Methodologies for Generating HTTP Streaming Video Workloads
to Evaluate Web Server Performance

Jim Summers,  Tim Brecht Derek Eager Bernard Wong
University of Waterloo University of Saskatchewan University of Waterloo
jasummer,brecht@cs.uwaterloo.ca eager@cs.usask.ca bernard@cs.uwaterloo.ca
Abstract Transport Protocol (RTP) and Real-Time Streaming Proto-

Recent increases in live and on-demand video streaming€®! (RTSP), in favour of having simple clients that request
have dramatically changed the Internet landscape. In North chUnks (a few seconds of video) via HTTP over TCP/IP from
America, Netflix alone accounts for 28% of all and 33% Standard, stateless web servers. This technique is beguly us
of peak downstream Internet traffic on fixed access links, Y APPle, Adobe, Akamai, Netflix, Microsoft, and many
with further rapid growth expected [26]. This increase in °thers [5]. The switch to HTTP fundamentally changes the
streaming traffic coincides with the steady adoption of HTTP "0l€ Of & streaming video server; rather than have servers
for use in video streaming. Many streaming video providers, pushthe data tp the clients, the clients insteadl data from
such as Apple, Adobe, Akamai, Netflix and Microsoft, now tNe Servers using HTTP requests. _

use HTTP to stream content [5]. Therefore, it is criticattha ~ 1he dominance of HTTP stems from the following ad-

we understand the impact of this emerging workload on web Vantages: HTTP is simple and stateless; it can easily saver
servers. Unlike other web content, a recent study [13] of firewalls (since it uses TCP); and it can leverage the exjstin

streaming video shows that even small infrequent latency ubiquitous. inf.rasFructure such as web servers, cach.es', and
spikes, manifested as buffering related pauses, can resulcontent Distribution Networks (CDN). WE_’ refer to this in-
in shorter viewing times especially during live broadcasts [Tastructure as the HTTP ecosystem. In spite of these advan-
Unfortunately, no appropriate benchmarks exist to evaluat '129€s, there are performance uncertainties in using HTTP fo
web servers under HTTP video streaming workloads. video strean"_nng due to the lack of video §tream|ng bench-
In this paper, we devise tools and methodologies for gen- rna(ks tar.getlng the HTTP ecosystem. While we believe that
erating workloads and benchmarks for video streaming Sys_lt will be important to develop and.use'benchmarks for all
tems. We describe the difficulties encountered in trying to 2SPECts of the HTTP ecosystem, in this paper we start by
utilize existing workload characterization studies, vate ~ [0CUSIng on web servers, as they are the most central and

the need for workloads, and create example benchmarks. WePerformance critical component in the ecosystem.

use these benchmarks to examine the performance of three 1hiS Work was motivated by the absence of existing
existing web servers\pache, ngi nx, anduser ver ). We benchmarks that can be used to evaluate new techniques for

find that simple modifications toser ver provide promis-  IMProving web server performance under video streaming

ing and significant benefits on some representative strgamin Workloads. While many of the techniques we were consider-

workloads. While these results warrant additional investig N9 Were effective on micro-benchmarks, the lack of exgstin
tion, they demonstrate the need for and value of HTTP video P€nchmarks prevented us from conducting meaningful com-
streaming benchmarks in web server development. parisons with other servers and from understanding whether

or not the benefits existed under representative workloads.
1. Introduction Our goal in this paper is to take the necessary first steps
' to develop tools and methodologies for generating and run-

Many modern video streaming services have eschewed theﬂing benchmarks for modern HTTP-based streaming video
previously dominant streaming protocols, such as Rea-tim  seryices. Our contributions in this paper are:

e We develop tools and methodologies to create video
streaming benchmarks that can be used to evaluate the per-

Permission to make digital or hard copies of all or part of this work for personal formance of web servers. We describe our modifications
classroom use is granted without fee provided that copies are not made otksgtrib tohtt per f [22]’ a genera| benchmarking tool, to gener-
for profit or commercial advantage and that copies bear this notice and thedtibiit . . .

on the first page. To copy otherwise, to republish, to post on servers oristrimete ate tl‘affIC acco.rdlng to our workloads and ensqre qua“ty
to lists, requires prior specific permission and/or a fee. of service requirements are met. We also describe how we
SYSTOR'12, June 4-6, 2012, Haifa, Israel. usedurmmynet [24] to simulate the variety of connec-
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tions common today, including home broadband connec- ht t per f [22], an existing HTTP traffic generator; this ap-
tions and low-bandwidth high-delay wireless networks.  proach is shared by several other benchmarks [6, 21].

e We incorporate results from several papers on workload There are many sources of real-world video informa-
characterization of modern Internet video services in our tion available for use in workload generation. These inelud
workload generator. This ensures that our generated work-papers describing workload generators, which typically in
loads and benchmarks exercise web servers in the same&lude measurements as sources for their workload distribu-
manner as users would in a real deployment. tions, but the major source of information is papers that fo-

e We examine the performance of three web servers Cuson characterizing measured video traffic. Many differen
(Apache, ngi nx, anduserver). We find that rela- types of videos and delivery systems have been studied: user
tively simple modifications taiser ver can provide sig-  generated video sites like YouTube [1, 10, 11, 15, 16, 34]
nificant benefits for some video streaming workloads but and Yahoo! video [19], video on demand sites [32], and
are ineffectual for others. These results motivate the needcorporate video websites [31]. All of these papers measure
for further studies using a variety of realistic video stnea  and characterize the important video properties, sucheas th

ing workloads to ensure web servers are prepared for cur-popularity distribution, duration, bitrate and size infa-
rent and future video Streaming demands. tion. Although itis possible to do useful analysis with onIy

video information, like estimating the effectiveness abpr

2. Background and Related Work cach!ng [1] cqmpared to server patching [18] or peer-ta-pee

o caching [34], it is also necessary to understand and model
Existing web server workloads and benchmarks, such asclient behaviour to construct a representative benchmark.
SPECweb2009 [29], reflect traffic characteristics that were A realistic benchmark must therefore accurately model
prevalent in the past and differ significantly from HTTP client network behaviour such as bandwidth and latency.
video traffic. Web server research has concentrated on serv-There has been a significant amount of work in measuring
ing requests for items that are primarily small and exhibit and modeling client behaviour [15, 16, 31, 32]. For our work,
lots of locality [7, 8, 23, 27, 28]. In contrast, video file®ar we primarily utilize measurements from [15]; these mea-
large and, while there is some locality, there is a long tail surements include detailed information about client strea
of content that is viewed only a small number of times [16]. ing sessions and were obtained recently, which is critizal t

