
A n E x p e r i m e n t a l I n v e s t i g a t i o n o f S c h e d u l i n g S t r a t e g i e s f o r U N I X

Daru,yn R. Peachey
Richard B. Bunt

Careo L. Williamson
Tim B. Brecht

Department of Computational Science
University of Saskatchewan

ABSTRACT

The scheduler used in an operating system is an important factor in the performance of the
system under heavy load. This paper describes the scheduling philosophy employed in the
UNIX operating system and outlines the standard scheduling strategies. Modified strategies
which address deficiencies in the standard strategies are described. The effectiveness of these
modified strategies is assessed by means of performance experiments.

1. I n t r o d u c t i o n

/,

The UNIX operating system 16] is an elegant, general-purpose

timesharing system which is used on a wide range of computers.

Versions of UNIX are used on computers as small as the IBM

Personal Computer and as large as the IBM 3081. UNIX is available

on computers built by more than fifty different manufacturers.

All true UNIX systems are derived from software developed at

AT$~T Bell Laboratories. Although the wide range of UNIX systems

have similar user and programmer interfaces, the internals of the

resident kernel are likely to be different on different computers. The

UNIX software usually supplied by A T ~ T is designed to r u n on

DEC PDP-II and VAX-11 computers. Throughout this paper we

will refer to the A T ~ T software as "standard" UNIX. In particular

we will mention the versions commonly referred to as Version 6

(Vfi), Version 7 (V7), and System V {$5~. UNIX System HI is

A timesharing system like UNIX must share the resources of the

computer among multiple processes running programs on behalf of

users. The allocation or scheduling of the resources has s great

impact on the quality of service received by the users. In this paper

we are concerned with the allocation of the CPU and main memory

by the UNIX schedulers. We present a model of UNIX scheduling,

and then describe the strategies used in the standard versions of

UNIX in terms of this model. We suggest some deficiencies in the

standard strategies and describe a set of modified scheduling

strategies which we have implemented to address these deficiencies.

We then describe a set of experiments which were conducted to

evaluate the performance effects of the modified strategies, and

discuss the results of these experiments.

identical to System V in the areas that we discuss.

' UNIX is • trademark of ATI~I" Bdl L•bor•tories.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 A C M 0 - 8 9 7 9 1 - 1 4 1 - 5 / 8 4 / 0 0 8 / 0 1 5 8 $ 0 0 . 7 5

1 5 8

2. Scheduling in UNIX

A UNIX system contains a population of processes, each of

which may be ready to execute, actually executing, or blocked

awaiting some event (usually the completion of an I/O operation}.

A process blocked for a long I/O operation (for example, writing to

an interactive terminal) is said to be waiting, while a process

blocked for a short I / 0 operation (disk I/O) is said to be sleeping.

At a given moment, any process may be in kernel mode (running

trusted kernel software with full access to the hardware), or in user

mode (running user programs with a restricted instruction set and

address space). Each process is represented by an entry in the

system's process table and an image (user program and data), which

may be either in main memory (loaded) or in the "swap area" on a

secondary storage device. A process whose image is in the swap

area is said to be swapped out.

Our model of UNIX scheduling is illustrated in Figure 1. As in

many other operating systems, scheduling in UNIX takes place at

two levels, short-term (CPU scheduling) and medium-term (main

memory scheduling) [2]. CPU scheduling is done by a kernel

subroutine which is called by the executing process to reallocate the

CPU to another process (possibly the same process). Main memory

scheduling, which determines a set of memory-resident candidates

eligible for CPU scheduling, is done by swapping whole process

images between main memory and the swap area. The swapping is

done by a kernel process called the swap scheduler.

The scheduling methods employed by the CPU scheduler and the

swap scheduler are often quite different, partly because rescheduling

M~n Memory

S y s t ~ Dimk

F i b r e 1. U N I X sct~ul in~ l'/nde!

of the CPU occurs many times per second and must be very

inexpensive, while swap scheduling occurs less frequently and may

involve more expensive algorithms.

