Multiple-Writer Entry Consistency

Harjinder Sandhu, Tim Brecht, Diego Moscoso
Department of Computer Science, York University,
North York, Canada M3J 1P3.
email: {hsandhu,brecht,diego}@cs.yorku.ca

Abstract In this paper, we present the de-
sign, implementation and evaluation of a new dis-
tributed shared memory (DSM) coherence model
called multiple-writer entry consistency (MEC).
MEC combines the efficient communication mech-
anisms of Lazy Release Consistency (LRC) with
the flexible data management of the Shared Regions
[18, 8] and Entry Consistency (EC) models [4].
This is achieved in MEC by decoupling synchro-
nization from coherence (in contrast to the tight
coupling of synchronization and coherence present
in EC) while retaining the familiar synchronization
structure found in Release Consistent (RC) pro-
grams. Our experimental evaluation on an 8 pro-
cessor system shows that using MEC reduces par-
allel execution times by margins ranging from 5%
to 46% in five of the siz applications that we study.
However, the parallel execution time of the LRC
version of the remaining application is lower than
the MEC wversion by 48%. We conclude that of-
fering both page-based and region-based models for
coherence within the same system is not only prac-
tical but necessary.

Keywords: Distributed Shared Memory, Coher-
ence Protocol, Memory Consistency

1 Introduction

Within the realm of Distributed Shared Mem-
ory (DSM) systems, several divergent streams
of models have emerged. Among the most com-
mon are those that rely on pages as the under-
lying abstraction for data management and use
Release Consistency (RC) as the synchroniza-
tion model presented to the user [5, 9], and

those that use user-defined shared regions as
the underlying abstraction for data manage-
ment coupled with a synchronization model
called Entry Consistency (EC) that explicitly
binds synchronization primitives with the data
they protect [4, 8, 12]. Each of these models
has their limitations. In RC-based systems, the
reliance on pages as the unit of data manage-
ment often causes these systems to transmit
more data than necessary in order to maintain
coherence due to the effects of false sharing,
or to transmit data using more messages than
necessary when shared data structures span
multiple pages. Sophisticated coherence pro-
tocols such as lazy release consistency (LRC)
reduce the impact of false sharing but cannot
eliminate it entirely [9]. In EC-based systems,
the problems that stem from the mismatch be-
tween the system’s view of sharing and the
granularity of sharing within the application
are avoided entirely by managing data at user-
defined granularity. However, the EC synchro-
nization model is more complex to program
than RC and is often avoided as a result.
Ideally, a system should integrate both page-
based and region-based protocols in a way that
permits the programmer to begin with the sim-
pler RC-based model, and then add EC an-
notations for just those data structures that
are better suited to region-based rather than
page-based data management. Unfortunately,
RC and EC are difficult to integrate in this
way due to the differences in their respective
synchronization models. Adding EC annota-
tions in an existing RC program requires mod-
ifying the program’s synchronization structure
and it may result in a program that con-

tains too much synchronization. The study
of LRC versus EC by Adve et al. [1], for in-
stance, points out that their EC-based applica-
tions often suffered from this problem of over-
synchronization.

In this paper, we present a new model called
Multiple-Writer Entry Consistency (MEC).
MEC manages data at a granularity defined
by the user but, unlike EC, it decouples the
primitives used for synchronization from those
used for coherence. This decoupling of syn-
chronization from coherence has two effects.
The first is that it permits the efficient inte-
gration of both page-based and region-based
protocols for coherence within the same RC
framework. For synchronization, MEC retains
the familiar acquire and release primitives of
RC. Consequently, users can write programs
for the simpler RC model, using an efficient
page-based protocol such as LRC, and then,
without changing the synchronization struc-
ture of the program, selectively add MEC an-
notations to those data structures that may
benefit from region-based data management.

