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Abstract

RDMA can be used to implement a shared storage ab-
straction for distributed applications. We argue that
for loosely coupled applications, such an approach is
overkill. For such applications, we propose RAMP, a
much lighter weight alternative. RAMP uses RDMA
only to support occasional coordination operations. We
use a load balancing example to show that RAMP can
effectively support such applications.

1 Introduction

Remote Direct Memory Access (RDMA) technology al-
lows servers to directly access the memory of other
servers in a cluster. This can significantly reduce net-
work latency and eliminate network-related load on re-
mote servers. The key question is how to take advantage
of RDMA to build distributed applications. A common
answer is that RDMA should be used to implement a
cluster-wide shared-storage abstraction, such as a shared
virtual address space or a database. Developers can then
build applications that can access shared state from any
server on the cluster.

The shared state approach is flexible, and RDMA-
based shared state systems can be carefully engineered
to achieve impressive performance [20, 8, 29]. However,
although RDMA provides low-latency access to remote
memory, access to local memory is still orders of magni-
tude faster. Furthermore, building a cluster-wide shared
storage abstraction, even taking advantage of RDMA,
necessarily introduces additional overheads. A shared-
storage system must have some mechanism for locating
data, and this imposes a level of indirection between the
application and shared storage. In addition, since stor-
age is shared, applications must have some means of
synchronizing access. Most shared storage systems also
only support storing strings or simple primitive types.
Storing structured data requires serialization, which can

introduce additional delays.

As a concrete example, access to a distributed hash
table implemented on FaRM requires a few tens of mi-
croseconds, depending on the number of servers in-
volved [8]. On one hand, this is impressive, especially
considering that the hash table provides fault tolerance
through replication and can be scaled out across servers.
On the other hand, a simple single-server hash map,
stored in local memory, has sub-microsecond access la-
tency - orders of magnitude faster.

Many applications do not need the flexibility of fully
shared data. Their data and workload are easily parti-
tionable, and normally each server can handle its part
of the workload using only local data. For example,
memcached [11], which we discuss in more detail in Sec-
tion 5, partitions keys across servers, each of which op-
erates largely independently. However, servers in such
applications may occasionally need to perform coordina-
tion operations, which require access to remote data. For
example, servers may need to rebalance data and load be-
cause of time-varying hotspots, or the system may need
to scale in or scale out to handle load fluctuations, or re-
configure itself in response to a server failure.

In this paper, we argue that shared state is overkill for
such loosely coupled applications. Instead, we propose
a lightweight model, called RAMP, that is well suited to
support them. RAMP is lightweight in the sense that it
does much less than shared state alternatives. Unless the
application is coordinating (e.g., load balancing), RAMP
stays out of the way, allowing the application to run at
local memory speeds. The primary service provided by
RAMP is low-impact, application-controlled state migra-
tion using RDMA. Loosely coupled applications use this
when they coordinate. The low impact aspect of our ap-
proach is especially important, as the migration source
may be overloaded due to a load imbalance.

RAMP enables a design point in between the com-
mon shared-memory and shared-nothing models for dis-
tributed applications. In Sections 4 and 5, we focus on
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Figure 1: RAMP’s Memory Model

how distributed applications can use RAMP. We con-
sider a scenario in which the application migrates data
containers between servers to shift load, and show that
RAMP can perform such migrations with limited impact
on application performance.

2 RAMP Overview

In this section we provide a high-level overview of
RAMP’s memory model and application interface. We
had two goals in developing RAMP. First, each pro-
cess in a loosely coupled distributed application should
be able to directly access state through its own address
space, without going through a platform API, and should
be able to do so at local memory speeds. This is to en-
sure that processes perform well in the common case,
when they are operating independently. Second, RAMP
should provide a means of transferring data between pro-
cesses to support coordination operations. RAMP should
attempt to minimize the impact of such operations on the
application’s performance.

To provide these properties, RAMP implements the
memory model illustrated in Figure 1. The figure illus-
trates the private virtual address spaces of n processes,
each on a different server. RAMP reserves a memory
arena covering a common range of virtual addresses in
every process. Outside of the RAMP arena, each process
is free to allocate and use memory independently of other
processes in the system. Allocation and use of memory
within the RAMP arena is controlled by RAMP.

