Non-clairvoyant Multiprocessor Scheduling of Jobs with Changing
Execution Characteristics

EXTENDED ABSTRACT*

Jeff Edmonds! Donald D. Chinn' Tim Brecht! Xiaotie Deng |

Department of Computer Science

York University
North York, ONT M3J 1P3

Abstract

A multiprocessor system is unlikely to have access to
information about the execution characteristics of the
jobs it is to schedule. In this work, we are interested
in scheduling algorithms for batch jobs that require
no such knowledge (such algorithms are called non-
clairvoyant).

Preemptive scheduling (i.e., redistribution of pro-
cessors) is important to reduce mean response time in
multiprocessor systems, especially in the widely avail-
able network of workstations. Preemption is a method
to adapt to the uncertain and changing nature of jobs
and workloads. Unfortunately, preemption may incur
large overheads if it is applied frequently. To account
for the cost preemptions, we consider a number of sim-
ple scheduling algorithms classified by the number of
preemptions they are allowed, ranging from none to an
infinite number.

The Equi-partition algorithm [18], which partitions
the processors evenly between the uncompleted jobs, is
an example of a simple scheduler that is non-clairvoyant
and preempts only when jobs complete. Motwani et al.
[15] show that the mean response time of jobs is within
two of optimal for fully parallelizable jobs. Since parallel
programs can have a wide variety of execution charac-
teristics in practice, we consider a number of classifi-
cations of jobs according to how well they are able to
utilize processors. Moreover a job may have both se-
quential and parallel phases in its computation. Hence,
we allow jobs to have multiple phases, each of which
may have different execution characteristics.

*This paper appeared in Proceedings of the Twenty-ninth
Annual ACM Symposium on the Theory of Computing, EIl
Paso, TX, pages 120-129, 1997.

t{jeff, dci, brecht, deng}@cs.yorku.ca. Edmonds, Brecht,
and Deng are supported by NSERC Canada. Chinn was sup-
ported in part by NSERC as a Postdoctoral Fellow at York Uni-
versity. Chinn’s current address: One Microsoft Way, Redmond,
‘WA 98052; dchinn@microsoft.com. Deng can also be reached at:
Department of Computer Science, City University of Hong Kong,
Tat Chee Avenue, Kowloon, Hong Kong.

For each of these preemptive models and for each of
these job classifications, we provide asymptotically tight
bounds on the mean response time of non-clairvoyant
scheduling algorithms. For example, we show that in
the worst case, the mean job response time obtained
with Equi-partition is 2 + /3 &~ 3.74 times that ob-
tained with an optimal algorithm (which may preempt
processors any number of times and may use job char-
acteristics to make its scheduling decisions) for a large
class of jobs, characterized by multiple phases of arbi-
trary nondecreasing and sublinear speedup functions.

1 Introduction

The study of parallel and distributed computer sys-
tem performance is generally more difficult than that of
uniprocessor systems. One important property of gen-
eral purpose computer systems is the unknown nature
of job execution. For uniprocessor systems, preemp-
tive scheduling strategies, such as Round Robin, use no
information about job characteristics. The cost of pre-
emption can be amortized by giving jobs remaining in
the system a quantum of processor time proportional to
how long they have been in the system [15]. In multi-
processor systems a similar preemptive algorithm, dy-
namic Equi-partition (DEQ), can be used when preemp-
tion costs are not prohibitively large’, to achieve similar
performance [2, 3]. However, overheads incurred due to
preemptive scheduling algorithms may be much larger in
parallel and distributed systems, and especially in the
networks of workstations model. When the overhead
is prohibitive, then results from theoretical studies on
non-preemptive execution of parallel jobs may be more
relevant [10, 19, 20, 16], but those results would require
complete information of jobs in the system.

In this work, we consider the scheduling problem on
a p processor system where n jobs all arrive at time 0
and no other jobs arrive thereafter. We present a new
job model that applies to a large class of parallel jobs,
including those job models discussed in Turek et al. [19].
Our metric of performance is the mean response time of
the jobs.

1The approach of Equi-partition was first introduced to par-
allel scheduling by Tucker and Gupta as a process control policy
[18], and later modified to the preemptive scheduling environ-
ment as DEQ by Zahorjan and McCann [21].

To account for the cost of preemptions, we explore
a range of schedulers classified by the number of pre-
emptions they make. We also explore job classes, cat-
egorized by their execution characteristics. These job
classes can be viewed as representing the amount of in-
formation a scheduler knows about the jobs it schedules.
See Figure 2 for a summary of our results.

We study the simple Equi-partition algorithm, for
which an equal number of processors is assigned to ev-
ery job. We show that this algorithm (which performs
at most n preemptions) achieves a performance within
2 + /3 times the optimum schedule (which may pre-
empt processors any number of times and may use job
characteristics to make its scheduling decisions) when
the jobs are from a fairly large class. The number of
preemptions in Equi-partition can be further reduced
to log, n with an extra constant multiplicative factor of
two loss in performance.

This result is perhaps most interesting when com-
pared with the existing bound (4 times optimal) [3] for
the dynamic Equi-partition algorithm (DEQ). Our new
bound for Equi-partition is tighter than the previous
bound for DEQ, even though Equi-partition uses signif-
icantly fewer preemptions and does not use any job ex-
ecution characteristics, whereas DEQ does. A possible
interpretation of this result is that it provides theoreti-
cal evidence that algorithms that do not use information
about job execution characteristics to frequently reallo-
cate processors may not have to pay excessively large
performance penalties (in terms of mean job response
times).

