
PNOFA: Practical, Near-Optimal
Frame Aggregation for Modern 802.11 Networks
Ali Abedi

Cheriton School of Computer Science

University of Waterloo

ali.abedi@uwaterloo.ca

Tim Brecht

Cheriton School of Computer Science

University of Waterloo

brecht@cs.uwaterloo.ca

Omid Abari

Computer Science Department

UCLA

omid@cs.ucla.edu

ABSTRACT
MAC-layer frame aggregation has significantly improved the effi-

ciency of IEEE 802.11n/ac networks by placing multiple MAC-layer

data units in a large PHY-layer frame. In this paper, we focus on

finding the optimal length of an Aggregated MAC Protocol Data
Unit (A-MPDU) in order to maximize throughput. This problem

has proved to be extremely challenging because of the chain of

dependencies between consecutive A-MPDUs due to software re-

transmissions and because error rates can be higher in the later

part of the A-MPDU.

In this paper we develop a model of A-MPDU frame aggrega-

tion and use it to design a statistically optimal algorithm. We then

develop a standard compliant, Practical, Near-Optimal Frame Ag-

gregation algorithm (PNOFA). Our trace-based evaluation shows

that across a variety of devices and scenarios PNOFA outperforms

existing state-of-the-art algorithms and obtains throughputs that

are within 97% of those obtained using the statistically optimal algo-

rithm. Furthermore, we implement PNOFA on an 802.11ac Google

Wifi access point. We find that when compared with the proprietary

frame aggregation algorithm in the Qualcomm IPQ 4019 chipset’s

firmware, PNOFA increases average throughput by 17% in the sce-

narios tested.

CCS CONCEPTS
• Networks→Wireless local area networks;Wireless access
points, base stations and infrastructure;Networkperformance
evaluation; • Hardware→Wireless devices.

KEYWORDS
WiFi; 802.11; frame aggregation; aggregated MAC protocol data

unit; A-MPDU length; optimal algorithms; performance evaluation;

ACM Reference Format:
Ali Abedi, Tim Brecht, and Omid Abari. 2020. PNOFA: Practical, Near-

Optimal Frame Aggregation for Modern 802.11 Networks. In 23rd Interna-
tional ACM Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM ’20), November 16–20, 2020, Alicante, Spain. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3416010.3423215

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MSWiM ’20, November 16–20, 2020, Alicante, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8117-8/20/11. . . $15.00

https://doi.org/10.1145/3416010.3423215

1 INTRODUCTION
The 802.11n and 802.11ac standards are able to achieve high

physical-layer bit rates by adding new features such as MIMO

and channel bonding. However, without frame aggregation, the

MAC-layer throughput does not surpass 50 Mbps regardless of the

physical layer bit rate, due to overheads such as the inter-frame

spacing and acknowledgments. To reduce this overhead, a MAC-

layer frame aggregation mechanism has been introduced starting

with the 802.11n standard that aggregates multiple MAC-protocol

data units (MPDUs) into one larger aggregated MPDU (A-MPDU).

As a result, rather than sendingmultiple small frames, which require

their own backoff, inter-frame spacing, and acknowledgments, one

larger frame containing multiple subframes is transmitted instead.

Maximizing throughput during transmission requires optimizing

the number of subframes (MPDUs) for the current channel condi-

tions. If only a small number of MPDUs are aggregated, throughput

may suffer. However, if too many MPDUs are aggregated and many

of them are not received successfully, throughput may also be lower

than possible. One key factor that has to be considered by frame

aggregation algorithms are channel compensation (or correction)

limitations. Because channel estimation is done only once using the

preamble of each A-MPDU, it may not be as accurate for MPDUs

that are farther from the beginning of the A-MPDU. As a result,

MPDUs near the end of an A-MPDU may be more likely to fail than

those near the beginning especially in environments with mobility.

Figure 1 plots theMPDU Delivery Ratio (MDR) for each subframe

at different positions in an A-MPDU for an instance in time. Index

1 is the first MPDU in the frame and index 32 is the last. The

figure shows that as the MPDU index increases, the MDR generally

decreases (i.e., there is a lower probability of successful delivery).

In this example, peak throughput is obtained with a size of 7. Since

the MPDU delivery ratios vary over time and change with several

factors including speed of movement and transmission rate, the

optimal A-MPDU size also changes over time. While algorithms

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30
 0

 10

 20

 30

 40

 50

 60

M
D

R

T
hr

ou
gh

pu
t (

M
bp

s)

MPDU Index

Throughput
MDR

Figure 1: Impact of A-MPDU size on throughput

https://doi.org/10.1145/3416010.3423215
https://doi.org/10.1145/3416010.3423215

to adjust A-MPDU lengths to deal with this phenomenon have

been proposed [3] [4], ours is the first work to derive the optimal

algorithm.

In this paper, we develop an analytic model that can be used to

determine the statistically optimal number of frames to aggregate

to maximize throughput. Our model is the first to consider the

impact of the combination of software retransmission and the block

ACK mechanism, which creates dependencies between consecu-

tive A-MPDUs. These dependencies make frame aggregation more

challenging because determining the optimal A-MPDU length for a

specific frame depends on the fate of each MPDU in the next frame.

However, the optimal A-MPDU length of that frame depends on the

fate of each MPDU in the frame after that. These interdependencies

repeat for a chain of A-MPDUs.

