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Abstract. We study the problem of processor scheduling for n parallel jobs applying the method
of competitive analysis. We prove that for jobs with a single phase of parallelism, a preemptive
scheduling algorithm without information about job execution time can achieve a mean completion
time within 2− 2

n+1
times the optimum. In other words, we prove a competitive ratio of 2− 2

n+1
.

The result is extended to jobs with multiple phases of parallelism (which can be used to model
jobs with sublinear speedup) and to interactive jobs (with phases during which the job has no CPU
requirements) to derive solutions guaranteed to be within 4− 4

n+1
times the optimum. In comparison

with previous work, our assumption that job execution times are unknown prior to their completion
is more realistic, our multiphased job model is more general, and our approximation ratio (for jobs
with a single phase of parallelism) is tighter and cannot be improved. While this work presents
theoretical results obtained using competitive analysis, we believe that the results provide insight
into the performance of practical multiprocessor scheduling algorithms that operate in the absence
of complete information.
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1. Introduction. The CPU scheduling problem for computer systems distin-
guishes itself from general scheduling problems (e.g., job shop scheduling) in its variety
of requirements of the system and variety of performance metrics. While minimizing
makespan (the time at which the last job completes execution) is usually a natu-
ral objective function for many general scheduling problems, a number of different
possibilities exist for CPU schedulers in a general purpose multiuser computing en-
vironment [31]. Nevertheless, minimizing the mean completion time (the sum of the
times at which each job completes, divided by the number of jobs) is a commonly
used objective function [22], [18], [34], [35], [27]. We can equivalently just consider
the sum of the completion times. In this paper, the phrase completion times is used to
imply that all jobs are available for execution at time zero, while the phrase response
time implies that there are new job arrivals.

Several recent analytic results have been obtained for the problem of minimizing
mean completion times using nonpreemptive scheduling algorithms which assume that
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job information is completely known [35], [34], [27], [18]. These results initiated the
first (theoretical) step toward understanding the general problem. Our work takes
the next significant step and is distinguished from these results in that we remove the
unrealistic assumption that the job execution time is known. Knowledge of execution
times for some jobs may be obtained, but this is clearly not a valid assumption for all
jobs in general purpose computing environments.

Using the terminology of Feitelson et al. [9], the work by Turek et al. [35] and
Schwiegelshohn et al. [27] examines nonpreemptive scheduling policies using a rigid
job model. That is, the number of processors required by a job is defined by the job
and must be assigned to the job for its lifetime. Subsequent work [34], [18] relaxes the
job model to consider moldable jobs. A moldable job [9] is one which can be run on
any number of processors provided that once the processors have been allocated they
remain allocated to that job for the duration of its execution. In this case the scheduler
is free to determine the number of processors to allocate to each job. However, once a
job is assigned processors it cannot be preempted. Additionally, some of these studies
[34], [18] explicitly model jobs with sublinear speedup.

By comparison, in this work we model malleable jobs in order to examine dynamic
preemptive scheduling policies. That is, we model jobs that are capable of executing
with a changing number of processors and scheduling algorithms that can modify the
number of processors allocated to jobs during their execution in order to adjust to
changing requirements or system loads. Note that in using this model, threads of a
job can migrate (i.e., they can be suspended on one processor and resumed at a later
time on another processor). We also explicitly study jobs with multiple phases of
parallelism in order to approximate jobs with sublinear speedups. During each phase
of execution a job is capable of executing with perfect speedup until a maximum degree
of parallelism is reached. The addition of extra processors beyond this limit neither
increases nor decreases the execution time of the job. While each phase executes
with linear speedup (up to the maximum degree of parallelism), multiple phases of
execution with different maximum degrees of parallelism can be combined to produce
an overall model of sublinear speedup.

In this paper we show that the dynamic equipartition (DEQ) policy [33], [38]
produces mean completion times that are no more than 2 − 2

n+1 times the optimum
for any set of n parallel jobs with one phase of parallelism, and that no policy can
guarantee a better competitive ratio without a priori knowledge of job execution times.
Although the competitive ratio turns out to be the same as in the sequential problem
(not necessarily by accident), our result requires a completely different and rather
difficult proof. In fact, the ratio of 2− 2

n+1 cannot be further improved mathematically
for jobs with a single phase of parallelism.

This result provides a theoretical foundation for analyzing and understanding the
performance of the DEQ policy, which, along with its various derivatives, has been
shown to be superior to nonpreemptive algorithms in recent simulation and experi-
mental studies [33], [17], [38], [16], [20], [21].

The remainder of the paper is organized as follows. We complete section 1 with a
further description of the problem and a discussion of related work. In section 2, we
give a formal definition of the DEQ allocation policy. Then we establish a lower bound
on the optimal total completion time for parallel jobs by extending the squashed area
bound and the height bound [34], using a completely different approach from those
used previously. In section 3, we give a formal proof that the total completion time
of DEQ is no more than twice the optimal total completion time for any job set. The
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mathematical induction used in this proof requires a delicate balance of the squashed
area and height bounds on the work needed to be executed by each job. Furthermore,
in section 4, we show that our results can be extended to jobs which may change
the number of processors required during their execution, including interactive jobs
which may block and therefore need not be assigned to a CPU while waiting for user
input. In section 5, we present theoretical results which demonstrate that DEQ is
robust in the presence of faulty jobs. We consider the case where there are faulty jobs
which may execute infinitely and show that, in this case, DEQ achieves the optimal
competitive ratio for makespan. In section 6, we conclude the paper.

