
Appears in: ACM SIGOPS Operating Systems Review, Vol. 47, Issue 2, pp. 66-72, July 2013.

Our Troubles with Linux Kernel Upgrades and
Why You Should Care ∗

Ashif S. Harji Peter A. Buhr Tim Brecht
Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

asharji,pabuhr,brecht@uwaterloo.ca

Abstract
Linux and other open-source Unix variants (and their dis-
tributors) provide researchers with full-fledged operating sys-
tems that are widely used. However, due to their complexity
and rapid development, care should be exercised when us-
ing these operating systems for performance experiments,
especially in systems research. In particular, the size and
continual evolution of the Linux code-base makes it diffi-
cult to understand, and as a result, decipher and explain
the reasons for performance improvements. In addition, the
rapid kernel development cycle means that experimental re-
sults can be viewed as out of date, or meaningless, very
quickly. We demonstrate that this viewpoint is incorrect
because kernel changes can and have introduced both bugs
and performance degradations.

This paper describes some of our experiences using Linux
and FreeBSD as platforms for conducting performance eval-
uations and some performance regressions we have found.
Our results show, these performance regressions can be se-
rious (e.g., repeating identical experiments results in large
variability in results) and long lived despite having a large
negative effect on performance (one problem was present for
more than 3 years). Based on these experiences, we argue:
it is sometimes reasonable to use an older kernel version,
experimental results need careful analysis to explain why a
performance effect occurs, and publishing papers validating
prior research is essential.

1. INTRODUCTION
Linux and BSD variants currently occupy niche markets,
such as supercomputing (94%, Linux) [24], mainframes (70%-
80%) [21, p. 3], enterprise servers (42%) [15], and research,
versus the desktop market whereWindows dominates. These
open-source OSs are a boon to academic systems-researchers
because they provide a platform to make improvements to

∗This paper is an extended version of our 2011 APSys work-
shop paper [9].

and evaluate the performance of systems that are used in
production. Prior to these open-source projects, operating
system (OS), networking and database researchers were of-
ten at the mercy of OS vendors with respect to developing
and evaluating new mechanisms or policies. Furthermore,
researchers could only find bugs or performance problems in
a vendor’s OS by treating it as a black box and developing
external tests. As well, vendors were frequently unreceptive
to performance problems and bug reports. In fact, the avail-
ability of open-source OSs has forced some vendors to make
some or all their software open source, allowing researchers
alternative venues for development. Fundamentally, without
access to source code, it is extremely difficult for researchers
to innovate in the crucial and expanding area of systems
software. Jockeying for special or restricted access to an
OS, or working with the OS as a black-box does not allow
all researchers equal or sufficient access to find, understand
and fix logic or performance problems.

Linux is a popular choice for OS research; however, its main
drawbacks are its complexity and rapid development. The
Linux kernel has grown to over 15 million lines of code,
and on average, a new kernel version is released every 2–3
months with each release currently containing 8,000–12,000
patches [5]. The complexity of a large software system makes
it difficult to configure and tune for the best possible per-
formance, and it also makes understanding and explaining
the results difficult. In addition, the rapid kernel develop-
ment cycle means that experimental results can be viewed
as out of date, or meaningless, very quickly. But most im-
portantly, the rapid changes in kernel development intro-
duce both bugs and performance degradations. While bugs
causing failures are quickly identified and fixed, performance
related problems are extremely difficult to isolate and cor-
rect. Furthermore, because of conflicting goals and tradeoffs
that are central to systems implementation, changes that in-
crease performance in one area may degrade performance in
another.

In this paper, we demonstrate significant performance prob-
lems exist across multiple Linux and two FreeBSD kernels,
and as a result:

• We contend that to encourage good science, publishing
papers that validate prior research results is essential.

• We argue that experimental results need careful anal-
ysis to understand and explain why a change has or
has not produced a performance effect.

• We explain why finding and fixing performance prob-
lems is difficult and time consuming, as is getting per-
formance fixes into the Linux kernel.

• We describe why changing to the newest kernel is nei-
ther a panacea nor a requirement for sound research.

Finally, we make a number of recommendations for perform-
ing sound experimental performance evaluations. These rec-
ommendations reinforce an on-going effort in Computer Sci-
ence and other areas of Science to strengthen the quality of
experimental work [1, 2, 6, 7, 12, 14, 18, 23].

2. EXPERIENCES WITH BUGS
We conduct research into designing and testing web-server
architectures on uniprocessor and multiprocessor hardware
with the goal of understanding how differences in server
software architecture affect performance. A web-server is
the software component through which most Internet traf-
fic flows, hence it must provide high throughput while sup-
porting a large number of concurrent connections. During
detailed comparisons of various servers, a number of per-
formance anomalies were encountered that could not be ex-
plained based on server architectures or configurations. As
a result, it became necessary to probe into the OS in an
attempt to understand server behaviour. Without the bene-
fit of working with multiple web servers, running thousands
of experiments, and access to the OS source-code, it would
have been extremely difficult to identify the source of these
anomalies. The remainder of this section presents our expe-
riences trying to understand the performance of web servers
executing on Linux and FreeBSD operating systems.