The network of workstations model is an extreme
case of distributed memory systems, for which frequent
preemptions of executing jobs and reassignments of pro-
cessors are costly. Our results show that for a large class
of parallel jobs, provably near-optimal mean response
time can be achieved with few reassignments of proces-
sors. Of course, much more research is required to make
this theoretical understanding useful in a practical set-
ting. In fact, performance in such systems has been al-
ready studied using simulation, experimental, and queu-
ing theoretical approaches [1, 8, 9, 12, 13, 14, 18, 21]. In
this perspective, our research constitutes a theoretical
confirmation of these efforts.

1.1 Modeling Job Execution

In our model, all jobs arrive at time zero (batch). It
would be more general to allow jobs to arrive at anytime.
However, this makes the scheduling problem much more
difficult and is left as an open problem.

Before a scheduler can attempt to find the best
schedule, a measure of the success of a schedule needs to
be defined. The two measures used most frequently are
the final completion time of all the jobs (makespan) and
the mean response time of the jobs (average completion
time). Other measures take into account the level of
fairness given to each individual job. We use the mean
response time in this paper.

The parallelism profile of a job, defined as the num-
ber of processors an application is capable of using at

any point in time during its execution, was introduced
by Kumar [7]. More generally, a speedup function, T,
specifies the rate at which work is completed as a func-
tion of the number of processors allocated to it. Since
parallel programs can have a wide variety of execution
characteristics in practice, we consider a number of dif-
ferent classifications of jobs according to how well they
are able to utilize processors: sequential, fully paral-
lelizable, sublinear, superlinear, nondecreasing, etc. To
be more general, we allow jobs to have multiple phases,
each of which is defined by an amount of work and a
speedup function.

Most scheduling results heavily depend on the sched-
uler knowing the characteristics of the jobs being sched-
uled. Hence, to various degrees of success, compilers and
run-time systems attempt to give hints to the sched-
uler. We, however, consider non-clairvoyant schedulers
that have no information about the jobs other than the
number of uncompleted jobs in the system. Our results
show that even without such compiler or run-time hints
and without many preemptions, schedulers can perform
well.

The schedulers in some results are computationally
intensive. Finding the optimal may be NP-complete.
Even when polynomial, the algorithm may (e.g., involv-
ing finding a perfect matching) not be practical in a
real time situation. We, however, consider only compu-
tationally simple algorithms.

Competitive ratio is a formal way of evaluating algo-
rithms that are limited in some way, (e.g., limited in-
formation, computational power, or number of preemp-
tions). This measure was first introduced in the study
of a system memory management problem [6, 11, 17]. In
our situation, the competitive ratio considers the best
scheduling algorithm from amongst those being con-
sidered (i.e., non-clairvoyant, reasonable computation
time, and a limited number of preemptions). Then it
considers the worst case set of jobs for that scheduler
from amongst those being considered (i.e., batch, multi
phases, and some class of speedup function). How well
this scheduler performs on this set of jobs is then com-
pared with how well the optimal scheduler performs on
this same set of jobs. Note that the optimal scheduler is
fully clairvoyant, has unbounded computational power,
and is allowed unbounded number of preemptions. The
ratio of these mean response times is known as the com-
petitive ratio of the class of schedulers on the class of
jobs.

1.2 Related Results

Motwani et al. [15] show that for any uniprocessor sys-
tem, any non-clairvoyant algorithm has a competitive
ratio of at least 2 — n%_l This lower bound extends to
multiprocessor systems where the jobs are fully paral-
lelizable. A job is fully parallelizable if for any p, its
execution time when given p processors is p times less
than its execution time with one processor. They also
give some upper and lower bounds on the tradeoff be-
tween preemptions and competitive ratio. These, how-
ever, apply only to the single processor model.

A worst case set of jobs for Equi-partition consists of

n jobs each with work W; = p. In Equi-partition, each

job is allocated p/n processors and hence completes at

time ¢; = n. The flow is F(EQUI) =Y, ¢; =n’. The

optimal schedule, on the other hand, executes the job

with least work first. The completion time of job J; is

¢; = i and the flow is F(OPT) =)i = n(n +1)/2.
2

Hence, the competitive ratio is 2 — T

Deng and Koutsoupias [4] discuss how well a job is
able to utilize processors, using a DAG model to repre-
sent the data-dependency within the job. Their lower
bounds for the DAG model are not applicable to the
phase job model here.

Deng et al. [3] show that DEQ, an algorithm similar
to Equi-partition, achieves the same competitive ratio
2— T%H for parallel jobs with a single phase, and is 4 —
n%_l-competitive in a job model that allows jobs to have
multiple phases. In this job model, each phase ¢ of job 4
is fully parallelizable for any allocation of processors up
to some number P}, but achieves a speedup of P/ for
any allocation greater than P;. DEQ uses these values
P! to make its scheduling decisions.

Turek et al. [19] consider a general job model where
jobs consist of a single phase and have speedup functions
that are nondecreasing and sublinear. They achieve
the impressive competitive ratio of two, even with no
preemptions. However, the algorithm requires com-
plete knowledge of the jobs’ workload and speedup
functions and a perhaps excessive computation time of
O(n(n? + p)).

In contrast, we show that the simple Equi-partition
algorithm achieves a competitive ratio of 2 4+ 1/3 where
jobs have multiple phases of different nondecreasing sub-
linear speedup functions. This scheduler does require
up to n preemptions, but is non-clairvoyant and com-
putationally simple. We also prove a lower bound of
e =~ 2.71 for Equi-partition when the jobs have non-
decreasing sublinear speedup functions, thus separates
these kinds of jobs from fully parallelizable jobs with
respect to Equi-partition.

Prior to our result, Kalyanasundaram and Pruhs [5]
consider the model in which jobs can arrive at arbitrary
times. In this model, it is more difficult to find good
schedulers. In fact, Motwani et al. [15] prove that no
non-clairvoyant scheduler can achieve a competitive ra-
tio better than (n/logn) even when all the jobs are
fully parallelizable. On the other hand, Kalyanasun-
daram and Pruhs achieve a competitive ratio of 1 + %
by giving the their BALANCE scheduler (1+e€)p proces-
sors and only giving the optimal scheduler p processors.

