MULTIPLE-WRITER ENTRY CONSISTENCY *

HARJINDER SANDHU !, TIM BRECHT ¢, AND DIEGO MOSCOSO §

Abstract.

In this paper, we present the design, implementation and evaluation of a new distributed shared
memory (DSM) coherence model called multiple-writer entry consistency (MEC). MEC combines
the efficient communication mechanisms of Lazy Release Consistency (LRC) with the flexible data
management of the Shared Regions [17, 11] and Entry Consistency (EC) models [5]. This is achieved
in MEC by decoupling synchronization from coherence (in contrast to the tight coupling of syn-
chronization and coherence present in EC) while retaining the familiar synchronization structure
found in Release Consistent (RC) programs. The advantage of MEC is that it allows region-based
coherence protocols (those that manage data at the granularity of user-defined shared regions) to
be used along side page-based protocols within an application and within the RC framework. Our
experimental evaluation on an 8 processor system shows that using MEC reduces parallel execution
times by margins ranging from 5% to 46% in five of the six applications that we study. However,
the parallel execution time of the LRC version of the remaining application is lower than the MEC
version by 48%. We conclude that offering both page-based and region-based models for coherence
within the same system is not only practical but necessary.

Key words. parallel programming, network of workstations, distributed shared-memory, coher-
ence models, memory consistency.

AMS subject classifications. 68-04, 68N99, 68M20.

1. Introduction. Within the realm of Distributed Shared Memory (DSM) sys-
tems, several divergent streams of models have emerged. Among the most common
are (1) those that rely on pages as the underlying abstraction for data management
and use Release Consistency (RC) as the synchronization model presented to the
user [7, 13], and (2) those that use user-defined shared regions as the underlying ab-
straction for data management coupled with a synchronization model called Entry
Consistency (EC) that explicitly binds synchronization primitives with the data they
protect [5, 11, 16]. Each of these models has their limitations. In RC-based systems,
the reliance on pages as the unit of data management often causes these systems to
transmit more data than necessary in order to maintain coherence due to the effects
of false sharing, or to transmit data using more messages than necessary when shared
data structures span multiple pages. Sophisticated coherence protocols such as lazy
release consistency (LRC) reduce the impact of false sharing but cannot eliminate
it entirely [13]. In EC-based systems, the problems that stem from the mismatch
between the system’s view of sharing and the granularity of sharing within the appli-
cation are avoided entirely by managing data at user-defined granularity. However,
the EC synchronization model is more complex to program than RC and is often
avoided as a result.

Ideally, a system should integrate both page-based and region-based protocols
in a way that permits the programmer to begin with the simpler RC-based model,

* Appears in Parallel and Distributed Computing Practices (PDCP), NOVA Science Publishers,
USA, Volume 2, Number 2, pp. 77-85, June 1999. This work was supported by the Natural Sciences
and Engineering Research Council of Canada

t Department of Computer Science, York University, North York, Ontario, Canada M3J 1P3.
email: hsandhu@cs.yorku.ca

{ Department of Computer Science, University of Waterloo, Waterloo, Ontario Canada N2L 3G1.
email: brecht@cs.uwaterloo.ca

§ Department of Computer Science, York University, North York, Ontario, Canada M3J 1P3.
email: diego@cs.yorku.ca

2 H. SANDHU, T. BRECHT AND D. MOSCOSO

and then add EC annotations for just those data structures that are better suited
to region-based rather than page-based data management. Unfortunately, RC and
EC are difficult to integrate in this way due to the differences in their respective
synchronization models. Adding EC annotations in an existing RC program requires
modifying the program’s synchronization structure and it may result in a program
that contains too much synchronization. The study of LRC versus EC by Adve et al.
[1], for instance, points out that their EC-based applications often suffered from this
problem of over-synchronization.

In this paper, we present a new model called Multiple-Writer Entry Consistency
(MEC). MEC manages data at a granularity defined by the user but, unlike EC,
it decouples the primitives used for synchronization from those used for coherence.
This decoupling of synchronization from coherence has two effects. The first is that
it permits the efficient integration of both page-based and region-based protocols for
coherence within the same RC framework. For synchronization, MEC retains the
familiar acquire and release primitives of RC. Consequently, users can write programs
for the simpler RC model, using an efficient page-based protocol such as LRC, and
then, within the same synchronization framework, selectively add MEC annotations
to those data structures that may benefit from region-based data management.