Applications use the RAMP API, shown in Figure 2,
to allocate coordinated memory segments (S) within the
RAMP arena. When allocating a segment, the applica-
tion specifies a unique segment identifier, which it can

//**x** allocation ***x

vaddr Allocate(size, segment_id);
Deallocate(segment_id)

//***x migration ***x

Connect (process_id, segment_id);
Transfer (segment_id) ;

vaddr Receive(&segment_id,auto_pull);
//**xx data transfer **x*x
Pull(vaddr, size);

//***x migration termination *x*x
Close(segment_id)

Figure 2: RAMP API

then use to migrate or deallocate the segment. Each seg-
ment occupies a fixed-length, contiguous range of vir-
tual addresses within the RAMP arena. RAMP coordi-
nates allocation across the processes so that a memory
segment allocated by one process does not overlap with
other segments allocated in any RAMP process.

Once it has allocated a segment, process P, is free to
read and write to virtual addresses within that segment,
and we say that P; owns the segment. RAMP does not
interpose in any way on P;’s reads and writes to coordi-
nated segments that it owns.

3 Migration

The key functionality provided by RAMP is the abil-
ity to migrate memory segments from one process (the
source) to another (the rarget). Migrating a segment
makes it available at the target and unavailable at the
source. Since a migrated segment will map into the tar-
get’s address space in the same place it was mapped into
the source, intra-segment pointers remain valid across a
migration. This allows applications to migrate segment-
contained data structures without serialization and dese-
rialization. We discuss this further in Section 4.

Ideally, migration would atomically and instanta-
neously transfer a segment from source to target. That
is, the source would be able to read and write to the seg-
ment at local memory speeds up until a migration point,
at which point the source would lose the ability to ac-
cess the segment, and the target would gain it. The target
would then be able to access the segment at local mem-
ory speed, and its reads would see the effects of all pre-
migration writes.

In practice, of course, this is not possible. Segment
migration in RAMP diverges from the ideal in two ways.
First, there is a brief period during which neither the
source nor the target can access the segment. RAMP’s
migration procedure is intended to keep this as short as
possible (a few tens of microseconds), regardless of the
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Figure 3: Transfer of Ownership in RAMP

size of the region being transferred. Second, there is
some temporary performance impact as a result of mi-
gration. RAMP’s design is intended to ensure negligible
performance impact at the source, since a common appli-
cation scenario is migration away from an already over-
loaded source. At the target, RAMP tries to minimize the
impact of migration on memory access latencies.

To achieve this, RAMP separates transfer of owner-
ship from transfer of data during segment migration.
Ownership of the segment is transferred eagerly. The
segment data are later pulled from the source by the
target, either on-demand or asynchronously, in small
chunks using one-sided RDMA reads. Separating data
transfer from ownership transfer keeps the latter short.
Migrating data gradually helps keep the access penalty
low, and the use of one-sided reads allows RAMP to mi-
grate the data without involving the CPU at the source.
In Sections 3.1 and 3.2, we describe ownership transfer
and data transfer in RAMP in more detail.

3.1 Ownership Transfer

Figure 3 illustrates RAMP’s ownership transfer protocol.
Ownership transfer requires that the source call Connect
and Transfer, and that the target call Receive to accept
ownership. When the source calls Connect, RAMP es-
tablishes a reliable RDMA connection from the source to
the target, registers S for RDMA at the source (pinning S
in physical memory), and sends (via the RDMA connec-
tion) a Connect message specifying the starting address
and size of S to the target server. At the target, RAMP
maps S into the virtual address space and registers S for
RDMA at the target. Finally, the target responds to the
source with an (Accept) message, indicating that it is
prepared to receive ownership of S.

This connection process is relatively expensive, as it
involves RDMA connection setup, a message round trip,
and RDMA memory registration on both sides. How-

ever, the source retains ownership of S during this entire
connection process, and can continue to read and write
to it. It introduces a lag at the source between deciding
to migrate and migrating, but it does not impact memory
access times during that lag.

Actual transfer of ownership occurs when the source
calls Transfer, at which point it loses the right to
read from or write to S. (RAMP enforces this by
mprotecting S at the source.) The source sends a
Transfer message via the RDMA connection to notify
the target that it now owns S. On receipt of this message
at the target, Receive returns with the address and ID
of the incoming segment. The target now has the ability
to read and write to addresses in S, although S’s contents
have not yet been transferred.