The second effect of decoupling synchroniza-
tion and coherence in MEC is that user-defined
shared regions can be concurrently modified by
different processors. This presents greater flex-
ibility than the single-writer multiple-reader
behavior enforced by EC on regions defined by
the user. Consider, for example, an application
with interspersed fine-grained sharing among
the elements of a large data structure. Under
typical EC implementations, either each ele-
ment would have to be bound to a separate
synchronization object and guarded individu-
ally, or else the entire structure would have to
be bound to a single synchronization object
and guarded in a way that permits only one
processor to modify it at a time. The former
partitioning would be too fine-grained to be
efficient in a DSM environment, while the lat-
ter solution would unnecessarily restrict con-
currency.

We have implemented the MEC proto-
col within the Treadmarks distributed shared
memory system (which itself implements page-
based LRC). We present the results of an eval-

uation that compares the performance of LRC
and MEC for six applications. The results
of this investigation show that five of the six
applications obtain better performance using
MEC than LRC, with differences ranging from
5% to 46%. In the remaining application, how-
ever, there is a significant degradation (48%)
using MEC. These results argue strongly in
favor of using an integrated page-based and
region-based solution as a platform for dis-
tributed shared memory.

An overview of this paper is as follows. Sec-
tion 2 briefly describes the background to this
work with a description of the RC, LRC, and
EC models. Section 3 describes the MEC
model and its implementation. Section 4
presents the results of a performance evalua-
tion of LRC versus MEC, and is followed in
Section 5 with a discussion of how these results
relate to other work, including earlier work
comparing LRC and EC. Section 6 presents the
conclusions of this paper.

2 Background

Memory consistency models present a set of
programming constraints to the user and guar-
antee correctness only for programs that obey
those constraints. In the Release Consistency
(RC) model [7] these constraints are (a) that
only system recognized synchronization oper-
ations are used, (b) that all synchronization
operations are labeled as acquire or release op-
erations, and (c) that there are no data races in
the program. Under RC, a processor may de-
lay the propagation of coherence related infor-
mation to other processors until it arrives at a
release point in the program. A release point in
the program indicates that the process is exit-
ing a critical section, and that other processors
must now be made aware of modifications to
shared data within this critical section. A lazy
implementation of release consistency (LRC)
[9], however, takes advantage of the fact that
a processor that wishes to use the data com-
puted by another processor must first acquire
a lock from the processor that has modified

that data. Therefore, using LRC the propa-
gation of coherence related information can be
delayed until the acquire operation by another
processor, rather than immediately upon a re-
lease operation.

DSM implementations using RC mitigate
the impact of false sharing on pages both by
delaying the propagation of coherence infor-
mation and by permitting multiple processors
to concurrently modify different portions of
the same page. Munin, among the first DSM
systems to use RC, introduced the notion of
twinning and diffing to consolidate concurrent
changes to a page from different processors [5].
Prior to modifying a page, a processor cre-
ates a twin (a local copy) of the page. Later,
upon arrival at a release point, it compares
the modified page to its unmodified twin and
transmits to other processors only those por-
tions of the page that have changed. Tread-
marks’ implementation of LRC delays the cre-
ation and transmition of diff’s until modifica-
tions to the page are requested by another pro-
cessor, thereby further reducing the number of
messages required to maintain coherence.

Entry Consistency (EC) [4], and other mod-
els like it, such as the Shared Regions (SR)
model [8, 13], avoid the problem of false shar-
ing among virtual memory pages by manag-
ing data at a granularity defined by the user.!
In SR, a shared region is a user-defined en-
tity describing the granularity at which data
is shared within the application. According to
both EC and SR, each shared region is explic-
itly bound in the program to a token that is
used for synchronization. In SR, the primitives
readaccess, writeaccess, readdone, and write-
done are used to guard access to a shared re-
gion. In addition to enforcing synchronization,
the underlying system checks the state of the
region when these primitives are invoked and,
when necessary, initiates coherence actions to
keep the region consistent. Each user-defined
shared region follows a single-writer multiple-
reader synchronization protocol. The EC or

!For the purposes of discussion, we borrow termi-
nology from both the EC and SR models; semantically,
these models are equivalent.