Although the existing HTTP ecosystem can service videos our focus on current and future video streaming workloads.
and other large files, users often experience significant de-

lays while waiting for video data to be delivered. This is es-
pecially apparent when watching high-quality video. A re- 3, Objectives
cent study [13] shows that even occasional pauses lead t
shorter video viewing times, especially during live events
Also, clients rarely watch an entire video, typically tenai-
ing a connection before reaching the end; 60% of YouTube
videos are watched for less than 20% of their duration [14].
Previous work has also largely ignored the growing
number of devices accessing Internet services over low-
bandwidth, high-delay networks. Instead experiments are

conducted in laboratories using high-speed (gigabit)lloca In addition to our overarching objectives, there are three

area networks [7, 23, 27, 28]. Itis therefore essentialvleat o S
) specific goals for our web server benchmark. First, it should
develop benchmarks for HTTP-based video servers that can .
generate web server loads that are representative of what

be used in laboratory settings but emulate the wide variety . : .
. . ) we would measure at HTTP streaming video web servers in
of devices and networks used to view video content.
real deployments. Second, the benchmark should measure

Existing video workload generators are unsuitable for our .
. the long-term performance of web servers by running for a

purposes because they generate workloads for analysis and ... . . ) . :
sufficient length of time, and by isolating and removing the

simulation rather than for creating traffic to exercise a web ; . ) .
effects of starting and stopping experiments. Lastly,esime

server [1, 18, 31, 34]. Although these workloads could be - ) .
. LT anticipate using benchmarks to test a variety of web servers
used as part of a benchmark [18], it would require significant . . . . : ; )
. : including different design and implementation alternediv
re-engineering of the workload generators.

we ensure that each experiment does not run for too long,
General-purpose workload generators [4, 9, 12] can be . ; .
otherwise the benchmark is unlikely to be used.
used to benchmark HTTP-based systems but these genera- )
Our methodology for generating a workload and bench-

tors have not been configured to produce HTTP streaming N . i

. mark is divided into separate phases:
video. In order to use one of these generators, we would
have to implement a new client module, and such exten- 1. Specify a workload: This requires characterizing a work-
sions are non-trivial to implement. Therefore, we instesal u load by understanding what are believed to be the im-

our primary objectives for this paper are to devise flexible
tools and methodologies for constructing HTTP streaming
video workloads that can be used to examine, understand,
compare and improve the performance of web servers. Al-
though the work in this paper is focused on web server per-
formance, our long term goal is to also be able to evaluate
proxy caches, CDNs, and possible protocol improvements
or modifications.



portant observations and parameters (including distribu-  paper we follow the latter approach, but our tools are ca-
tions) required to sufficiently characterize a workload. pable of generating workloads that use range requests.

2. Construct a workload: Using the workload specifica- e We assume that HTTP requests related to searching and
tion and a workload constructor we create log files  browsing for videos occur on a separate machine. This is
(wsessl ogs) that are used byt t perf to generate how large video systems are designed in practice [15, 32]
the desired load. and it simplifies the benchmark.

3. Set up the experiment: This phase includes setting up thee We want to be able to implement clients that use HTTP
networking, client, and server environments. This also  adaptive streaming. It would require a specialized client
includes populating the server with files and setting up  application to truly adapt to real-time network conditipns
dunmynet on all of the client machines to mimic the but we can simulate rate adaptation witht per f by
desired mix of networks. These steps are performed using generating session logs that switch between videos with
information from the workload specification. different encodings at predetermined times.

4. Run the benchmark: The final phase is to execute the
benchmark and collect the performance data.

Figure 1 illustrates these different phases. It is impdrtan o
to note that, in this paper, we generate workloads based ond. Workload Specification
the information we have obtained from several different pPa- QOur goa| in designing benchmark workloads is to accu-
pers that characterize YouTube video requests. If addition rately model the request traffic of real web servers stregmin
information for YouTube requeStS or a characterization of videos to clients. However, satisfying this goa| is not suffi
video requests for a different service becomes availatge, W cient to ensure benchmark results that are representdtive o
believe that our methodology will permit one to easily ceeat \eb server performance in real deployments. In real deploy-

a new workload. ments, the server hardware is provisioned to match thelactua

workload; we instead generate a workload based on the ca-

Workload ’ pabilities of the server hardware, such as available memory
specification File set File set Generating too few or many videos will result in unrealisti-

constructor Server cally high or low disk cache hit rates respectively; this Vdou