In contrast, while their results only work for fully
parallelizable jobs, ours work for a wide range of classes
of speedup functions while not giving the scheduler ex-
tra processors.

In Section 2, we formally introduce our job model
and provide a summary of our results. In Sections 3
and 4, we present upper and lower bounds for the case
when jobs are nondecreasing and sublinear in each phase
and the scheduler is allowed at least n preemptions. In
Sections 5, we summarize the other results in the full
paper. In Section 6, we conclude our paper with open

problems. In this extended abstract, we define a variety
of job classes, but we will provide the full proof only
for nondecreasing sublinear jobs. In the full paper, we
will provide proofs for all of the bounds mentioned in
Figure 2.

2 Summary of the Results

In this section we define sets of jobs, schedulers, flow
time, and competitive ratios. We then define a num-
ber of classes of schedulers and of job sets. Figure 2
summarizes our results.

2.1 Sets of Jobs and Schedulers

‘We consider a set of n jobs, all of which arrive at time
zero, that are to be executed on p processors. A set of
jobs J is defined to be {J1,...,Jn} where job J; has a
sequence of phases <J¢1, JE, ..., J;“) and each phase is
an ordered pair (W/,I'{). The quantity W/ is a nonneg-
ative real number, called the work, and I' is a function,
called the speedup function, that maps a nonnegative
real number to a nonnegative real number. I'}(8) rep-
resents the rate at which work is executed for phase ¢
of job 7 when given 3 processors.

A schedule S allocates the p processors for each point
in time to the jobs in the given jobs set J in a way such
that all the work completes. More formally, a schedule
Sy for a given job set J with n jobs on p processors is a
function from {1,...,n} x [0,00) to [0, p] such that

1. Forallt, > " | S;(i,t) < p, and

2. For all 4, there exist 0 = ¢ < ¢j < ... <c¥ such
q
that for all 1 < g < g, f;’_l T(Ss(i,t)) dt = W2.

If ¢, ¢cf,... ,cli are the smallest such values that

satisfy this condition, then the completion time of
phase q of job i under Sis ¢}, for all 1 < ¢ < g;.

Condition 1 above ensures that at most p processors
are allocated at any given time. Condition 2 ensures
that before a phase of a job begins, all of the previous
phases of the job must have completed. Note that we
allow a job to be allocated a non-integral number of
processors. The completion time of a job i, denoted ¢;,
is the completion time of the last phase of job 7 (that
is, phase ¢; of job 7).

Throughout this paper, we refer to an algorithm for
producing schedules as a scheduler, and we identify a
scheduler with the schedule it produces. The goal of the
scheduler is to minimize the average completion time,
%Zl e Cis of all the jobs it must schedule. This goal
is equivalent to minimizing the flow time of J under
scheduler S, denoted F(Sy), which is 7., c;. We use
the competitive ratio of a scheduler to categorize it. The
competitive ratio of a schedule over a class of schedules
is

MingesMaX_]EJF(SJ)/F(OPTJ),

where § is the class of schedulers being considered, J is
the class of job sets being considered, and OPT}; is an

optimal (unrestricted) scheduler for the job set J. This
paper proves relatively tight upper and lower bounds
on this competitive ratio for several classes of sched-
ulers S and jobs sets J. (See Figure 2.) For the upper
bounds, we present a scheduler S € S that performs
within the stated ratio of the optimal for every job set
J € J considered. For the lower bounds, we construct
for each possible scheduler, a job set J on which the
scheduler performs poorly. (For the lower of e for Equi-
partition, we only manage to prove the bound for the
specific scheduler in question.)

In the next subsections, we classify schedulers by the
number of preemptions they make and we classify job
sets by the types of speedup functions they have.

2.2 Classes of Schedulers

All schedulers considered in this paper are simple. They
are non-clairvoyant, meaning that they have no knowl-
edge of the work W} or the speedup functions I'Y of
the jobs in the set J. Initially, their only knowledge
is the number of jobs n and the number of processors
p. They are also able to detect when a job completes.
They are not able to detect when a particular phase of
a job completes.

The classes of schedulers S considered differ from
each other in the number of preemptions that are al-
lowed. A preemption occurs when a job that is currently
being executed with some nonzero number of processors
is allocated either more processors or fewer processors.
We consider the classes of schedulers S that allow zero,
log, n, n, and an unbounded number of preemptions.
Each class is a proper subclass of the next.

J

c4
| 2| B| X
c5

Ji
- c4
Time)| 2 Time|

p Processors

p Processors
None logn

cl
@ [T 1
. | []
o [T 1

Time| €2 Time
2 [T 1
p Processors “p Processors
n arbitrary

Figure 1: Examples of schedules with zero, log, n, n,
and an unbounded number of preemptions

Scheduler Class: Allows Zero Preemptions. Such
a scheduler allocates some number of processors (e.g.,
zero, log, n, n, and an unbounded number of preemp-
tions. Each class is a proper subclass of the next.p/n or

p) to some of the jobs. Once a job starts executing, the
number of processors allocated to it must not change.
However, when a job completes, the processors that had
been allocated to it can be allocated to any job that has
not yet been allocated processors.

Scheduler Class: Allows n Preemptions. Such a
scheduler is allowed to reallocate all the processors every
time some job completes. Note that a preemption of
possibly all the jobs occurs at most n times.