SR models have been used in a number of sys-
tems, including Midway [4], CRL [8], DiSom
[12], Amber [6], and Hurricane [13].

3 Multiple-Writer Entry Con-
sistency

The Multiple Writer Entry Consistency (MEC)
model described in this paper combines ele-
ments of both RC and EC in the interface that
is presented to the user, and is akin to LRC in
its implementation. This section describes the
MEC model and its implementation.

3.1 Model

As in the Shared Regions (SR) model [13], we
use the term shared region in MEC to denote a
user-defined region of memory that is treated
as a single unit for the purposes of coherence
enforcement. Once a set of shared regions has
been defined within the MEC framework, a set
of operations, readaccess and writeaccess, are
used in conjunction with a particular shared re-
gion to indicate when references to that shared
region occur, and whether these references also
modify that region. We refer to these opera-
tions generically as access operations.

From the programmers perspective, the
main differences between MEC and the EC
and SR models are twofold. First, the ac-
cess operations in MEC enforce coherence but
are non-synchronizing. For synchronization,
MEC retains the familiar acquire and release
operations of RC, and integrates the coher-
ence enforced through the access operations
with the synchronization performed by the ac-
quire/release operations. The second difference
between SR and MEC is that, in MEC, al-
though the access operations are used prior to a
series of references to a particular region, there
is no need for corresponding operations to indi-
cate the completion of this series of references
to the region.

In MEC, regions defined by the user can be
modified concurrently by different processors.
Access operations are used to determine when

to consolidate changes to a region. An access
operation by processor F; ensures that all mod-
ifications to region R preceding the access oper-
ation are seen by F;. The use of the term pre-
ceding in MEC is equivalent to the happened-
before-1 relationship defined by Adve et al. [2].
That is, z can be said to precede y if: (a) = and
1y are on the same processor and z occurs before
y in the order defined by the program, or (b)
x is a release operation on one processor and y
is an acquire operation on another processor,
and y returns the value written by . This re-
lationship is transitive, so if z precedes y and y
precedes z, then x precedes z in this partial or-
der. Thus, modifications to R by processor P;
will be seen by processor P; only when there is
a transitive chain such that the modifications
by P; precede an access operation by P;.

3.2 Implementation

Our implementation integrates MEC into the
Treadmarks implementation of LRC [9]. In the
standard Treadmarks implementation, a large
shared data space is created in the initializa-
tion of the system, and all shared data is sub-
sequently allocated within this space. A page
table is used to keep track of the state of each
page in this shared data area. The execution
of each processor is divided into time inter-
vals (where synchronization operations mark
the beginning and end of an interval) and each
processor maintains a list of the intervals it has
seen from each of the other processors. On
an acquire operation, a processor transmits its
current interval time stamp and receives in re-
turn a list of intervals it has not seen and write
notices containing the set of pages that were
modified in that interval.

In our implementation of MEC, the shared
data area is partitioned into two sections, a
page-based area containing K virtual memory
pages, and a shared region-based area contain-
ing the remaining space. The page table is con-
verted into a page-region table, partitioned so
that the first K entries keep track of pages in
the page area, and the remaining entries keep
track of user-defined regions in the shared re-

gion area. Shared data may be allocated in ei-
ther area from within the program. Data allo-
cated in the page-based area is managed using
LRC in exactly the same way as in the unmodi-
fied Treadmarks system, using virtual memory
protection to intercept faulting read/write ref-
erences to pages and initiate coherence actions.
For data in the shared regions area, page faults
do not occur. Instead, access annotations in
the program are used to determine when co-
herence actions are needed for a particular re-
gion.