C(;’X;’trr'a'g%‘: _ significantly skew the performance results and could lead to
Switch ‘ incorrect conclusions when comparing different designs.
Log files | There are also a number of pragmatic secondary goals
httpert %[ dummynet | | dummynet | that affect how we design our workloads. For example, al-
wsesslogs /" ntiperf-_/ httperf though most workloads model current traffic patterns, work-
= ] > 000 loads that are reconfigurable can be used to model antici-

pated demands and traffic parameters; this can be extremely
useful in planning and forecasting future design require-
ments. We expect that many user-behaviour related parame-
From our survey of existing workload characterization ters, such as parameters concerning viewing habits, will no
papers, we discovered a number of common issues in serv-Change 5|_gn|f|cgntly. Howev_er, future values for paransster
ing HTTP video that we want to capture in our benchmark S.UCh as video _b|trate and client c’lownstream bandW|d_th wil
design. I|I§ely be very dlf_ferent than today’s values. _T_hereforedm
signing a reconfigurable workload, we explicitly separhee t
e Videos are not always watched to the end, and we want to highly variable parameters, which enables us to quickly ex-
capture that behaviour. This is done by generating client periment with different workload configurations.
sessions that ask for an appropriate fraction of a video. In addition to reconfigurability, another workload design
e Because we expect that many video workloads will be goal is reducing benchmark runtime. Short benchmarks pro-
disk intensive, we felt that it would be beneficial to evalu- vide rapid feedback that is useful for both web server de-
ate different disk placement issues without having to gen- velopment and configuration tuning. This led us to design
erate a different set of files (which would not be amenable workloads with sessions that are as short as possible withou
to a fair comparison). We create a generic set of fixed- sacrificing their ability to characterize the steady-sfzte
length files on the server, which can later be assigned toformance of the web servers. For example, we found that in
different videos to examine disk placement issues. our experimental setup, workloads with 7200 sessions en-
e Some services use HTTP range requests to ask for a specsure that the web server performance reaches steady-state.
ified portion of a single video file. Other services divide In the following sections, we describe in detail the design
the video into chunks that are stored in separate files andof one example video streaming workload suitable for our
use HTTP GET requests to obtain the desired file. In this experiment environment.

Client 1 Client 2
Figure 1. Overview of the methodology




4.1 Video Characteristics

1
Our video and session characteristics and distributioas ar 0.9
drawn from [15]. This paper provides low-level details abou 0-? pd
client sessions by measuring traffic at the edge, and isare- g /
cent source for information regarding YouTube video char- "8" 0.5 //
acteristics and download mechanisms. 0.4 4

There is much debate in the literature about the shape of 8'2
a YouTube video popularity distribution. Some find a close 01

fit with a Zipf distribution [16]. Others find that Gamma or 0 :
; Catrib i - i 10 100 1000

Weibull dlstrlbutlc_)ns f|t more closely [11]. Fo_r this work- Duration (seconds)

load, we use a Zipf distribution because previous work that - - :

measures over a short timeframe, similar to our target bench Figure 2. Duration of videos

mark environment, finds that measurements follow a Zipf

distribution. In contrast, measurements that sample over ayit rates ysed for YouTube videos, as observed by [15], with
longer period of time or rely on extracting viewing informa- 5, 5verage rate of 394 Kbps [16]. It simplifies our workload

tion from the YouTube database tend to have non-Zipf-like ganarator if we represent video chunks with a fixed size and
distributions. There is a discussion of these issues in [10]  fiyqq duration, so we assume a fixed bitrate for all videos. We

The Zipf distribution requires two parameters; we Chose o,oqe 4 hitrate of 419 Kbps, which represents 10 seconds of
an alpha value of 0.8 and a video population of 10000. The \;4aq using 0.5 MB of data.

number of videos was based partly on the capacity of the  \ye expect that bitrates will change in the future, as more
hard drive in our server, which can hold 10000 videos with high resolution video is produced and viewed. We may also
the average video size of 13 MB. The video library size |yt the decision to use a constant bitrate, if servees ar
was also chosen to suit our experiment length of 7200 video ¢, g to be sensitive to variable bitrate videos. Variable
sessions. This choice of parameters results in about 35% Of i ~tes could be simulated by either modifying the log files
requests being serviced from the cache for our experiments.qq that fixed-size chunks represent different time spans, or

_An equally important parameter to the popularity dis- py magifying the file set so that different size chunks are
tribution is the duration distribution of the video library  coq o represent fixed time spans.

YouTube video durations have a complicated distribution;

for example there are peaks at 200 seconds, the typicalg.2 Session Characteristics
length of music videos, and at 10 minutes, a limit that
YouTube imposes on video length. Some authors specify the
duration algorithmically as an aggregation of normal distr
butions [11]. We use a CDF to represent the distribution of
video durations rather than an analytical formula, becaus
the distribution is likely to be irregular for any video ldmy.
Figure 2 shows the duration distribution used for this work-
load; it is based on data found in [15].

From this distribution, we assign a duration to each video
without accounting for the video popularity. Although pre-
vious work [1] has suggested a weak correlation between
popularity and duration, we have found no measurements to
quantify such a correlation and have therefore omitted it in
this workload. An additional concern with assigning dura-
tions is that the most popular videos make up a large pro- 09
portion of the workload, so the durations assigned to these (5
videos has a large effect on the proportion of sessions that 0.7
can be serviced from the cache. We assign the median videow. 0.6 4
duration to the two most popular videos because we believe o 8'2
this produces a more representative workload that is less se 03 —
sitive to the choice of a random seed for the generator. This 0.2
parameter can be configured to assign different fixed values, 01 -
or to simply use randomly-assigned durations for all videos 0 0 01 02 03 04 05 06 07 08 09 1

The final video characteristic we assign is the video bit Fraction of Bytes

rate. There are many different video encodings and variable Figure 3. Fraction of bytes downloaded during session

Our benchmark workload must, in addition to determining
the characteristics of the videos, also specify how much
of each video is downloaded by the clients. From previous
estudies, we know that most clients do not watch to the end

of the videos. However, we can not accurately determine
the amount of data that is downloaded using the session
length alone because clients buffer data to compensate for
variations in download speeds. There is one study [15] that
provides the number of bytes downloaded in a session as a
fraction of the video size, which we can use to determine
session lengths accurately. Figure 3 shows the curve we use
to determine what fraction of a video is downloaded.