3.2 Pulling Data

In RAMP, data are pulled under the direction of the ap-
plication at the target site. RAMP supports both im-
plicit pulls and explicit pulls. implicit pulls by setting the
auto_pull flag when When implicit pulling is enabled,
RAMP automatically pulls pages of S from the source on
demand, when they are first accessed by the application
at the target. RAMP implements this by mprotecting S
when ownership is transferred, and pulling data on pro-
tection faults. In addition, the application can explic-
itly prefetch any part of memory segment using RAMP’s
Pull interface. All pulls are implemented as one-sided
RDMA reads from the source. While the target is pulling
the contents of S, S is registered for RDMA and mapped
in to the address at both the target and the source, al-
though only the target owns S and is able to access it.
When the application is finished pulling S to the target
site, it uses Close to end the migration process.

4 Migratable Containers

One way for applications to use RAMP is to place self-
contained data structures within a migratable memory
segment. These structures can then be migrated between
servers by migrating the underlying segment. There is
no need to serialize or deserialize the structure when it
migrates, since a segment’s position in the virtual address
space of the target is the same as its position at the source.
By doing this, applications can lift the level of abstrac-
tion for migration, from migrating memory segments to
migrating data structures.

To illustrate this usage pattern, we implemented mi-
gratable containers for C++ applications. A migrat-
able container is a standard C++ standard template li-
brary (STL) container (e.g, a hash map) with a few
modifications. First, a migratable container uses a cus-
tom C++ scoped memory allocator to ensure that all
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Figure 4: Post-Migration Container Access Latency

memory allocated for the container and its contents lies
within a segment. Second, the container is equipped
with an additional constructor, which is used to initialize
the container at the target after migration. Finally, the
container’s normal interface is supplemented with addi-
tional methods analogous to those in Figure 2, to pro-
vide container migration capability. Except during mi-
grations, migratable containers are identical to their non-
migratable cousins, and run at their original local mem-
ory speeds.

To migrate a container, the application uses the con-
tainer’s Connect and Transfer methods, which work
by transferring the underlying segment. At the target,
the application immediately begins using the container
as soon as it receives ownership of the segment. Our im-
plementation uses RAMP’s implicit paging to demand
pull chunks of segment data from the source as the con-
tainer is used at the target. Our implementation also uses
RAMP’s prefetching mechanism.

To illustrate the behavior of migratable containers, we
created a migratable C++ unordered map in a 256 MB
RAMP memory segment, populated it with about one
million entries (8 byte keys, 128 byte values), and then
migrated it to a second server across a 10 Gb/s network.
At the target, a single application thread begins perform-
ing “get” operations in a tight loop immediately after re-
ceiving the incoming container. We performed three ver-
sions of this experiment. In the first, implicit pulling is
used to pull the container data on demand. In the second,
implicit pulling is supplemented by sequential prefetch-
ing via Pull. In the third, which we refer to as stop-and-
copy, the container uses a single large Pull request to
pull all of its data before allowing any container opera-

tions. Figure 4 illustrates the latency of post-migration
container operations as a function of time, with O repre-
senting the point at which the target receives ownership
of the container. We show the mean and 95th percentile
latency, measured over 100 ms windows.

Using the stop-and-copy approach, all container ac-
cesses are performed at local memory speeds, with tail
latency at about 1 us, and sub-microsecond mean ac-
cess times. However, the container is effectively un-
available for several hundred milliseconds after owner-
ship is transferred, while the data are pulled, and this
unavailability window would grow in proportion to the
container size. With implicit demand paging, the con-
tainer is available immediately, but there is a period of
about 1.5 seconds during which container access laten-
cies are elevated. Tail latencies remain below 50 s dur-
ing most of this period. Adding prefetching pulls the
container data more quickly, but results in higher laten-
cies immediately after migration. This is because our
current implementation uses a single RDMA connection
between target and source, causing prefetches to delay
demand pulls. Once the underlying segment has been
pulled, container memory accesses are completely local,
and the container again provides local memory speeds,
with sub-microsecond access latencies.

For larger containers, we expect a longer window of
elevated access latencies, but tail latencies should not
be higher than those shown in Figure 4. Our current
prefetching implementation is not optimized, but by is-
suing asynchronous prefetch requests on a separate con-
nection, we expect to be able to prefetch data at close to
the full network bandwidth.