Since a process must be present in main memory before it may

execute, the swap scheduler can dominate system performanee if

main memory is scarce. On the other hand, when memory is

abundant no swapping occurs and the CFU scheduler is dominant.

Although a process may voluntarily swap itself out of memory,

only the swap scheduler ever swaps a process into memory.

Voluntary swapouts occur when a process is expanding and needs

more than the available amount of unused main memory. By

swapping itself out, the process causes the swap scheduler to allocate

main memory for it when it is swapped back in.

In our comparison between the standard scheduler and our

modified schedulers, we will focus on three main decisions made in

scheduling:

I. The dispatching decision made by the CFU scheduler: Which

of the loaded, ready processes should be allocated the. CPUf

2. The swap-in decision made by the swap scheduler: Which of

the swapped-out, ready processes should be loaded into main

memory?

3. The swap-out decision made by the swap scheduler: If there is

not sufficient main memory available to swap in the process

chosen by the swap-in decision, which eligible loaded processfes)

should be swapped out to make rasing A number of rules

determine which loaded processes ate eligible to be swapped

out. These rules are essentially the same in the standard and

modified schedulers. All of the swap schedulers described in

this paper distinguish between waiting processes, and sleeping

or ready processes, when making the swap-out decision.

Waiting processes are swapped out if ~possible; otherwise

sleeping or ready processes are swapped out.

Our model of UNIX scheduling is designed to represent the

important scheduling decisions involved in a swap-based UNIX

159

system. Various non-standard versions of UNIX support demand-

paged virtual memory, for example, the V M ~ T X systems

developed by the Computer Systems Research Group of the

University of California at Berkeley for the VAX computer.

Scheduling strategies in such systems have some similarities to those

of swapping systems, in that the CPU dispatching decision is

unchanged, and swapping of processes is done to control the

multiprogranuniug level. We have not yet attempted to deal in

depth with the application of our modified schedulers to a paging°

based UNIX system, but this is part of our plans for further

research.

3 . S t a n d a r d S c h e d u l e r s

The standard UNIX CPU scheduler allocates the CPU to the

process with the best priority chosen from the set of loaded, ready

processes. A process executing in user mode is preempted if a better

priority process becomes loaded and ready. An unordered linked list

of ready processes is exhaustively searched to llnd the loaded, ready

process with the best priority. The best priority is the numerically

lowest priority, which is unfortunately opposite'to the conventional

meaning of "high priority".

A priority is assigned to each process in the following way. A

process in kernel mode has a priority determined by the event it last

blocked for. A process in user mode has a priority determined by its

tick count, an indicator of the amount of CPU time it has used

recently. The tick count of the currently executing process is

incremented every clock interrupt (16.7 milliseconds), to a maximum

value of 255. Once every second, the tick count of every process is

reduced by a "decay" computation that makes the tick count reflect

recent CPU usage rather than total CPU usage. Various decay

computations are used in standard UNIX systems: V6 decrements

the tick count by 10, while V7 and $5 multiply it by 0.8 and 0.6,

respectively. (The Berkeley 4.1 BSD system for the VAX uses a

variant of this scheme in which the tick count is multiplied by a

value between 0 and 1 depending on system load.) The priorities of

processes in user mode are recomputed after the decay computation.

The priority of a user mode process is computed from the tick count

by means of the formula:

priority== tiekeount + PUSER
A

where PUSER is the minimum (best) user mode priority, worse than

all kernel mode priorities. The divisor A has the value 16 in V6 and

V7, and 2 in $5.

In the preceding discussion we have ignored the effects of the

nice value associated with a process. The nice value can be used by

the system administrator and user to influence the scheduling of the

process. A small nice value results in better service for the process.

A large nice value results in poorer service. The nice value

influences the rate of decay of the tick count and also directly

affects the computation of the priority from the tick count.

The standard swap scheduler makes its swap-in decision by

selecting the ready, swapped-out process which has been in the swap

area for the longest time. The selection is implemented by means of

a linear search through the entire process table. It is interesting

that the priority maintained by the CPU scheduler is not used in

making the swap-in decision.

