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ABSTRACT 

The scheduler used in an operating system is an important factor in the performance of the 
system under heavy load. This paper describes the scheduling philosophy employed in the 
UNIX operating system and outlines the standard scheduling strategies. Modified strategies 
which address deficiencies in the standard strategies are described. The effectiveness of these 
modified strategies is assessed by means of performance experiments. 

1. I n t r o d u c t i o n  

/,  

The UNIX operating system 16] is an elegant, general-purpose 

timesharing system which is used on a wide range of computers. 

Versions of UNIX are used on computers as small as the IBM 

Personal Computer and as large as the IBM 3081. UNIX is available 

on computers built by more than fifty different manufacturers. 

All true UNIX systems are derived from software developed at 

AT$~T Bell Laboratories. Although the wide range of UNIX systems 

have similar user and programmer interfaces, the internals of the 

resident kernel are likely to be different on different computers. The 

UNIX software usually supplied by A T ~ T  is designed to r u n  on 

DEC PDP-II  and VAX-11 computers. Throughout this paper we 

will refer to the A T ~ T  software as "standard" UNIX. In particular 

we will mention the versions commonly referred to as Version 6 

(Vfi), Version 7 (V7), and System V {$5~. UNIX System HI is 

A timesharing system like UNIX must  share the resources of the 

computer among multiple processes running programs on behalf of 

users. The allocation or scheduling of the resources has s great 

impact on the quality of service received by the users. In this paper 

we are concerned with the allocation of the CPU and main memory 

by the UNIX schedulers. We present a model of UNIX scheduling, 

and then describe the strategies used in the standard versions of 

UNIX in terms of this model. We suggest some deficiencies in the 

standard strategies and describe a set of modified scheduling 

strategies which we have implemented to address these deficiencies. 

We then describe a set of experiments which were conducted to 

evaluate the performance effects of the modified strategies, and 

discuss the results of these experiments. 

identical to System V in the areas that we discuss. 
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2. Scheduling in UNIX 

A UNIX system contains a population of processes, each of 

which may be ready to execute, actually executing, or blocked 

awaiting some event (usually the completion of an I/O operation}. 

A process blocked for a long I/O operation (for example, writing to 

an interactive terminal) is said to be waiting, while a process 

blocked for a short I / 0  operation (disk I/O) is said to be sleeping. 

At a given moment, any process may be in kernel mode (running 

trusted kernel software with full access to the hardware), or in user 

mode (running user programs with a restricted instruction set and 

address space). Each process is represented by an entry in the 

system's process table and an image (user program and data), which 

may be either in main memory (loaded) or in the "swap area" on a 

secondary storage device. A process whose image is in the swap 

area is said to be swapped out. 

Our model of UNIX scheduling is illustrated in Figure 1. As in 

many other operating systems, scheduling in UNIX takes place at 

two levels, short-term (CPU scheduling) and medium-term (main 

memory scheduling) [2].  CPU scheduling is done by a kernel 

subroutine which is called by the executing process to reallocate the 

CPU to another process (possibly the same process). Main memory 

scheduling, which determines a set of memory-resident candidates 

eligible for CPU scheduling, is done by swapping whole process 

images between main memory and the swap area. The swapping is 

done by a kernel process called the swap scheduler. 

The scheduling methods employed by the CPU scheduler and the 

swap scheduler are often quite different, partly because rescheduling 
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of the CPU occurs many times per second and must  be very 

inexpensive, while swap scheduling occurs less frequently and may 

involve more expensive algorithms. 

Since a process must  be present in main memory before it may 

execute, the swap scheduler can dominate system performanee if 

main memory is scarce. On the other hand, when memory is 

abundant no swapping occurs and the CFU scheduler is dominant. 

Although a process may voluntarily swap itself out of memory, 

only the swap scheduler ever swaps a process into memory. 

Voluntary swapouts occur when a process is expanding and needs 

more than the available amount of unused main memory. By 

swapping itself out, the process causes the swap scheduler to allocate 

main memory for it when it is swapped back in. 