1.1. Preemptive scheduling. Schedulers in most general purpose computer
systems are preemptive for several reasons [31]. First, job execution times may not be
known prior to their completion. Thus, when nonpreemptive scheduling algorithms
are used, short jobs may be penalized by long jobs which utilize the CPUs for long
periods of time. Second, interactive jobs require some processing, and preemptive
(time-sharing) scheduling policies allow them to execute by providing them with a
slice of CPU time. Third, some jobs may execute infinitely, due to programming
errors. If a nonpreemptive scheduling policy is used they may execute forever and
exclude other jobs from being processed. Obviously, the preemptive execution of jobs
incurs some overhead. For multiprocessor systems, this may become more expensive.
However, these overheads can be absorbed in a time-sharing scheme by choosing a
scheduling quantum that is sufficiently large or by dynamically space-sharing pro-
cessors instead [33], [38], [20], [26]. This is consistent with the trend toward coarse
grained machines for general purpose parallel computations, as suggested in the LogP
model [3]. Setup costs can then be absorbed by pipeline routing if the size of a prob-
lem is sufficiently large in comparison with the number of processors in the system
[36]. Independently, there have been extensive empirical studies on the preemptive
cost caused by time/space-sharing scheduling policies [38], [20], [37]. Even for some
cases when the preemption cost is relatively high, simulation and experimental studies
support preemptive over nonpreemptive scheduling policies [38], [20], [23], [24].

1.2. Competitive analysis. We make the assumption that job execution times
are not known prior to their completion. This is quite realistic for modern general
purpose multiprocessors. Since execution times are not known at the time jobs are
scheduled, it is possible that any given scheduling policy may not perform very well on
some specific job set. For this reason, we use competitive analysis to study policies that
do not deviate from the optimal solution (which has and uses complete information
about the job set) by more than a constant factor. The competitive analysis of
algorithms is a measure of algorithms operating with incomplete information, first
introduced in the study of system memory management [32], [13], [19]. Policies for
this problem are required to handle future unknown requests. The competitive ratio
of a policy is defined to be the worst case ratio of the cost of the policy (which is
different for different problems) to the optimal cost for the same input sequence.
In the CPU scheduling problem the situation is similar in that the execution time
of a job is unknown until its execution is completed. The competitive ratio of a
scheduling policy S is thus defined as the worst case ratio of the mean completion
time (or makespan), S(J ), of the policy on a set of jobs, J , over the minimum mean

completion time (or makespan) OPT (J ) on the same job set J : maxall J
S(J )

OPT (J ) .

An algorithm is said to be f(n)-competitive in mean completion time (or makespan) if
S(J ) ≤ f(n)OPT (J ). The goal is to find an algorithm which leads to the minimum
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competitive ratio. Shmoys, Wein, and Williamson studied the optimal competitive
ratio in the makespan of sequential jobs being scheduled on parallel machines [30].
For minimizing the mean completion time of sequential jobs, Motwani, Phillips, and
Torng have shown that a preemptive time-sharing policy, round-robin, achieves the
optimal competitive ratio. It guarantees a mean completion time which is within
2 − 2

n+1 times optimal, and no policy can guarantee a better competitive ratio [22].
As further evidence that preemptive policies should be preferred to nonpreemptive
policies, it is not hard to see that any nonpreemptive policy can result in a mean
completion time that is Ω(n) times the optimum when n jobs are scheduled.

1.3. The job model. The most detailed description of a parallel program’s exe-
cution on a multiprocessor is a data-dependency directed acyclic graph (DAG), where
edges represent data dependencies between the data (nodes). The DAG is revealed as
the computation proceeds as a result of data-dependent conditional statements. Using
a delay model introduced by Papadimitriou and Yannakakis [25], Deng and Koutsou-
pias show that given uniform communication delay, τ , for any scheduler, there exists
a DAG for which the scheduler will produce a schedule whose execution is at least
τ

log τ times the optimal execution time of that DAG [4]. The same claim holds for

both the bulk synchronous parallelism (BSP) and the LogP models. That is, for a
parallel system with communication latency L between processors, the competitive
ratio of any scheduler is at least L

logL . This work shows that it is not possible for

a compiler to optimally (or near-optimally) execute all jobs for distributed memory
parallel systems, and it calls for the characterization of parallel jobs and the use of
these characteristics in scheduling policies.

We characterize a parallel job, Ji, using two parameters: its execution time, hi,
and its parallelism, Pi. Pi is the number of processors a job is capable of using
during its execution, and hi is the time that the job needs to complete execution if
it is allocated Pi processors. When less than Pi processors are allocated to job Ji,
we assume that the job’s execution will be prolonged proportionally. That is, if pi
processors (pi < Pi) are allocated to Ji, its actual execution time is Pi

pi
hi. For a

job, (Pi, hi), its parallelism Pi is known to the scheduler but the execution time hi
is unknown prior to its completion. Therefore, jobs are considered malleable and the
scheduling algorithms are dynamic and preemptive, since they can adjust the number
of processors allocated to a job during its execution [9].