In the integrated LRC/MEC implementa-
tion, both pages and shared regions are re-
ferred to by their index in the page-region
table. On an acquire operation, a processor
transmits its vector time stamp to the proces-
sor currently holding the lock, just as it does
by default in LRC, but it receives in response
write notices containing a list of both pages
and regions that have been modified in inter-
vals not seen by the acquiring processor. In
MEC, a region is considered modified in inter-
val ¢ by P; if P; issued a writeaccess on that
region in interval q.

The diff and interval management routines
are identical for both page-based LRC and
region-based MEC except for the granularity
at which these actions are carried out. In
our implementation, changes were made to the
original Treadmarks diff management routines
to support arbitrary regions of data, but the
interval management routines were not modi-
fied from the originals. We also converted the
Treadmarks communication layer from UDP to
TCP to facilitate the transmition of large data
regions in MEC. Comparisons between LRC in
the original (unmodified) Treadmarks system
and our modified version showed that neither
of these changes had a significant impact on
performance.

4 Performance Evaluation
In order to assess the performance of MEC as

well as the value of integrating both MEC and
LRC within the same system, we compared

the performance of six application kernels ex-
ecuted first using LRC, and then with key
shared data structures identified as shared re-
gions in order to use MEC. These applications
are: Blocked Matrix Multiplication (MM),
Successive Over-Relaxation (SOR), Blocked-
Contiguous LU-Decomposition (LU), Travel-
ing Salesman Problem (TSP), Integer Sort
(IS), and Floyd-Warshall (FLOYD). TSP,
SOR, and IS are from the suite of applications
used in earlier TreadMarks studies [9, 11, 1],
LU is from the Splash-2 benchmark suite [15],
and MM and FLOYD were written locally.

All experiments were conducted on an 8
node cluster of workstations connected to-
gether by a Fore ATM switch. The worksta-
tions are IBM RISC System/6000s each with
a 133 MHz PowerPC 604 processor, 16 Kb L1
instruction cache, 16 Kb L1 data cache, a 4-
way associative 512 Kb L2 cache, and 96 Mb
of memory. Virtual memory pages are 4 Kb in
size. Table 1 shows the problem sizes, execu-
tion times, and speedups of these applications
running on this workstation cluster.

Figure 1(a) shows the normalized parallel
execution times of the applications used in this
study. Execution times are divided into four
components: (1) sync - synchronization time,
(2) traps - time spent handling traps (protec-
tion traps to pages in LRC, access traps in
MEC), which includes time spent fetching diffs
and creating twins, (3) remote - time spent
handling remote requests initiated from other
processors, including time spent creating diffs
on demand, (4) base - the time remaining, once
sync, traps, and remote costs are accounted
for. The base time is largely spent performing
computation in the application, although be-
cause trap and remote costs begin timing after
asynchronously entering the signal handler, the
base time will also include the cost of entering
the signal handler. The accompanying graphs
in Figure 1 show the number of messages com-
municated and the number of bytes transferred
relative to one processor.

In the MEC version of these applications,
shared data structures were partitioned into
shared regions in what seemed to be the most

obvious and natural fashion for each applica-
tion. For the problem sizes used, MEC execu-
tion times are lower than LRC in MM, SOR,
LU, FLOYD, and IS, by margins ranging from
5% in IS to 46% in SOR (Figure 1(a)). In TSP,
MEC performance is significantly worse than
that of MEC, by a factor of about two. The two
most important factors influencing the relative
performance of these applications is the num-
ber of messages and the number of bytes that
are transmitted between processors, shown in
Figure 1(b) and Figure 1(c) respectively. In all
cases except Floyd and IS, the number of mes-
sages transmitted using MEC is significantly
lower than using LRC. The number of bytes
transmitted between processors is, on the other
hand, about the same for both models in three
cases, MM, IS, and SOR, and higher in MEC
than LRC in two cases, LU and TSP.