In our comparison between the standard scheduler and our 

modified schedulers, we will focus on three main decisions made in 

scheduling: 

I. The dispatching decision made by the CFU scheduler: Which 

of the loaded, ready processes should be allocated the. CPUf 

2. The swap-in decision made by the swap scheduler: Which of 

the swapped-out, ready processes should be loaded into main 

memory? 

3. The swap-out decision made by the swap scheduler: If  there is 

not sufficient main memory available to swap in the process 

chosen by the swap-in decision, which eligible loaded processfes) 

should be swapped out to make rasing A number of rules 

determine which loaded processes ate eligible to be swapped 

out. These rules are essentially the same in the standard and 

modified schedulers. All of the swap schedulers described in 

this paper distinguish between waiting processes, and sleeping 

or ready processes, when making the swap-out decision. 

Waiting processes are swapped out if ~possible; otherwise 

sleeping or ready processes are swapped out. 

Our model of UNIX scheduling is designed to represent the 

important scheduling decisions involved in a swap-based UNIX 
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system. Various non-standard versions of UNIX support demand- 

paged virtual memory, for example, the V M ~ T X  systems 

developed by the Computer Systems Research Group of the 

University of California at Berkeley for the VAX computer. 

Scheduling strategies in such systems have some similarities to those 

of swapping systems, in that  the CPU dispatching decision is 

unchanged, and swapping of processes is done to control the 

multiprogranuniug level. We have not yet  attempted to deal in 

depth with the application of our modified schedulers to a paging° 

based UNIX system, but  this is part of our plans for further 

research. 

3 .  S t a n d a r d  S c h e d u l e r s  

The standard UNIX CPU scheduler allocates the CPU to the 

process with the best priority chosen from the set of loaded, ready 

processes. A process executing in user mode is preempted if a better 

priority process becomes loaded and ready. An unordered linked list 

of ready processes is exhaustively searched to llnd the loaded, ready 

process with the best priority. The best priority is the numerically 

lowest priority, which is unfortunately opposite'to the conventional 

meaning of "high priority". 

A priority is assigned to each process in the following way. A 

process in kernel mode has a priority determined by the event it last 

blocked for. A process in user mode has a priority determined by its 

tick count, an indicator of the amount of CPU time it has used 

recently. The tick count of the currently executing process is 

incremented every clock interrupt (16.7 milliseconds), to a maximum 

value of 255. Once every second, the tick count of every process is 

reduced by a "decay" computation that makes the tick count reflect 

recent CPU usage rather than total CPU usage. Various decay 

computations are used in standard UNIX systems: V6 decrements 

the tick count by 10, while V7 and $5 multiply it by 0.8 and 0.6, 

respectively. (The Berkeley 4.1 BSD system for the VAX uses a 

variant of this scheme in which the tick count is multiplied by a 

value between 0 and 1 depending on system load.) The priorities of 

processes in user mode are recomputed after the decay computation. 

The priority of a user mode process is computed from the tick count 

by means of the formula: 

priority== tiekeount + PUSER 
A 

where PUSER is the minimum (best) user mode priority, worse than 

all kernel mode priorities. The divisor A has the value 16 in V6 and 

V7, and 2 in $5. 

In the preceding discussion we have ignored the effects of the 

nice value associated with a process. The nice value can be used by 

the system administrator and user to influence the scheduling of the 

process. A small nice value results in better service for the process. 

A large nice value results in poorer service. The nice value 

influences the rate of decay of the tick count and also directly 

affects the computation of the priority from the tick count. 

The standard swap scheduler makes its swap-in decision by 

selecting the ready, swapped-out process which has been in the swap 

area for the longest time. The selection is implemented by means of 

a linear search through the entire process table. It is interesting 

that the priority maintained by the CPU scheduler is not used in 

making the swap-in decision. 