The second effect of decoupling synchronization and coherence in MEC is that
user-defined shared regions can be concurrently modified by different processors. This
presents greater flexibility than the single-writer multiple-reader behavior enforced
by EC on regions defined by the user. Consider, for example, an application with
interspersed fine-grained sharing among the elements of a large data structure. Under
typical EC implementations, either each element would have to be bound to a separate
synchronization object and guarded individually, or else the entire structure would
have to be bound to a single synchronization object and guarded in a way that permits
only one processor to modify it at a time. The former partitioning would be too
fine-grained to be efficient in a DSM environment, while the latter solution would
unnecessarily restrict concurrency.

We have implemented the MEC protocol within the Treadmarks distributed
shared memory system (which itself implements page-based LRC) and conducted
a detailed evaluation that compares the performance of LRC and MEC for six appli-
cations. The results of this investigation show that five of the six applications obtain
better performance using MEC than LRC, with differences ranging from 5% to 46%.
In the remaining application, however, there is a significant degradation (48%) using
MEC. These results, which we consider to be among the key contributions of this
paper, argue strongly in favor of using an integrated page-based and region-based
solution as a platform for distributed shared memory.

An overview of this paper is as follows. Section 2 briefly describes the background
to this work with a description of the RC, LRC, and EC models. Section 3 describes
the MEC model and its implementation. Section 4 presents the results of a perfor-
mance evaluation of LRC versus MEC, and is followed in Section 5 with a discussion
of how these results relate to other work, including earlier work comparing LRC and
EC. Section 6 presents the conclusions of this paper.

2. Background. Memory consistency models present a set of programming con-
straints to the user and guarantee correctness only for programs that obey those con-
straints. In the Release Consistency (RC) model [9] these constraints are (a) that only
system recognized synchronization operations are used, (b) that all synchronization
operations are labeled as acquire or release operations, and (c) that there are no data

MULTIPLE-WRITER ENTRY CONSISTENCY 3

races in the program. Under RC, a processor may delay the propagation of coherence
related information to other processors until it arrives at a release point in the pro-
gram. A release point in the program indicates that the process is exiting a critical
section, and that other processors must now be made aware of modifications to shared
data within this critical section. A lazy implementation of release consistency (LRC)
[13], however, takes advantage of the fact that a processor that wishes to use the
data computed by another processor must first acquire a lock from the processor that
has modified that data. Therefore, using LRC the propagation of coherence related
information can be delayed until the acquire operation by another processor, rather
than immediately upon a release operation.

DSM implementations using RC mitigate the impact of false sharing on pages
both by delaying the propagation of coherence information and by permitting mul-
tiple processors to concurrently modify different portions of the same page. Munin,
among the first DSM systems to use RC, introduced the notion of twinning and diff-
ing to consolidate concurrent changes to a page from different processors [7]. Prior
to modifying a page, a processor creates a twin (a local copy) of the page. Later,
upon arrival at a release point, it compares the modified page to its unmodified twin
and transmits to other processors only those portions of the page that have changed.
Treadmarks’ implementation of LRC delays the creation and transmission of diff’s
until modifications to the page are requested by another processor, thereby further
reducing the number of messages required to maintain coherence.

Entry Consistency (EC) [5], and other models like it, such as the Shared Regions
(SR) model [11, 17], avoid the problem of false sharing among virtual memory pages
by managing data at a granularity defined by the user.! In SR, a shared region is
a user-defined entity describing the granularity at which data is shared within the
application. According to both EC and SR, each shared region is explicitly bound
in the program to a token that is used for synchronization. In SR, the primitives
readaccess, writeaccess, readdone, and writedone are used to guard access to a shared
region. In addition to enforcing synchronization, the underlying system checks the
state of the region when these primitives are invoked and, when necessary, initiates
coherence actions to keep the region consistent. Each user-defined shared region
follows a single-writer multiple-reader synchronization protocol. The EC or SR models
have been used in a number of systems, including Midway [5], CRL [11], DiSom [16],
ABC++ [4], Amber [8], and Hurricane [17].