S Using RAMP

We built a loosely coupled application called rcached
as a vehicle for evaluating RAMP. rcached is a simple
drop-in replacement for memcached, a widely used dis-
tributed in-memory key-value storage service. rcached
hash partitions the key space, and stores each partition
in a migratable C++ STL hash map. Each rcached
server is responsible for a subset of the partitions. Un-
like memcached, rcached servers can migrate partitions
amongst themselves to support reconfigurations (e.g.,
scale-in, scale-out) or load balancing. rcached is not
as heavily engineered as memcached, but under light
loads its performance is similar. On our servers, a lightly
loaded memcached server with four request handling
threads has mean request latency of about 35 us, while a
similarly configured rcached server has a mean request
latency of about 50 us.

Our load-balancing experiment used a cluster of 4
rcached servers, on which we stored 40 million keys,
each associated with a 128 byte value, hash partitioned
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Figure 5: rcached Request Latencies, With Two Migra-
tions

into 128 partitions. 100 closed-loop clients issued “get”
requests, using a Zipf distribution (parameter 0.99) over
the key space and no think time. Total request throughput
averaged over 380000 requests per second over the ex-
periment. Because of request skew and the imperfect dis-
tribution of partitions to servers resulting from consistent
hashing, the request load on the servers is skewed, with
server 1 receiving the most requests in our configuration.
After allowing the system to warm up, we used RAMP
to migrate two heavily loaded partitions from server 1 to
server 2, to better balance the load.

Figure 5 shows the mean client-side request latency
in this system, averaged over 40000-request windows,
and broken down by the server that handled the request.
The two vertical lines indicate the approximate times
at which partition migrations occurred. Because of our
closed-loop setting, all other servers see additional load
when server 1’s load drops after the migration. Server
2 shows short spikes in 95th percentile latencies (not
shown) at the time of the migrations, as anticipated, al-
though they are no worse than the normal latency vari-
ations that occur due to random short term load fluctu-
ations. In short, rcached is able to load balance effec-
tively, with minimal interruption, with a few RAMP con-
tainer migrations.

6 Related Work

As we noted in Section 1, RDMA can be used to im-
plement a cluster-wide shared-storage abstraction that
allows fine-grained “anything from anywhere” access.
FaRM [8] provides a cluster-wide fault-tolerant global
shared address space, which applications access using
FaRM-serialized transactions. Similarly, Nam-DB [4,
29] and Tell [20] use RDMA to provide transactional

access to a cluster-wide shared database or key-value
store [5, 14, 23, 28]. RAMP operates a different point in
the design space, offering much less functionality than
shared-state alternatives. RDMA has also been used
to implement high-performance remote procedure call
mechanisms for shared-nothing applications [15, 27],
and to build efficient mechansisms for data exchange to
support distributed joins and similar operations [1, 3, 12,
19]. Unlike that work, RAMP focuses on occasional ex-
changes of large amounts of information, while minimiz-
ing application impact. Rocksteady [17] uses RDMA
to implement application-initiated data migration in the
context of RamCloud [24]. Like RAMP, Rocksteady
transfers ownership eagerly and data lazily. Rocksteady
does not make use of one-sided RDMA reads for data mi-
gration, since a RamCloud tablet (the unit of migration)
may be scattered in memory.

Live migration of state has also explored in a vari-
ety of contexts, including distributed database manage-
ment systems [2, 7, 9, 10, 21, 26], and virtual machine
cloning [18, 22] and migration [6, 13]. All of these sys-
tems use some combination of pulling data from the tar-
get (like RAMP) and pushing it from the source to ac-
complish migration. However, none are designed to take
advantage of RDMA. RAMP is also related to distributed
shared memory (DSM) systems [25], although RAMP
is simpler in that it allows only one process to access a
memory segment at any time.

Khrabrov and de Lara [16] describe a system that al-
lows applications to create structured objects in a shared
global address space and then transfer them between
servers in a cluster. As is the case with RAMP contain-
ers, transfer can be accomplished without serializing and
deserializing the objects. However, this approach is Java-
specific, and objects are immutable once transferred. It
does not make use of RDMA, although it could.

7 Conclusion

RAMP provides a lightweight RDMA abstraction that
is intended for loosely coupled distributed applications.
Instead of shared storage, RAMP provides fast transfer
of memory segments between servers. We showed that
RAMP can be used to build migratable data structures
than can be transferred between servers with little per-
formance impact. We demonstrated the use of RAMP
for load balancing in rcached, a memcached-compatible
distributed in-memory key-value cache.
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