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Abstract. Geographically broad, application-aware studies of large sub-
scriber networks are rarely undertaken because of the challenges of ac-
cessing secured network premises, protecting subscriber privacy, and de-
ploying scalable measurement devices. We present a study examining
bandwidth consumption and the rate at which new flows are created in
45 cable, DSL, cellular and WiFi subscriber networks across 26 countries
on six continents. Using deep packet inspection, we find that one or two
applications can strongly influence the magnitude and duration of daily
bandwidth peaks. We analyze bandwidth over 7 days to better under-
stand the potential for network optimization using virtual network func-
tions. We find that on average cellular and non-cellular networks operate
at 61% and 57% of peak bandwidth respectively. Since most networks
are over provisioned, there is considerable room for optimization.

Our study of flow creation reveals that DNS is the top producer of new
flows in 22 of the 45 networks (accounting for 20 — 61% of new flows in
those networks). We find that peak flow rates (measured in thousands
of flows per Gigabit) can vary by several orders of magnitude across ap-
plications. Networks whose application mix includes large proportions of
DNS, PeerToPeer, and social networking traffic can expect to experience
higher overall peak flow rates. Conversely, networks which are dominated
by video can expect lower peak flow rates. We believe that these find-
ings will prove valuable in understanding how traffic characteristics can
impact the design, evaluation, and deployment of modern networking
devices, including virtual network functions.

1 Introduction

The Internet continues to grow in geographic reach and data volume. This growth
is facilitated by considerable investment from fixed and cellular service providers
into network infrastructure. This infrastructure includes numerous devices such
as switches, routers, caches, middle boxes and other devices to supply provider
branded services (e.g., streaming video). Traffic incurs higher cost and increased
latency as it moves from the network’s edge towards its core. This offers a natural
incentive for providers to invest in infrastructure that reduces traffic to Internet
Exchange Points (IXPs) and backbone networks by placing devices closer to sub-
scribers. However, there are relatively few studies which provide an application-
aware view of broad scale traffic across multiple ISP networks. This is primarily



due to the difficulty of building and deploying scalable measurement devices in
independent, geographically distributed networks. We believe that a large scale,
application-aware study of Internet traffic can provide valuable insights into how
application protocols drive consumption of bytes and flows in network devices.

In this paper, we conduct a detailed analysis of data that has been gathered
as part of Sandvine’s series of Internet Phenomena reports [27]. The collection
of this data is facilitated by an ongoing partnership between Sandvine and par-
ticipating ISPs. Our key contributions in this paper are:

— We find that there is a wide variety in the bandwidth consumed and rate
at which new flows are created by the same application or service across
networks. This makes it very difficult to describe a “typical network”.

— We analyze bandwidth over time with respect to peak bandwidth and show
that, on average, non-cellular and cellular networks operate at 57% and 61%
of peak bandwidth, respectively. Since most networks are over provisioned,
this suggests that the use of virtual network functions to offer elastic band-
width may offer significant reductions in operating costs.

— We find that DNS is the top producer of flows in 22 of 45 networks, ac-
counting for 20% to 61% of flows in those networks. We believe this places
a significant load on flow-aware network devices including SDN routers, se-
curity middle boxes, and subscriber billing systems.

2 Methodology

Table 1 details the size and scope of the data used in our study. The dataset
covers 22 3G and 4G subscriber networks (which we refer to as either cellular or
mobile) and 23 cable, DSL and WiFi (fixed or non-cellular) subscriber networks
across 26 countries on six continents. These networks range from a cellular net-
work with peak bandwidth of 240 Mbps to a fixed network with peak bandwidth
of nearly 600 Gbps. In total, our dataset covers 7 days in each network for a
total of 62.8 petabytes and over 3 trillion flows of anonymized traffic.

This data was obtained from networks which have deployed Sandvine’s Policy
Traffic Switch (PTS). The PTS is a family of programmable network appliances
which can be configured for applications including traffic inspection, subscriber
billing, and network attack mitigation. It is a high performance device, capable
of inspecting traffic in real time at network line rates. As such, our methodology
does not rely on flow or packet sampling. We are able to inspect every packet
of every flow. The PTS is usually deployed at the edge of the network, typically
connected to termination points for cable and/or digital subscriber lines. The
PTS is often used for subscriber billing purposes, which guarantees visibility of
all subscriber traffic. Other deployments are possible, but we believe them to be
uncommon in our dataset.