3. Multiple-Writer Entry Consistency. The Multiple-Writer Entry Consis-
tency (MEC) model described in this paper combines elements of both RC and EC in
the interface that is presented to the user, and is akin to LRC in its implementation.
This section describes the MEC model and its implementation.

3.1. Model. As in the Shared Regions (SR) model [17], we use the term shared
region in MEC to denote a user-defined region of memory that is treated as a single
unit for the purposes of coherence enforcement. Once a set of shared regions has been
defined within the MEC framework, a set of operations, readaccess and writeaccess,
are used in conjunction with a particular shared region to indicate when references to
that shared region occur, and whether these references also modify that region. We
refer to these operations generically as access operations.

From the programmers perspective, the main differences between MEC and the

IFor the purposes of discussion, we borrow terminology from both the EC and SR models;
semantically, these models are equivalent.

4 H. SANDHU, T. BRECHT AND D. MOSCOSO

EC and SR models are twofold. First, the access operations in MEC enforce coherence
but are non-synchronizing. For synchronization, MEC retains the familiar acquire and
release operations of RC, and integrates the coherence enforced through the access
operations with the synchronization performed by the acquire/release operations. The
second difference between SR and MEC is that, in MEC, although the access oper-
ations are used prior to a series of references to a particular region, there is no need
for corresponding operations to indicate the completion of this series of references to
the region.

In MEC, regions defined by the user can be modified concurrently by different
processors. Access operations are used to determine when to consolidate changes to a
region. An access operation by processor P; ensures that all modifications to region R
preceding the access operation are seen by P;. The use of the term preceding in MEC
is equivalent to the happened-before-1 relationship defined by Adve et al. [2]. That
is, z can be said to precede y if: (a) z and y are on the same processor and z occurs
before y in the order defined by the program, or (b) z is a release operation on one
processor and y is an acquire operation on another processor, and y returns the value
written by x. This relationship is transitive, so if x precedes y and y precedes z, then
z precedes z in this partial order. Thus, modifications to R by processor P; will be
seen by processor P; only when there is a transitive chain such that the modifications
by P; precede an access operation by P;.

3.2. Implementation. Our implementation integrates MEC into the Tread-
marks implementation of LRC [13]. In the standard Treadmarks implementation, a
large shared data space is created in the initialization of the system, and all shared
data is subsequently allocated within this space. A page table is used to keep track
of the state of each page in this shared data area. The execution of each processor
is divided into time intervals (where synchronization operations mark the beginning
and end of an interval) and each processor maintains a list of the intervals it has seen
from each of the other processors. On an acquire operation, a processor transmits its
current interval time stamp and receives in return a list of intervals it has not seen
and write notices containing the set of pages that were modified in that interval.

In our implementation of MEC, the shared data area is partitioned into two
sections, a page-based area containing K virtual memory pages, and a shared region-
based area containing the remaining space. The page table is converted into a page-
region table, partitioned so that the first K entries keep track of pages in the page
area, and the remaining entries keep track of user-defined regions in the shared region
area. Shared data may be allocated in either area from within the program. Data
allocated in the page-based area is managed using LRC in exactly the same way as
in the unmodified Treadmarks system, using virtual memory protection to intercept
faulting read/write references to pages and initiate coherence actions. For data in
the shared regions area, page faults do not occur. Instead, access annotations in the
program are used to determine when coherence actions are needed for a particular
region.

In the integrated LRC/MEC implementation, both pages and shared regions are
referred to by their index in the page-region table. On an acquire operation, a pro-
cessor transmits its vector time stamp to the processor currently holding the lock,
just as it does by default in LRC, but it receives in response write notices containing
a list of both pages and regions that have been modified in intervals not seen by the
acquiring processor. In MEC, a region is considered modified in interval ¢ by F; if P;
issued a writeaccess on that region in interval q.