In general, we can use parallelism profiles to characterize parallel jobs. A paral-
lelism profile is defined as the number of processors an application is capable of using
at any point in time during its execution [15]. During execution, if the parallelism of
an application varies with time, it is said to have multiple phases of parallelism. Note
that although our job model assumes linear speedup within each phase of parallelism,
jobs with multiple phases of parallelism will execute with sublinear speedup. We also
consider interactive jobs by introducing phases during which a job does not require
access to a processor because it is blocked while waiting for user input.

1.4. Related results. Motwani, Phillips, and Torng [22] show that, for unipro-
cessor systems, the mean completion time of the round-robin scheduling policy is
2− 2

n+1 times the optimum and that without a priori information about job execution
times, no policy can guarantee mean completion times within a better approximation
factor of the optimum (called the competitive ratio [32], [13], [19]).

The problem of minimizing the mean completion time of parallel jobs executing
on multiprocessors is also of interest, and here a number of positive results exist.
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Recently, there have been several analytic results which assume that job information is
completely known. The first significant work is that of Turek et al. [35] who introduce
an approximation algorithm of 32 times the optimum for a nonpreemptive scheduling
model. This result for nonpreemptive algorithms has been subsequently improved and
extended [34], [27], [18].

A number of different preemptive policies have been proposed and studied for
scheduling parallel jobs in multiprocessors [33], [29], [38], [20], [28], [26], [23], [24], [2].
In particular, experimental and simulation studies have shown that the DEQ algo-
rithm yields low mean completion times under a variety of workloads and is reported
to possess desirable properties of a good scheduler [33], [17], [16]. DEQ was first intro-
duced to parallel scheduling by Tucker and Gupta as a process control policy [33] and
was modified by Zahorjan and McCann [38]. The main idea behind this approach is
to distribute processors evenly among jobs, provided they have sufficient parallelism.

One of the main drawbacks of DEQ, when compared with other approaches like
gang scheduling, is that it requires each job to be implemented in such a way that
the number of processes allocated to the job can change during its execution. It
also requires significant coordination between the operating system and the run-time
system. While these requirements might seem restrictive, studies have shown that
it is relatively simple to write malleable applications, that coordination between the
scheduler and run-time system is not prohibitive, and that performance is improved
significantly when compared with other techniques [20], [10], [23], [24]. In addition,
the DEQ algorithm is simple to implement and requires no information about job
execution times. Therefore, this work examines the DEQ scheduling algorithm.

Our proof that DEQ is 2 − 2
n+1 -competitive uses the notion of a squashed area

bound, introduced for the nonpreemptive scheduling of parallel jobs [18], [35], [27],
[34]. Turek et al. show that the minimum completion time for a set of jobs, J =
{(P1, h1), (P2, h2), . . . , (Pn, hn)}, is no more than the minimum completion time of
the job set Jsquash = {(P, P1h1

P ), (P, P2h2

P ), . . . , (P, PnhnP )} [35]. The squashed area
bound is the total completion time (the product of the number of jobs and the mean
completion time) for Jsquash under the least work first (LWF) policy. Sevcik shows
that the LWF policy is optimal if all jobs have the same parallelism P [28].

2. Preliminaries. Consider n jobs in a system of P processors. Job Ji is charac-
terized by the parallelism-time pair (Pi, hi), and the amount of work is wi = Pihi, 1 ≤
i ≤ n. Denote the job set by J = {J1, J2, . . . , Jn}. Suppose that under a scheduler S
the actual completion time of job Ji is ti, 1 ≤ i ≤ n. The total completion time of J ,
denoted by TCS(J ), is defined as

∑n
i=1 ti. Then the mean completion time MCS(J )

is defined as TCS(J )
n . The height bound H(J ) is defined as

∑n
i=1 hi [35]. Since Ji

requires at least hi units of execution time, 1 ≤ i ≤ n, H(J ) is an obvious lower
bound on the optimal total completion time. Let the jobs be ordered according to
their total work w1 ≤ w2 ≤ · · · ≤ wn. The squashed area bound A(J ) is then defined
as
∑n

i=1(n− i+1)wiP [35]. Notice that any preemptive scheduling of the job set J can
be obtained by a preemptive scheduling of the job set {(P, w1

P ), (P, w2

P ), . . . , (P, wnP )}.
It follows that OPT (J ) ≥ OPT{(P, w1

P ), (P, w2

P ), . . . , (P, wnP )}. Since each job has the
same parallelism, the shortest job first (or LWF) strategy gives the optimal solution
for the total completion time, easily provable as in sequential systems (see [35], [28]
for details). This gives exactly the squashed area bound.

Our main result utilizes a nontrivial extension to the squashed area bound and
the height bound. Suppose each job (Pi, hi) is divided into two parts: (Pi, hi1) and
(Pi, hi2) such that hi = hi1 + hi2. Let J (1) = {(Pi, hi1) : 1 ≤ i ≤ n} and J (2) =
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{(Pi, hi2) : 1 ≤ i ≤ n}. We have the following lemma for a lower bound on the optimal
total completion time of the job set J .