In Floyd, the greater number of bytes trans-
mitted in LRC versus MEC is due to false shar-
ing present in the LRC implementation. In
most of the other applications, careful data
alignment minimizes false sharing effects un-
der LRC. However, in two applications, LU and
TSP, the number of bytes transmitted is sub-
stantially higher in MEC than in LRC. This
is because, in these cases, entire regions are
being modified by one processor while only a
portion of that region is used by another pro-
cessor. In MEC when a region is accessed all
modified portions of the region are transmit-
ted, while in LRC only those pages that are
faulted on are sent. This suggests that the
MEC version of these applications might be
improved by declaring these regions at a finer
granularity. However, this would increase the
number of messages while decreasing the num-
ber of bytes transmitted.

In cases where these regions are significantly
larger than the size of a page (MM, SOR, LU,
IS, TSP), the MEC algorithm requires many
fewer messages to obtain the same data. For
instance, in MM, where each region is defined
to contain only those portions of each of the
three matrices required by a particular proces-
sor, less than 8 messages are required to fetch
all of the data needed by that processor. In the

program | problem size

1 proc | 8 proc time speedup

time | LRC | MEC | LRC | MEC

MM 1536x1536 (int) matrices , block size 32 257.7 | 58.1 | 50.1 | 44 5.1
SOR 2000x2000 (float) matrix, 100 iterations 108.5 | 349 | 188 | 3.1 5.8
LU 1536x1536 (double) matrix, block size 64 979 | 35.8 | 21.2| 27 4.6
TSP 19 city tour 56.2 | 23.3 | 44.5 24 1.3
FLOYD | 512 node graph 61.9 | 13.8 12.5 4.5 5.0
IS 222 keys, bucket size 2°, 10 iterations 249 | 4.0 39| 6.2 6.3

Table 1: Problem sizes, execution times (in seconds), and speedups on 8 processors.

. 1.0 11.811.8 16 1.6 5.6 53 11 12 03 03
58.1 34.8 35.9 44.5 137 4.0 '8
1.0+ 38 N 08 08
125 B)
1 501 § 0.6
> 0.4
08— | 0
/ g o2
] ’ /] =
§ / / ’ 212 / ’ l sync 00 mec Irc mec Irc mec Irc mec Irc mec Irc mec Irc
= 06+ // 188 : / ’/ mm sor lu tsp floyd is
gl .
£ | 4 7 230 fa ‘ traps (b) Number of bytes transferred (in millions)
g ’ - ’ : remote
g 0.4 A 7 ‘ |:| %\ 1.0 2887 882 1854 2568 17831777 84 84
£ 7 N
= - 7 l bae 2 o8
/ £
7zl 5 06 490
0.2 4 Z
- g 0.4 825
> 456
0.2
g 8
00- mec Irc mec Irc mec Irc mec Irc mec Irc mec Irc = 00 mec Irc mec Irc mec Irc mec Irc mec Irc mec Irc
mm sor lu tsp floyd is mm sor lu tsp floyd is

(a) Parallel Execution Time

(c) Number of messages communicated

Figure 1: Eight processor performance of applications under LRC and MEC.

LRC version of MM, the number of messages
required is much higher, about 2887, as pages
are fetched one at a time. In SOR and LU,
regions span about two and four pages respec-
tively, so the number of messages is reduced by
factors of approximately two and four. In TSP,
a single region spans about one hundred pages,
but the region is not usually needed in its en-
tirety by a particular processor. Consequently,
although the number of messages is reduced by
a factor of 4, the number of bytes transmitted
is also significantly higher. This results in the
worse performance of MEC in this one case.

The performance of MEC and LRC in these
applications highlights the need for provid-

ing both page-based and region-based proto-
cols within the same system. MEC requires
more effort to program, and an improvement
of about 5%, as in Floyd, is not likely to justify
this effort. Further, defining regions poorly (as
in TSP) can cause a significant degradation in
performance through false sharing within a sin-
gle region. On the other hand, MEC does pro-
vide substantial improvements in performance
for four applications, from 12% to 46%. In
these cases, the additional effort of using MEC
rather than LRC would appear to be justified.