An example of such a scheduler that is often used
in practice is called Equi-partition. We define EQUI;
to be the schedule that allocates an equal number
of processors to each uncompleted job. That is, for
all ¢ and ¢, if job ¢ is uncompleted at time ¢, then
EQUI;(i,t) = p/n:, where n; is the number of uncom-
pleted jobs at time ¢, and EQUI;(i,t) = 0 otherwise.
Note that EQUI requires no knowledge of the jobs other
than how many jobs are uncompleted.

A class of schedulers of an intermediate level pro-
posed in this paper is the following.

Scheduler Class: Allows logn Preemptions. Such
a scheduler is allowed, for example, to reallocate the pro-
cessors when the number of uncompleted jobs n; reaches
n/2" for all 1 <4 < logn.

Scheduler Class: Allows an Arbitrary Number of
Preemptions. The scheduler is allowed to change the
processor allocation continuously (or arbitrarily often).

An example of such a scheduler used in practice is
Round Robin. The jobs take turns being allocated all p
processors for some small slice of time.

The Optimal Scheduler: In contrast, the optimal
scheduler OPT, that these others are compare against,
has complete knowledge (i.e., work and speedup func-
tion) of all the phases of each job, has unlimited com-
putation power, and is allowed an unbounded number
of preemptions.

2.3 Classes of Speedup Functions

‘We now describe the different classes of job sets J € J
that we consider. The work of each job phase is never
restricted, and hence we only consider different num-
bers of phases and different classes of speedup functions.
Each class is a proper subclass of the previous.

Job Class: Fully Parallelizable. Every job phase
has the speedup function I'(3) = B. (See Figure 3:a.)

Job Class: Single Phase, Fully Parallelizable or
Constant Sequential. Each job has a single phase
that is either fully parallelizable or constant sequential.

The constant sequential speedup function is I'(3) =
1, for all 3 > 0. (See Figure 3:b). Such jobs complete
work at the same rate no matter how many processors
are allocated to it.

Job Class: Nondecreasing Sublinear.
speedup function is nondecreasing and sublinear.

Every

A speedup function I' is nondecreasing if I'(81) <
I'(B2) whenever /1 < 2. A job phase with a nonde-
creasing speedup function executes no slower if it is al-
located more processors. (See Figure 3:a-h.) This is a

J\S Zero log,m n Arbitrary
Fully Parallelizable [77,4] 2, 2]
Fully Parallelizable or Const. Sequential O(y/n)
Nondecreasing Sublinear [?7,7.48] [2.71%,3.74]
Nondecreasing Almost Sublinear C) (nlge O(n°) [77,7.48]
Nondec. Sublinear or Superlinear O(n)
Nondecreasing O(logn)
Gradual O(logp)
Integer Domain 0 O(p)
Arbitrary 0

Figure 2: The columns in the table are for the classes of schedulers S that are non-clairvoyant and allow zero, log, n,
n, and an arbitrary number of preemptions, respectively. Each row represents a different class J of job sets. For each
entry, the lower and the upper bound on the competitive ratio is given. Entries with the same bounds are grouped
together. For each grouping, only one lower and one upper bound needs to be proven. The asterisk indicates a lower
bound for the EQU I-like scheduler, not the entire class of schedulers.

A

c: Typical

b: Sequential NonDec SubLin

T~
.

f: Worst Case
SupLin

e: Typical
SupLin

d: Worst Case
NonDec Sublin

=

h: Worst Case
NonDec

g: Typical
NonDec

i: Typical
Gradual

Figure 3: Examples of speedup functions.

reasonable assumption if in practice a job can determine
whether it can use additional processors to speed its ex-
ecution and can refuse to use some of the processors
allocated to it (in the case that it cannot use additional
Processors).

The rate I'Y (8) at which a job completes work is a
useful concept when considering the time until that job
completes. However, when considering the completion
times of all the jobs simultaneously, a more useful con-
cept is I' (3) /8, which is the work completed by the job
per time unit per processor. One way of viewing this
concept is to consider the processor area consumed by a

job. This is measured in processor-time units. For ex-
ample, if a job is allocated 3 processors for ¢ time units,
then the processor area consumed is gt. If B processors
are allocated for the duration of J7, then W//I'}(8) is
its execution time and (8/T'Y(8)) - W/ is the processor
area consumed.

A speedup function T is sublinear if (1 /T'(B1) <
B2/T(B2) whenever 81 < 2. A sublinear speedup func-
tion is one in which the processor area consumed per
unit of work completed does not decrease when more
processors are allocated to the associated job. (See Fig-
ure 3:a~d.) If for 31 < (B2, B1 processors can simulate the
execution of B2 processors in a factor of at most B2 /51
more time, then the speedup function is sublinear.

Job Class: Each Phase either Nondecreasing
Sublinear or Superlinear. Every speedup function
either is nondecreasing and sublinear or is superlinear.

In practice, job phases can have superlinear speedup
functions, i.e., B1/T'(B1) > B2/T'(B2) whenever 1 < Ba.
(See Figure 3:e-f.) Such speedup functions occur in par-
allel programs with a strong time-space tradeoff. For
example, suppose we have a job that with one proces-
sor takes time T'/S when given S space. If the job is
fully parallelizable, then with 3 processors and S space,
the required time is T'/(SB). Suppose also that when
given B processors, the job has S = ¢f space, where ¢
is the amount of space in one processor. Then the time
required would be T'/cB?. Thus, the speedup function
for the job is T'(8) = B*.

Job Class: Nondecreasing Almost Sublinear. Ev-

ery speedup function is nondecreasing and almost sub-
linear.

Though in practice the speedup functions might be
superlinear, they are not likely be extremely superlin-
ear. For example, we might want to allow the speedup

function T'(8) = B'"* to be included for some small
0 < € < 1. Note that this is almost linear. To cap-
ture this idea, we define almost sublinear to mean that
BiTe/T(B1) < BiT€/T(B2) whenever 31 < B2. Note this
is less restrictive than sublinear.