Lemma 2.1. OPT (J ) ≥ A(J (1)) +H(J (2)).
Proof of Lemma 2.1. Consider the optimal scheduling algorithm on the input

J . Let ti1 be the time when the remaining portion of Ji is (Pi, hi2) and ti2 be the
time when Ji completes execution 1 ≤ i ≤ n. Obviously, ti2 − ti1 ≥ hi2. The total
completion time for the optimal scheduler is

OPT (J ) =

n
∑

i=1

ti2 ≥

n
∑

i=1

ti1 +

n
∑

i=1

hi2 ≥ A(J (1)) +H(J (2)),

where the last inequality is derived from the height bound and the squashed area
bound [35].

We formally define the DEQ allocation policy recursively as follows:
(1) If Pi ≥

P
n for all i : 1 ≤ i ≤ n, each job is assigned P

n processors.

(2) Otherwise, each job Ji with parallelism Pi <
P
n is allocated Pi processors.

Update n and P . If n > 0, recursively apply DEQ.
Obviously, this schedule is valid only when P

n is an integer. In practice, if P
n is a

rational number, and larger than 1, we can take its integer part bPn c and ignore its

fraction part P
n − bPn c. The result will be affected by a small constant factor. If P

n
is a fractional number smaller than 1, we view all the parallel jobs as sequential jobs
and apply the round-robin policy so that in unit time, a fraction P

n of one processor’s
CPU time is assigned to one job. To simplify our proof, we allow a fractional number
of processors to be assigned to a job, P

n , as long as that number is smaller than the
parallelism of the job. Let Jpara be the set of jobs that are allocated Pi processors,
and the rest of the jobs form the set Jequi (which are each assigned an equal number
of processors, denoted by p̄).

Lemma 2.2. If there are no idle processors, then
∑

Ji∈Jpara
Pi + |Jequi|p̄ = P ,

(∀Ji ∈ Jpara)Pi ≤ p̄, and p̄ ≥ P
n .

Consider the execution of jobs under the DEQ policy. Each job (Pi, hi) is divided
into two modes of execution: It is in full-parallelism mode if Pi processors are assigned,
and it is in equipartition mode if less than Pi processors are assigned. It is not difficult
to see that under the DEQ allocation policy, once a job enters full-parallelism mode, it
will stay in that mode until completion. Let hi(f) be the length of execution of job i

in full-parallelism mode, and hi(e) = hi−hi(f). Let J (f) = {(Pi, hi(f)) : 1 ≤ i ≤ n}
and J (e) = {(Pi, hi(e)) : 1 ≤ i ≤ n}. In the next section, we prove

TCDEQ(J ) ≤

(

2−
2

n+ 1

)

[A(J (e)) +H(J (f))].(2.1)

Combining this with Lemma 2.1, we have the following theorem.
Theorem 2.3. TCDEQ(J ) ≤ (2− 2

n+1 )OPT (J ).
It is not hard to extend the lower bound for the competitive ratio of sequential

jobs by Motwani, Phillips, and Torng [22] to this situation. In fact, we can replace
each job in their proof with a parallel job of the same execution time with parallelism
P , the number of processors in the system. Thus, this competitive ratio is optimal.

3. Minimizing mean completion time. In this section, we prove that (2.1)
holds. Suppose jobs are initially divided into Jpara and Jequi according to the dis-
cussion in section 2. We need the following lemma.
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Lemma 3.1. If there are no idle processors, then

(n+ 1)P |Jequi| ≤ (n− 1)P |Jpara|+ np̄|Jequi|(|Jequi|+ 1).

Proof of Lemma 3.1.

RHS = P (|Jequi|+ |Jpara| − 1)|Jpara|+ np̄|Jequi|(|Jequi|+ 1)

≥ P |Jequi||Jpara|+ P (|Jpara| − 1)|Jpara|+ P |Jequi|(|Jequi|+ 1)

≥ P |Jequi|(|Jpara|+ |Jequi|+ 1) = P |Jequi|(n+ 1).

In the above, the first inequality follows from Lemma 2.2, and the second inequality
follows from the fact (|Jpara| − 1)|Jpara| ≥ 0.

When one of the jobs, say J1, finishes its execution under DEQ, we will reallocate
processors according to DEQ. Every job in Jpara will still be assigned the same number
of processors as its parallelism. Let J ′

para ⊆ Jequi be the subset of jobs in Jequi which
are assigned the same number of processors as their parallelism after the reallocation
of processors. Let J ′

equi = Jequi − J ′
para. Thus, jobs in J ′

equi are now assigned the
same number of processors.

Proof of (2.1). For simplicity of presentation, let C = 2− 2
n+1 . In order to avoid

case-by-case analysis in the proof, we prove the claim by induction on the number of
jobs which have nonzero execution time, n.

Since 2− 2
n+1 is an increasing function of n and jobs of zero length would change

neither the squashed area bound nor the height bound, the claim would also hold when
we allow n to be the number of total jobs, including jobs of zero length. Therefore,
we can simply prove the claim for the case when all jobs have nonzero lengths while
allowing the induction hypothesis to include the case when jobs of zero length are
present.