The PTS software stack examines packet headers at Ethernet, IP, and
TCP/UDP layers as well as packet payloads at higher network layers. In con-
cert with information gathered from lower layers, packet payloads are matched



against an extensive collection of known signatures. Strong signatures can iden-
tify an application after a single packet. Other signatures may require multi-
ple consecutive packets before a match is returned. Categorization of encrypted
traffic relies on heuristic methods instead of payload inspection. For example,
encrypted HTTPS traffic is usually immediately preceded by a DNS request
from the client endpoint. The IP address in the DNS response primes the PTS
to expect a new flow from the client to the resolved hostname in the near future.
Similarly, SSL handshakes are sent as clear text and include information that
identifies the server endpoint. These methods allow the PTS to identify services
being delivered over HT'TPS with a high degree of confidence. The accuracy of
the Sandvine recognition engine is verified using a regression suite consisting of
several thousand flows generated from live application testing (i.e., ground truth
data). The recognition engine is updated on a monthly basis to account for new
or changed application signatures.

Region Abbrev.|Countries|Sites| Traffic|New Flows

(PB)| (Dbillions)
Asia Pacific APAC 3 3 1.0 152.9
Caribbean and Central America| CCA 5 7 1.7 162.1
Europe ERP 8| 13| 22.7 949.1
Middle East and Africa MEA 5 5 25.3 1,276.5
North America NA 1| 11 11.3 327.6
South America SA 4 6 0.8 152.9
Total 26| 45| 62.8 3,021.0

Table 1. Scope of data collected

The aforementioned recognition engine is run against every new flow in the
network. A new flow is one whose 5-tuple (source IP, source port, destination
IP, destination port, transport protocol) has no entry in the device flow table.
Each new 5-tuple adds an entry to this flow table. For UDP flows, the flow
entry is expired after 10 seconds without a packet transmission. Any subsequent
packets transmitted with that 5-tuple are treated as a new flow. The 10 second
UDP flow timeout is a default PTS configuration which conserves flow-related
memory while accurately representing flow lifetimes. As a result, all UDP flows
in our data are defined by this flow timeout. For TCP connections, the flow
entry is terminated after a proper connection termination (i.e., after a TCP four-
way handshake) or after the TCP TIME-WAIT timeout has expired without a
packet transmission (i.e., at least 2 Maximum Segment Lifetimes, which is 240
seconds). The PTS classifies each new flow into one of nearly 2,000 application
protocols. Once a flow is categorized, the PTS attributes all bytes and packets of
that flow towards the identified application protocol. These application protocols
include well-specified protocols such as DNS, FTP, SIP and MGCP. However,
they also include traffic generated by well-known applications or services such
as Skype, Windows Update, and WhatsApp. The popularity of HTTP as a
transport protocol has led to several refinements of HT'TP being classified as
separate applications. For example, YouTube, Facebook, and Hulu are recognized
as separate application protocols even though each is delivered over HTTP. In



the interest of succinct analysis, we have created 21 application categories. Most
categories are self-explanatory; those that require explanation are discussed when
they are introduced. However, it is worth mentioning that the Misc category
includes traffic that does not fit in any of the other 21 categories, as well as
traffic that the PTS could not recognize.

Each PTS logs time-series data including byte, packet, and flow counts per
application protocol to a centralized data store every 15 minutes. For the pur-
poses of our study, we have retrieved the aforementioned time-series data from
each network site for 7-day periods from June 2014 to September 2015. Note
that packet payloads are not captured, only metadata gathered from payload
inspection. Data collection and retention policies vary across operators, and as
a result the 7-day periods vary across networks. Ownership of the data remains
with the network operator and access to the data must be granted by each oper-
ator. Our analysis is based on post-processing data extracted from data stores.