We design a Practical, Near-Optimal Frame Aggregation algo-

rithm (PNOFA) for modern 802.11 networks . Our trace-driven eval-

uations show that PNOFA outperforms state-of-the-art algorithms

and achieves throughputs very close to the statistically optimal

algorithm across a wide variety of scenarios and devices. We also

implement PNOFA on a Google Wifi access point [10] that utilizes

the modern Qualcomm IPQ 4019 [15] system-on-chip that supports

Wave 2 802.11ac features. This chipset is used in at least 82 other

access points from major manufacturers [5]. This and other WiFi

chipsets used inmodern 802.11ac devices typically implement frame

aggregation in the chipset’s closed-source firmware. However, be-

cause PNOFA requires relatively little information and support

from the underlying device we are able to implement PNOFA as

a user-space process. Such an implementation is not possible for

existing algorithms because they would require modifications to

closed-source firmware. Our results show that PNOFA can provide

throughput improvements over the proprietary frame aggregation

algorithm in the Qualcomm IPQ 4019 chipset. Our contributions in

this paper are:

• Wedetermine statistically optimal A-MPDU sizes by studying

dependencies between A-MPDUs and modelling A-MPDU

frame aggregation. Then, we develop a practical frame ag-

gregation algorithm called Practical, Near-Optimal Frame

Aggregation (PNOFA). In contrast with the statistically opti-

mal algorithm PNOFA does not require a priori knowledge

of the MPDU delivery ratios.

• Using trace-driven evaluation, we show that average

throughput obtained using PNOFA is within 97% of that

obtained using the statistically optimal algorithm across

different scenarios and devices, and that state-of-the-art ap-

proaches do not perform nearly as well.

• The design of PNOFA enables user-space implementation on

devices with closed-source firmware. Our experimental re-

sults show that for the scenarios examined, PNOFA improves

UDP and TCP throughput when compared to the proprietary

Qualcomm IPQ 4019 chipset’s frame aggregation algorithm

by 17% and 13%.

The insights obtained from designing the statistically optimal

frame aggregation algorithm have helped us to develop a statisti-

cally optimal rate adaptation algorithm in subsequent research [11].

That work also uses PNOFA in conjunction with a neural network

model-based rate adaptation algorithm to signicantly improve WiFi

throughput.

2 AGGREGATION CHALLENGES
In this section, we explain why A-MPDU frame aggregation is an

important, interesting, and challenging problem.

2.1 Channel Compensation Limitations
MAC-layer frame aggregation significantly improves the through-

put of 802.11 networks, however it introduces some challenges

in the operation of these networks. The first challenge caused by

A-MPDU frame aggregation is due to limitations in channel com-

pensation (correction). Although the MPDUs in an A-MPDU have

their own MAC header and CRC, Byeon et al. [3] have shown that

the frame error rate (FER) of MPDUs depend on their location in

an A-MPDU, especially in mobile environments. Since timing and

frequency calibration are done only once using the preamble of an

A-MPDU, if channel conditions change during the reception of the

A-MPDU, the initial channel estimations are no longer valid render-

ing channel correction ineffective. Consequently, subframes at the

end of an A-MPDU are more likely to fail. A direct consequence of

this finding is that the throughput is not necessarily maximized by

adding as many MPDUs as possible in an A-MPDU.

2.2 Dependencies Between A-MPDUs
The second challenge in determining the best A-MPDU length

is caused by the block acknowledgment (block ACK) mechanism

and software retransmission. To our knowledge, this is the first

work that considers dependencies between A-MPDUs in finding the

optimal length of an A-MPDU. The 802.11n and 802.11ac standards

support block acknowledgment in which the receiver selectively

acknowledges receivingmultiple subframes by transmitting a single

acknowledgment. This mechanism improves efficiency since only

one block ACK is transmitted instead of one acknowledgment per

subframe. In addition, the block ACK determines which MPDUs

were not received and have to be retransmitted. This process is

called software retransmission.
In 802.11n and ac protocols, a block acknowledgment, consisting

of a starting sequence number and a 64-bit bitmap, is transmitted

back to the sender, where each bit acknowledges a subframe with

the corresponding offset from the starting sequence number. With

this block ACK mechanism, only MPDUs with sequence numbers

that are within the 64-MPDU window can be transmitted. This can

potentially limit the number of frames that the sender can aggregate

in an A-MPDU [14]. For example, suppose that the sender transmits

64 frames with sequence numbers 1000 to 1063. If the MPDU with

sequence number 1000 is lost, the sender cannot aggregate new

MPDUs in the next A-MPDU because their sequence number will be

outside the current block ACKwindow (BAW). Therefore, even if all

other transmitted MPDUs are successfully received, the sender can-

not transmit new subframes in the next A-MPDU(s) until the MPDU

with sequence number 1000 is acknowledged or a software retry

limit is reached. The chain of dependencies between consecutive

A-MPDUs, caused by block ACK window advancements and soft-

ware retransmission, significantly complicates how to determine

the optimal number of frames to aggregate.

3 RELATEDWORK
Frame aggregation in 802.11 networks has attracted a lot of atten-

tion due to the significant efficiency improvements promised by

this feature. As a result, different categories of frame aggregation

algorithms have been studied in recent years. Frame Aggregation

Schedulers [18] [8] are concernedwith optimizing the transmissions

under unsaturated link conditions. The second category of frame

aggregation algorithms [12] [17] [16] is concerned with finding the

optimal length of an Aggregated MAC Service Data Unit (A-MSDU).

Our work is complementary to frame aggregation schedulers and

A-MSDU frame aggregation algorithms so we do not consider them

in this work.

This paper focuses on finding the optimal number of subframes

to aggregate in an A-MPDU. The most closely related studies to our

work are MoFA [3] and STRALE [4] frame aggregation algorithms.

As a result, we implement these algorithms and compare their

performance to that of our proposed algorithm.

To overcome channel compensation limitations, Byeon et al. [3]

propose a frame aggregation algorithm called MoFA that adjusts

the length of A-MPDUs in a attempt to maximize throughput. This

algorithm tries to distinguish stationary and mobile channel con-

ditions and reduces the length of A-MPDUs dynamically under

mobile conditions. This algorithm compares the average frame er-

ror rates (FER) of the first and second half of an A-MPDU. If the

difference between the average FERs is higher than 20% the envi-

ronment is considered mobile and the A-MPDU length is reduced. If

this difference is less than 20% for multiple consecutive A-MPDUs,

the algorithms assumes the channel is ready to support longer A-

MPDUs. Therefore, MoFA increases the number of subframes in

the next A-MPDUs.

Byeon et al. [4] propose another algorithm called STRALE that

tries to jointly optimize frame aggregation and rate adaptation.