5 Related Work

Adve et al. [1] conducted a performance com-
parison of lazy release consistency [7] and en-
try consistency [4] and conclude that there is
no clear winner in terms of performance. They
also point out that the performance of EC is
hurt by extra synchronization and lock rebind-
ing because all accesses to regions of shared
memory may only occur after acquiring the
corresponding lock. In contrast, the MEC
model proposed in this paper uses no extra
synchronization and requires no lock rebind-
ing, yet retains the ability to manage data at
region granularity. Further, in the three appli-
cations (SOR, TSP, and IS) that are common
to both our study and the study by Adve et al.,
our results show that variations in problem size
have a significant impact on the difference be-
tween page-based and region-based data man-
agement. In SOR, for example, for the problem
size used by Adve et al. (1000x1000 matrices),
there is no significant difference between LRC
and EC in their study and no significant dif-
ference in performance between LRC and MEC
in our study. However, larger problem sizes in
SOR are shown to favor MEC over LRC in our
study.

The use of larger virtual memory pages for
obtaining data aggregating effects in LRC has
been previously considered by Amze et al. [3].
While larger virtual memory pages improves
LRC performance for many applications, its ef-
fectiveness is limited by the increase in false
sharing in others. On the other hand, MEC
is capable of simultaneously eliminating false
sharing along page boundaries and achieving
much larger data aggregation, on the order of
megabytes in some of the MEC applications we
examine, in contrast with the 16 Kb pages used
in the study by Amze et al..

Neves et al. [12] conduct a comparison of
TreadMarks (LRC) and their system, called
DiSOM, which implements EC. Their results
show that EC can send significantly fewer mes-
sages and less data and thus obtain substan-
tial reductions in execution times compared
to LRC. The study by Neves et al. differs

from our own in several respects, aside from
the differences between MEC and EC already
noted. The DiSOM system uses an object-
oriented framework to avoid write trapping and
exercise fine-grain control over communication,
and their comparison between LRC in Tread-
marks and EC in DiSOM is between two dif-
ferent DSM implementations that may differ in
other respects as well. In contrast, our study
compares MEC and LRC, both implemented
within the Treadmarks framework.

6 Conclusions

In this paper, we have presented a new
model called Multiple-Writer Entry Consis-
tency (MEC). The value of MEC is in its use of
an RC-based synchronization structure while
managing data at a granularity defined by the
user. Thus, MEC permits the efficient integra-
tion of both page-based and region-based co-
herence protocols within the same RC frame-
work. In this integrated environment, a pro-
gram can be written initially for the RC model
using page-based data management, and then
MEC annotations added for those data struc-
tures which may obtain a performance ad-
vantage from region-based data management.
MEC also presents a significant amount of flex-
ibility in the way shared regions are defined by
the user, by allowing a single region to be mod-
ified concurrently by different processors.

Our experimental evaluation of the perfor-
mance of MEC and LRC shows that MEC im-
proves execution times in five of the six ap-
plications that we study, by margins ranging
from 5% to 46% for the default problem sizes,
while leading to a degradation in performance
of 48% in one case. These results suggest that
integrating both page-based and region-based
coherence protocols into one DSM framework
is both practical and necessary.

References

[1] S.V. Adve, A.L. Cox, S. Dwarkadas, R. Ra-
jamony and W. Zwaenepoel, “A Compari-
son of Entry Consistency and Lazy Release

[2]

[4]

[5]

[6]

[10]

Consistency Implementations” , Proceedings of
the 2nd International Symposium on High-
Performance Computer Architecture, pp. 26-
37, February, 1996.