3 Understanding Bandwidth Consumption

This section seeks to identify the applications which drive byte consumption and
peak bandwidth in the networks under study. Figure 1 plots byte consumption
by application category for all 45 networks. The x-axis lists each of the 21 ap-
plication categories, and the y-axis shows the percentage of bytes consumed by
each category. Fixed (non-cellular) networks are plotted to the left of the grid
line using a green square, while mobile (cellular) networks are plotted to the
right of the grid line using a red circle. Recall that the 7 day periods may differ
across networks.
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Fig. 1. Percentage of bytes by application

As might be expected, video traffic (YouTube, Netflix and OtherStream-
ingVideo) is a significant consumer of bytes on many networks. The byte con-
sumption ranges for YouTube are similarly large on both fixed and mobile net-
works, while Netflix consumption is noticeably lighter on mobile networks. Face-
book byte consumption on many mobile networks is higher than seen on fixed
networks. However, the most striking feature of Figure 1 is that most application
categories exhibit a large spread in byte consumption across many networks. For
example, PeerToPeer traffic ranges from 0.35% of bytes in a Central American
mobile network, to 35.49% of bytes in an Asian fixed network. Netflix, YouTube,
Facebook, and other traffic categories exhibit similarly large spreads in either



fixed or mobile networks. Figure 1 shows that there is wide diversity in the popu-
larity of different application categories in different networks. We have examined
traffic by region, and except for noting that several non-cellular North American
networks are dominated by Netflix traffic, we find few similarities across different
networks, even within the same region.

Fixed Network from the North American Region Fixed Network from the European Region
50 [ — Youtube — OtherStreamingVideo— HTTP "0 M outne — OtherStreamingVideo— HTTP
— Netflix wF_:\eenuPeE 7»?‘ crosoft . 60| — N=|}ll|x A Pe:rloPEe \

7 40 Al mso i

S 30 e / \/ \\ / \ f \ 8 40 | | I f ! y/

iy ARV VT FERNARS A |

YIS \Mﬁ}, A\LA ,,:\\(J,\ V7 \f NGAAAZ
/W VP \ I 1

00

1§§L/\/"\f’\ DA, Wé%éV\/WWV i

mmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Total (Gbps)

TITIPRYYCLLYEIEEESISFEEEEI2IIT  FEEESSERAEIIIIIINIL4LLULLLLE
12 — Youtube — OtherSocialNetworking 40 |- — Youtube — Facebook HTTP
10 —lcznhevstreaﬂmg\/\deo Google 35 |0 1 PeertoPeer . Microsoft
— Facebool
2 08 WA f A A @30
&
S el i) f AR B R, 025
LAl
\f <

Cellular Network from the South American Region Cellular Network from the Middle East and Africa Region

Fig. 2. Bandwidth in fixed North American (top-left), fixed European (top-right), mo-
bile South American (bottom-left) and mobile African (bottom-right) networks

Figure 2 presents 7-day bandwidth versus time plots for four different net-
works. data points are plotted every 15 minutes, with each point representing
the average bandwidth over the previous 15 minutes. Each graph consists of two
panels, with the top panel showing bandwidth for individual applications which
consume more than 10% of bandwidth at any point during the week. The bottom
panel plots total bandwidth for all applications over the week.

The top two graphs in Figure 2 show video-dominated networks in North
America (top-left) and Europe (top-right). The North American network is dom-
inated by Netflix video. During peak bandwidth (which occurs at approximately
8 pm local time), Netflix consumes 40% of network bandwidth. Interestingly, the
bandwidth plot also shows a local maxima just before noon on weekdays. As the
bottom panel shows, the shape of the total bandwidth curve is shaped by Netflix
usage patterns. More importantly, we have observed a similar degree of influence
in nine other fixed North American networks where Netflix dominates band-
width. The European network (top-right) is also video-dominated, with Netflix,
YouTube and a regional provider (labelled OtherStreamingVideo, and intention-
ally anonymized) each consuming more than 10% of bandwidth. However, it is
the regional service that exerts the greatest influence on peak bandwidth. Band-
width for the regional service peaks between 8 pm and midnight on weekdays,
and causes sharp but fairly short-lived peaks in total bandwidth.



The two lower graphs of Figure 2 show a South American mobile network
(bottom-left), and a network from the Middle East and Africa (MEA) region
(bottom-right) that are not video-dominated. Facebook is the leading consumer
of bandwidth in the South American network, while PeerToPeer and HTTP are
the top protocols in the MEA network. Our primary point in presenting these
four graphs is to illustrate that there is no such thing as a typical network. In our
dataset, networks differ significantly in terms of the applications which consume
the most bandwidth, and the magnitude and duration of peak bandwidth. In
addition, we have not seen any clear patterns emerge by region or network type,
except in North American fixed networks where Netflix dominates the percentage
of bytes consumed and peak traffic.