The authors find that under certain conditions, in addition to lim-

iting the length of an A-MPDU, reducing the transmission rate

can also help to cope with the channel compensation limitations.

They utilize this finding to implement a heuristic that considers two

options to cope with channel compensation limitations. STRALE

estimates the expected throughput for two transmission settings: (1)

the same transmission rate with a smaller A-MPDU size (2) a lower

transmission rate (i.e., one-level lower MCS index) with the same

A-MPDU size. If option (1) results in higher expected throughput,

the A-MPDU size is decreased based on the fate of the previous

A-MPDUs. Otherwise, the rate adaptation algorithm is instructed to

override its chosen transmission rate by one MCS index. Therefore,

in some cases the frame aggregation algorithm impacts the rate

adaptation algorithm.

Byeon et al. [3] [4] implement and evaluate MoFA and STRALE

on an 802.11n platform. In addition, STRALE was also evaluated

using an 802.11ac simulator, since it could not be implemented due

to limitations in the ath10k driver [4]. We study these algorithms

using trace-driven evaluation (802.11n) and find that PNOFA outper-

forms them in a variety of scenarios. We also implement PNOFA as

a user-space process on an 802.11ac Google Wifi access point. Such

an implementation is not possible for these algorithms because they

would require modifications to closed-source firmware.

4 OPTIMIZING A-MPDU LENGTH
The goal of this section is to find the optimal length of an A-MPDU

given the expected frame error rates of each subframe within an A-

MPDU (for the given transmission rate). We model A-MPDU frame

aggregation in 802.11 networks in order to optimize throughput,

first without considering the dependencies between consecutive

A-MPDUs. Then, we examine how these dependencies may change

frame aggregation decisions.

4.1 Modeling Optimal A-MPDU Length
We model the transmission time of an A-MPDU with n subframes,

TA-MPDU (n), as follows:

TA-MPDU (n) = θ + λn (1)

where θ includes all overheads associated with transmitting an

A-MPDU, including PHY header, DIFS, SIFS, backoffs, and block

ACK as illustrated in Figure 2. λ is the transmission time of one

MPDU and is defined as λ = B
R , where B is the number of bits in an

MPDU and R is the transmission rate in bits per second.

MPDU 1 MPDU 2 ... MPDU nDIFS + Backoff PHY SIFS + B-ACK

θ: Overhead (time)

λ: Transmission
time of MPDU

Figure 2: 802.11 A-MPDU and transmission overheads

The expected number of successful MPDUs, Ns (n), in an A-

MPDU with n subframes is:

Ns (n) =
n∑
i=1

MDR (i) (2)

whereMDR (i) is the delivery ratio of MPDU index i (i.e., the proba-
bility of the successful transmission of i’th MPDU in an aggregated

frame).

Finally, we compute the expected throughput when n subframes

are aggregated in an A-MPDU. Since the transmission time of an

A-MPDU, including all overheads such as receiving a block ACK, is

θ + λn, we can transmit 1/(θ + λn) A-MPDUs of size n per second.

The number of successfulMPDUs in each aggregated frame isNs (n),
therefore the expected throughput will be:

Tput (n) =
BNs (n)

TA-MPDU (n)
=

B
∑n
i=1MDR (i)

θ + λ.n
(3)

To maximize throughout, we need to find the value of n that

maximizes Equation 3. The derivative of Equation 3 with respect to

n does not have a general closed-form and depends on theMDR (i)
function. However, the optimal length of an A-MPDU can be cal-

culated numerically by computing the expected throughput for all

possible lengths of an A-MPDU.

MoFA [3] and STRALE [4] use a similar formula to compute

what the best length would have been for past A-MPDUs. Then they

(a) Transmitting k − 1 new MPDUs

 i MPDUs retransmitted N1 … Nk-1

 j MPDUs retransmitted Nk ... Nk+B ... Nk+z

A-MPDUx:

A-MPDUx+1:

(b) Transmitting k new MPDUs

 i MPDUs retransmitted N1 … Nk

 j MPDUs + Nk retransmitted Nk+1... Nk+B... Nk+z

 j MPDUs retransmitted Nk+1… Nk+B… Nk+z+1

Nk fails

Nk succeeds

A-MPDUx:

A-MPDUx+1:

Figure 3: Transmitting k − 1 versus k new subframes in an A-MPDU

utilize this metric in their proposed heuristic to decrease the length

of subsequent A-MPDUs if necessary. They also propose a separate

heuristic for increasing the length of subsequent A-MPDUs that is

substantially different from the technique we employ. In contrast,

we provide the expected delivery ratios (MDRs) to Equation 3 to

compute the optimal length for the next A-MPDU.

4.2 Dependencies Between A-MPDUs
In Section 4.1, we computed the optimal length of an aggregated

frame without considering the dependencies between consecutive

A-MPDUs. As explained in Section 2.2, one might think that because

of the limitations caused by block ACKs and software retransmis-

sions, it might be beneficial to transmit shorter A-MPDUs than

computed in the previous section. However, we now show that

these dependencies do not affect the optimal length of A-MPDUs.

Theorem 1. An algorithm that optimizes the length of an A-MPDU
without considering the following A-MPDUs achieves the statistically
optimal throughput.

Before formally proving this theorem, we describe an example

that provides some intuition behind the proof. Suppose that based

on Equation 3 the optimal length of an A-MPDU is calculated to

be 64. In this extreme example imagine that all MPDUs are deliv-

ered successfully except the first MPDU. In this case, the software

retransmission mechanism reschedules the first MPDU in the next

A-MPDU and the block ACK window can not be advanced. There-

fore, no new subframes can be sent, and the length of the first

and second A-MPDUs will be 64 and 1, respectively. Recall from

Figure 1 that throughput of A-MPDUs with only one subframe will

be very low. As a result, we now consider the question of whether

or not limiting the first A-MPDU results in higher throughput. For

example, does sending 32 and 33-subframe A-MPDUs (the second

frame carries the retransmission of the first MPDU and 32 new

MPDUs) result in higher throughput? To compare the two cases

we calculate their total transmission times. Recall that θ denotes

all overheads when transmitting an A-MPDU. In both cases, since

two A-MPDUs are transmitted, the total overhead will be 2θ . The
transmission time of all 65 (i.e., 64+1 or 32+33) MPDUs will be 65λ.
Therefore, the total transmission time in both cases will be 2θ +65λ.
As a result, in this worst case there is no gain in throughput by

limiting the first A-MPDU. We now provide a proof of Theorem 1.

