is likely the entire file must be read again, which
is accomplished via efficient contiguous disk-reads and bet-
ter file read-ahead caching. Overall, the blocking server has
better disk efficiency than the non-blocking server. There-
fore, a server using blockingsendfile can have the same or
higher throughput than a corresponding non-blocking server
despite having a larger memory footprint.

9. Comparison Across Workloads
The previous sections highlighted a number of factors affect-
ing server performance for a particular workload; this sec-
tion provides an overview of the performance of the multi-
processor serversacrossthe two workloads tested. The bars
in Figure 5 represent the area under the throughput curve of
the servers across the request-rates tested for the two work-
loads. The areas are normalized based on the largest server

 0

 0.2

 0.4

 0.6

 0.8

 1

ncopy-symped-nb

ncopy-sharedsymped-nb

ncopy-sharedsymped-b

ncopy-watpipe-nb

ncopy-watpipe-b

sharedsymped-nb-part

sharedsymped-b-part

watpipe-nb

watpipe-b

N
o
rm

al
iz

ed
 A

re
a

Server

4 GB
2 GB

Figure 5. Server performance across workloads

area, non-blocking WatPipe. While the area gives a simpli-
fied view of overall performance, it deemphasizes differ-
ences in peak throughput. The key observation is that well
implemented and tuned versions of the architectures perform
well across workloads with only small differences.

In Figure 5, the 4 GB bars are all higher than the 2
GB bars, indicating that as memory pressure in the system
increases, the throughput of the servers decreases. When
there is no memory pressure, a pattern emerges: the non-
blocking servers require few kernel threads, resulting in low
overheads and slightly higher throughput, and the blocking
servers require more kernel threads, resulting in higher over-
heads and slightly lower throughput. When there is memory
pressure, a different pattern emerges: memory footprint and
disk efficiency are two important factors determining server
performance. In this case, the blocking Watpipe servers of-
fer better performance as they can scale to a large number
of kernel threads with only a small increase in memory foot-
print by using a shared-address space. Due to the dissimi-
lar requirements for each pattern, no single server’s perfor-
mance is the best for both workloads.

10. Tuning Insights
A key to good web-server performance is tuning the server
for the hardware environment and the workload being ser-
viced. Since tuning is a time consuming task, we present
some insights gained during this work: 1) For workloads
serviced entirely from the file-system cache, high through-
put is obtained by using non-blocking sockets and one ker-
nel thread per core for writing (though it may perform other
work, depending on the architecture). 2) The number of si-
multaneous connections being served is critical, especially
after saturation. Too few results in a lower peak-throughput,
while too many typically results in longer response times
with requests for larger files taking too long. 3) For work-
loads with disk I/O, the key is efficiently switching to a con-
nection that can be serviced while disk I/O occurs. For the
servers we examined, this is achieved by having a sufficient
number of kernel threads. Too few kernel threads can leave
the CPU idle; too many reduces memory available for the
file-system cache.

11. Conclusion
This work shows that, if properly implemented and tuned, N-
copy, event-driven, and pipelined architectures can all per-
form very well on 4 cores while servicing the two static
workloads examined in this paper. However, within archi-
tectures not all versions are amenable to both workloads.
While no single server or configuration performed the best
for all workloads, with proper tuning the difference in peak
throughput among the best version of each server architec-
ture is within 10%. The key factors affecting the perfor-
mance of these architectures are memory footprint, usage of
blocking or non-blocking calls tosendfile, controlling con-
tention for shared resources (e.g., locks), ensuring utiliza-
tion of processor affinities and partitioning, and supporting a
large number of simultaneous connections. We have demon-
strated that both non-shared-memory (N-copy) and shared-
memory servers can offer competitive performance. The ad-
vantage of sharing data is a smaller memory footprint, but
the trade off is increased overheads due to contention. Any
server architecture with shared data must control these over-
heads, otherwise they become a bottleneck. However, as In-
ternet services continue to evolve and become more com-
plex, web servers need to support complex secondary fea-
tures (e.g., service throttling), which is more easily accom-
plished with direct access to shared state.

The current hardware trend is SMPs with increased core
counts and 10 GB Ethernet NICs. Based on recent papers [7,
11], partitioning and affinities continue to be necessary for
high-performance (e.g., partitioning multiple queues on 10
GB network cards). Scaling to a large number of cores re-
quires a large number of threads, which introduces a tradeoff
between data-duplication and contention. Based on our ex-
periments, a small increase in data duplication can mitigate
contention and reduce inter-CPU communication, e.g., for
our N-copy WatPipe experiments, data-duplication is rela-
tive to the number of cores so contention is isolated to the
threads on a core. This approach can be extended by ex-
panding data-sharing to all the cores on a CPU to reduce the
amount of duplication, which could lead to an increase in
throughput when there is memory pressure. However, with
the high throughputs obtained using small core counts in this
paper, we do not believe large SMPs will be used for a single
web server. It is more likely many web servers will be run on
a single SMP with high core counts possibly within virtual
machines. In such an environment, we believe the ability to
restrict web servers to execute on a subset of cores and NICs,
and to provide effective partitioning is even more important.

12. Acknowledgments
Funding for this project was provided by NSERC Canada.

References
[1] V. Anand and B. Hartner. TCPIP network stack performance

in Linux kernel 2.4 and 2.5. InProc. of the 4th Ottawa Linux

Symp., June 2002.

[2] Apache Software Foundation. The Apache web server.
http://httpd.apache.org.

[3] G. Banga and P. Druschel. Measuring the capacity of a web
server. InProc. of the USENIX Symp. on Internet Technologies
and Systems. USENIX Association, 1997.