MULTIPLE-WRITER ENTRY CONSISTENCY

Ut

The diff and interval management routines are identical for both page-based LRC
and region-based MEC except for the granularity at which these actions are carried
out. In our implementation, changes were made to the original Treadmarks diff man-
agement routines to support arbitrary regions of data, but the interval management
routines were not modified from the originals. We also converted the Treadmarks
communication layer from UDP to TCP to facilitate the transmission of large data
regions in MEC. Comparisons between LRC in the original (unmodified) Treadmarks
system and our modified version showed that neither of these changes had a significant
impact on performance.

4. Performance Evaluation. In order to assess the performance of MEC as
well as the value of integrating both MEC and LRC within the same system, we
compared the performance of six application kernels executed first using LRC, and
then with key shared data structures identified as shared regions in order to use
MEC. These applications are: Blocked Matrix Multiplication (MM), Successive Over-
Relaxation (SOR), Blocked-Contiguous LU-Decomposition (LU), Traveling Salesman
Problem (TSP), Integer Sort (IS), and Floyd-Warshall (FLOYD). TSP, SOR, and IS
are from the suite of applications used in earlier TreadMarks studies [13, 14, 1], LU is
from the Splash-2 benchmark suite [18], and MM and FLOYD were written locally.

All experiments were conducted on an 8 node cluster of workstations connected
together by a Fore ATM switch. The workstations are IBM RISC System/6000s each
with a 133 MHz PowerPC 604 processor, 16 KB L1 instruction cache, 16 KB L1
data cache, a 4-way associative 512 KB L2 cache, and 96 MB of memory. Virtual
memory pages are 4 KB in size. Table 1 shows the problem sizes, execution times,
and speedups of these applications running on this workstation cluster.

program | problem size 1 proc 8 proc time speedup
time | LRC | MEC | LRC | MEC
MM 1536x1536 (int) matrices , block size 32 257.7 | 58.1 50.1 4.4 5.1
SOR 2000x2000 (float) matrix, 100 iterations 108.5 | 34.9 18.8 3.1 5.8
LU 1536x1536 (double) matrix, block size 64 97.9 | 35.8 21.2 2.7 4.6
TSP 19 city tour 56.2 23.3 44.5 2.4 1.3
FLOYD | 512 node graph 61.9 13.8 12.5 4.5 5.0
IS 222 keys, bucket size 27, 10 iterations 24.9 4.0 3.9 6.2 6.3
TaBLE 1

Problem sizes, execution times (in seconds), and speedups on 8 processors.

4.1. Summary of Results. Figure 1(a) shows the normalized parallel execution
times of the applications used in this study. Execution times are divided into four
components: (1) sync - synchronization time, (2) traps - time spent handling traps
(protection traps to pages in LRC, access traps in MEC), which includes time spent
fetching diffs and creating twins, (3) remote - time spent handling remote requests
initiated from other processors, including time spent creating diffs on demand, (4)
base - the time remaining, once sync, traps, and remote costs are accounted for. The
base time is largely time spent performing computation in the application, although
because trap and remote costs begin timing after asynchronously entering the signal
handler, the base time will also include the cost of entering the signal handler. The
accompanying graphs in Figure 1 show the number of messages communicated and
the number of bytes transferred relative to one processor.

6 H. SANDHU, T. BRECHT AND D. MOSCOSO

118118 16 16 56 11 12 03 03

~ 1045 - 53
E 0.8+ 0z me
©
£ 0.6
S
Z 0.4
8 02
- &
0.0-
§ mec Irc meclrc meclirc meclrc meclrc mec Irc
3 mm sor lu tsp floyd is
£ (b) Number of bytes transferred (in millions)
S
2
= = 2887 882 1854 2568 17831777 84 84
(5} 1.0+
E E
[= 08—
1=
5 06— 490
< (o}
o 044 82!
g ass 1
0.2+
4
s o012
mec e mec e mec i meclrc mecirc mec irc = ™ mec e meclrc meclrc meclrc meclrc mec Irc
mm sor lu tsp floyd is mm sor lu tsp floyd is
(a) Parallel Execution Time (c) Number of messages communicated

F1G. 1. Eight processor performance of applications under LRC and MEC.