Proof. We consider different possibilities when creating two

consecutive A-MPDUs x and x+1. As illustrated in Figures 3, when

creating A-MPDUx , we need to schedule i ≥ 0 MPDUs for retrans-

mission, because they failed in previous A-MPDUs. Assume that the

optimal length of A-MPDUx without considering the dependency

between A-MPDUs is i + k , therefore, we can add k new MPDUs

to A-MPDUx , denoted N1...Nk . To prove the theorem, we compare

the possible outcomes of sending i + k or i + k − 1 subframes in an

A-MPDU.

Aggregating i + k − 1 MPDUs (Figure 3a):
Assume that we add k−1 newMPDUs to A-MPDUx . When creating

A-MPDUx+1, we need to retransmit j ≥ 0 MPDUs. The length of

an A-MPDU can be limited by, the block ACK window, the length

suggested by Equation 3 and possibly the maximum size of the

frame. Since the last transmitted MPDU was Nk−1, the new MPDUs

that can be transmitted in A-MPDUx+1 start from Nk . The last

MPDU that can be aggregated because of the block ACK window is

denoted by Nk+B . Similarly, the last aggregated MPDU based on

Equation 3 is denoted by Nk+z . To illustrate a sample A-MPDU, in

Figure 3a, Nk+B happens before Nk+z although these two imagi-

nary MPDUs can have any order. Therefore, the last MPDU that

actually can be aggregated ismin(Nk+B ,Nk+z).

Aggregating i + k MPDUs (Figure 3b):
If k new MPDUs are aggregated, two outcomes are conceivable

for the next A-MPDU (i.e., A-MPDUx+1). If Nk succeeds, j MPDUs

have to be scheduled for retransmission, otherwise, Nk must also

be retransmitted. In these cases, the new MPDUs start from Nk+1
since Nk was attempted in the last A-MPDU. Similar to the i +k − 1
case, A-MPDUx+1 is limited by the block ACKwindow or the length

from Equation 3. In both cases (i.e., Nk fails or succeeds), if B < z,
the last MPDU will be Nk+B . Note that, Nk+B refers to the frame

with the highest sequence number in the block ACK window. As a

result, the fate of Nk does not impose further restrictions on the

BAW in this case. However, if z < B the last MPDU will be Nk+z
or Nk+z+1 if Nk fails or succeeds, respectively. In this case (with

i + k MPDUs), including Nk in A-MPDUx creates an opportunity

to possibly transmit one more packet when compared to the case

where Nk is not included in A-MPDUx (Figure 3a). As a result,

there is no throughput gain from aggregating fewer MPDUs than

what Equation 3 suggests. This proof can be recursively applied

on smaller A-MPDUs to show that smaller MPDUs do not provide

higher throughout either. Hence, the best throughout is achieved

when the length from Equation 3 is used. □

Note that aggregating more frames than what Equation 3 sug-

gests does not provide higher throughput either. This is because

the first A-MPDU is sub-optimal and it creates no opportunity for

improvement in the following A-MPDUs.

4.3 Statistically Optimal Algorithm (SO)
We now use our findings from Sections 4.1 and 4.2 to define the

Statistically Optimal A-MPDU aggregation algorithm (SO). For each

A-MPDU, the SO algorithm calculates the number of MPDUs to

aggregate based on Equation 3 for the given PHY rate and MPDU

delivery ratios. Note that SO uses knowledge of the MDRs for future

A-MPDUs (i.e., it is an offline algorithm). To implement SO in our

trace-driven evaluation, we calculate the expected throughput for

all A-MPDU sizes from 1 to 32 subframes
1
using Equation 3 and

choose the length that achieves the highest throughput.

To provide some evidence that the statistically optimal algorithm

is operating as expected, we conduct a trace-driven evaluation. In

this evaluation, we compare the throughput obtained from this al-

gorithm with that of a variety of constant A-MPDU length settings.

The idea is that as channel conditions change, each different fixed

length setting may produce the best throughput at different points

in time. However, SO should meet or exceed the throughput of these
different lengths over the entire experiment. Details of our perfor-
mance evaluation methodology can be found in Section 6.1. Each

constant length setting algorithm chooses the same aggregation

length throughout the experiment. In this 10 minute experiment,

we gradually increase the speed of movement from 0.5 m/s to 1.5

m/s. As illustrated in Figure 4 (top), the throughput of SO is always

the same or higher than all constant configurations. We show the

performance of a subset of all possible settings due to the limited

space on this plot.

 0

 20

 40

 60

 80

T
pu

t (
M

bp
s)

4 8 12 24 32 SO

 0

 5

 10

 15

 0 100 200 300 400 500 600

#M
P

D
U

s

Time (seconds)

Figure 4: SO versus constant A-MPDU sizes

Figure 4 (bottom) shows the number subframes SO aggregates

in an A-MPDU for the same experiment. In this experiment the

optimal A-MPDU length constantly changes over relatively short

periods of time. Changes in the optimal length are due to short term

variations in speed and the movement of the device in a person’s

hand or pocket. In addition, we observe that the A-MPDU size

generally decreases as the movement speed increases.

1
Using the ath9k driver’s optimization of creating a subsequent frame while the current

A-MPDU is transmitted.

5 PNOFA
The statistically optimal algorithm (SO) utilizes Equation 3 and

information about future transmissions to determine the optimal

length of an A-MPDU. In order to derive a practical and standard

compliant algorithm that approximates SO we had to overcome

several practical challenges. We now describe how we address

these challenges and present pseudocode for the implementation

of PNOFA in Figure 5.

The first challenge is that MPDU delivery ratios are not known

for the A-MPDU that is being aggregated for the next transmission.