Job Class: Nondecreasing. Every speedup function
is nondecreasing. (See Figure 3:a-h.)

Job Class: Gradual. Every speedup function is grad-
ual.

In practice, the point at which more processors slow
down the job may not be known. This leads to jobs
whose rate of computation both increase and decrease
with the number of processors allocated to them. It is
unreasonable, however, to consider completely arbitrary
speedup functions. The following is a reasonable mini-
mal requirement that is general enough to include most
speedup functions.

A speedup function is said to be gradual (with re-
spect to some constant ¢ > 1) if for every number
of processors @ and for every value a € [1..2] either
I'(aB/2) > iT(B) or ['(aB) > 1I'(B). In addition, we
require that for a gradual speedup function, I'(3) = 0
for all 8 < 1. (See Figure 3:i.)

Job Class: Integer Domain.

A speedup function is said to have an integer domain
if T'(|1B]) = T(8), for all 8.
Job Class: Arbitrary. No restrictions at all.

Our results are summarized in Figure 2.

3 Nondecreasing Sublinear Speedup Functions

This section proves that Equi-partition has a compet-
itive ratio of 2 + v/3 when the jobs have nondecreas-
ing sublinear speedup functions. This result at first is
surprising. This class of jobs includes both fully par-
allelizable jobs and constant sequential jobs. Under
EQUI, the processors allocated to the sequential jobs
are wasted, whereas an optimal schedule will assign an
infinitesimal number of processors to such job. On the
other hand, the following is intuition why a constant
ratio is reasonable. If more than half the jobs are se-
quential, then it does not matter how the jobs are sched-
uled. The flow time is dominated by the sequential jobs.
If fewer than half the jobs are sequential, then EQUI
waists fewer than half the processors on these jobs.

This section first states a lower bound on the flow
time for the optimal scheduler OPT'. Then for the class
of jobs with nondecreasing sublinear speedup functions,
an upper bound on its flow time is proved. This provides
the upper bound of 2 + /3 on the competitive ratio.

We give two lower bounds for the flow time for OPT.
These bounds are based on the amount of processor
area OPT uses in completing jobs and the amount of
time OPT spends in completing jobs. Formally, the
processor area used by OPT to execute job %, denoted
si, is fOPT(i,t)>0 OPT(i,t) dt. The time OPT spends

to execute job i, denoted h;, is fOPT(i t)>01 dt. (To
simplify the discussion, we assume that I'(0) = 0 for

all speedup functions. Hence, a schedule must allocate
a nonzero number of processors to make progress on a
job.)

Lemma 3.1 For any job set J, let w(i) be the permu-
tation of jobs sorted in reverse order by s;. (If job i has
the largest s;, then (i) = 1.)

1. F(OPT) > 237" m(i)si, and
2. F(OPT) > 3" hs.

The two bounds are known in the literature as the
squashed area bound and the height bound, respec-
tively. See Turek et al. [19] or the full version of this
paper for a complete proof.

Lemma 3.1 implies that the flow time of OPT is at least
any weighted average of these two quantities. That is,

Corollary 3.2 For any 0 < b < 1, F(OPT) > b -
2y w(@)si+(1=b)-> 0 di

‘We now present the result that Equi-partition has
a competitive ratio of at most 2 + v/3 = 3.74 when all
job phases have nondecreasing and sublinear speedup
functions.

Theorem 3.1 For any job set J with nondecreasing
and sublinear speedup functions, F(EQUI;) < (24+/3)-
F(OPTy).

Proof of Theorem 3.1: Observe that the flow time of
EQUI is simply the integral over all ¢ of n¢, the number
of uncompleted jobs at time ¢. That is, F(EQUI) =
f 0°° ny dt. We now compare the flow time of EQUI to
OPT using the lower bound of Corollary 3.2. The first
step is to prove a lower bound on the total time h; and
processor area s; that OPT spends on a job in terms
of what is happening in EQUI. This is done separately
for each job J;.

Consider a job J;. We first arbitrarily partition the
time EQUI spends on J; (i.e., when EQUI(i,t) > 0)
into infinitesimal blocks [t,t + At]. Then we partition
the time OPT spends on J;, (i.e., when OPT(i,t') > 0)
into infinitesimal blocks [t',# + At'] in such a way that
there is a bijection between the blocks [t,t + At] under
EQUT and the blocks [t',t' + At'] under OPT. The
correspondence is that the same block of work of the job
J; is completed during corresponding blocks in the two
different schedules. This correspondence is a bijection
because both schedules complete all the work for job J;.
For each block of time, we bound separately the total
time h; and processor area s; that OPT spends on J;
during this time.

More formally, consider one of the time blocks
[t,t + At] under EQUI. Suppose that at time ¢, phases

JE, ..., J! are complete and W < W work is com-
pleted under EQUI. Let t' be the latest time in which
the same work has been completed for J; under OPT.
Note that #' depends on which job J; is being consid-
ered. Let At' be time duration that OPT spends com-

pleting the same work that EQUI completes in this

block of time. Even though the same work of J; is com-
pleted during corresponding blocks of time [¢, ¢+ At] and
[¥/,t + At'], the lengths of these time blocks will be dif-
ferent because the work is being completed at different
rates. (See Figure 4.)

EQUI OPT

Time Time

T
¢l Bs=7
B =4

t ——

p/ne =5 B =10

B =3
Processors (p = 20)

Processors (p = 20)

Figure 4: At time ¢t under EQUI there are four uncom-
pleted jobs (i.e., n; = 4), hence with p = 20 processors
each job is allocated 5 processors. The work completed
in EQUT for each of these jobs is completed under OPT
at different times and with different numbers of proces-
sors. The time ¢’ is indicated for job 1.