The swap-out decision of the standard swap scheduler is based 

primarily on the amount of time that  each candidate process has 

been in main memory. If possible, the largest loaded, waiting 

process is swapped out (in $5, a mixture oF priority and time loaded 

is used instead of size). Otherwise, the ready or sleeping process 

that  has been loaded the longest is swapped out (to prevent 

excessive swapping, a minimum time of 2 seconds in main memory 

is required). A linear search through the entire process table is used 

to locate the process to be swapped out. 

The nice value is used in both the swap-in and swap-out decision 

algorithms to favour processes with small nice values. 
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4,  S c h e d u l e r  M o d i f i c a t i o n s  

Although the standard UNIX schedulers described in the 

previous sectiou have functioned quite well in a variety of 

environments, there are several problems with them: 

1. Since the priority of every process must  change over time as its 

tick count decays, the system must  frequently update the tick 

counts and reeompute the priority of each process (this happens 

once a second in the standard schedulers). 

¢. The priority of a process in user mode is determined solely by 

its tick count, an indicator of the CPU service which it has 

received recently. Thus, the recognition of interactive and 

other I/O-bound processes is quite indirect. It takes several 

seconds for the tick count of a formerly CPU-bound process to 

decay to the level of an l/O-bound process, so sharp changes in 

program behaviour are recognized quite slowly. 

3. The priority system is ditBcult to understand and tune [5]. For 

example, the performance effects of changing the nice 

parameter are unpredictable, because nice is used in different 

ways at several places in the CPU and swap schedulers. 

4. Because the CPU scheduler is priority-based and the swap 

scheduler is based on the time each process has been swapped in 

or out, a sharp change in overall scheduling strategy occurs as 

the system load inereauses. Under a light load, no swapping 

occurs, and the decisions made by the CPU scheduler dominate. 

Under a heavy load, a great deal of swapping takes place, and 

the swap scheduler becomes dominant, by determining which 

processes are in main memory and are therefore eligible for the 

dispatching decision. Thus, as the load increases, the dominant 

strategy changes from a priority-based CPU scheduling strategy 

to a round-robin swap scheduling strategy that  is insensitive to 

program behaviour. 

5. Memory allocation decisions are made without any awareness of 

the layout of process images in main memory. This can lead to 

memory fragmentation problems and ineffective choices of 

processes to swap out. 

Our scheduler modifications were motivated by these concerns. 

In particular, the first three problems were addressed by a new CPU 

scheduler. The sudden change to a round-robin strategy as system 

load increases was avoided by basing the swap-in decision on the 

same process priority information that  is used by the CPU 

scheduler. Finally, we used a memory-oriented swap-out strategy 

called "MOUSE", which bases its decisions on the positions of 

process images and unused areas in main memory. 

4.1 CPU Scheduler 

Our CPU scheduler is of the FB (feedback queue) type 

popularized by CTSS 13] and Multics 17]. A similar scheduler is 

employed in VAX/VMS [4]. Each process is at one of 32 priority 

levels, with 0 the worst pricrity and 31 the best priority (Figure 2). 

The best priority is the highest priority, reverting the standard 

UNIX priority .scheme in the interests of clarity. The CPU is 

allocated to the highest priority loaded, ready process. A process 

executing in user mode is preempted by a higher priority process 

becoming loaded and ready. The priority levels from 16 to 31 are 

"real-time" levels. A process with a real-time priority level is never 

swapped out by the swap scheduler and is allowed to execute until it 

blocks for I /O or is preempted by a higher priority process. The 

real-time priority levels are rarely used, except that the swap 

scheduler itself runs at level 16. 

Level 

SWAP 

Real-lime 

Normal 

Figure 2: FB scheduler pr ior i ty  scheme. 
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0 
Normal "timesharing" processes have priority levels from 0 to 

15. Each priority level has an associated CPU quantum which is 

larger at the lower levels and smaller at the higher levels. Each 

process has a base level which can be adjusted to give the process 

better or worse service (analogous to the nice value in the standard 

CPU scheduler). When a process uses all of its quantum, its priority 

level is decremented, but never below the base level. When a 

process blocks, its priority level rises to its base level plus an 

increment determined by the type of event it is awaiting. The 

increment is 6 for terminal input, 4 for terminal output, and 2 for 

disk I/O. A completely CPU-bound process will have an actual 

priority level equal to its base level, while an I/O-bound process will 

have a higher priority. 