If the transmission rate is R, PNOFA estimates the MDRs using

recent transmissions for that rate. Specifically, the average MDRs

(for each rate) are computed over a specified window of time (i.e.,

AveragingWindow) [lines 5–6]. If rate R had not been used in the

last window, the aggregation level is set to the maximum length

[line 3]. We use the maximum because as shown in Section 4.1 if the

failure probabilities for each MPDU are roughly equal this yields

the best throughput. Alternatively, we could have considered rates

that are similar to R (e.g., R-1 or R+1).

Input: Fate of MPDUs in the last AveragingWindow

Parameters :Transmission rate R

1 SAMPLES← Fate of MPDUs transmitted at rate R in the last

AveragingWindow;

2 if size(SAMPLES) == 0 then
3 A-MPDU-SIZE = MAX-MPDU(R);

4 else
5 for i in 1 to MAX-MPDU(R) do
6 MDR[i]← Delivery ratio of MPDU i in SAMPLES;

7 end

8 OPT-SIZE← Compute optimal A-MPDU size based on Eq. 3

(using MDR and R as input);

9 A-MPDU-SIZE← OPT-SIZE +
ExtraMPDUsWindow

λ ;

10 if A-MPDU-SIZE > MAX-MPDU(R) then
11 A-MPDU-SIZE = MAX-MPDU(R);

12 end
13 end

Output: A-MPDU-SIZE

14 Function MAX-MPDU(R) is
15 return max size of A-MPDU for rate R;

16 end

Figure 5: PNOFA algorithm

The second challenge is that if a maximum of n MPDUs have

been recently aggregated, we do not have any information about the

MDR of subframes n+1 and beyond. Therefore, if the length should

be increased, the algorithm may not be able to properly adapt as

no information is available about MPDU n + 1 and later subframes.

To address this challenge with very little overhead, PNOFA always

adds a few additional MPDUs (beyond the value obtained from

Equation 3). The number of additional MPDUs is determined by

the ExtraMPDUsWindow and λ (the MPDU transmission time at

rate R)[line 9]. This approach aggregates slightly more than the

optimal number of MPDUs, in order to obtain a bit of information

about the delivery ratios of slightly longer than optimal length

A-MPDUs. If the optimal length should be increased the algorithm

will have information about the MDRs of longer frames. In addition,

aggregating only a few more MPDUs than the optimal decreases

throughput only very slightly (if at all).

5.1 PNOFA Parameters

ExtraMPDUsWindow: We have empirically determined how

many subframes to add to an A-MPDU beyond the value obtained

from Equation 3. Because the time required to transmit an MPDU

depends on the transmission rate, we use an approach where the

number of additional subframes changes with the rate. The idea is

that PNOFA adds x additional MPDUs for a rate R, where x is the

number MPDUs that can be sent in time ExtraMPDUsWindow.

To find a good value to use for ExtraMPDUsWindow, we conduct

several evaluations using different scenarios consisting of different

devices and walking speeds (refer to Section 6.3 for details for each

scenario). In the scenarios tested, a client device is carried with

slow and normal walking speeds (approximately 1.0 and 1.4 meters

per second, respectively) in a lab and office space. In S1, we carry

a laptop equipped with an Intel AC 3160 802.11ac WiFi card at

normal walking speed for 300 seconds. In S4 and S5, we carry a

laptop equipped with a TL-WDN4200 802.11n and Archer T9UH

802.11ac WiFi cards, respectively. Both experiments are run for 400

seconds with a mix of slow and normal walking speeds.

Figure 6 shows results for three different scenarios, S1, S4 and S5

while plotting the average throughput obtained using different val-

ues of ExtraMPDUsWindow. This graph shows that if the window

size is too small, not enoughMPDUs are added and PNOFA does not

have the necessary information to increase the A-MPDU size when

channel conditions improve (e.g., movement speed decreases). The

figure also shows that if the window size is too large, throughout

decreases (due to the higher error rate of the later subframes in an

A-MPDU). The best throughput is achieved when the window size

is about 250 microseconds (which is used in our prototype imple-

mentation). To provide insight into the number of extra subframes

that would be added with 250 microseconds, a physical rate of 144

Mbps allows for 3 extra MPDUs, while a rate of 72 Mbps allows for

1 extra MPDU.

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

A
ve

ra
ge

 T
hr

ou
gh

pu
t

Window Size (microseconds)

S1 S4 S5

Figure 6: ExtraMPDUsWindow sizes and throughput

AveragingWindow: Similarly we have examined different val-

ues for the averaging window size under a variety of channel con-

ditions (the results are not included here). We have found that a

window size of 200 milliseconds works well in practice and that

PNOFA was not very sensitive to this window size in the scenarios

tested (obtaining peak throughput for values of up to one second).

The reason is that the acceleration of a human body is quite lim-

ited when walking and therefore the speed of movement does not

change significantly with windows of up to one second.

6 TRACE-DRIVEN EVALUATION
6.1 Methodology
As discussed previously, we could not implement existing frame

aggregation algorithms such as MoFA and STRALE on modern

802.11ac platforms because of the closed-source firmware. In order

to compare the performance of PNOFA with that of the state-of-the-

art algorithms, we conduct trace-driven evaluations. We obtain and

use T-SIMn, a trace-driven evaluation framework [1] that allows

for highly accurate and fair comparisons under conditions that in-

clude mobility, WiFi and non-WiFi interference, and which use 2.4

and 5 GHz spectrums. Previous research [9] has demonstrated that

T-SIMn is extremely realistic and highly accurate. Different algo-

rithms can then be compared by replaying the same trace using each

algorithm. In addition, using trace-driven evaluation allows us to

implement the statistically optimal algorithm which requires a pri-

ori knowledge of the fate of future frames. We ported code from the

publicly available STRALE implementation [4] to T-SIMn. We have

also implemented MoFA as described by Byeon et al. [3]. Finally,

the statistically optimal algorithm and PNOFA are implemented as

described in Sections 4.3 and 5. We have also ported the Minstrel

HT rate adaptation algorithm from Linux to T-SIMn. Minstrel HT

is a sampling-based algorithm and is the default rate adaptation

algorithm in the widely used Linux mac802.11 module [7].