For the base case n = 1, if the parallelism, P1, of job J1 is less than or equal to
P (P1 ≤ P ), it is assigned P1 processors (h1(f) = h1). Otherwise, P processors are
assigned to the job (h1(e) = h) and its execution ends in time P1h1

P , which is the same
as the squashed area bound.

Assume the claim holds when the number of jobs of nonzero length is less than
n. Consider the case of n jobs, all of nonzero length, J = {(Pi, hi) : 1 ≤ i ≤ n}. If
there are idle processors, the claim follows immediately. So we assume there are no
idle processors. Without loss of generality, let J1 = (P1, h1) be the first to finish and
let τ denote its completion time. Therefore, the remaining portion of jobs Ji ∈ Jequi
is (Pi, hi−

τp̄
Pi

), and the remaining portion of jobs Ji ∈ Jpara is (Pi, hi−τ). Therefore,
the total completion time is

TCDEQ(J ) = nτ + TCDEQ

({(

Pi, hi −
τ p̄

Pi

)

: i ∈ Jequi

}

(3.1)

∪ {(Pi, hi − τ) : i ∈ Jpara}

)

,

where the first term is the completion time of J1 plus the time that the other n − 1
jobs have been in the system so far, and the second term is needed in recursion for
the remaining portion of the n− 1 jobs. By the induction hypothesis,the second term
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in (3.1) is bounded by C times

A

({(

Pi, hi(e)−
τ p̄

Pi

)

: i ∈ Jequi

})

(3.2)

+ H({(Pi, hi(f)) : i ∈ Jequi}) +
∑

i∈Jpara

(hi − τ),

where hi(e) ≥
τp̄
Pi

for each i ∈ Jequi. DEQ will redistribute processors among jobs in
Jequi after the departure of J1. Let J ′

para ⊆ Jequi be the subset of Jequi such that
for each i ∈ J ′

para, Ji is assigned Pi processors after the redistribution. Let J ′
equi be

the rest of the jobs in Jequi. Since jobs in J ′
para will stay in full parallelism mode, we

have

∀i ∈ J ′
parahi(e) =

τ p̄

Pi
.(3.3)

Similarly,

∀i ∈ J ′
equihi(e) >

τp̄

Pi
.(3.4)

From (3.3), we have

(3.5)

A

({(

Pi, hi(e)−
τ p̄

Pi

)

: i ∈ Jequi

})

= A

({(

Pi, hi(e)−
τ p̄

Pi

)

: i ∈ J ′
equi

})

.

Let the jobs in J ′
equi be ordered as j1, j2, . . . , jk, k = |J ′

equi|, according to the

increasing order of the amount of remaining work Pi(hi(e) −
τp̄
Pi

), i ∈ J ′
equi, which is

the same as the increasing order of Pihi(e), i ∈ J ′
equi. Then,

A

({(

Pi, hi(e)−
τ p̄

Pi

)

: i ∈ J ′
equi

})

=
1

P

k
∑

i=1

(k − i+ 1)Pji

(

hji(e)−
τ p̄

Pji

)

=
1

P

k
∑

i=1

(k − i+ 1)Pjihji(e)−
1

P

k
∑

i=1

(k − i+ 1)τ p̄.

Therefore,

(3.6)

A

({(

Pi, hi(e)−
τ p̄

Pi

)

: i ∈ J ′
equi

})

= A({(Pi, hi(e)) : i ∈ J ′
equi})−

k(k + 1)

2P
τp̄.

We also have

H(Jequi(f)) +
∑

i∈Jpara

(hi − τ) = H(J (f))− |Jpara|τ.(3.7)

Combining (3.1) and (3.2), we know that TCDEQ(J ) is no more than

nτ + C ·

(

A

({(

Pi, hi(e)−
τ p̄

Pi

)

: i ∈ Jequi

})

+ H({(Pi, hi(f)) : i ∈ Jequi}) +
∑

i∈Jpara

(hi − τ)

)

.
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By (3.5), this is the same as

nτ + C ·

(

A

({(

Pi, hi(e)−
τ p̄

Pi

)

: i ∈ J ′
equi

})

+ H({(Pi, hi(f)) : i ∈ Jequi}) +
∑

i∈Jpara

(hi − τ)

)

.

Now by substituting (3.6) and (3.7), we have the following upper bound for TCDEQ(J ):

nτ − C ·
k(k + 1)τ p̄

2P
− C · |Jpara|τ + C ·A(J ′

equi) + C ·H(J (f)).

Since

A(Jequi(e)) = A(J ′
equi(e)) +

|J ′

para|
∑

i=1

(k + |J ′
para| − i+ 1)τ p̄

P
,

the above upper bound is equal to

nτ − C ·
k(k + 1)τ p̄

2P
− C · |Jpara|τ − C ·

|J ′

para|
∑

i=1

(k + |J ′
para| − i+ 1)τ p̄

P

+ C · (A(Jequi(e)) +H(J (f))).

To show that this is no more than

C ·A(J (e)) + C ·H(J (f)) = C ·A(Jequi(e)) + C ·H(J (f)),

it is sufficient to show that

n ≤ C ·
k(k + 1)p̄

2P
+ C · |Jpara|+ C ·

|J ′

para|
∑

i=1

(k + |J ′
para| − i+ 1)p̄

P
.