By definition, EQUI allocates p/n; processors to job
J; at time t, where n; is the number of jobs uncompleted
at this time. Denote by 8! the number OPT(3,t') of
processors OPT allocates to J; at time ¢'. If we allow
At and At' to become infinitesimal, then we can assume
without loss of generality that these schedules assign
this fixed number of processors during the duration of
the respective intervals [t,t+ At] and [t', ¢ + At']. Hence
we can conclude that during the interval [t,t + At], the
amount of work completed for J; under EQUT is Aw =
T'{(p/nt) - At and the time required to complete the

same amount of work under OPT is At = % =
I (p/ne) o
Pl A,

Recall that h; denotes the total time that OPT
spends on job J;. This is, of course, the sum of the
durations of the blocks [t',t' + At']. We use our corre-
spondence between the blocks [t',¢' + At'] under OPT
and the blocks [t,t + At] under EQUI to express h; in
terms of the schedule EQUI:

/ 1dt’
t':OPT(i,t')>0

/ I (p/m) gt
#BQUIG,Hy>0 Li(Bi)

The total processor area consumed by OPT on job
J; is denoted by s;. This is equal to the sum of the
processor areas consumed by OPT during each of the
blocks of time [t',t' + At'], which is OPT(3,t') - dt’ =
B¢ - dt'. We again use our correspondence between the
blocks to express s; in terms of the schedule EQUI:

hi

Si

/ OPT(i,t') dt'
t:OPT(i,t')>0

/ ;Ff(p/nt) dt
i — o di.
tEQUI(4,t)>0 3 (8;)

Substituting the definitions of s; and h; into the lower
bound of Corollary 3.2, we get

b i + L3 (p/me)
FOPT) > 3 U(/t souiGnso | Ti(BD) dt)

i=1

RS IY(p/n¢)
+ b); (/t:EQUI(i,t)>0 ri(8) dt).

Define S; to be the set of all uncompleted jobs in
EQUT at time t such that p/n; < B!. Define S, to be
the set of all uncompleted jobs in EQUI at time t such
that p/n; > B¢. Intuitively, S; is the set of jobs that re-
ceive fewer processors under FQUI than under OPT for
the work executed at time ¢t under EQUI and so these
jobs are at least as work efficient under EQU I, since all
speedup functions are sublinear, whereas S; is the set
of jobs that receive at least as many processors under
EQUI than under OPT and so execute no slower under
EQUI, since all speedup functions are nondecreasing.
(In Figure 4, jobs 1 and 2 are in S, and jobs 3 and 4
are in S;.) By observing that S; U S; is the set of all
jobs for which EQUI(,t) > 0, we can interchange the
summations with the integrals. Then by including only
some of these jobs in each sum, we get that

o > [+ ot

1€St

+(1—b)-2% dt.

i€S;

Suppose J; € S;. Then p/n; < B¢, and so EQUI
allocates fewer processors than OPT does. Since I'
is sublinear, the instantaneous rate at which processor
area is consumed per unit of work for a higher alloca-
tion of processors is at least that of a lower allocation
of processors. That is, 8f/T¢(8!) > (p/n:)/T%(p/ns),
where ¢ is the phase of job i executing at time ¢ under

t 4
EQUI. Rearranging this gives %Ff‘;]();/;?;) > nit

Now suppose J; € S;. Then p/n; > B!, and so
EQUTI allocates at least as many processors as OPT.
But since I'! is nondecreasing, the rate at which work
of phase ¢ of job 7 is being completed is at least as great

q
for EQUI than for OPT. That is, “earr® > 1. This

gives us

F(OPT) > /Ooo

€St i€S,

Let |S:| = at - ne. (And so |Si| = (1 — a¢) - me.)
The value a; is the fraction of unfinished jobs in EQUI
at time ¢ that are in S;. Because 7 is a permutation,
there is at most one s € Sy such that m(i) = 1, one
i € S; such that w(i) = 2, etc. Since there are only
at -y jobs in Sy, it follows that). . (i) is at least

STt > (ar - me)? /2. Thus,

i=1

F(OPT) > /Ooo (b % +(1-b)(1 —at)nt) dt

t

= /wnt (b%%+(1—b)(1—at)> dt.
0

‘We now choose b = % Since we do not know what
a¢ is, we must consider the value of a; that minimizes
the right hand side of the equation. The minimum of
75@i/2) + (1 — 75)(1 —as) over all 0 < a; < 1is

(2 — v/3), which implies that

F(OPT) > /oo ni (2 —V3) dt.
0

But F(EQUI) = [* n dt, giving F(OPT) > (2—+/3)-
F(EQUI) = 1/(2++/3)- F(EQUI). This concludes the
proof of Theorem 3.1. O

4 A Lower Bound of ¢ for EQUI

We now present a lower bound of e (the base of the
natural logarithm) on the competitive ratio of EQUI
in our multi-phase job model. We do this by presenting
an infinite sequence of job sets of increasing size such
that in the limit, the competitive ratio of EQUI is at
least e.

Theorem 4.1 For the set of job sets with nondecreas-
ing and sublinear speedup functions, the competitive ra-
tio of EQUI is at least e.

Proof of Theorem 4.1: Consider the following job
set J, consisting of n jobs. Each job in J consists of
two phases. The first phase of the jobs is a constant
sequential phase. (That is, T'; (8) = 1, for all 4 and i.)
The second phase is a fully parallelizable phase. (That
is, I'7(8) = B, for all 8 and 3.)