The swap-out decision of the standard swap scheduler is based

primarily on the amount of time that each candidate process has

been in main memory. If possible, the largest loaded, waiting

process is swapped out (in $5, a mixture oF priority and time loaded

is used instead of size). Otherwise, the ready or sleeping process

that has been loaded the longest is swapped out (to prevent

excessive swapping, a minimum time of 2 seconds in main memory

is required). A linear search through the entire process table is used

to locate the process to be swapped out.

The nice value is used in both the swap-in and swap-out decision

algorithms to favour processes with small nice values.

160

4, S c h e d u l e r M o d i f i c a t i o n s

Although the standard UNIX schedulers described in the

previous sectiou have functioned quite well in a variety of

environments, there are several problems with them:

1. Since the priority of every process must change over time as its

tick count decays, the system must frequently update the tick

counts and reeompute the priority of each process (this happens

once a second in the standard schedulers).

¢. The priority of a process in user mode is determined solely by

its tick count, an indicator of the CPU service which it has

received recently. Thus, the recognition of interactive and

other I/O-bound processes is quite indirect. It takes several

seconds for the tick count of a formerly CPU-bound process to

decay to the level of an l/O-bound process, so sharp changes in

program behaviour are recognized quite slowly.

3. The priority system is ditBcult to understand and tune [5]. For

example, the performance effects of changing the nice

parameter are unpredictable, because nice is used in different

ways at several places in the CPU and swap schedulers.

4. Because the CPU scheduler is priority-based and the swap

scheduler is based on the time each process has been swapped in

or out, a sharp change in overall scheduling strategy occurs as

the system load inereauses. Under a light load, no swapping

occurs, and the decisions made by the CPU scheduler dominate.

Under a heavy load, a great deal of swapping takes place, and

the swap scheduler becomes dominant, by determining which

processes are in main memory and are therefore eligible for the

dispatching decision. Thus, as the load increases, the dominant

strategy changes from a priority-based CPU scheduling strategy

to a round-robin swap scheduling strategy that is insensitive to

program behaviour.

5. Memory allocation decisions are made without any awareness of

the layout of process images in main memory. This can lead to

memory fragmentation problems and ineffective choices of

processes to swap out.

Our scheduler modifications were motivated by these concerns.

In particular, the first three problems were addressed by a new CPU

scheduler. The sudden change to a round-robin strategy as system

load increases was avoided by basing the swap-in decision on the

same process priority information that is used by the CPU

scheduler. Finally, we used a memory-oriented swap-out strategy

called "MOUSE", which bases its decisions on the positions of

process images and unused areas in main memory.

4.1 CPU Scheduler

Our CPU scheduler is of the FB (feedback queue) type

popularized by CTSS 13] and Multics 17]. A similar scheduler is

employed in VAX/VMS [4]. Each process is at one of 32 priority

levels, with 0 the worst pricrity and 31 the best priority (Figure 2).

The best priority is the highest priority, reverting the standard

UNIX priority .scheme in the interests of clarity. The CPU is

allocated to the highest priority loaded, ready process. A process

executing in user mode is preempted by a higher priority process

becoming loaded and ready. The priority levels from 16 to 31 are

"real-time" levels. A process with a real-time priority level is never

swapped out by the swap scheduler and is allowed to execute until it

blocks for I /O or is preempted by a higher priority process. The

real-time priority levels are rarely used, except that the swap

scheduler itself runs at level 16.

Level

SWAP

Real-lime

Normal

Figure 2: FB scheduler pr ior i ty scheme.

1 6 1

0
Normal "timesharing" processes have priority levels from 0 to

15. Each priority level has an associated CPU quantum which is

larger at the lower levels and smaller at the higher levels. Each

process has a base level which can be adjusted to give the process

better or worse service (analogous to the nice value in the standard

CPU scheduler). When a process uses all of its quantum, its priority

level is decremented, but never below the base level. When a

process blocks, its priority level rises to its base level plus an

increment determined by the type of event it is awaiting. The

increment is 6 for terminal input, 4 for terminal output, and 2 for

disk I/O. A completely CPU-bound process will have an actual

priority level equal to its base level, while an I/O-bound process will

have a higher priority.