This inequality is the same as

nP ≤ C · |Jpara|P +
C

2
|Jequi| ( |Jequi| + 1)p̄.

Equivalently,

|Jequi|P ≤ (C − 1) |Jpara|P +
C

2
|Jequi| ( |Jequi| + 1)p̄.

Since C = 2− 2
n+1 , the above inequality follows from Lemma 3.1.

4. Multiphased parallelism and interactive jobs. At any point in time
some jobs are assigned a number of processors equal to their parallelism (those in
full-parallelism mode) and others are assigned p̄ processors (those in equipartition
mode). Both the parallelism of the jobs and p̄ may change over time. We continue to
use the notation J (f) for the portion of jobs in J in full-parallelism mode, and J (e)
for the portion of jobs in equipartition mode.



154 XIAOTIE DENG, NIAN GU, TIM BRECHT, AND KAICHENG LU

Theorem 4.1. For jobs with multiple phases of parallelism, we have

TCDEQ(J ) ≤

(

2−
2

n+ 1

)

A(J (e)) +

(

2−
2

n+ 1

)

H(J (f)).(4.1)

Therefore, DEQ is 4− 4
n+1 competitive for mean job completion time.

Proof. The conclusion of 4 − 4
n+1 competitiveness follows immediately from the

fact that both the squashed area bound and the height bound are lower bounds on the
optimal total completion time. Our focus is thus on (4.1). We consider an inductive
proof using the result for single-phased jobs as the base case. A difficulty in this case
is that the order of jobs in the squashed area bound may change as execution of the
jobs (according to DEQ) proceed. To deal with this problem, we divide the execution
time of the jobs into intervals such that in each interval, the parallelism of all jobs does
not change; and the order, according to which the squashed area bound is applied,
of the total remaining work to be executed under the equipartition mode of all jobs
does not change. Thus between two consecutive intervals, either some job changes
its parallelism or two jobs have the same amount of remaining work to be executed
under the equipartition mode. We prove our claim by induction on the number of
such intervals.

For the base case, the parallelism of all jobs is the same and the claim follows from
our result on jobs with a single phase of parallelism in section 3. To apply the inductive
proof, consider the execution of all jobs for τ time units in the interval during which
no job changes its parallelism. The case with idle processors is trivial. So we assume
there are no idle processors. For jobs in full-parallelism mode during this period of
time (denoted by Jpara), their height decreases by τ . For jobs in equipartition mode
during this period of time (denoted by Jequi), their work decreases by p̄τ . Applying
the induction hypothesis to the remaining portions after the first time interval, we
have

TCDEQ(J ) ≤ nτ + C ·



A(J (e))−

|Jequi|
∑

i=1

(n− i+ 1)τ p̄

P





+ C ·



H(J (f))−

|Jpara|
∑

i=1

τ



 ,

where C = 2 − 2
n+1 . The condition that the order of total work in J (e) does not

change is crucial in the above formulation. At the end of the interval, it is possible
that two jobs may be tied in the remaining portion of J (e). We can exchange their
order without changing the squashed area bound. The new order would then be used
for the next interval. To obtain our proof, it is sufficient to show

nτ ≤ C ·

|Jequi|
∑

i=1

(n− i+ 1)τ p̄

P
+ C · |Jpara|τ.

This holds if we have

nτ ≤ C ·

|Jequi|
∑

i=1

iτ p̄

P
+ C · |Jpara|τ,
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which is equivalent to

nP ≤ C ·
|Jequi|(|Jequi|+ 1)p̄

2
+ C · |Jpara|P.

This can be shown in the same way as in the proof of Theorem 2.3 by applying
Lemma 3.1. In fact, Lemma 3.1 holds independently of the fact that jobs contain a
single phase of parallelism or multiple phases of parallelism.

Interactive jobs can be formulated as jobs alternating between periods of being
blocked while waiting for input from a user (requiring no processor), and periods of
processing. Our result above also applies to such interactive jobs. We assume that
users respond to each request for input in a finite amount of time. The degenerate
case, where a user may not respond to an input request, is considered in detail in
section 5. Thus, we have the following corollary.

Corollary 4.2. DEQ is 4 − 4
n+1 competitive for the mean completion time of

interactive jobs.
This result immediately carries over to sequential job scheduling problems and

produces the same competitive ratio for the round-robin policy. However, in this case
we have a better result.

Theorem 4.3. Round-robin is 3− 2
n+1 competitive for the mean completion time

of interactive jobs on sequential machines.
Proof. Let W (J ) =

∑n
i=1(n−i+1)ti for a job set J = {J1, J2, . . . , Jn}, where ti is

the cumulative time job Ji requires CPU processing, 1 ≤ i ≤ n, and t1 ≤ t2 ≤ · · · ≤ tn.
Let H(J ) =

∑n
i=1 hi, where hi is the cumulative time job Ji does not require CPU

processing (i.e., when it is blocked). We now show

TCRR(J ) ≤

(

2−
2

n+ 1

)

W (J ) +H(J ).(4.2)

The theorem follows from (4.2) since both W (J ) and H(J ) are lower bounds for the
optimal total completion time.