4 Peak Versus Off Peak Bandwidth

This section examines how daily patterns in bandwidth consumption can be
used to identify opportunities for network function virtualization (NFV) to re-
duce resource consumption (including energy conservation). NFV presents net-
work operators with the opportunity to replace dedicated physical appliances
with virtual appliances built on commodity hardware. This can potentially re-
duce energy consumption during off peak periods by consolidating load onto
a smaller pool of dynamically provisioned virtual appliances [17]. The use of
commodity hardware permits operators to take advantage of the power manage-
ment technology leveraged in data centers [26][10][24]. The combination of Soft-
ware Defined Networking (SDN) and NFV allows network operators to establish
tradeoffs between power consumption and network performance [6], ultimately
leading to significantly more efficient network infrastructures [5]. For example,
Bolla et al. [4] have examined the traffic profiles of a Greek research network
and a Telecom Italia subscriber network, and they argue that energy-efficient
techniques may offer energy savings in excess of 60%.

Intuitively, networks with low night time troughs and sharp peaks offer
greater opportunity for energy savings than networks with higher troughs and
broad daytime plateaus. Figure 3 shows the average bandwidth consumed rela-
tive to the peak over the 7-day period for each network. This chart shows that
the average bandwidth consumed relative to the peak is slightly higher for cellu-
lar than non-cellular networks. This is because many non-cellular networks tend
to have sharper, more short-lived daily peaks than cellular networks.

At first glance, the potential for savings may not seem very large. For ex-
ample, for the two networks with the highest bandwidth to peak ratios (0.80
and 0.81), the potential for reduction would seem to be no more than 20%.
However, most networks are provisioned with capacity that exceeds the 7-day
observed peak. If we denote peak bandwidth by p, capacity by ¢, and define r
as the ratio of network capacity to the observed peak (i.e., r = £), then for
networks which can dynamically adjust resources to meet demand, a bound on
the possible bandwidth reduction is: 7 + (1— average to peak bandwidth ratio).

Across the networks studied on average these reduction bounds are: r 4 (1 —
0.61) = r 4 0.39 for cellular networks and r + (1 — 0.57) = r + 0.43 for non-



cellular networks. Table 2 shows these reduction bounds for some values of 7.
If as one study has suggested, r = 2 [4], and more in some instances, then on
average these networks provide significant opportunities for resource reductions
by adjusting resources to efficiently meet demand.
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Fig. 3. Average bandwidth to peak ratio Table 2. Reduction bounds

5 Peak Flow Rates

Networking devices often store per-flow state in memory, and perform a flow
lookup to associate each packet with a new or existing flow. Flow state is useful
for detecting network threats [3][23][21] such as address scans, port scans, and
reflector attacks. In addition, per-flow state is required for usage-based subscriber
billing, which is required by many network operators.

In flow aware devices, which may include intrusion detections systems, carrier
grade NATS, and some load balancers, the incoming packet rate determines the
flow lookup rate, and the new flow rate determines the flow table insertion rate.
The arrival of a new flow often triggers additional processing. For example, in
an OpenFlow router, a new data flow may trigger a request to a controller node
in order to complete the routing decision [12]. Similarly, the recognition engine
of the Sandvine PTS executes on every new flow arrival. The new flow rate is
thus an important determinant of performance for flow-aware systems as high
new flow rates can lead to high processor load [13], and even flow exhaustion.
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In this section we study the applications that drive the creation of new flows.
Figure 4 plots new flow rates over 7 days for fixed and mobile networks located in
the same European country. As before, only applications which contribute more
than 10% of total flows are plotted. In the fixed network (left graph), PeerToPeer
applications are the chief creators of new flows, with peak new flow rates over
250,000 new flows/sec. At their peak, PeerToPeer flows constitute nearly 45%
of all new flows. In the mobile network (right graph), it is DNS that drives flow
creation with daily peak flow rates between 16,000 and 18,000 new flows/second.
We offer these networks as examples of a broader trend: DNS and PeerToPeer



applications account for the majority of new flows across all networks. DNS
accounts for the highest percentage of new flows in 22 of 45 networks and more
than 50% of all new flows in 3 networks. PeerToPeer flows account for the largest
percentage of new flows in 22 of the remaining 23 networks, and comprise more
than 50% of new flows in 8 networks. Interestingly, while PeerToPeer protocols
dominate new flows in many fixed networks, they also account for the largest
percentage of flows in several cellular networks.