In the MEC version of our applications, shared data structures were partitioned
into shared regions in what seemed to be the most obvious and natural fashion for
each application. For the problem sizes used, MEC executions times are lower than
LRC in MM, SOR, LU, FLOYD, and IS, by margins ranging from 5% in IS to 46%
in SOR (Figure 1(a)). For MM, SOR, and LU, this difference is due largely to a
reduction in the number of messages (Figure 1(c)), while in FLOYD, the difference is
due to a reduction in the number of bytes (Figure 1(c)). In TSP, MEC execution time
is significantly worse than LRC, by a margin of 48%, due to the overly simplistic way
regions are used in the MEC version. Here, the number of messages is reduced using
MEC by defining a shared region that spans many pages, but false sharing within this
shared region leads to a significant increase in the number of bytes transmitted.

The performance of MEC in these applications highlights the need for providing
both page-based and region-based protocols within the same system. MEC requires
more effort to program, and an improvement of 5% is not likely to justify this effort,
whereas some of the larger improvements gained in other applications makes the
corresponding effort appear justified. In order to provide insights into the underlying
influences on the performance of MEC and LRC in these six applications, each of the
applications is discussed in more detail below.

4.2. The Applications in Detail. MM implements a blocked matrix multi-
plication C' = Ax B. The A and C matrices are partitioned into P contiguous sections
among the P processors. In LRC the portions of A and C' belonging to each processor,
as well as all of B, are fetched one page at a time. B occupies 2304 pages, while the
portions of A and C accessed by each processor occupy 288 pages each.? Fetching
A, B, and C' therefore requires on the order of 2800 messages in LRC. In MEC, on
the other hand, each processor fetches exactly three regions, one containing matrix
B, and two others containing the portions of A and C' to be used by that processor,
using a corresponding small number of messages. However, the advantage gained
in MEC by reducing the number of messages is significantly hampered by increased
contention that results from the size of the regions (9 MB for B and over 1 MB for
each portion of A and C) and the fact that they are all accessed synchronously from

2The number of pages occupied by B can be calculated as the size of the matrix (1536 x 1536 x 4)
divided by the size of a page (4096 KB), and the number of pages occupied by the portions of 4 and
C' assigned to each processor are 1/8th of this each.

MULTIPLE-WRITER ENTRY CONSISTENCY 7

one processor prior to beginning the computation. In the LRC version of MM, the
interleaving of page requests with computation causes page requests to be distributed
more randomly and therefore these requests experience less contention. Consequently,
the dramatic reduction in the number of messages from several thousand to a handful
in MEC results in a decrease in execution time of only 14%.

SOR uses a Red-Black Successive Over-Relaxation algorithm to solve partial
differential equations. Sharing between processors occurs along the boundary rows of
two M x N matrices. In the MEC version, a separate shared region is used for each
row. For N = 2000, each row spans two pages. Rows of this size are page-aligned
in LRC using the default Treadmarks memory allocation algorithm for page-based
data, but unaligned in MEC using the memory allocation algorithm we implement
for region-based data (where page alignment is unnecessary). The page-alignment in
LRC means that false sharing plays no role in SOR’s performance for this problem
size. Most of the difference in execution time between MEC and LRC is due to the
fact that each MEC region comprises two pages, so that the number of messages in
MEC are half of those in LRC. Interestingly, using page-alignment in LRC degrades
the cache performance of SOR, resulting in some loss in performance even before
communication costs are accounted for. Not having page alignment in LRC, however,
has more serious implications on performance (as discussed in Section 4.3).

LU decomposes a matrix into upper and lower triangular matrices. Sharing
occurs along the blocks of an N x N matrix. As in the original SPLASH-2 version
of this algorithm, data is allocated so that all of the blocks modified by a particular
processor are allocated contiguously. Each 64 by 64 block, defined as a single region
in the MEC version, occupies 32 KB, or 8 pages. Consequently, the LRC version uses
8 times as many messages to fetch a single block. False sharing exists within each
block for both LRC and MEC but is limited by the page size in LRC. Thus, while
MEC reduces the number of messages, it also transmits more bytes of data due to
false sharing within blocks. In this case, however, the increase in the number of bytes
due to false sharing in MEC, about 6%, is less significant than the decrease in the
number of messages. As a result, the execution time using MEC in LU is 41% lower
than when using LRC.