In a fashion similar to the above proof of Theorem 4.1, we use the round-robin
policy to divide the execution of jobs into a finite number of intervals in which the
order of remaining cumulative CPU times of jobs does not change and each job is in
the same phase (ready to execute or be blocked). We apply an inductive proof to the
number of such intervals. The base case follows from the result of Motwani, Phillips,
and Torng [22]. Consider one such interval of length τ ; let K be the set of jobs ready
to execute, k = |K|. The case k = 0 is trivial and we thus assume k ≥ 1. Each such
job is executed for τ

k time units. The cumulative blocked time for each of the other
jobs is decreased by τ . Thus we have

TCRR(J ) ≤nτ +

(

2−
2

n+ 1

)

[

W (J )−
∑

i∈K

(n− i+ 1)
τ

k

]

+H(J )− (n− k)τ,

which is less than or equal to (2− 2
n+1 )W (J ) +H(J ) if

n ≤

(

2−
2

n+ 1

)

∑

i∈K

(n− i+ 1)
1

k
+ (n− k).

This last inequality holds even for the worst choice of set K. Therefore, the theorem
follows.
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5. Robustness of DEQ. Competitive analysis has been successfully applied in
multiple processor scheduling problems to minimize the makespan [30]. There are,
however, some objections to using makespan as a computer system’s performance
measure. One of them is that makespan does not distinguish one policy from another.
Under our model, any work-conserving policy (i.e., no processors are idle as long as
there are jobs available for execution [6]) has a competitive ratio of two, which is
asymptotically optimal [1]. On the other hand, when there are new arrivals and the
scheduler has no a priori information about the execution time, using mean response
time as the performance objective, Motwani, Phillips, and Torng [22] have shown
that no scheduling policy can achieve a performance ratio that is better than n1/3. In
this case, mean response time is a performance metric that is extremely difficult to
minimize without any a priori information, since the adversary is able to choose arrival
times and job sizes that can defeat any scheduler. Rather than using competitive
analysis one might consider using mathematical analysis or simulation to compare
various scheduling algorithms. In addition, Kellerer, Tautenhahn, and Woeginger
[14] have shown that mean response time is also difficult to minimize even in the
presence of complete job information. Unfortunately, these approaches require either
knowing or making assumptions about job arrival and execution times. The power of
competitive analysis is that a positive result applies without the need to understand
or justify the workload model. That is, it applies for all workloads.

Since it is not possible to obtain a positive result for minimizing the competitive
ratio for mean response times when there are new arrivals, as a compromise, we ex-
amine competitive scheduling policies for minimizing makespan. These policies are
robust in the presence of infinite (possibly faulty) jobs. More precisely, we assume
that there are up to K infinite jobs in the system but the scheduler does not know
which jobs they are. Let TA(J ) be the completion time of the last finished finite job
under the scheduling policy A. Let OPT (J ) be the optimal completion time with full
information about finite jobs (and information about which are infinite jobs). Notice
that from now on, OPT (J ) refers to the optimal makespan instead of mean comple-
tion time. Obviously, infinite jobs are not executed under the optimal scheduler. The

competitive ratio is defined as maxJ
TA(J )
OPT (J ) .

Since the same issue arises in uniprocessor systems, we first consider this case.
Theorem 5.1. In a system with K infinite jobs, when there are new arrivals, the

competitive ratio of the makespan of the round-robin policy is K+1, which is optimal.
Proof. To show that (K+1) is a lower bound on the competitive ratio, consider

a case of K + 1 jobs including K infinite jobs and one finite job with execution time
t. No matter what scheduling algorithm is used, the adversary always assigns the
finite job to execute last. Thus, the total time required to complete the finite job
is at least (K + 1)t. An optimal schedule with complete information will take only
t time units, running only the finite job in t time units and not even running the
infinite jobs. Therefore, the competitive ratio is at least K + 1 for any scheduling
algorithm.

For the upper bound, without loss of generality, we assume that all K faulty jobs
are present in the system at time t0, and there are N other jobs, whose execution
time is x1, x2, . . . , xN , arriving at time t1, t2, . . . , tN , respectively. We consider the
following two cases.

Under the optimal scheduling algorithm with complete information, if new jobs
always arrive before the last finite job in the system has finished, no processor will
be left idle, and the optimal makespan will be

∑N
i=1xi. A round-robin scheduler will
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always execute at least 1
K+1 of the finite jobs, and all of the finite jobs will complete

by time 1
K+1

∑N
i=1xi. Therefore, the competitive ratio is bounded above by K + 1 in

this case.
The second case to consider under the optimal scheduling algorithm is when new

jobs arrive some time after the last finite job in the system has finished execution.
Let indices be defined according to job arrival orders. In this case, denote by m

the maximum index when a job arrives at time tm and finds no remaining jobs in
the system (all previous jobs have completed their execution). Let t∗ = tm. In this

case, the optimal completion time will be OPT = t∗ +
∑N

i=mxi. Consider the last
consecutive interval [τ1, τ2], 0 ≤ τ1 < τ2 ≤ t∗, during which there is at least one
finite job executing under the round-robin policy. The total length of finite jobs
arriving during this interval will be no more than τ2 − τ1, since an optimal scheduler
(with complete information) will finish all of them. Since the round-robin policy
will assign at least 1

K+1 of the total processing power to one finite job whenever
there is one in the system, by time τ2 the remaining total length of jobs is no more
than K

K+1 (τ2 − τ1) ≤ K
K+1 t

∗. From then on, the processor will always devote a

fraction (at least 1
K+1 ) of its time to finite jobs. Therefore, round-robin will finish

all of the finite jobs within at most (K + 1)( K
K+1 t

∗ +
∑N

i=m xi) time units after t∗.