The dispatching decision in the FB scheduler is much less costly

than that of the standard CPU scheduler. The standard scheduler

does two context switches for each dispatching decision, while the

FB scheduler only does one. In addition, because the FB scheduler

maintains a linked list of ready processes ordered from highest to

lowest priority level, it can simply select the first loaded process in

the list, rather than searching the entire [ist.

4,2 Priority Swap-In Strategy

The modified swap-in strategy simply selects the highest priority

ready, swapped-out process. The desired process is easily found by

picking the first swapped-out process in the CPU scheduler's ready

process list. Thus, the swap scheduler attempts to swap in the

swapped-out process which the FB scheduler would be most likely to

select for execution if it were loaded.

4.3 MOUSE

Abdallah]1] suggested that UNIX swapping strategies should be

based on the positions of process images in main memory. The

MOUSE swap-out strategy implements this suggestion by

maintaining a complete map of main memory as memory areas are

allocated and released (standard UNIX uses a map that indicates

only unused memory). Each map entry indicates the size of the

associated area, the address where it begins, and whether it is used

or unused. In the case of a used area, the map entry also includes a

pointer to the process table entry for the process image occupying

the area. The map entries are stored in an array ordered by the

addresses of the corresponding memory areas.

The MOUSE swap-out strategy selects processes to swap out by

searching through the memory map from low addresses to high

addresses. MOUSE looks for the first adjacent cluster of swappable

process images and unused areas which is large enough to

accommodate the incoming process. Because some processes cannot

be swapped out, it is not guaranteed that such a cluster exists.

MOUSE makes an initial pass through the map considering only

waiting processes to be swappable. If a large enough cluster cannot

be found under this constraint, MOUSE makes a second pass

considering waiting, sleeping, and ready processes. When a large

enough cluster is found, MOUSE proceeds to swap out the processes

in that cluster.

One advantage of the MOUSE swap-out strategy is that no

processes are swapped out if a large enough cluster cannot be found.

In such a case, the standard swap scheduler would swap out

processes even though doing this would not result in a large enough

unused area for the incoming process. By eliminating these

ine~ective swap-outs, CPU and memory utilization are improved.

5. Design of the Experlments

A series of experiments was conducted to measure the

performance effects of the various scheduling strategies described

above. All of the experiments used the same version of the UNIX

kernel, running on a DEC PDP-11/23 minicomputer in our

Department 's Research Laboratory. This version of the UNIX

kernel has been instrumented to record more than thirty dilferent

types of internal kernel events. Five di~erent scheduling modules

1 6 2

were "plugged into" the kernel to systematically vary the scheduling

strategies, as follows:

1. The standard V7 scheduling module, used as a baseline for

comparing the modified schedulers to the standard ones.

2. FB/std/std, a scheduling module using the FB CPU scheduler

and the standard swap-in and swap-out strategies. Since

FB/s td/s td uses the standard swap scheduler, any performance

differences between it and the V7 scheduler are attributable to

the FB CPU scheduler.

3. FB/pri/std, which uses the priority-based swap-in strategy and

the standard swr.l>-OUt strategy.

4. FB/std/monse, which uses the standard swap-in strategy, and

the MOUSE swap-out strategy.

5. FB/pri/mouse, which uses all three of our modified scheduling

strategies.

Each of the five scheduling modules was tested in two different

experiments, one to measure system throughput, and one to measure

the degradation in the response time of an interactive process as

system load increased.