In each scenario, we run an experiment to collect a trace of A-

MPDU transmissions. The sending device (i.e., the access point)

transmits every A-MPDU at a new rate. All rates are sampled in

a round-robin fashion and this process continues for the duration

of the experiment. The fate of all packets are recorded in the trace

which allows the evaluation framework to determine the MPDU

delivery ratios for all transmission rates over any window of time.

During trace collection, A-MPDUs are transmitted using the max-

imum length to measure the MPDU delivery ratios of all indexes.

T-SIMn uses these traces to evaluate frame aggregation algorithms.

6.2 Trace Collection Test Bed
We have created a small test bed for collecting traces. It is housed in

lab and office spaces in a building on a university campus. Our ac-

cess point is a desktopwith a TP-Link TL-WDN4800 dual-bandwire-

less N PCI-E adapter. We create an 802.11n AP using Hostapd [13]

on this machine. This device uses a modified ath9k (Atheros) device
driver that enables round-robin trace collection.

To diversify our experiments, we use a few different client (re-

ceiving) devices. In most experiments, we use a laptop configured

to use a TP-Link TL-WDN4200 dual-band wireless 802.11n card or a

TP-Link Archer T9UH dual-band wireless 802.11ac USB adapter We

have also used a laptop equipped with 802.11ac Intel AC 3160 WiFi

chipset as the client in some experiments. Since the goal of these

frame aggregation algorithms is to maximize MAC-layer through-

put we use iperf [6] to generate UDP traffic to determine the

maximum throughput each algorithm can achieve.

Obtaining the maximum possible throughput is an important

goal not only because it determines the maximum speed for one

client device in the network, but it also impacts the network’s over-

all throughput. For instance, if one or more clients are generating

bursty traffic (as is the case for widely popular streaming video

requests) it is important to maximize network throughput in order

to minimize the transmission time of each chunk of bursty video

traffic. Therefore, the performance of frame aggregation algorithms

is critical in both saturated (e.g., large downloads) and bursty (e.g.,

video streaming) traffic scenarios.

6.3 Scenarios Studied
We conduct experiments using several scenarios to evaluate the

performance of PNOFA and other competing frame aggregation al-

gorithms. Each experiment is long enough for devices to experience

a variety of channel conditions. Table 1 summaries all scenarios

including MIMO configurations, channel bandwidths, frequency

bands and the speed of mobility. In Scenario 1, a laptop equipped

with Intel AC 3160 WiFi card is carried for 300 seconds at normal

walking speed. Scenarios 2 through 6 start with 200 seconds at a low

walking speed followed by 200 seconds of normal walking speed

(i.e., mixed speed). Finally, in Scenario 7, a stationary experiment is

conducted for 400 seconds.

S Device MIMO BW Band Speed

1 Intel AC 3160 1x1 20 5 Normal

2 TL-WDN4200 1x1 20 5 Mix

3 TL-WDN4200 3x3 20 5 Mix

4 TL-WDN4200 3x3 40 5 Mix

5 Archer T9UH 3x3 20 5 Mix

6 Archer T9UH 3x3 20 2.4 Mix

7 TL-WDN4200 3x3 20 5 Zero

Table 1: Different scenarios (S). Mix: slow and normal

6.4 Performance Details for Scenario 1
We start by examining the throughput obtained using the differ-

ent frame aggregation algorithms in Scenario 1 (S1). Figure 7 (top)

shows the achieved throughput over time (averaged over 5 second

intervals) for all algorithms and the statistically optimal algorithm

(labeled SO). This graph shows that the throughput obtained using

PNOFA is always close to SO despite continually changing channel

conditions due to interference and mobility. Because ath9k is obliv-
ious to the channel compensation problem it performs quite poorly.

MoFA and STRALE provide higher throughput but nevertheless are

still sometimes quite far from optimal.

To more easily see the difference between these algorithms and

the statistically optimal algorithm we plot the CDF of the through-

put relative to that of SO in Figure 7 (bottom). Specifically, This

figure shows that the relative loss is bound by 8%, while the through-

put of MoFA and STRALE deviates from optimal by up to 24% and

36%, respectively. Note that even occasional drops in throughput

can significantly impact a user’s quality of experience.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

ath9k
STRALE

MoFA
PNOFA

SO

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50 60

C
D

F

Relative Loss (Percentage)

Figure 7: Throughput and CDF of relative loss

6.5 Performance with Different Scenarios
Figure 8 plots the performance of each algorithm using the CDF of

the relative loss of throughput (when compared with the statisti-

cally optimal algorithm) for all 7 scenarios (described in Table 1).

Figure 8a shows that the performance of PNOFA is very close to

the statistically optimal algorithm across all scenarios. Specifically,

the median and 90th percentile relative loss are less than 4% and

9% in all scenarios, respectively. These experiments demonstrate

that despite the advantage the statistically optimal algorithm has in

using a priori knowledge of actual frame error rates, PNOFA error

rate estimations are sufficiently accurate to obtain excellent per-

formance. In addition, PNOFA’s mechanism of aggregating some

extra MPDUs (beyond what is determined to be optimal) does not

impose significant overhead.

Figure 8b shows results for the ath9k algorithm. It only performs

well in scenario 7 in which the client device is always stationary,

channel compensation is effective, and it does not impact the MPDU

delivery ratios significantly. As a result, the aggregation level should

not be limited and ath9k performs well. Figure 8b also nicely high-

lights the differences in the scenarios we have chosen because the

ath9k algorithm is oblivious to the channel compensation prob-

lem. Consequently, throughputs for scenarios that are farther from

optimal are more severely impacted by this problem.