Thus the completion time of all finite jobs will be at most (K + 1)(t∗ +
∑N

i=m xi),
which is (K+1)OPT . Therefore, the round-robin policy achieves a competitive ratio
of K + 1.

A similar argument can be applied to parallel job scheduling on multiprocessors.
Theorem 5.2. In a multiprocessor system with new job arrivals with multiple

phases of parallelism and K infinite jobs, the competitive ratio for the makespan of
DEQ is K + 1, which is the best possible competitive ratio.

Proof. Without loss of generality, assume that all K faulty jobs are present in
the system at time t0 = 0, and there are N other finite jobs, J1, J2, . . . , JN , which
arrive at time t1, t2, . . . , tN , respectively. Similarly, we examine the last finished finite
job Ji according to the DEQ policy. Again, we divide the execution of this job Ji
into two parts: let tpara be the total time during which the number of processors
allocated to the job is equal to its parallelism, and let tequi be the total time during
which it is assigned its fair share of processors according to DEQ. Let Wequi be the
total amount of work executed by Ji during the period it is assigned its fair share of
processors (i.e., during tequi). Since there are at most K infinite jobs, the total amount
of work performed on the infinite jobs during the period when Ji is assigned its fair
share of processors is no more than KWequi. Let W ′ be the total work performed
on finite jobs during the same period. Then the completion time of DEQ is bounded

by ti + tpara +
KWequi+W

′

P . On the other hand, for the optimal completion time, we

have ti + tpara +
Wequi

P ≤ OPT , which is the minimum time to complete Ji, ignoring

all other jobs. Furthermore,
(K−1)Wequi

P ≤ (K − 1)OPT , and W ′

P ≤ OPT . This
concludes our proof that DEQ has a competitive ratio of K + 1 when the system has
new arrivals of jobs with multiple phases of parallelism.

6. Remarks and discussion. We started our work on competitive analysis for
the parallel scheduling problem by facing two obstacles with this approach: the lower
bound of Deng and Koutsoupias on scheduling an arbitrary DAG [4] and the lower
bound of Motwani, Phillips, and Torng for scheduling with new job arrivals. While
the former points out that it is impossible to obtain a general on-line strategy that
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schedules arbitrary jobs on parallel machines (with a given communication latency)
near-optimally, the latter points out that it is impossible to obtain a general on-
line preemptive strategy that schedules sequential jobs on a uniprocessor to minimize
mean response time if job arrivals are unpredictable [22]. (This result can also be
extended to parallel jobs.) These two results raise serious doubts about the possibility
of obtaining a near-optimal scheduling strategy in realistic computing environments
for parallel jobs with new arrivals.

In this paper, we avoid the first difficulty by utilizing a special class of parallel jobs.
This class includes jobs with sublinear speedups by modeling them using multiple
phases of parallelism. With Edmonds and Chinn we have also recently extended some
of our positive results to larger classes of jobs and to models of systems which more
explicitly account for communication delays [7]. It seems that the second difficulty
may be much harder to overcome since it holds even for single processor scheduling.
If the objective of computer system scheduling is indeed to minimize mean response
time, more empirical workload studies will help to understand arrival times and job
sizes in typical computer systems. (Recent work has begun to examine workload
characteristics on multiprocessor systems [8], [11].) Workload information could be
used to more accurately reflect typical arrival times and job sizes and to perhaps avoid
scenarios that prevent competitive ratios from being obtained for algorithms that
perform well in practice. Alternatively, we may study other objective functions. The
explicit definition of interactive jobs introduced in this paper and the related constant
competitive ratio (for minimizing makespan) is an effort in this direction. Under these
conditions (including the presence of infinite jobs), the DEQ policy stands out among
other parallel scheduling policies in that it achieves the optimal competitive ratio for
makespan. An alternative approach to this second difficulty has been proposed by
Kalyanasundaram and Pruhs [12]. They show that a moderate increase in the speed
of the processor used by a nonclairvoyant scheduler can effectively give this processor
power equal to clairvoyance.

A central question that must be considered when developing and comparing
scheduling algorithms for multiprocessors is, What is the objective function being
used to determine how well the algorithm is performing? For example, is it more
desirable to minimize mean response time than to minimize makespan, or should
maximizing throughput be the main goal of the scheduler? As well, real systems
must also be careful to provide quick turnaround time to interactive programs. Ad-
ditional consideration must also be given to the fact that in some cases knowing or
deriving a competitive ratio for an algorithm does not mean that the complexity of
the algorithm is acceptable or that an algorithm can be easily constructed. These
issues are quite similar to solution concepts in the game theoretical framework for the
study of sharing economic resources, and it might be interesting to explore possible
links between them [5].
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