Again, we choose a session fraction independently of using any protocol. Once we create an experimental envi-
video properties such as length or popularity even though ronment, then we have a target for a concrete implementa-
there might be a weak correlation. For example, with the tion of the abstract session specification that is specificeo

Video on Demand system studied in [32], sessions last test equipment.

longer for unpopular videos than popular videos, and this

property might hold for YouTube videos as well. However, | Parameter Description | Valueused | Source|
we believe that this is a reasonable simplification for this [ Video Popularity Dist. Zipf « = 0.8 [1]
workload. Video Count 10000

The final session characteristic is the session initiation | Video Duration Dist. See Figure 2 [15]
rate. Rather than assign a particular value, we instead vary| Video Bit rate 419 kbps [16]
the average session initiation rate in order to determirie we | Session Length Dist. See Figure 3 [15]
server performance limits. There is no consensus on the| Session Arrival Process | Poisson [18, 19]
inter-arrival time distribution in previous measurements Session Count 7200
ies. We chose to make inter-arrival times exponentially dis | Session Chunk Timeout | 10 seconds [5]
tributed (session arrivals occur according to a Poisson pro [ Client Network Bandwidth| See Table 1 [2]
cess), as other simple distributions, such as uniform\ae e Client Network Delay 50 ms, one way
less realistic and can cause significant artifacts in thelben Client Request Size (MB)| 0.5 and 2.0
mark results. Client Request Pacing Yes
4.3 Client Network Characteristics Client Adaptation None [15]

) . .| Server Storage Method Chunked

Table 1 shows the access speeds we use for our clients in thi$ genver Chunk Size (Time)| 10sand 40 s
workload. This data represents the access speeds of client server chunk Size (MB) | 0.5and 2.0
computers in the United States to Akamai servers, as re-| gerver Chunk Sequence | By Session
ported in [2]. We disregard the low speed clients because| gerver Video Placement | Random
their connections are not suitable for viewing video and be- | gapyer Warming Size 3500 chunks
cause they represent an insignificant fraction of the tB. Server Ramp-Up 200 sessions
cause there is no detailed information about the distidouti Server Ramp-Down 100 sessions

of access speeds, we represent each of three relevant cate=
gories with a single rate. These assigned rates are based on
average access speed measured by Akamai.

Table 2. Summary of workload specification

Some HTTP video providers, like YouTube, implement

Category| Akamai Akamai | Rates| Share application flow control on the servers to limit the download

Rates Share| Mbps rate of videos [3, 15]. This is primarily a mechanism to min-
High Above 5 Mbps 42.0% | 100 42% imize wasted bandwidth when a client does not watch to the
Bband 2 — 5 Mbps 38.0% 35| 42% end of a video. This mechanism is not widely used by other
Medium | 0.5 — 2 Mbps 18.2% 1.0 17% streaming services and, even for YouTube, it is disabled for
Low Below 0.5 Mbps|  1.8% - 0% mobile clients with sporadic network connectivity.

Our workload generator uses a more generic approach
to HTTP video streaming based on a representative HTTP
video streaming platform, Apple’s HTTP Live Stream-
ing [5]. With this platform, videos are segmented into
chunks, and the clients download the chunks at a limited
rate using a technique call@acing The clients first down-
'load chunks at full speed until a video buffer is filled, then
request subsequent video chunks only when needed to refill
the buffer, thus using less bandwidth than requesting chunk
at full network rates. Not all HTTP video platforms use pac-
ing, but it is a technique that enables true streaming video
. using any web server.

5. Workload Generation Tﬁereyare two ways to implement client chunking; the
Table 2 provides a summary of the parameters we used toclients can use HTTP range requests to download chunks
construct the sample workloads for this paper. We give a de-from a single video file, or the videos can be divided into
scription of each parameter, its value or distribution, #red chunks and stored in separate files that are requested by
source of the measurement. This table is an abstract specthe clients. Our primary workload uses file-based chunking,
ification, as it could describe video sessions in any setting with all videos divided into 10 second chunks and stored

Table 1. Client access speeds

We also model network delays between the clients and
the server. We do not have information regarding the net-
work delay for YouTube users, so we simply assign a con-
stant delay of 50 ms on both the forward and reverse paths
which is the approximate time to transmit from coast-to-
coast in North America. Delays for mobile clients can be
much larger; this may require that we revisit this design de-
cision in the future.



in separate 0.5 MB files. This chunk size is the same as of approximately 600 Mbps of throughput, or 7200 Mbps
used by Apple’s Live Streaming. We also create a secondaryaggregate bandwidth over all clients.
workload that uses a significantly larger 2.0 MB chunk size ~ We approximate the specification in Table 1 by config-
that we use only in Section 8. uring dummynet to allow 10 Mbps bandwidth on 5 of the
clients, 3.5 Mbps on 5 of the clients, and 1 Mbps on the re-
maining two clients. Statistics are collected separatety f
Any web server is capable of servicing the requests made byeach client, so this configuration makes it easy to generate
theht t per f clients, which are simple static file requests. statistics for individual rates. We uskinmynet to delay
Files that represent the video chunks must be created both incoming and outgoing packets by 50 ms to simulate
priori in the server’s file system. To accomplish this, we network latencies and tuned the client and server TCP pa-
simply create many thousands of chunk-size files in the samerameters to handle the larger bandwidth-delay produat-intr
directory, in numerical order, starting from a newly-inketd duced by the delay.
file system. However, the results of this procedure are not Our workload generator creates a trace file (called a
repeatable, even starting from a newly created file system,wsessl og) for each client host that specifies a sequence
so we have little control over file placement. For this reason of HTTP requests for entire files or ranges within files.
we create our file sets only once, so we can compare theAn instance ofht t per f running on each host uses the
results of different experiments. wsessl og file to issue HTTP requests to the web server.
Each video in the specification is assigned a consecutive Figure 5 shows a small example ofngessl og that con-
sequence of chunks. Sessions are represented by sequentitdins requests for several videos.
requests through as many of the chunks as necessary to equal Each video is requested in a sequence of chunks us-
the session length. We generate different workloads usinging a persistent HTTP connection called a session. Ses-
the same file set by changing the association between videossions are initiated using a Poisson process, so the duration
and specific file chunks. between session initiations is independent with a common
File chunks should be assigned to videos carefully to exponential distribution. New sessions are started inglepe
avoid bias in the results. In this paper, we assign video dently, simulating the access pattern of many concurrent
positions randomly, but in the future we intend to experitmen video viewers. Normallyht t per f requests the next chunk
with different file placement strategies. in a session as soon as the previous chunk is completely re-
Figure 4 shows the distribution of session lengths in the ceived, but if a pacing delay is specified, a request will not
abstract specification, compared to the results when sessio be sent until the specified pacing time has elapsed from the
are rounded up to the next multiple of the 0.5 MB chunks start of the previous request. This is used to emulate video
size. The minimum session length we can represent in aplayer buffering and/or users pausing a video.
workload is 10 seconds. This artifact has little impact be- We also specify a timeout for each request in the
cause the exact lengths of short sessions do not have muchvsessl| og file, and if the request is not completely serviced