Each throughput experiment consisted of eight separate test

runs. Each run involved the completion of a synthetic workload of

CPU and disk I/O activity consisting of 36 invocations of a "load"

subroutine. The workload was designed to be similar to the load

produced by the common utility programs { e . o . , the C compiler, and

the text formatters) that account for most CPU and disk usage in a

typical UNIX environment. The real time used to complete the

workload was measured and used to compute overall throughput in

"loads per minute". At the same time, all available internal

monitoring data was recorded, including the number of swap

operations, the CPU utilization, and the number of dispatches and

system calls. The workload was spread over a different number of

processes in each of the eight runs (1, 2, 3, 4, 6, 9, 12, and 18

processes, respectively). Despite the varying number of processes,

the same total amount of work was done by each run (this is

supported by the fact that every run executed the same number of

system calls). The sizes of the different processes in a given run

were varied so that no unrealistic memory allocation tricks were

possible.

The goal of the experiments, as mentioned earlier, was to

compare the performance impact of the different scheduling

strategies in the context of UNIX. To ensure that differences in the

results of the experiments were attributable to the different

scheduling strategies, it was necessary to limit variations in the

results from other causes. The following precautions were taken to

reduce such variations:

1. Use of the same synthetic workload in all runs eliminated

variations due to load. Each experiment was performed with

the computer idle except for the experiment.

2. Before each run, a set of large CPU-bonnd processes was used

to force inactive processes out of memory. After the CPU-

bound processes terminated, memory was in a known state

{empty except for the shell process supervising the

experiments).

3. To eliminate variations due to the placement of blocks on the

file system and the effects of UNIX's disk cache, disk I /O was

performed on a dedicated disk drive, and bypas~-d the file

system entirely. The pattern of physical disk I/O produced by

the synthetic workload simulated the pattern that would be

produced by file system accesses in normal operation.

With these precautions, the results of several runs of the same

experiment were within one percent of each other. Thus the larger

differences observed in the results of different experiments can

reasonably be attributed to the effects of the different scheduling

strategies.

The response degradation experiment involved nine separate runs

for each of the five systems tested. In each run the completion time

of an interactive test process was measured, while a background

load of large, CPU-bound processes was also applied to the system.

The nine ru~.s used 0, 1, 2, 3, 4, 6, 9, 12, and 18 background

163

proce~es, respectively. The interact;.ve process simply performed 20

read operations on the console terminal. UNIX alarm signals were

used to ensure that each read operation was forced to wait 10

seconds before finishing. Thus, with no other system load, the

interactive process finished the 20 reads in 200 seconds. With n

large number of background processes running, the interactive

process could take much longer to complete because of the delay

between the time that each read operation completed and the time

that the process was loaded into main memory and executed so tha t

it could start the next read operation.

lO.(~

g .o

8 .E

8 .0

7 .8

T.G

8.5

is.(

8 , !

8 . (

SCHFJ~ULFJ "n~ouGm,trr ¢o]~.L, t lsow

l a , - . , -° 1
~ / ~t J - - F ~ / p r t / l l t d |

--e-- Fl~/| ~d/It~u O t

I 2 ~ 4 8 e T 8 9 tO t l 1 2 1 3 1 4 1 a l O 1 7 1 8 1 9 20
mJ~BEa OF LOaD PnOCE,SSF.S

Figure 3: Scheduler throughput comparison.

ft. R e s u l t s o f t h e E x p e r i m e n t s

The results of the experiments are shown in a series of graphs in

Figures 3 through 7: Each graph shows five lines representing the

five different ~heduling modules which were tried.

The first four graphs show results from the throughput

benchr.Lark: the measured throughput, the number of swap-out

oper:.tions, the percentage user-mode CFU util/zatiou, and the

nu:aber of dispatches. Throughput is shown as a rate, in loads per

minute, where a load is a fixed amount of CPU and disk I /O work

as described in the preceding section. The SWal~out and dispatching

comparisons show the total number of these operations which took

place during each experiment. It is meaningful to compare these

numbers, since all experiments performed a total of 36 loads even

though the number of processes was varied.

The throughput graph in Figure 3 can be analyzed in two parts.

When very few processes are active, the differences between the

systems are small and difficult to interpret. With fewer than four

precedes, almest no swapping takes place, so performance

differences :~re due to CPU scheduling and random variations. The

increase in throughput up to this point is a result of the system

overlapping user CPU activity and disk I/O. Figure 5 shows that

three processes gives maximum user-mode CPU utilization as well as

m~ximum throughput.