TSP solves the traveling salesman problem using a branch and bound algorithm.
There are two data structures of interest in TSP, each of which is defined as a single
shared region in the MEC version. The first (about 800 KB in size) is used to hold
the partially evaluated tours, the priority queue consisting of pointers to tours in the
pool, as well as associated data structures. The second (about 132 bytes in size)
is used to keep track of the current shortest path. The size of the first region in
MEC causes the number of messages to be reduced significantly compared to the
LRC version. However, the number of bytes transmitted is about 40% higher in MEC
because of the false sharing within regions. In TSP, this latter factor dominates, as
execution time using LRC is 48% better than using MEC. Breaking up the larger data
structure into smaller regions in the MEC version of TSP can avoid this performance
degradation, but this requires more programming effort than the more obvious (albeit
naive) way to use regions in this application.

FLOYD uses a dynamic-programming algorithm to solve the all-pairs shortest
path problem on a directed graph. The distances and paths between each pair of
nodes are computed and stored in separate two dimensional matrices. Each row of
this matrix is defined as a region in MEC. Two regions, each equal to the size of one
row, are also created and used to store a temporary copy of the current row of the

8 H. SANDHU, T. BRECHT AND D. MOSCOSO

distance and path matrix. The size of each row is less than one page. The number of
messages is about the same for both MEC and LRC, though LRC suffers from some
false sharing which causes it to transmit 27% more bytes than MEC. This results in
a difference in execution times of about 9% in favor of the MEC version of FLOYD.

IS ranks an unsorted sequence of keys using bucket sort. In the MEC version
only one region is created and is used for the shared array of buckets. We sort 222
keys ranging from 0 to 2° for 10 iterations. With this problem size, a region occupies
about half of a page, but this page contains no other data. As a result, the number
of messages and bytes communicated is the same for both MEC and LRC (except for
the first transfer of that data wherein LRC transfers the entire page unnecessarily),
and execution times using either LRC or MEC are nearly identical.

4.3. Data Size and Alignment Sensitivity. Variations in problem size and
data alignment have a significant impact on the relative behavior of LRC and MEC.
We examined three of the applications (LU, SOR, and IS) in further detail by varying
the problem sizes and thus changing the page alignments of the data structures in these
applications (Figure 2). In each of the three applications examined, LRC and MEC
execution times are nearly identical when data is page aligned and fits on one page,
but small changes in the problem size cause data alignment to change in LRC and
can result in significantly worse execution time for LRC. MEC behavior is insensitive
to the alignment of data to pages. Consequently, in an integrated page-based and
region-based system, the decision to use MEC in an application cannot be judged
solely upon the performance of the application on a particular problem size. Rather,
the performance of MEC versus LRC on a range of problem sizes must be taken
into consideration, and the effort required to add MEC annotations for a particular
data structure must be weighed against the effort required to avoid degradation in
performance due to the misalignment of data and false sharing in LRC.

10— 212 s . 103 411 56.0 10 319 118119 9.0 118 19 19 168

1.0

Time (Normalized)

0.8
0.6
0.4
0.2
0.0

meclrc meclrc meclrc meclrc meclrc

500

1020 1024 2044 2048
(a) SOR - Execution Time

meclrc

8188

mecirc

8192

mec Irc

8

mec Irc mec Irc

16 32
(d) LU execution time

8.0

mec Irc

64

08 19
0.6
0.4
0.2
0.0

meczz\rc
2%2%

meczz\rc
221

mec Irc
2 ZDIZ 9
(9) IS execution time

Fic. 2. Varying input data characteristics in SOR, LU, and IS. In SOR, M = 500 and N 1s
varted. In LU, the matriz size is fized at 1024 and block size is varied. In IS, the number of keys
and bucket sizes are both varied.