Figures 8c and 8d show the performance of MoFA and STRALE,

respectively. These graphs demonstrates that although their per-

formance is reasonable, there is significant room for improvement

relative to the statistically optimal algorithm. The median and 90th

percentile throughput loss for MoFA is as high as 15% and 30%,

respectively, and the median and 90th percentile loss for STRALE is

as high as 15% and 25%, respectively. Figures 8c and 8d also reveal

that the performance of MoFA and STRALE are not robust in term

of their performance rankings. In some scenarios, such as S1 and

S5, STRALE outperforms MoFA, while in other scenarios, such as

S4, MoFA performs better. These differences can be explained by

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50 60
Relative Tput Loss (%)

S1
S2
S3
S4
S5
S6
S7

(a) PNOFA

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50 60
Relative Tput Loss (%)

S1
S2
S3
S4
S5
S6
S7

(b) ath9k

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50 60
Relative Tput Loss (%)

S1
S2
S3
S4
S5
S6
S7

(c) MoFA

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50 60
Relative Tput Loss (%)

S1
S2
S3
S4
S5
S6
S7

(d) STRALE

Figure 8: CDFs of throughput loss, relative to optimal

the fact that these algorithms are based on heuristics that are not

necessarily accurate for all scenarios.

6.6 Analysis of Algorithm Differences
To better understand the differences between the behavior of

PNOFA, STRALE and MoFA, Figure 9 shows several different met-

rics for each algorithm in S1. The comparison with STRALE is

especially interesting because it is designed to change both the

number of frames aggregated and the rate being used for trans-

mission. Therefore, one might expect that STRALE could provide

higher throughput than the other algorithms that do not modify

the rate adaptation algorithm.

One can see that over the length of the experiment the mean

throughput (Figure 9a) of PNOFA is consistently higher than

STRALE which is almost always higher than MoFA. MoFA’s

throughput suffers because it is aggregating more frames (between

about 5 and 7 frames) than the other algorithms (Figure 9b), which

results in higher frame error rates (Figure 9c). On the other hand,

STRALE’s mean A-MPDU length is on average a bit lower than

that of PNOFA and its frame error rate is relatively close to that of

PNOFA. However, its mean PHY rate is slightly lower than that of

PNOFA and MoFA (Figure 9d) because STRALE sometimes reduces

the transmission rate to cope with the channel compensation prob-

lem. The shorter A-MPDUs combined with the lower mean PHY

rate used by STRALE result in lower frame error rates and higher

throughput than MoFA but the shorter frames and lower PHY rate

result in lower throughput than PNOFA.

We have conducted a similar analysis for other scenarios (re-

sults not shown due to space). The results for MoFA suggest that it

generally aggregates too many subframes, resulting in higher error

rates and lower throughput than PNOFA. Our experiments also

show that STRALE’s mechanism of lowering the transmission rate

appears to be too conservative and it cannot compensate for the

loss of throughout caused by choosing lower transmission rates.

Our evaluations in Sections 6.5 and 6.6 show that PNOFA consis-

tently maintains effective A-MPDU sizes. Across all seven scenarios

studied the average throughput of PNOFA is within 97% of the

average throughput of the statistically optimal algorithm.

7 EXPERIMENTAL EVALUATION
7.1 Methodology
We have implemented PNOFA on a commercial Google Wifi access

point [10]. This device utilizes a Qualcomm IPQ 4019 [15] system-

on-chip that supports Wave 2 802.11ac features. This chipset is

widely used in over 82 WiFi access points including wireless mesh

systems offered by Google, ASUS, D-Link, Linksys, Netgear, TP-

LINK and Samsung [5].

Tcpdump is used to capture the block ACK of the transmitted

A-MPDUs to find out the fate of subframes. PNOFA utilizes this

information to compute the MPDU Delivery Ratios (MDR) to de-

termine the optimal A-MPDU length under the current channel

conditions. Since the MDRs of different PHY-layer transmission

rates are different, when PNOFA receives a block ACK it needs to

know the rate at which the A-MPDU was transmitted (to record the

data for the correct rate). However, this information is not available

in the block ACK. Consequently, PNOFA retrieves the physical rate

from the iw command for each connected station. In contrast with

previous work, PNOFA can be implemented as a user-space process

and does not require any modification to the firmware of WiFi

chipsets.

 0
 5
10
15
20
25
30
35
40
45
50

 0 50 100 150 200 250 300

MoFA STRALE PNOFA

(a) Mean Throughput (Mbps)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 50 100 150 200 250 300

MoFA STRALE PNOFA

(b) Mean A-MPDU length

0.0

0.1

0.2

0.3

0.4

 0 50 100 150 200 250 300

MoFA STRALE PNOFA

(c) Frame Error Rate

 0
10
20
30
40
50
60
70
80

 0 50 100 150 200 250 300

MoFA STRALE PNOFA

(d) Mean PHY rate (Mbps)

Figure 9: Comparing metrics for different algorithms in Scenario S1

7.2 Performance Results
To evaluate the performance of PNOFA, we setup an experiment

where a Google Wifi access point transmits UDP using iperf [6]
to a mobile client. The client device is a Microsoft Surface Pro

(5’th Gen) that is carried in an office environment (described in

Section 6.2) at walking speed. We compare the performance of the

frame aggregation algorithm in the Qualcomm IPQ4019 chipset

and PNOFA in terms of the maximum achieved throughput. There

is no line of sight between the access point and client for most of

the trial. Each experiment consists of ten 30 seconds trials for each

algorithm. We use a randomized interleaved trials [2] technique in

which we switch between the two algorithms rather than running

all trials of one algorithms and then the other one. This ensures

that the two algorithms are exposed to similar channel conditions

for a fair comparison.

Figure 10 shows the average UDP throughput obtained by each

algorithm over the duration of the experiment. Each data point is the

average throughput obtained during that one secondwindow across

10 trials. As the figure shows PNOFA consistently outperforms

the frame aggregation algorithm in the Qualcomm chipset. The

achieved gain is up to 29% with a mean of 17%. Despite delays due

to a user-space implementation, PNOFA significantly improves the

throughput of the Qualcomm IPQ4019 chipset.