The proportion of PeerToPeer flows is not unexpected because 1) The Bit-
Torrent protocol is often served over uTP, which is a transport protocol layered
on top of UDP [1]. 2) Some P2P implementations will actively change source
and destination ports in an attempt to evade detection. 3) Peers send control
messages (e.g., keep-alives) to each connected peer every two minutes. Many of
these will count as new flows if the same 5-tuple is not reused within 10 seconds.
The proportion of DNS flows captured by our data may be initially surprising.
Early studies (circa 1997) [28] report that DNS constitutes less than 18% of
flows. More recent work [8] tracks the incidence of DNS flows in a longitudinal
dataset, and reports 22.55% to 54.87% of flows being DNS. However, we have
identified several factors which help to explain the large proportion of DNS flows
in many networks. First, many application protocols utilize DNS. If the name
being resolved is not found in the local host’s cache, this will result in DNS
request(s). Second, DNS is commonly served over UDP, which is not connection
oriented, causing each transaction to generate a separate sequence of datagrams.
Operating system implementations now randomize the source port used in suc-
cessive DNS requests [9][18] resulting in new 5-tuples (and thus flows) being
generated. Third, popular web browsers such as Chrome, Firefox, and Internet
Explorer implement DNS prefetching in which the browser speculatively resolves
hostnames for embedded page objects [19]. Modern web pages contain a median
of 40 embedded objects, with 25% to 55% of pages requiring contact with at
least 10 servers [7]. Lastly, many DNS responses use very short TTL values to
better support load balancing and fault tolerance across multiple servers. As a
result, even hostnames that are frequently referenced may require repeated DNS
resolution.

5.1 Peak flow rates by application

Intuitively, one would expect streaming video services and bulk download proto-
cols like FTP to transfer a large number of bytes over a small number of flows.
At the other extreme, one would expect DNS to transfer relatively little data
over each flow. However, the flow profile of other applications (e.g., Facebook)
is more difficult to intuit.

Figure 5 plots bandwidth normalized peak flow rates by application for all
45 networks. We calculate these rates by first identifying the 15 minute window
with the maximum flow rate (Flows/sec). This flow rate is broken down by
application, and then normalized with respect to the bit rate (Gbps) over the 15
minute window. This results in a ratio with units of Flows/Gbit. We only include
data points if either the number of flows or bytes accounts for more than 0.5%



of the application’s flow or byte count, respectively. We normalize by bandwidth
to compare networks of different sizes.

7
10 — Cellular Avg o]
108 |7 Cellular 95% CI
— Non-Cellular Avg
A= Non-Cellular 95% CI hi

£ 5] ~& o X
[
; o [W
] fo o} v

Do

Flows/Ghit

Aoy, 204, g, 2.y 236, 9.4, 153, Loy 12 8.0y 907, 20 22,
5’”’//)(0”’@& Q‘%of,f”@s% o7 S 4"% RN s, %,,g"”f/w,&’%,fg@/o,,;’ Ons K7 May Mgy
Mugiy ey

Vi, %r/r,,b g
Fig. 5. Peak flow rates by application (log scale)

In Figure 5 the units on the y-axis are plotted using a log scale. Fixed net-
works are plotted to the left of the grid lines using a green square. Mobile net-
works are plotted in red and are offset to the right. Two trend lines are included
to show the mean peak flow rates for each application along with 95% confidence
intervals (CIs). Note that the CIs shown for Antivirus, RegionalPortal and FTP
should be ignored because there were insufficient data points to compute Cls.

Figure 5 provides a number of key insights. First, we see that an individual
application’s peak new flow rates can vary by one or two orders of magnitude
across different networks (e.g., YouTube ranges from 119 Flows/Gbit in one
North American network to 2,347 Flows/Gbit in a MEA network). However, the
variation across applications can be even larger, as can be seen by comparing
the flow rates for Netflix and DNS in Figure 5. Lastly, for several application
groups the cellular networks have significantly higher peak new flow rates.

As expected, video services are at the low end of the spectrum with YouTube,
Netflix and OtherStreamingVideo averaging, 352, 49, and 326 Flows/Gbit in
fixed networks, respectively. At the other extreme, DNS averages 549,651 new
flows per gigabit (and 936,399 in cellular networks). In fixed networks, appli-
cation groups like Facebook, OtherSocialNetworking, PeerToPeer, and HTTP
average 3,679, 4,484, 22,531, and 4,593 Flows/Gbit peak, respectively.