5. Related Work. Adve et al. [1] conducted a performance comparison of
lazy release consistency [9] and entry consistency [5] and conclude that there is no
clear winner in terms of performance. They also point out that the performance
of EC is hurt by extra synchronization and lock rebinding because all accesses to
regions of shared memory may only occur after acquiring the corresponding lock. In
contrast, the MEC model proposed in this paper uses no extra synchronization and
requires no lock rebinding, yet retains the ability to manage data at region granularity.
Further, in the three applications (SOR, TSP, and IS) that are common to both our
study and the study by Adve et al., our results show that variations in problem
size have a significant impact on the difference between page-based and region-based
data management. In SOR, for example, for the problem size used by Adve et al.
(1000x1000 matrices), there is no significant difference between LRC and EC in their

MULTIPLE-WRITER ENTRY CONSISTENCY 9

study and no significant difference in performance between LRC and MEC in our
study. However, larger problem sizes in SOR favor MEC over LRC in our study.

The use of larger virtual memory pages for obtaining data aggregating effects in
LRC has been previously considered by Amze et al. [3]. While larger virtual memory
pages improves LRC performance for many applications, its effectiveness is limited
by the increase in false sharing in others. On the other hand, MEC is capable of
simultaneously eliminating false sharing along page boundaries and achieving much
larger data aggregation, on the order of megabytes in some of the MEC applications
we examine, in contrast with the 16 KB pages used in the study by Amze et al..

Neves et al. [16] conduct a comparison of TreadMarks (LRC) and their sys-
tem, called DiSOM, which implements EC. Their results show that EC can send
significantly fewer messages and less data and thus obtain substantial reductions in
execution times compared to LRC. The study by Neves et al. differs from our own
in several respects, aside from the differences between MEC and EC already noted.
The DiSOM system uses an object-oriented framework to avoid write trapping and
exercise fine-grain control over communication, and their comparison between LRC in
Treadmarks and EC in DiSOM is between two different DSM implementations that
may differ in other respects as well. In contrast, our study compares MEC and LRC,
both implemented within the Treadmarks framework.

Monnerat and Bianchini [15] introduce a protocol (ADSM) that dynamically and
automatically associates locks with specific shared pages, in effect achieving part of the
behaviour of entry consistency without the need for annotations, but still managing
data at page granularity. Brecht and Sandhu [6] and Ttzkovitz and Schuster [10]
introduce two different techniques for managing data at region granularity without the
need for annotations, using a novel pointer swizzling and page fault handling strategy
in the former case, and conventional virtual memory fault handling in the latter. Both
of these techniques improve the value of the MEC protocol described in this paper.
Finally, Keleher [12] examined the performance impact of single versus multiple-writer
protocols in a page-based release consistency context and found that multiple-writer
protocols provide small improvements but considerably increase complexity. In MEC,
using a multiple-writer protocol is intended primarily to allow a simpler programming
style (since objects can be modified concurrently by different processors) than the
single-writer EC protocol, and to allow applications to mix page and object based
protocols without changing the synchronization model.

6. Conclusions. In this paper, we have presented a new model called Multiple-
Writer Entry Consistency (MEC). The value of MEC is in its use of an RC-based
synchronization structure while managing data at a granularity defined by the user.
Thus, MEC permits the efficient integration of both page-based and region-based co-
herence protocols within the same RC framework. In this integrated environment, a
program can be written initially for the RC model using page-based data manage-
ment, and then MEC annotations added for those data structures which may obtain
a performance advantage from region-based data management. MEC also presents a
significant amount of flexibility in the way shared regions are defined by the user, by
allowing a single region to be modified concurrently by different processors.

Our experimental evaluation of the performance of MEC and LRC shows that
MEC improves execution times in five of the six applications that we study, by margins
ranging from 5% to 46% for the default problem sizes, while leading to a degradation
in performance of 48% in one case. These results, the first to compare page-based
and region-based data management in an environment in which all other aspects

10 H. SANDHU, T. BRECHT AND D. MOSCOSO

of the system and the programs in the two models are nearly identical, suggests
that integrating both page-based and region-based coherence protocols into one DSM
framework is both practical and necessary.

7. Acknowledgements. We thank Ken Sevcik and the other members of the
SIGPOW project at the University of Toronto for providing us with access to their
cluster of workstations, which were used to perform our experiments. Also thanks to
Paul Lu for providing us with the information needed to utilize the cluster.