The dispatching decision in the FB scheduler is much less costly 

than that of the standard CPU scheduler. The standard scheduler 

does two context switches for each dispatching decision, while the 

FB scheduler only does one. In addition, because the FB scheduler 

maintains a linked list of ready processes ordered from highest to 

lowest priority level, it can simply select the first loaded process in 

the list, rather than searching the entire [ist. 

4,2 Priority Swap-In Strategy 

The modified swap-in strategy simply selects the highest priority 

ready, swapped-out process. The desired process is easily found by 

picking the first swapped-out process in the CPU scheduler's ready 

process list. Thus, the swap scheduler attempts to swap in the 

swapped-out process which the FB scheduler would be most likely to 

select for execution if it were loaded. 

4.3 MOUSE 

Abdallah ]1] suggested that UNIX swapping strategies should be 

based on the positions of process images in main memory. The 

MOUSE swap-out strategy implements this suggestion by 

maintaining a complete map of main memory as memory areas are 

allocated and released (standard UNIX uses a map that indicates 

only unused memory). Each map entry indicates the size of the 

associated area, the address where it begins, and whether it is used 

or unused. In the case of a used area, the map entry also includes a 

pointer to the process table entry for the process image occupying 

the area. The map entries are stored in an array ordered by the 

addresses of the corresponding memory areas. 

The MOUSE swap-out strategy selects processes to swap out by 

searching through the memory map from low addresses to high 

addresses. MOUSE looks for the first adjacent cluster of swappable 

process images and unused areas which is large enough to 

accommodate the incoming process. Because some processes cannot 

be swapped out, it is not guaranteed that  such a cluster exists. 

MOUSE makes an initial pass through the map considering only 

waiting processes to be swappable. If a large enough cluster cannot 

be found under this constraint, MOUSE makes a second pass 

considering waiting, sleeping, and ready processes. When a large 

enough cluster is found, MOUSE proceeds to swap out the processes 

in that  cluster. 

One advantage of the MOUSE swap-out strategy is that no 

processes are swapped out if a large enough cluster cannot be found. 

In such a case, the standard swap scheduler would swap out 

processes even though doing this would not result in a large enough 

unused area for the incoming process. By eliminating these 

ine~ective swap-outs, CPU and memory utilization are improved. 

5. Design of  the Experlments  

A series of experiments was conducted to measure the 

performance effects of the various scheduling strategies described 

above. All of the experiments used the same version of the UNIX 

kernel, running on a DEC PDP-11/23 minicomputer in our 

Department 's Research Laboratory. This version of the UNIX 

kernel has been instrumented to record more than thirty dilferent 

types of internal kernel events. Five di~erent scheduling modules 
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were "plugged into" the kernel to systematically vary the scheduling 

strategies, as follows: 

1. The standard V7 scheduling module, used as a baseline for 

comparing the modified schedulers to the standard ones. 

2. FB/std/std,  a scheduling module using the FB CPU scheduler 

and the standard swap-in and swap-out strategies. Since 

FB/s td/s td  uses the standard swap scheduler, any performance 

differences between it and the V7 scheduler are attributable to 

the FB CPU scheduler. 

3. FB/pri/std,  which uses the priority-based swap-in strategy and 

the standard swr.l>-OUt strategy. 

4. FB/std/monse,  which uses the standard swap-in strategy, and 

the MOUSE swap-out strategy. 

5. FB/pri/mouse, which uses all three of our modified scheduling 

strategies. 

Each of the five scheduling modules was tested in two different 

experiments, one to measure system throughput, and one to measure 

the degradation in the response time of an interactive process as 

system load increased. 