5.1 Server Configuration

impact on the results. before the timeout elapseft perf terminates the ses-
sion. This loosely approximates a user becoming unsatisfied
1 — , with the response or video quality and ending the session.
target 3?5?%0&'32%"‘ """"" e We use the failure count as a primary indication of whether
0.8 ;‘ the web server is overloaded. The throughput figures are also
L 06 ,r/ affected by timeouts because only completed requests-are in
fa) / cluded in our throughput measurements.
© 04 gL For our primary workload, we generatsessl og files
02 / with 10 second timeouts for each chunk. The first 3 chunks
: e of each session are requested without pacing delays, gimula
e ing the filling of a buffer; and subsequent chunks are paced
1 10 100 1000 so they are requested at a rate of one chunk every 10 seconds.

Session Time (seconds . .. .
( ) Table 3 contains summary statistics that characterize our

Figure 4. Using chunks to represent session lengths  two workloads. Both are constructed using the specification
in Table 2 and differ only in the chunk size. The first four

values in Table 3 refer to statistics derived solely from the
abstract specification, and so are the same for both work-

Our experiments utilize 12 client hosts to generate hun- |oads. The remaining values differ because session lengths
dreds of concurrent video sessions. Each client host is onare rounded up to a multiple of the chunk size.

its own gigabit subnet and we uskinmynet to impose
bandwidth limits and add delay to each session. Overhead
from dummynet limits each client computer to a maximum

5.2 Client Configuration



# Session 1: 4 chunks with pacing

vi d01/ secs-0-9 tinmeout =10

vi d01/ secs-10- 19 ti meout =10

vi d01/ secs-20-29 timeout =10 paci ng=10
vi d01/ secs-30-39 timeout=10 paci ng=10

# Session 2: 3 chunks range requests
vi d02 range=0-524287 ti neout =10

vi d02 range=524288-1048575 ti neout =10
vi d02 range=1048575-1572863 ti meout =10

# Session 3: 2 chunks different quality
vi d03/ hi gh/ secs-0-9 ti meout =10
vi d03/ ned/ secs-10-19 ti neout =10

# Session 4: pause/rew nd/skip forward
vi d04/ secs-0-9 tineout =10

vi d04/ secs-10-19 tinmeout =10 paci ng=60
vi d04/ secs-20-29 tineout =10

vi d04/ secs-0-9 tinmeout =10

vi d04/ secs-100-109 ti meout =10

Figure 5. Small example of aht t per f wsessl og

| Description | 0.5MB| 2.0MB |
unique videos 3366 3366
single-session videos 67.5%| 67.5%
average video duration 258.7s| 258.7s
average video size 129 MB | 12.9 MB
average session time 146.3s| 150.6s
average requests per session| 14.628 3.766
unique file chunks requested 60004 16318
total file chunks requested 105323 27188
number of chunks viewed once 44478 12293

Table 3. Characteristics of constructed workloads

6. Experimental Environment

RELEASE. The data files used in all experiments are on a
separate disk from the operating system. We intentionally
avoid using Linux on the server because of serious perfor-
mance bugs involving the cache algorithm, previously dis-
covered when using sendfile [17].

On the clients, we use a version lof t per f [22] that
was locally modified to support new featuresmsfessl og
and to track statistics on every requested chunk. We use
dumynet [24], which comes with Ubuntu, to emulate
different types of networks.

We use a number of different web servers. Most experi-
ments use version 0.8.0 aker ver, which has been pre-
viously shown to perform well [8, 23] and is easy for us
to modify. We also usé\pache version 2.2.21 and ver-
sion 1.0.9 ofngi nx. The default configuration parameters
for Apache are not well suited to servicing video. It closes
persistent client connections if a new request isn't reszgiv
within 5 seconds of the previous request and also after 100
requests have been received. We modified these and other
configuration parameters Apache and similar parameters
in the other servers to obtain the best performance.

7. Running Experiments

For our experiments, we measure the aggregate throughput
of the server when servicing workloads at a series of dif-
ferent rates. We use the measurements to produce graphs,
such as Figure 7, that show the aggregate throughput in MB/s
from requests that were completely serviced prior to tinheou
When the server is not overloaded, we expect the throughput
to be equal to the chunk rate multiplied by the chunk size.

The methodology for running experiments and collecting
measurements has a significant effect on the results. We
explain how we ensure that experiments reach steady-state
in a reasonable amount of time, demonstrate the importance
of usingdummynet to simulate client networks, and discuss
the execution time and repeatability of our experiments.