S.V. Adve and M.D. Hill, “Weak Ordering — A
New Definition”, Proceedings of the 17th An-
nual International Symposium on Computer
Architecture, pp. 2-14, May 1990.

C. Amza, A.L. Cox, K. Rajamani, and W.
Zwaenepoel, “Tradeoffs between False Shar-
ing and Aggregation in Software Distributed
Shared Memory”, Proceedings of the Sixth
Conference on Principles and Practice of Par-
allel Programming, pp. 90-99, June 1997.

B. Bershad, M. Zekauskas and W. Sawdon,
“The Midway Distributed Shared Memory
System”, Proceedings of COMPCOM ’93, pp.
528-537, February, 1993.

J. Carter, J. Bennett and W. Zwaenepoel,
“Implementation and Performance of Munin”,
Proceedings of the 13th Symposium on Oper-
ating Systems Principles, pp. 152-164, Octo-
ber, 1991.

M. Feeley and H. Levy, “Distributed Shared
Memory with Versioned Objects”, Proceed-
ings of the Conference on Object-Oriented
Programming Systems Languages, and Appli-
cations, October, 1992.

K. Gharachorloo, D. Lenoski, J. Laudon, P.
Gibbons, A. Gupta, J. Hennessy, “Memory
Consistency and Event Ordering in Scalable
Shared Memory Multiprocessors”, Proceed-
ings of the 17th Annual Symposium on Com-
puter Architecture, pp. 15-26, May, 1990.

K. Johnson, F. Kaashoek and D. Wallach,
“CRL: High-Performance All Software Dis-
tributed Shared Memory”, Proceedings of the
15th Symposium on Operating Systems Prin-
ciples, pp- 213-228, December, 1995.

P. Keleher, A. Cox, S. Dwarkadas and
W. Zwaenepoel, “TreadMarks: Distributed
Shared Memory on Standard Workstations
and Operating Systems”, Proceedings of the
Winter 1995 USENIX Conference, pp. 115-
131, 1994.

K. Li and P. Hudak, “Memory Coherence
in Shared Virtual Memory Systems”, ACM
Transactions on Computer Systems, Vol. 7,
No. 4, pp. 321-359, November, 1989.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. Lu, S. Dwarkadas, A.L. Cox, and W.
Zwaenepoel, “Message Passing Versus Dis-
tributed Shared Memory on Networks of
Workstations”, Proceedings of Supercomput-
ing 95, December, 1995.

N. Neves, M. Castro, and P. Guedes, “A
Checkpoint Protocol for an Entry Consistent
Shared Memory System”, Proceedings of the
13th Annual ACM Symposium on Principles
of Distributed Computing August, 1994.

H. Sandhu, B. Gamsa and S. Zhou, “The
Shared Regions Approach to Software Cache
Coherence on Multiprocessors”, Proceedings
of the Fourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Program-
ming, pp. 229-238, May, 1993.

I. Schoinas, B. Falsafi, A.R. Lebek, S.K. Rein-
hardt, J.R. Larus, and D.A. Wood, “Fine-
grain Access Control for Distributed Shared
Memory”, Proceedings of the 6th Symposium
on Architectural Support for Programming
Languages and Operating Systems, pp. 297-
306, October, 1994.

J.P. Singh, W.-D. Weber and A. Gupta,
“SPLASH: Stanford Parallel Applications
for Shared-Memory”, Computer Architecture
News, Vol. 20, No. 1, pp. 5-44, March, 1992.

Z.G. Vranesic, M. Stumm, D.M. Lewis and R.
White, “Hector - A Hierarchically Structured
Shared-Memory Multiprocessor”, IEEE Com-
puter, Vol. 24, No. 1, pp. 72-29, January, 1991.

M.J. Zekauskas, W.A. Sawdon, and B.N.
Bershad, “Software Write Detection for Dis-
tributed Shared Memory”, Proceedings of the
First Symposium on Operating System Design
and Implementation, pp. 87-100, November,
1994.