Each throughput experiment consisted of eight separate test 

runs. Each run involved the completion of a synthetic workload of 

CPU and disk I/O activity consisting of 36 invocations of a "load" 

subroutine. The workload was designed to be similar to the load 

produced by the common utility programs { e . o .  , the C compiler, and 

the text formatters) that account for most CPU and disk usage in a 

typical UNIX environment. The real time used to complete the 

workload was measured and used to compute overall throughput in 

"loads per minute". At the same time, all available internal 

monitoring data was recorded, including the number of swap 

operations, the CPU utilization, and the number of dispatches and 

system calls. The workload was spread over a different number of 

processes in each of the eight runs (1, 2, 3, 4, 6, 9, 12, and 18 

processes, respectively). Despite the varying number of processes, 

the same total amount of work was done by each run (this is 

supported by the fact that every run executed the same number of 

system calls). The sizes of the different processes in a given run 

were varied so that no unrealistic memory allocation tricks were 

possible. 

The goal of the experiments, as mentioned earlier, was to 

compare the performance impact of the different scheduling 

strategies in the context of UNIX. To ensure that differences in the 

results of the experiments were attributable to the different 

scheduling strategies, it was necessary to limit variations in the 

results from other causes. The following precautions were taken to 

reduce such variations: 

1. Use of the same synthetic workload in all runs eliminated 

variations due to load. Each experiment was performed with 

the computer idle except for the experiment. 

2. Before each run, a set of large CPU-bonnd processes was used 

to force inactive processes out of memory. After the CPU- 

bound processes terminated, memory was in a known state 

{empty except for the shell process supervising the 

experiments). 

3. To eliminate variations due to the placement of blocks on the 

file system and the effects of UNIX's disk cache, disk I /O was 

performed on a dedicated disk drive, and bypas~-d the file 

system entirely. The pattern of physical disk I/O produced by 

the synthetic workload simulated the pattern that  would be 

produced by file system accesses in normal operation. 

With these precautions, the results of several runs of the same 

experiment were within one percent of each other. Thus the larger 

differences observed in the results of different experiments can 

reasonably be attributed to the effects of the different scheduling 

strategies. 

The response degradation experiment involved nine separate runs 

for each of the five systems tested. In each run the completion time 

of an interactive test process was measured, while a background 

load of large, CPU-bound processes was also applied to the system. 

The nine ru~.s used 0, 1, 2, 3, 4, 6, 9, 12, and 18 background 
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proce~es, respectively. The interact;.ve process simply performed 20 

read operations on the console terminal. UNIX alarm signals were 

used to ensure that  each read operation was forced to wait 10 

seconds before finishing. Thus, with no other system load, the 

interactive process finished the 20 reads in 200 seconds. With n 

large number of background processes running, the interactive 

process could take much longer to complete because of the delay 

between the time that  each read operation completed and the time 

that  the process was loaded into main memory and executed so tha t  

it could start  the next read operation. 
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Figure 3: Scheduler throughput comparison. 

ft. R e s u l t s  o f  t h e  E x p e r i m e n t s  

The results of the experiments are shown in a series of graphs in 

Figures 3 through 7: Each graph shows five lines representing the 

five different ~heduling modules which were tried. 

The first four graphs show results from the throughput 

benchr.Lark: the measured throughput, the number of  swap-out 

oper:.tions, the percentage user-mode CFU util/zatiou, and the 

nu:aber of dispatches. Throughput is shown as a rate, in loads per 

minute, where a load is a fixed amount of CPU and disk I /O work 

as described in the preceding section. The SWal~out and dispatching 

comparisons show the total number of these operations which took 

place during each experiment. It is meaningful to compare these 

numbers, since all experiments performed a total of 36 loads even 

though the number of processes was varied. 

The throughput graph in Figure 3 can be analyzed in two parts. 

When very few processes are active, the differences between the 

systems are small and difficult to interpret. With fewer than four 

precedes, almest no swapping takes place, so performance 

differences :~re due to CPU scheduling and random variations. The 

increase in throughput up to this point is a result of the system 

overlapping user CPU activity and disk I/O. Figure 5 shows that  

three processes gives maximum user-mode CPU utilization as well as 

m~ximum throughput. 