8 CONCLUSIONS
This paper is the first to study the dependencies between consec-

utive A-MPDUs in determining the optimal A-MPDU length. We

develop a standard compliant, Practical, Near-Optimal FrameAggre-

gation algorithm (PNOFA) PNOFA which estimates the expected

subframe delivery ratios to determine the number of frames to

aggregate that will result in high throughput.

 0

 50

 100

 150

 200

 250

T
hr

ou
gh

pu
t (

M
bp

s)

PNOFA
Qualcomm

 0

 10

 20

 30

0 5 10 15 20 25 30

G
ai

n
%

Figure 10: Average UDP throughput over time

We find that PNOFA outperforms state-of-the-art algorithms

in a variety of scenarios. Across all scenarios studied the aver-

age throughput of PNOFA is within 97% of that of the statistically

optimal algorithm. We also implement PNOFA on a Google Wifi

access point and compare its performance with that of the propri-

etary frame aggregation algorithm used by the Qualcomm IPQ4019

chipset. Our experimental results show that PNOFA improves aver-

age throughput for UDP traffic by up to 17%.

9 ACKNOWLEDGMENTS
We acknowledge the financial support of the Natural Sciences and

Engineering Research Council of Canada (NSERC), the Canada

Foundation for Innovation (CFI), the Ontario Research Fund (ORF),

and Google. We also thank Kamal Rahimi Malekshan for many

fruitful discussions during the early phases of this work.

REFERENCES
[1] Ali Abedi, Tim Brecht, and Andrew Heard. 2018. T-SIMn: A trace collection

and simulation framework for 802.11n networks. Computer Communications 117
(2018).

[2] Ali Abedi, Andrew Heard, and Tim Brecht. 2015. Conducting Repeatable Experi-

ments and Fair Comparisons Using 802.11n MIMO Networks. SIGOPS Oper. Syst.
Rev. 49, 1 (2015).

[3] Seongho Byeon, Kangjin Yoon, Okhwan Lee, Sunghyun Choi, Woonsun Cho,

and Seungseok Oh. 2014. MoFA: Mobility-aware Frame Aggregation in Wi-Fi. In

CoNEXT.
[4] Seongho Byeon, Kangjin Yoon, Changmok Yang, and Sunghyun Choi. 2017.

STRALE: Mobility-aware PHY rate and frame aggregation length adaptation in

WLANs. In INFOCOM.

[5] Wireless CAT. 2020. Qualcomm Chipsets. (2020). https://wikidevi.wi-cat.ru/

Qualcomm

[6] Jon Dugan. 2020. IPerf: The ultimate speed test tool for TCP, UDP and SCTP.

http://sourceforge.net/projects/iperf/. (2020).

[7] Felix Fietkau and D Smithies. 2010. Minstrel HT: New rate control module for

802.11n. (2010).

[8] Nasreddine Hajlaoui, Issam Jabri, Malek Taieb, and Maher Benjemaa. 2012. A

frame aggregation scheduler for QoS-sensitive applications in IEEE 802.11n

WLANs. In International Conference on Communications and Information Technol-
ogy (ICCIT).

[9] AndrewHeard. 2016. T-SIMn: Towards a Framework for the Trace-Based Simulation
of 802.11n Networks. Master’s thesis. University of Waterloo.

[10] Google Inc. 2019. Google Wifi. (2019). https://store.google.com/product/google_

wifi

[11] Shervin Khastoo, Tim Brecht, and Ali Abedi. 2020. NeuRA: Using Neural Net-

works to Improve WiFi Rate Adaptation. In MSWiM.

[12] Yuxia Lin and Vincent W. S. Wong. 2007. Frame aggregation and optimal frame

size adaptation for IEEE 802.11n WLANs. In GLOBECOM.

[13] Jouni Malinen. 2020. hostapd. https://wireless.wiki.kernel.org/en/users/

documentation/hostapd. (2020).

[14] Ioannis Pefkianakis, Yun Hu, Starsky H.Y. Wong, Hao Yang, and Songwu Lu. 2010.

MIMO rate adaptation in 802.11n wireless networks. In MobiCom.

[15] Qualcomm Technologies, Inc. 2019. IPQ4019. (2019). https://www.qualcomm.

com/products/ipq4019

[16] Anwar Saif and Mohamed Othman. 2013. SRA-MSDU: Enhanced A-MSDU frame

aggregation with selective retransmission in 802.11n wireless networks. Journal
of Network and Computer Applications (2013).

[17] Anwar Saif, MohamedOthman, Shamala Subramaniam, andNor AsilaWati Abdul

Hamid. 2012. An Enhanced A-MSDU Frame Aggregation Scheme for 802.11n

Wireless Networks. Wireless Personal Communications (2012).
[18] T Selvam and Srimanthula Srikanth. 2010. A frame aggregation scheduler for

IEEE 802.11n. In National Conference On Communications (NCC).

https://wikidevi.wi-cat.ru/Qualcomm
https://wikidevi.wi-cat.ru/Qualcomm
http://sourceforge.net/projects/iperf/
https://store.google.com/product/google_wifi
https://store.google.com/product/google_wifi
https://wireless.wiki.kernel.org/en/users/documentation/hostapd
https://wireless.wiki.kernel.org/en/users/documentation/hostapd
https://www.qualcomm.com/products/ipq4019
https://www.qualcomm.com/products/ipq4019

	Abstract
	1 Introduction
	2 Aggregation Challenges
	2.1 Channel Compensation Limitations
	2.2 Dependencies Between A-MPDUs

	3 Related Work
	4 Optimizing A-MPDU Length
	4.1 Modeling Optimal A-MPDU Length
	4.2 Dependencies Between A-MPDUs
	4.3 Statistically Optimal Algorithm (SO)

	5 PNOFA
	5.1 PNOFA Parameters

	6 Trace-Driven Evaluation
	6.1 Methodology
	6.2 Trace Collection Test Bed
	6.3 Scenarios Studied
	6.4 Performance Details for Scenario 1
	6.5 Performance with Different Scenarios
	6.6 Analysis of Algorithm Differences

	7 Experimental Evaluation
	7.1 Methodology
	7.2 Performance Results

	8 Conclusions
	9 Acknowledgments
	References