[4] P. Barford and M. Crovella. Generating representative web
workloads for network and server performance evaluation. In
Proc. of ACM SIGMETRICS 1998, Madison, Wis., 1998.

[5] D. Beaver, S. Kumar, H. Li, J. Sobel, and P. Vajgel. Finding a
needle in Haystack: Facebook’s photo storage. InOperating
System Design and Implementation, 2010.

[6] A. C. Begen, T. Akgul, and M. Baugher. Watching video
over the web: Part 1: Streaming protocols.IEEE Internet
Computing, 15(2):54–63, 2011. ISSN 1089-7801.

[7] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M.F.
Kaashoek, R. Morris, and N. Zeldovich. An analysis of linux
scalability to many cores. InProc. of the 9th USENIX Symp.
on Operating Sys. Design and Impl., pages 1–16, Oct. 2010.

[8] T. Brecht, G. J. Janakiraman, B. Lynn, V. Saletore, and
Y. Turner. Evaluating network processing efficiency with pro-
cessor partitioning and asynchronous I/O. InEuroSys’06,
pages 265–278, April 2006.

[9] B. Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, and M.D.
Corner. Flux: A language for programming high-performance
servers. InProc. of the USENIX Annual Tech. Conf., pages
129–142, 2006.

[10] G. S. Choi, J.-H. Kim, D. Ersoz, and C. R. Das. A multi-
threaded pipelined web server architecture for SMP/SoC ma-
chines. InProc. of the 14th international conf. on World Wide
Web, pages 730–739, 2005.

[11] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, and S. Ratnasamy. Route-
bricks: exploiting parallelism to scale software routers.In
Proc. of the 22nd ACM Symp. on Operating Systems Princi-
ples, pages 15–28, 2010.

[12] Facebook. Open compute project. http://opencompute.org/-
specs.

[13] A. Foong, J. Fung, and D. Newell. An in-depth analysis ofthe
impact of processor affinity on network performance. InProc
12th IEEE International Conference on Networks, volume 1,
pages 244–250, Nov. 2004.

[14] A. S. Harji. Performance Comparison of Uniprocessor and
Multiprocessor Web Server Architectures. PhD thesis, Uni-
versity of Waterloo, 2010. http://uwspace.uwaterloo.ca/-
bitstream/10012/5040/1/Harjithesis.pdf.

[15] A. S. Harji, P. A. Buhr, and T. Brecht. Our troubles with linux
and why you should care. In2nd ACM SIGOPS Asia-Pacific
Workshop on Systems (APSys 2011), July 2011.

[16] P. Joubert, R. King, R. Neves, M. Russinovich, and J. Tracey.
High-performance memory-based Web servers: Kernel and
user-space performance. InProc. of the USENIX Annual Tech.
Conf., pages 175–188, 2001.

[17] Jupiter Research. Retail website performance: Con-
sumer reaction to a poor online shopping experience.

http://www.akamai.com/4seconds, 2006.

[18] M. Krohn. Building secure high-performance web services
with OKWS. In Proc. of the USENIX Annual Tech. Conf.
USENIX, 2004.

[19] Microsoft. Microsoft reveals its specialty servers, racks.
http://www.datacenterknowledge.com/archives/2011/04/25/-
microsoft-reveals-its-specialty-servers-racks.

[20] D. Mosberger and T. Jin. httperf tool for measuring web server
performance.ACM SIGMETRICS, 26(3):31–37, 1998.

[21] Netcraft. Oct. 2011 Web Server Survey, 2011. http://news.-
netcraft.com/archives/2011/10/06/october-2011-web-server--
survey.html.

[22] J. Nielsen.Designing Web Usability. New Riders, 2000.

[23] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient
and portable Web server. InProc. of the USENIX Annual Tech.
Conf., 1999.

[24] D. Pariag, T. Brecht, A. Harji, P. Buhr, and A. Shukla. Com-
paring the performance of web server architectures. InProc.
of the 2nd ACM EuroSys Conf. on Computer Systems, pages
231–243, March 2007. ISBN 978-1-59593-636-3.

[25] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open
versus closed: A cautionary tale. InNetwork System Design
and Implementation, 2006. http://www.usenix.org/events/-
nsdi06/tech/schroeder.html.

[26] X. Song. Personal communication, 2011.

[27] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang. A case
for scaling applications to many-core with OS clustering. In
EuroSys Conf. on Computer Systems, 2011.

[28] G. Upadhyaya, V. S. Pai, and S. P. Midkiff. Expressing and
exploiting concurrency in networked applications with Aspen.
In Proc. of the 12th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, pages 13–23, 2007.

[29] B. Veal and A. Foong. Performance scalability of a multi-
core web server. InProc. of the 3rd ACM/IEEE Symp. on
Architecture for Networking and Communications Systems,
pages 57–66. ACM, 2007.

[30] VMware. Consolidating web applications using VMware in-
frastructure. http://www.vmware.com/files/pdf/consolidating-
webappsvi3 wp.pdf.

[31] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: Scalable threads for Internet services.
In Proc. of the 19th ACM Symp. on Operating Systems Prin-
ciples, pages 268–281, 2003.

[32] I. Voras and M.Žagar. Characteristics of multithreading
models for high-performance IO driven network applications.
In AFRICON, 2009. AFRICON ’09., pages 1–6, Sept. 2009.

[33] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture
for well-conditioned, scalable Internet services. InProc. of
the 18th ACM Symp. on Operating Systems Principles, pages
230–243. ACM Press, 2001.

[34] N. Zeldovich, A. Yip, F. Dabek, R. T. Morris, D. Mazières,
and F. Kaashoek. Multiprocessor support for event-driven
programs. InProc. of the USENIX Annual Tech. Conf., pages
239–252, June 2003.