Networks whose application mix includes large proportions of DNS, Peer-
ToPeer, social networking, and other flow-intensive applications can expect to
experience higher overall peak flow rates. Conversely, networks which are domi-
nated by video can expect lower peak flow rates. The overall peak flow rate can
impact processing load for flow aware devices including OpenFlow routers, se-
curity devices, and billing systems. The large range of flow rates observed across
different networks poses challenges when building and deploying cost-effective
devices. We believe our data will be useful in the design, sizing, and testing of
future devices.

6 Related Work

Very early traffic studies focused on individual backbone networks [28] or re-
search networks [14]. However, the constantly changing nature of Internet traf-
fic [20] limits their value and necessitates new research. More recent reports from



Akamai [2] and Cisco [11] have included more geographically diverse data but are
not application-aware. Sandvine’s Internet Phenomena reports [27]) analyze re-
gional traffic composition, often with a focus on identifying longitudinal changes
or documenting the impact of special events. This paper focuses on identifying
applications which drive bandwidth and flow creation over time and at peak.

Maier et al. [22] study the characteristics of residential broadband traffic
circa 2009. They report that HTTP dominated byte consumption (57% of bytes),
and that peer to peer traffic may not be as high (14% of bytes) as previously
reported [15]. This study [22] covers a single digital subscriber line (DSL) net-
work, and their application analysis is based on two 24 hour packet captures
and fourteen 90 minute captures. While their analysis of HTTP traffic reports
HTTP content types, they do not differentiate services delivered over HTTP
(e.g., Facebook).

Labovitz et al. [20] examine the evolution of inter-domain traffic from 2007
to 2009. They use deep packet inspection (DPI) to categorize traffic on five
subscriber networks. They note the rise of legacy video protocols (e.g., RTSP),
and the decline of peer to peer traffic over the study period. However, they do
not separate video delivered over HTTP from other Web traffic. As a result,
they attribute less than 3% of traffic to video.

Richter et al. [25] conduct an application-aware study of Internet traffic at
one European IXP. Their methodology relies on random packet sampling (which
may miss packets containing rich identifying information), and their application
recognition examines just 74 bytes of TCP payload. They report that 57% of
traffic is HTTP and 10% is HTTPS but offer no insight into the services that
are delivered using those protocols.

As more services are delivered over HT'TP, it is increasingly important to
differentiate these services. As noted above, several earlier papers [22][25][16][20]
have broadly classified 20% to 58% of bytes as HTTP, Web, or browsing. Our
methodology can inspect entire packet payloads, and reliably identify HTTP-
based services as well as proprietary protocols (e.g., Skype). This is important
because, as we have demonstrated, peak utilization can vary by service and
understanding such patterns can enable more efficient network management.
Additionally, our data set is taken from the network’s edge and spans 45 provider
networks across 26 countries. As a result, we measure traffic that may not be
routed to IXPs (e.g., PeerToPeer and content that is cached near the edge). Both
IXP and edge perspectives are valuable, but we believe that edge measurements
provide an important view that is under-represented in the literature.

7 Conclusions

This paper presents an application and service aware analysis of bytes and flows
from 7 days of Internet traffic from 22 cellular and 23 non-cellular networks
across 26 countries to better understand how application traffic patterns impact
network resource consumption. The analysis covers 62.8 petabytes of payload
data and over 3 trillion flows, which makes it one of the largest such studies
that we are aware of. We find that flow rates and bandwidth patterns are highly



localized, with little similarity among networks or network types. In our analysis,
we have not found factors which define a typical network.

We demonstrate that one or two applications can drive peak bandwidth and
influence the shape of a network’s bandwidth curve. This is important because
the width and height of peak bandwidth and the depth of nightly troughs defines
a peak reduction bound that can guide the deployment of NF'V and SDN solutions
which aim to reduce equipment and energy costs. We find that DNS traffic
accounts for 25% of the three trillion flows examined and more than 50% of
flows in several networks. We believe this is due to the large number of links
embedded in modern web pages, aggressive DNS pre-fetching implemented in
modern browsers, and short time-to-live settings for many DNS responses.
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