REFERENCES

[1] S.V. Adve, A.L. Cox, S. Dwarkadas, R. Rajamony and W. Zwaenepoel, “A Comparison of
Entry Consistency and Lazy Release Consistency Implementations”, Proceedings of the
2nd International Symposium on High-Performance Computer Architecture, pp. 26-37,
February, 1996.

[2] S.V. Adve and M.D. Hill, “Weak Ordering — A New Definition”, Proceedings of the 17th Annual
International Symposium on Computer Architecture, pp. 2-14, May 1990.

[3] C. Amza, A.L. Cox, K. Rajamani, and W. Zwaenepoel, “Tradeoffs between False Sharing and
Aggregation in Software Distributed Shared Memory”, Proceedings of the Sixth Conference
on Principles and Practice of Parallel Programming, pp. 90-99, June 1997.

[4] E. Arjomandi, W. O’Farrell, 1. Kalas, G. Koblents, F. Eigler and G. Gao, “ABC++: Concur-
rency by Inheritance in C++"”, IBM Systems Journal, Vol. 34, No. 1, pp. 120-137, 1995.

[5] B. Bershad, M. Zekauskas and W. Sawdon, “The Midway Distributed Shared Memory System”,
Proceedings of COMPCOM ’93, pp. 528-537, February, 1993.

[6] T. Brecht, H. Sandhu “The Region Trap Library: Handling Traps on Application-Defined
Regions of Memory”, Proceedings of the 1999 USENIX Technical Conference, to appear.

[7] J. Carter, J. Bennett and W. Zwaenepoel, “Implementation and Performance of Munin”, Pro-
ceedings of the 13th Symposium on Operating Systems Principles, pp. 152-164, October,
1991.

[8] M. Feeley and H. Levy, “Distributed Shared Memory with Versioned Objects”, Proceedings of
the Conference on Object-Oriented Programming Systems Languages, and Applications,
October, 1992.

[9] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, J. Hennessy, “Memory Con-
sistency and Event Ordering in Scalable Shared Memory Multiprocessors”, Proceedings of
the 17th Annual Symposium on Computer Architecture, pp. 15-26, May, 1990.

[10] A. Ttzkovitz and A. Schuster, “MultiView and Millipage — Fine-Grain Sharing in Page-Based
DSMs”, Proceedings of the 3rd Symposium on Operating Systems Design and Implemen-
tation (OSDI '99), February, 1999.

[11] K. Johnson, F. Kaashoek and D. Wallach, “CRL: High-Performance All Software Distributed
Shared Memory”, Proceedings of the 15th Symposium on Operating Systems Principles,
pp- 213-228, December, 1995.

[12] P. Keleher, “The Relative Importance of Concurrent Writers and Weak Consistency Models”,
Proceedings of the 16th International Conference on Distributed Computing Systems, May
28, 1996.

[13] P. Keleher, A. Cox, S. Dwarkadas and W. Zwaenepoel, “TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating Systems”, Proceedings of the Winter
1995 USENIX Conference, pp. 115-131, 1994.

[14] H. Lu, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel, “Message Passing Versus Distributed
Shared Memory on Networks of Workstations”, Proceedings of Supercomputing '95, De-
cember, 1995.

[15] L.R. Monnerat and R. Bianchini, “ADSM: A Hybrid DSM Protocol that Efficiently Adapts
to Sharing Patterns”, Federal University of Rio de Janerio, COPPE Systems Engineering
Computer Science Department, Technical Report ES-425/97, March, 1997..

[16] N. Neves, M. Castro, and P. Guedes, “A Checkpoint Protocol for an Entry Consistent Shared
Memory System”, Proceedings of the 13th Annual ACM Symposium on Principles of Dis-
tributed Computing August, 1994.

[17] H. Sandhu, B. Gamsa and S. Zhou, “The Shared Regions Approach to Software Cache Co-
herence on Multiprocessors”, Proceedings of the Fourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 229-238, May, 1993.

MULTIPLE-WRITER ENTRY CONSISTENCY 11

[18] J.P. Singh, W.-D. Weber and A. Gupta, “SPLASH: Stanford Parallel Applications for Shared-
Memory”, Computer Architecture News, Vol. 20, No. 1, pp. 5-44, March, 1992.