When n large number of processes are active, the situation is

quite different. Swapping decisions become the dominant factor in

throughput. From Figure 3 it is clear that the five systems can be

divided into two groups based on their throughput when a large

number of processes are active. The two systems with the MOUSE

swap-out strategy . have approximately ten percent higher

throughput than the three systems with the standard swap-out

strategy (in the 18 process case). The priority-based swap-in

strategy seems to result in slightly better throughput under heavy

load, but has a much smaller impact than the MOUSE swap-out

strategy.

The swap-out comparison in Figure 4 indicates that the

throughput advantage of the MOUSE strategy is largely a result of

reduced swapping. This is not surprising, since MOUSE attempts to

make better use of main memory and more effective choices of

processes to swap out. Since swapping consumes CPU and disk

resources and does not contribute to the productive work done, a

high swap rate definitely has an adverse effect on system

throughput. The experimental results clearly demonstrate this

inverse relationship between swapping and throughput.

The user-mode CPU utilization graph in Figure 5 indicates that

the MOUSE swap-out strategy also results in better utilization of

the CPU by user programs. This is partly a result of reduced

164

S ~ SWA.Potrr co~talSOX

- - FB/pr t i l e d
400 F O / p r l / ~ u * * .:. / , ~ : : - : :

2 0 0 - / ~.,'.,.."

0 1 2 ~ • 5 8 7 8 0 1 0 1 1 1 2 1 3 1 4 1 1 1 1 0 1 7 1 8 1 1 1 2 0
OF LOAD p ~ o c l ~

6000

E l 0 0

5000

450(3

400C

350C

3000

2500

200C

1 6 0 ¢

$ ~ U ' L ! R DISPATCHIWG CUI~kRISOM

/ -"

i "
/ .-- . . . - "

L°I looc . - j ~ . u d l x d W
..... ~ B l l ~ d / l C d

~c -- F B / p r l / I L d
-0 - - FB/ iLd /mOUO*

CI F D / p r l l m o u 8 J
. ' i , J , ~ i J
t 2 3 4 5 6 T 6 O X 0 1 1 1 3 1 3 1 4 1 5 1 6 1 ? 1 9 1 9 2 0

WL~BF~ OF LOgO pP.OC~SS~S

Figure 4: Scheduler swapout comparison. Figure 6: Scheduler dispatching comparison.

system overhead from swapping. However, there is also a significant

reduction in the percentage of time that the @PU is wasted because

all ready processes are swapped-out. MOUSE makes better use of

main memory, and therefore is able to keep n somewhat higher

number of processes in memory. Internal measurements show that

this effect is about three times as significant as the reduction in

system overhead.

Figure 6 demonstrates the largest performance advantage of the

FB scheduler. The number of dispatches performed by the V7

system with the standard CPU scheduler is markedly higher than

the number of dispatches performed by the Other systems. The

difference is large beginning at the 2 process case and extending to

the 18 process ease. Since the cost of a dispatching decision is more

than twice as great in the standard CPU scheduler as in the FB

.scheduler, this is an important reduction in kernel overhead.

Because of somewhat lower swap scheduler activity, the systems

with MOUSE performed a smaller number of dispatches than the

systems with the standard swap-out strategy when a large number

of procemes were active.

The final graph (Figure 7) shows the results of the interactive

response experiment. The interactive test process completes in the

minimum time of 200 seconds with a small number of CPU-bound

background processes running.. However, once the number of active

proce~es forces swapping to occur, all three systems with standard

swap-in strategies take considerably longer to run the interactive

proce~. By contrast, both systems with the priority swap-in

strategy continue to run the interactive test process in 200 seconds

even with 18 CPU-bound background processes running. Clearly

the swap-out strategy has no significant effect in this experiment.