7.1 Steady-state Behaviour

The equipment and environment we use to conduct our ex-We include in our measurements only those sessions that
periments were selected to ensure that network and procesare serviced completely while the web server is operating
sor resources are not a limiting factor in the experiments. W at a steady-state; i.e., when the rate of session initigtion
use 12 client machines and one server. All client machinesis equal to the rate of session completions. At the start
run Ubuntu 10.04.2 LTS with a Linux 2.6.32-30 kernel. All of an experiment, the rate of session completions is very
systems have had the number of open file descriptors permit-low because the paced sessions in our workload last an
ted per user increased to 65535. Eight clients have dual 2.4average of 146 seconds. Because of this, we don't start to
GHz Xeon processors and the other four have dual 2.8 GHzmeasure sessions for a ramp-up period. Similarly, when we
Xeon processors. All clients have 1 GB of memory and four stop initiating new sessions at the end of the experiment, an
Intel 1 Gbps NICs. The clients are connected to the serversessions that are still active should not be included in the
with multiple 1 Gbps switches each containing 24 ports. measurement because the server is no longer at steady state.
The server machine is an HP DL380 G5 with two Intel We apply a ramp-down period at the end to account for this,
E5400 2.8 GHz processors that each include 4 cores. Theand we do not count sessions that are initiated too close to
system contains 8 GB of RAM, three 146 GB 10,000 RPM the end of the experiment.
2.5 inch SAS disks and three Intel Pro/1000 network cards  An additional consideration at the start of an experiment
with four 1 Gbps ports each. The server runs FreeBSD 8.0-is the state of the cache. For repeatable results, we must



ensure that the cache is in the same state at the beginning 00.5 MB chunks. The clients do not use pacing because
every experiment. It is most practical to start with an empty with a single connection configuration, the server through-
cache, but a web server will not reach full performance until put will be bounded by the pacing rate. The first experiment
the cache is full, which can take considerable time. does not uselumrynet (unthrottled and the second uses
Figure 6 is an example of the curve we use to evaluate thedummynet to model different client networkgHrottled).
progress of an experiment. This curve shows the length of Figure 7 shows the results of these two experiments. As
time it takes for each individual chunk to be serviced, in the can be seen by the two lines labelauthrottled the perfor-
order they are requested over the course of an experimentmance of the two vastly different configurations are quite
The response time is longer when the server is overloaded,close. However, the two lines labeledrottled show that
as illustrated by theno warmingcurve in Figure 6. The the performance of these two configurations are dramati-
other curves in the figure show the results when the cache iscally different when using representative client networks
prewarmed with the most popular chunks before the start of The strong performance of the single connection unthibttle
the experiment, which can shorten the ramp-up time before case is a result of the data being sent unrealistically fzest o
session measurements can begin. the 1 Gbps network. This demonstrates the importance of
simulating different client network speeds for this worddio
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We modifiedht t per f to recognize ramp-up and ramp- ~ Figure 7. Usingdummynet to model client networks
down periods. Each instance bf t perf processes 600
sessions in our workload and we use a ramp-up period of ] -
200 sessions and a ramp-down period of 100 sessions. The/-3  Duration and Repeatability
average session consists of about 16 requests, so these p@ne of our stated goals was to produce a benchmark that
riods correspond to 3200 requests at the beginning of thecompletes in a reasonable amount of time. We believe that
experiment and 1600 requests at the end. the execution times are sufficiently long to reach a steady

We use a script to start the clients and server, and to startstate yet not so long to prohibit their use. For the graphs in
the tools we use to monitor the progress of the benchmark.this paper, an experiment for one data point lasts 30 — 65
vnst at is used to monitor CPU utilizatiom.ost at mon- minutes (depending on the target request rate) with about 5
itors disk usage which includes bandwidth, transactioe,siz hours needed to generate one line on a graph (e.g., Figure 7).
transaction times, queue lengths, and fraction of time the  The length of the experiments and the exclusion of ramp-
disk is busy. At the end of an experiment, our script com- up and ramp-down phases when gathering performance met-
bines the most important information froht t per f , the rics helps in obtaining repeatable results. We periodicall
server, and the monitoring tools into a single report. It par sample the throughput while the experiments are running
ticular, the total amount of data read from disk, sent by the and compute a 95% confidence interval for that sampled
server and received by the client are all recorded. throughput. For all the experiments in this paper, the 95%
) o ) confidence interval for the sampled throughput is less than 1
7.2 Bandwidth-Limited Clients MB/sec, indicating that the workloads are stable during the
dumynet allows us to simulate network characteristics measurement period.
such as available bandwidth and latency. We conduct exper- We tested the stability of the experiments by repeating
iments to demonstrate the importance of simulating repre- experiments 10 times at selected rates. This also enabled
sentative client access networks. In one case, we configureus to compute 95% confidence intervals for the failure rate
userver to use a maximum of 100 processes and 20000 percentages. Table 4 contains measured statistics for-expe
connections. In the other case, we configuser ver to iments described in Section 8. The confidence intervals for
use 1 process and 1 connection. We run two experimentsthroughput are small, particularly when there are no fagur
comparing these configurations using the workload with during the experiment. The confidence intervals for the fail

Figure 6. Cache warming techniques




ure rates are larger, but still show that the experiments areprefetching we introduced mser ver is one such strategy;

repeatable even when the server is severely overloaded.

we evaluate its performance impact by comparing the two
configurations ouser ver . We also test againgtpache

Request| Tput Mean| Tput CI Failure | Failure andngi nx, two widely-used web servers.
Rate (MB/s) | (MB/s) | Mean (%) | CI (%)
Figures 10 and 11yser ver prefetch 8.1 Effect of File System
20 39.2 0.01 0.0 0.00 One of the basic decisions when setting up a video server
40 68.4 0.09 5.7 0.13 is how to store the videos; if the HTTP video system uses
Figures 10 and 11yser ver noprefetch file-based chunking, there is a choice of the size to use for
20 33.1 0.12 141 0.95 the chunks. We created two workloads that differ only in
40 33.3 0.61 52.5 1.68 the chunk size to investigate the performance implications
Figures 8 and Quser ver noprefetch of the choice. Our results suggest that increasing the chunk
70 33.8 0.06 2.3 0.17 size can make a huge difference, and provides motivation
100 38.9 0.15 19.6 0.66 to improve how HTTP streaming video servers create and

access the files storing the videos.