When n large number of processes are active, the situation is 

quite different. Swapping decisions become the dominant factor in 

throughput. From Figure 3 it is clear that  the five systems can be 

divided into two groups based on their throughput when a large 

number of processes are active. The two systems with the MOUSE 

swap-out strategy . have approximately ten percent higher 

throughput than the three systems with the standard swap-out 

strategy (in the 18 process case). The priority-based swap-in 

strategy seems to result in slightly better throughput under heavy 

load, but  has a much smaller impact than the MOUSE swap-out 

strategy. 

The swap-out comparison in Figure 4 indicates that  the 

throughput advantage of the MOUSE strategy is largely a result of 

reduced swapping. This is not surprising, since MOUSE attempts to 

make better use of main memory and more effective choices of 

processes to swap out. Since swapping consumes CPU and disk 

resources and does not contribute to the productive work done, a 

high swap rate definitely has an adverse effect on system 

throughput. The experimental results clearly demonstrate this 

inverse relationship between swapping and throughput. 

The user-mode CPU utilization graph in Figure 5 indicates that  

the MOUSE swap-out strategy also results in better utilization of 

the CPU by user programs. This is partly a result of reduced 
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Figure 4: Scheduler swapout comparison. Figure 6: Scheduler dispatching comparison. 

system overhead from swapping. However, there is also a significant 

reduction in the percentage of time that the @PU is wasted because 

all ready processes are swapped-out. MOUSE makes better use of 

main memory, and therefore is able to keep n somewhat higher 

number of processes in memory. Internal measurements show that 

this effect is about three times as significant as the reduction in 

system overhead. 

Figure 6 demonstrates the largest performance advantage of the 

FB scheduler. The number of dispatches performed by the V7 

system with the standard CPU scheduler is markedly higher than 

the number of dispatches performed by the Other systems. The 

difference is large beginning at the 2 process case and extending to 

the 18 process ease. Since the cost of a dispatching decision is more 

than twice as great in the standard CPU scheduler as in the FB 

.scheduler, this is an important reduction in kernel overhead. 

Because of somewhat lower swap scheduler activity, the systems 

with MOUSE performed a smaller number of dispatches than the 

systems with the standard swap-out strategy when a large number 

of procemes were active. 

The final graph (Figure 7) shows the results of the interactive 

response experiment. The interactive test process completes in the 

minimum time of 200 seconds with a small number of CPU-bound 

background processes running.. However, once the number of active 

proce~es forces swapping to occur, all three systems with standard 

swap-in strategies take considerably longer to run the interactive 

proce~. By contrast, both systems with the priority swap-in 

strategy continue to run the interactive test process in 200 seconds 

even with 18 CPU-bound background processes running. Clearly 

the swap-out strategy has no significant effect in this experiment. 

The FB scheduler is important in that it provides the.qulck 
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recognition of interactive processes which is used by the priority 

swap-in strategy. 

Although the CPU efficiency of the swap scheduling algorithms 

was not our primary concern, we should note that the priority- 

driven swap-in strategy and the MOUSE swap-out strategy are both 

somewhat less costly than the standard strategies. The standard 

scheduler makes its decisions by means of linear searches through 

the entire process table; our algorithms search much smaller data 

structures, namely a linked list of the ready processes for the swap- 

in decision, and the memory allocation map for the swap-out 

decision. 
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7. C o n c l u s i o n s  

Scheduling is an important factor in determining the behaviour 

of an operating system under heavy load. This paper has examined 

the three key decisions made by UNIX schedulers. A set of 

experiments was conducted to study the performance eaects of 

various alternative strategies for making these decisions. 

The experimental results indicate that a priority-based swap-in 

strategy is very effective in maintaining the responsiveness of 

interactive processes on n busy, memory-limited UNIX system. 

MOUSE, a swap-out strategy based on memory management 

concerns, is also quite effective at improving the throughput of such 

a system, by reducing the number of swap operations performed. 

The FB CPU scheduler results in reduced dispatching overhead and 

provides the quick recognition of interactive processes necessary for 

the priority swap-in strategy. 
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