The FB scheduler is important in that it provides the.qulck

USU-WOD! CPU t~ IL I / . (T ION

1oo.

r ~c~ - - - ~ n a L r a V7
. r n l l C d / l ~ a
- - F B I p r I / I L d

no- - -~ F n l l ~ a l l o u n
~ F B I p r l l m o u l *

?o-
r

40

20"

:0-

0
o I 2 ~ 4 5 e 7 8 0 I 0 t t 13 13 14 16 te 17 18 10 20

n u ~ n ~ e v LOaD e a o c E s s [s

Figure 5: User-mode CPU u t i l i za t ion .

INT£RACTIVEnESPO~$E TZkq~

_ :~:~ ~ .o
i , - - FB/s td / s~d I , F S / p r t / s ~ d I "'""

I ° F B / | L c I / ~ o u | I I "'"
~ " FBlprl lmoua* I "'"" "

.,oo / , -
0"

200 i : ; : : " - L ~ ~"'" o o

)
[

t ° ° t

0 ~ I , I i I I I i , I , i , I

0 % 2 3 4 B 8 ? 8 @ 10 I t 1 2 1 3 1 4 1 5 1 0 1 7 1 8 ID 20
NUMBER OF LOAD PROCESSES

Figure 7: Interactive response ti~,e.

165

recognition of interactive processes which is used by the priority

swap-in strategy.

Although the CPU efficiency of the swap scheduling algorithms

was not our primary concern, we should note that the priority-

driven swap-in strategy and the MOUSE swap-out strategy are both

somewhat less costly than the standard strategies. The standard

scheduler makes its decisions by means of linear searches through

the entire process table; our algorithms search much smaller data

structures, namely a linked list of the ready processes for the swap-

in decision, and the memory allocation map for the swap-out

decision.

8. A c k n o w l e d g e m e n t s

We gratefully acknowledge the assistance of Malak Abdallah and

David Bocking. Malak's M.Sc. thesis proposed an earlier version of

the MOUSE scheduler, while Dave's continuing technical support as

Manager of the Department's Research Lnboratory has been most

valuable. The comments of the anonymous referees contributed to

the clarity of the final paper. The research was funded, in part, by

the Natural Sciences and Engineering Research Council of Canada,

through operating grant no. A3707, infra-structure grant no. A2527,

and the Undergraduate Summer Research Awards program.

7. C o n c l u s i o n s

Scheduling is an important factor in determining the behaviour

of an operating system under heavy load. This paper has examined

the three key decisions made by UNIX schedulers. A set of

experiments was conducted to study the performance eaects of

various alternative strategies for making these decisions.

The experimental results indicate that a priority-based swap-in

strategy is very effective in maintaining the responsiveness of

interactive processes on n busy, memory-limited UNIX system.

MOUSE, a swap-out strategy based on memory management

concerns, is also quite effective at improving the throughput of such

a system, by reducing the number of swap operations performed.

The FB CPU scheduler results in reduced dispatching overhead and

provides the quick recognition of interactive processes necessary for

the priority swap-in strategy.

O. References

11] Abdallah, M.S., An Investigation of the Swapping Proces# in
the UNIX Operating System, M.Sc. thesis, Department of
Computational Science, University of Saskatchewan, July
1982.

[21 Bunt, R.B., "Scheduling Techniques in Operating Systems",
Computer, Vol. 9, No. ~.0 (October 1976), 10-17.

13] Crisman, P.A., ed., The Compatible Time-Sharing System,
MIT Press, 1965.

14] Digital Equipment Corporation, VAX Software Handboo~
1982.

[5] Peachey, D.R., Williamson, C.L., and Beat, R.B., "Taming
the UNIX Scheduler", Dept. of Computational Science, Univ.
of Saskatchewan, 1984, (submitted for publication).

[6] Ritchie, D.M. and Thompson, K., "The UNIX Time-Sharing
System", Comm. ACM, Vol. 17, No. 7 (July 1974), 365-375.

[7] Saltzer, J.H., Traffic Control in a Multiplezed Computer
System, Sc.D. thesis, Department of Electrical Engineering,
MIT, 1066.

166