Figure 8 shows the throughput of four different servers
using the 0.5 MB chunk workload. For these experiments,
we vary the target chunk rate between 40 and 100 chunks/s.
When the request rate exceeds the capacity of the server, itis
not possible to completely service all the sessions. Fiure
shows the percentage of sessions that could not be com-
pletely serviced for each target load. These results shatv th
) ) ] ] ] all four server configurations provide similar performance
~ Theuserver configurations differ in hoveendfile  Thg fajlure rates at 70 chunks/sec are lowerrfgi nx and
is used. In generagendf i | e is considered the most effi-  ,ser yer without prefetching, and the difference is larger
cient way to service static workloads from the file system s, the 959 confidence intervals, so these server configura-
cache; it avoids buffer copy overhead by transmitting the (ions are somewhat better at servicing the 0.5 MB workload.
contents to a client directly from the cache. However, we  1ape 5 shows the results from monitoring the disk per-
found thatsendf i | e is inefficient when the contents are  tomance during the experiments at 70 chunks/sec. In this
not found in the file system cachgendf i | e only fetches (516 the results fonser ver are labelechopr for the no-
enough data with each disk read to refill the socket buffer, prefetch configuration angr for the prefetch configuration.
which is sized based on the characteristics of the network ¢ average times for read transactions are lowengdmx
rather than those of the disk. Reading from disk in this way 5,quser ver noprefetch, which may explain why the per-
exposes two inefficiencies: small disk reads and additional {oymance of those servers is slightly better.
seeks when concurrently servicing multiple client regsiest

One configuration afiser ver usesendf i | e directly
and blocks when data must be read from disk. The other 45 ' ' ' ' '
leverages a feature of the FreeBSD versiorsehdfi | e gg
to avoid blocking. Rather than blockingendf i | e canin- 30
stead return immediately with an error code [25]. Upon re-

25
ceiving this error code, we use a helper thread to prefetch an 20§

Table 4. Confidence intervals for someser ver runs

8. Web Server Benchmarks

Using our example workload and methodology for conduct-
ing benchmarks, we examine the performance of three dif-
ferent open-source web servefgpiache, ngi nx and two
different configurations afiser ver .

Throughput (MB/sec)

entire chunk into the file system cache, rather than read only 15 userver noprefetch—a—
enough to fill the socket buffer. The single helper thread als 10 | userver F’Le‘ﬁt)fh_'_'_'_i'_'_j_'_'
ensures that multiple files will not be read concurrently; it Sr apgche .......... _—

O L L L
40 50 60 70 80 90

Target chunks/sec

reads only a single chunk at a time, and queues other pend-
ing reads. We refer to the configuration that uses a helper
thread aprefetchuser ver and the other configuration as
noprefetchuser ver .

Our overarching goal is to determine whether web servers
can be better implemented and tuned to service HTTP  The prefetchuser ver performs worse than two of the
streaming workloads. From preliminary investigationshwit  other servers with the 0.5 MB chunk workload because
micro-benchmarks, we found that poor disk throughput can the serialization of disk access by the web server prevents
limit web server performance. Therefore, to maximize the the kernel from scheduling disk I/O to minimize seek dis-
performance of web servers for streaming video, we must tances. In contrast, the serialization of disk access ig-ben
investigate strategies for maximizing disk performandee T  ficial for the 2.0 MB workload. Figure 10 shows the aggre-

100

Figure 8. Aggregate throughput with 0.5 MB chunk size
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Figure 9. Missed deadlines, 0.5 MB chunks Figure 11. Missed deadlines, 2.0 MB chunks

Web server | Time Per| AvgRead| Tput| Disk Web server [ Time Per| Avg Read| Tput| Disk
Read (ms)| Size (KB) | MB/s |  Util Read (ms)| Size (KB) | MB/s |  Util

userver nopr 2.935 72.9 | 24.26| 100% userver nopr 3.612 88.1[ 23.86[ 100%
userver pr 3.681 84.71 21.69| 97% userver pr 2.307 112.4| 42.65| 90%
Apache 3.115 713 ] 22.14| 99% Apache 2.247 39.3| 17.18| 100%
Nginx 2.818 71.1| 24.66| 100% Nginx 4.288 87.4 | 19.94| 100%
wc 2.292 84.0] 37.15| 91% wce 2.014 112.0| 48.79| 90%

Table 5. Disk performance, 0.5 MB chunks at 70 req/s Table 6. Disk performance, 2.0 MB chunks at 35 reqg/s

gate throughput and Figure 11 shows the session failure rat€eading our two different file sets. This examination ineslv

when the chunk size is 2.0 MB. running a simple workload experiment using, the stan-
dard Unix word count tool, to read the same file chunks that
are requested as part of the workloads. The file chunks com-
prising each video are read in sequential order, but thevgide
are visited in a random order. The results of this experiment
are labeledwc in Tables 5 and 6. The disk throughput
of user ver prefetch is only 13% lower than the perfor-

70
60
50
40

Throughput (MB/sec)

30 . )

20 userver noprefetch—a— mance ofwc with 2.0 MB chunks, but the best server disk
userver pref,etch-"i ----- throughput using 0.5MB chunks is 33% lower tham. Our

101 apache o prefetching technique makes effective use of available dis

o 1 1 1
10 15 20 25 30 35 40

Target chunks/sec

throughput when using 2.0 MB chunks, but it is not clear
whether there is a way to make better use of potential disk
performance when using 0.5 MB chunks.