Job set J under OPT, where n = 8. Each of the
phases on the left side of the figure are first phases of
jobs and require no processors to complete. (The first
phases of jobs 2 and 4 are indicated.) The phases on the
right side of the figure are the second phases of jobs.

wa(i)nit + (1-b)) 1]t

1 =

L %
B L Wao=p- 52|82
[HRIII Pi=p-si]s

| P pI‘OCGSEFOIIS#‘QC. P processors |

Figure 5: EQUI allocates only p/n processors to each
job. Those allocated to sequential phases are waisted.
All jobs finish at time n. OPT allocates all p processor
to the next fully parallelizable phase. This fully paral-
lelizable phase completes just as the fully parallelizable
phase of the next job is ready.

Job set J under EQUI, where n = 8. Each of the
first phases of jobs complete at the same time as they
did under OPT, but the second phases are allocated
only p/n processors.

The work of these phases is defined by the sequences
t; and s; below, and is illustrated in Figure 5 for n = 8.
The sequences are defined recursively as follows:

t1=0 , s1=1
ti=tici+sic1 , si=1—ti/n (1)

The quantity t; is the time required for the first
phase of job 7 when allocated any number of proces-
sors, and s; is the time needed for the second phase of
job ¢ when allocated p processors. From t; and s;, we
define the work of phases in J as follows:

W=t , forall1<i<n
WZ=p-s; , forall1<i<n

In the optimal schedule, only an infinitesimal num-
ber of processors are allocated to each job whose first
phases are uncompleted, and p processors are allocated
to the job whose first phase is complete but whose sec-
ond phase is not complete. Note that even though
only an infinitesimal number of processors are allocated
to them, the first phases of jobs complete work, since
T'}(e) = 1. One can easily prove by induction that job
J; completes in time t; + s;. For the basis case, the first
phase of Ji takes t; = 0 time and so the second phase
starts at time 0. This second phase requires s; time
when allocated p processors.

For job J;, work is completed at a rate of 1 because
T'}(¢) = 1. Hence, this phase requires t; time. The work
of each phase is constructed so that ¢; = ¢;—1 + si—1.
Hence, the first phase of job i completes exactly when
the second phase of job ¢ — 1 completes, allowing the
second phase of J; to be allocated all p processors at
that point. Thus, the flow time of J under the optimal
schedule is)7 (t; + s:).

We solve for t; by substituting the definition of s;

into the definition of ¢; (from Equation (1)). The solu-
tion is

-1 i—1
ti:n—n<n) .
n

From this we get that Y . t; = n” (1—2)" < §

Then " s; = » . (1 —ti/n) = O(n). The flow

time for J under the optimal schedule is)" (ti+si) =
2

L+ 0(n).

Under the EQUI schedule, all n jobs are uncom-
pleted until time n. To see this, suppose to the con-
trary that there were some job that completed before
time n. Let J; be the first such job. Then it is allo-
cated p/n processors until it completes. Therefore it
takes W' + W2/(p/n) = t; + s; - n = n, contradicting
our original assumption. Therefore, the flow time for J
under EQUT is n®. (See Figure 5.)

Thus, as n approaches infinity, the ratio
F(EQUI)/F(OPT) approaches e. O

5 Summary of Other Results

5.1 A Special Case Where EQUI Does Well

It is reasonable to believe that the worst case amongst
jobs with nondecreasing sublinear speedup functions oc-
curs when all jobs are either fully parallelizable or con-
stant sequential, since EQUI wastes processors on the
constant sequential jobs whereas OPT does not. How-
ever, we can show that in such cases, the competitive
ratio is at most 2, beating the lower bound of e for
multiple phases of either fully parallelizable or constant
sequential.

5.2 Reducing the Number of Preemptions to log, n

Let EQUI' be the scheduler that is like EQUI except
that it reallocate the processors only when the number
of uncompleted jobs reaches n/2" for all 1 < ¢ < log, n.
Note, this scheduler preempts at most log, n times.
(See Figure 1.) For nondecreasing sublinear speedup
functions, EQUI' performs within a factor of two as
well as EQUI because the number of processors a job
has under EQUI’ is always within a factor of two of
that under EQUI. Hence, it has a competitive ratio of

0 (2-(2+V3)).

5.3 No Preemptions and Nondecreasing Sublinear
Speedup Functions

We also consider the class of schedulers that are not al-
lowed any preemptions. We define the p/\/n-scheduler
to partition the processors into /n groups of p/+/n pro-
cessors each. Each group is allocated to a different job.
When a job completes, the group is allocated to another
job, until all the jobs have been completed. Note that
this scheduler never preempts (i.e., changes the number
of processors allocated to a job once it starts.) We prove
that this scheduler achieves a competitive ratio of \/n

for every job set with nondecreasing sublinear speedup
functions.

5.4 Nondecreasing Sublinear or Superlinear Speedup
Functions

We define a scheduler HEQUI that must perform well
both with nondecreasing sublinear job phases and with
superlinear ones without knowing which are which. It
will performs well with the nondecreasing sublinear
phases because half of the time it behaves like EQUI
and hence performs on these within a factor of two as
well as proved in Theorem 3.1. Superlinear phases ex-
ecute the most efficiently when given all p processors.
HEQUT performs well on these because half of the time
it behaves like Round Robin. (See Figure 1.) This
scheduler must be able to preempt an arbitrary number
of times, but achieves a competitive ratio of 2- (24 /3).

5.5 Nondecreasing Speedup Functions and Gradual
Speedup Functions

Jobs that have nondecreasing speedup functions or that
have gradual speedup functions may execute efficiently
only when allocated a specific number of processors.
(See Figure 3:h-i) However, a non-clairvoyant scheduler
does not know this number of processors. If, however,
the scheduler executes each job with 2* processors for

@ fraction of the time, then for each job, for at least

a 10g12p fraction of the time, the job will be executed
with a number of processors that is within a factor of

two of its efficient number of processors. In this way, the

scheduler achieves a competitive ratio of © (1 Oglw).

5.6 Jobs with Difficult Speedup Functions and Sched-
ulers that Cannot Preempt Continuously

The previous upper bounds require the scheduler to pre-
empt continuously. If the number of preemptions is
restricted, then a lower bound of Q(n) is proved. As
long as the jobs have nondecreasing speedup functions,
a scheduler is able to achieve this ratio. The scheduler
runs the n jobs one at a time with all p processors, start-
ing the next job when the previous job completes. On
the other hand, the competitive ratio can be arbitrarily
bad when the speedup functions are not nondecreasing.

5.7 Lower Bounds

We prove matching lower bounds for all of the results
stated in Figure 2.

6 Conclusions and Open Problems

We have provided asymptotically tight bounds on the
competitive ratio of non-clairvoyant scheduling algo-
rithms for a range of job classes and a range of allowable
number of preemptions. The following are possible open
problems to consider.

How much does clairvoyance help? For each entry in
Figure 2, what is the competitive ratio when the sched-
uler is given complete knowledge, but limited in the
number of preemptions?

How much does computation help? For each entry
in the Figure 2, what is the competitive ratio of the best
algorithm to an optimal one that is also limited in the
number of preemptions?

Our work applies to the case when all jobs arrive at
time 0. In a practical scheduling environment, jobs ar-
rive periodically and are their arrival times are generally
unpredictable. An open problem is to provide results in
this environment. Kalyanasundaram and Pruhs [5] pro-
vide some results in this area.

References

[1] S. H. Chiang, R. K. Mansharamani, and M. Vernon. Use
of application characteristics and limited preemption for
run-to-completion parallel processor scheduling policies.
In Proceedings of the 1994 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Sys-
tems, pages 33—44, 1994.

[2] X. Deng and P. Dymond. On multiprocessor system
scheduling. In Seventh ACM Symposium on Parallel
Architectures and Algorithms, June 1996.

[3] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive
scheduling of parallel jobs on multiprocessors. In Sev-
enth Annual ACM—-SIAM Symposium on Discrete Algo-
rithms, pages 159-167, Atlanta, Georgia, January 1996.

[4] X. Deng and E. Koutsoupias. Competitive implemen-
tation of parallel programs. In Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms,, pages 455—
461, 1993.

[5] B. Kalyanasundaram and K. Pruhs. Speed is as powerful
as clairvoyance. In Proceedings of the 36th Symposium
on Foundations of Computer Science, pages 214-221,
October 1995.

[6] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator.
Competitive snoopy caching. Algorithmica, 3:79-119,
1988.

[7] M. Kumar. Measuring parallelism in computation-
intensive scientific/engineering applications. IEEE
Transactions on Computers, 37(9):1088-1098, Septem-
ber 1988.

[8] S. Leutenegger and R. Nelson. Analysis of spatial
and temporal scheduling policies for semi-static and dy-
namic multiprocessor environments. Technical Report
RC 17086 (75594), IBM T. J. Watson Research Center,
Yorktown Heights, NY, August 1991.

[9] S. Leutenegger and M. Vernon. The performance of
multiprogrammed multiprocessor scheduling policies. In
Proceedings of the 1990 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Sys-
tems, pages 226-236, Boulder, Colorado, May 1990.

[10] W. Ludwig and P. Tiwari. The power of choice in
scheduling parallel tasks. Technical Report TR 1190,
Computer Science Department, University of Wiscon-
sin, Madison, November 1993.

[11] M. Manasse, L. McGeoch, and D. Sleator. Competitive
algorithms for on-line problems. In Proceedings of the
Twentieth Annual ACM Symposium on the Theory of
Computing, pages 322-333, 1988.

[12] R. Mansharamani and M. Vernon. Qualitative behavior
of the EQS parallel processor allocation policy. Tech-
nical Report TR 1192, Computer Sciences Department,
University of Wisconsin, Madison, November 1993.

[13] C. McCann, R. Vaswani, and J. Zahorjan. A dy-
namic processor allocation policy for multiprogrammed,
shared memory multiprocessors. ACM Transactions on
Computer Systems, 11(2):146-178, May 1993.

[14] C. McCann and J. Zahorjan. Scheduling memory con-
strained jobs on distributed memory parallel comput-
ers. In Proceedings of International Joint Conference
on Measurement and Modeling of Computer Systems,
ACM SIGMETRICS 95 and Performance 95, pages
208-219, 1995.

[15] R. Motwani, S. Phillips, and E. Torng. Non-
clairvoyant scheduling. In Proceedings of the 4th An-
nual ACM/SIAM Symposium on Discrete Algorithms,
pages 422-431, Austin, Texas, January 1993.

[16] U. Schwiegelshohn, W. Ludwig, J. Wolf, J. Turek, and
P. Yu. Smart SMART bounds for weighted response
time scheduling. To appear in SIAM Journal on Com-
puting.

[17] D. Sleator and R. Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM,
28(2):202-208, 1985.

[18] A. Tucker and A. Gupta. Process control and scheduling
issues for multiprogrammed shared-memory multipro-
cessors. In Proceedings of the Twelfth ACM Symposium
on Operating Systems Principles, pages 159-166, 1989.

[19] J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari,
J. Glasgow, U. Schwiegelshohn, and P. S. Yu. Scheduling
parallelizable tasks to minimize average response time.
In 6th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 200-209, June 1994.

[20] J. Turek, U. Schwiegelshohn, J. Wolf, and P. Yu.
Scheduling parallel tasks to minimize average response
time. In Proceedings of the 5th SIAM Symposium on
Discrete Algorithms, pages 112-121, 1994,

[21] J. Zahorjan and C. McCann. Processor scheduling in
shared memory multiprocessors. In Proceedings of the
1990 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 214-225,
Boulder, Colorado, May 1990.