Figure 10. Aggregate throughput with 2.0 MB chunk size
8.2 Effect of Pacing

The 2.0 MB workload uses the same abstract workload The video players on some devices, especially those with
specification as the 0.5 MB workload, but the results are limited memory capacity like smartphones and tablet de-
not comparable because the file sets are different and pervices, will limit the amount of video stored on the device
formance will vary because the session lengths are roundedat any point in time. This is done by first buffering a rea-
differently in the two workloads. With the 2.0 MB chunk sonable amount of data to play the video without having to
size, prefetcluser ver reaches a failure-free throughput of  rebuffer (i.e., stop video playback while waiting for viden
35 chunks/sec, 133% higher than the failure-free throughpu be delivered) and then requesting more video when buffer
of the other servers. Table 6 shows that there is much higherspace becomes available. As described previously this be-
disk throughput with prefetching, both because of a low read haviour is mimicked in our workloads by using the pacing
time, and because the average read size is large. functionality we have added tut t per f .

For these workloads, the disk is the bottleneck and de- However, video players on some devices have significant
termines the performance of the web server. Therefore, weamounts of memory and in some cases simply utilize the
complete our examination of disk performance by establish- hard drive of the system in order to store video as it arrives.
ing an approximate upper limit on disk throughput when In this case, requests for the next chunk are sent to therserve



as soon the previous reply arrives, essentially requestingperformance optimization has been to eliminate block-
chunks far in advance of when they will be played back. ing [25]. By processing many requests in parallel and with
An interesting question is whether or not such behaviour appropriate server design, the time spent waiting for an 1/0
by the clients (issuing paced versus non paced requests) afto complete for one request can be overlapped with CPU
fects the overall throughput of the server. To examine this processing for other requests. In our experiments withovide
issue we create a new workload that is identical to that usedstreaming workloads, however, the CPU load has been neg-
in Section 8.1 and used to produce the results shown in Fig-ligible. In this context, rather than processing many HTTP
ure 8, except for client pacing. We can create workloads with requests in parallel, each contending for disk accesd)dtis
specified mixes of clients issuing paced versus non paced reter to serialize disk accesses so that a large amount ofdlata i
quests, but we consider here the extreme case in which nondetched for one request, before switching to service amothe
of the clients pace their requests and are only limited by the  If each video is stored as many small files, it may be dif-
speed of the server and their network connection. ficult to achieve the same level of efficiency of disk usage
Figure 12 shows the results of this experiment. The lines as when each video is stored as a single file. Surprisingly, in
in the graph that are labelederver noprefetch nopacirnd follow-on work to this paper, we found that simply storing
userver prefetch nopaciraye results obtained using this new videos in large files does not provide significant increase in
workload where clients do not pace their requests, while the throughput for the server [30]. Benefits from large files are
other two lines are taken directly from Figure 8. It is inter- only obtained by carefully controlling disk accesses tigtou
esting to note that when the userver is prefetching there is n the web server. Furthermore, although aggressive prefetch
difference in aggregate throughput, while when the uservering will make disk accesses more efficient, memory used
is not prefetching the differences in aggregate throughput  for prefetched data is then unavailable for use for caching
significant, results that would have been difficult to prédic  of frequently-accessed video chunks. In the case of clients
priori. with low bandwidth network connections that read video
data from the server at low rates, prefetched data will need
45 , , , , , to reside in memory for a relatively long time. Prefetching
can also result in wasted work when users prematurely ter-
minate their video sessions. Given the observed low CPU
load and typical multi-core architectures, relatively qaex,
computation-intensive policies for addressing thesesvéfd
may be worth investigating.

Throughput (MB/sec)

15+ userver noprefetch pacing—&—
10 f userver noprefetch nopacing-o---
[ userver prefetch pacing---- .
8 ‘ userver prefetch nopacing-v-- 10. Conclusions
40 50 60 70 80 90 100 Video traffic is growing much more rapidly than other Inter-
Target chunks/sec net traffic types, and its fraction of the total may increase t

over 90% [33]. It appears that much of this video traffic will
be delivered over HTTP, which allows the use of standard
web servers rather than specialized video servers. Assess-
. . ing how efficiently web servers will support this new type
9. Discussion ofgworkload will rgquire experimental s&%ies in which xzb
Use of the methodologies described in this paper has allowedservers are subjected to HTTP streaming video workloads of
us to discover several interesting server designissueapha  varying types, with characteristics chosen to approxitgate
pear to have substantial impacts on Web server performancematch those in application scenarios of interest.
for HTTP streaming video workloads. Perhaps most signif-  To facilitate such studies, we have developed methodolo-
icantly, our performance results suggest the importance ofgies for generating HTTP streaming video workloads with a
investigating design optimizations focused on improviiig e  wide range of possible characteristics and for running ex-
ficiency of disk access. Although our experiments were per- periments using these workloads. We illustrate the use of
formed using a “small-scale” server machine with a modest our methodologies by generating example workloads with
amount of memory and only a single disk, we believe that the characteristics based in part on those empirically observe
disk performance bottleneck would also occur with larger- for video sharing services. In experiments using these work
scale servers. For example, the disk bottleneck has been reloads, three web servers are assessed under varying loads.
ported for Akamai servers in the case of “long tail” user- Although our experiments are for illustrative purposes,
generated video workloads [20]. they nonetheless provide insight into how the efficiency of
Design optimizations for disk-bottlenecked systems can disk access can impact performance in this context. A rela-
differ substantially from those that have been traditipnal tively simple design change tser ver , to asynchronously
explored for web servers. An important goal in web server prefetch files through sequentialized disk access, wagifoun

Figure 12. Effect of pacing on throughput
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