2.1 Experiences with Linux
While contrasting web-server architectures [8, 10], a num-
ber of anomalies were tracked into the Linux kernel, where
three performance problems were found and fixed. These
problems are subtle as they do not cause crashes or result
in crippling performance behaviour. Instead, the problems
were identified over a period of time due to inconsistency
in results and unexplainable performance differences across
servers.

2.1.1 Small File Evictions

Kernel versions affected: 2.6.11 to 2.6.21.7
Duration: 02-Mar-2005 to 04-Aug-2007

There was a bug where small files (≤ page size) were be-
ing evicted from the file-system cache regardless of their fre-
quency of access. The bug occurred when a change was made
to the file-system cache-code to prevent a single, sequential
non-page-aligned read of a large file from invalidating a large
portion of the file-system cache. However, the mechanism
used to detect this behaviour was too coarse; multiple con-
secutive accesses to the same page in the file-system cache
did not update the access flags for that page. Only when a
different page in the file is accessed are the access flags up-
dated. This logic results in small files never being marked
as accessed after their first access. Hence, these pages are
always evicted from the cache regardless of how often or
recently the file is accessed.

Situations where the file-system cache fills and must begin
evicting pages to disk are potentially affected by this prob-
lem. The problem manifests itself through poor disk per-
formance because of less efficient disk access resulting from
small, frequently accessed files constantly being reread from
disk as opposed to being kept in and served from the cache.
The problem becomes acute for applications that place a
heavy load on the file-system cache, e.g., web servers, par-
ticularly when small files constitute a significant portion of
the workload.

The small-file-evictions problem was discovered after pub-
lishing performance results [17] using a kernel that contains
this bug. The bug was found while conducting subsequent
research using a different workload with increased disk I/O.
After finding the bug, we reexamined the experiments from
the paper and fortunately determined it had only a minor
effect on the results, but an effect nonetheless. Hence, we
were lucky and the conclusions in the paper are still valid.

2.1.2 Prefetching Disabled

Kernel versions affected: 2.6.12 to 2.6.22.19
Duration: 17-Jun-2005 to 26-Feb-2008

There was a bug where the page-cache read-ahead is disabled
for sequential disk-reads when using sendfile with nonblock-
ing sockets, as a result of the kernel misinterpreting the ac-
cess pattern when reading large files. sendfile is unusual be-
cause a call can involve both disk and network I/O. Multiple
sendfile calls may be necessary to transmit file data over the
network because the size of non-blocking sends are limited
by the socket-buffer size. Similarly, the operating system
reads a file into the file-system cache from disk in pieces.
For large files requiring disk-I/O (i.e., not already in the
file-system cache), the socket-buffer size is normally smaller
than the amount of file-data read by a single disk-request,
so the number of disk accesses required is fewer than the
number of network transmissions for the send.

As a result, when transmitting a large file using nonblocking
sendfile, the file-access pattern appears random because con-
secutive sendfile calls do not appear to continue from the end
of the last disk I/O but rather continue from some location
within the last disk read. At this point, the kernel disables
page-caching read-ahead for the file and the size of future
disk requests for that file become smaller on average. In
contrast, for blocking sendfile, only a single sendfile call is re-
quired, and since the kernel performs the appropriate track-
ing, it recognizes file access is sequential, resulting in correct
page-cache read-ahead behaviour. We believe this bug re-
sulted from using or adapting a pre-existing kernel function
for use with sendfile that originally simply read file data
from disk. Unfortunately, assumptions about what consti-
tuted sequential access were not correspondingly adapted
to recognize the unusual disk access-patterns resulting from
sendfile with non-blocking sockets, causing read-ahead to be
disabled. This bug was found while trying to understand
and explain the differences in performance obtained when
using blocking and non-blocking sendfile.

 0

 1000

 2000

 3000

 4000

 5000

 40000 45000 50000 55000 60000 65000 70000

M
b

p
s

Requests/s

2.6.24.3+patch run 1
2.6.36.2+patch run 1
2.6.36.2+patch run 2

2.6.36.2 run 1
2.6.36.2 run 2

Figure 1: Throughput patched/unpatched kernels

 0

 10

 20

 30

 40

 50

 60

 70

 80

 80 100 120 140 160 180 200 220

M
bp

s

Requests/s

FreeBSD 8.0
FreeBSD 9.0 run 1
FreeBSD 9.0 run 2

Figure 2: Throughput FreeBSD 8.0/9.0 kernels

2.1.3 Erratic Page Evictions
Kernel versions affected: 2.6.23 until at least 2.6.36.2
Duration: 09-Oct-2007 to at least 09-Dec-2010

There was a bug that results in none of the pages associated
with a transmitted file being marked as accessed by the ker-
nel, so the kernel cannot distinguish between recently or
frequently accessed pages and other pages in the file-system
cache. Therefore, under memory pressure, the kernel may
incorrectly evict pages from the file-system cache. When
these pages are in the middle of files or frequently accessed, it
hampers long contiguous disk-reads and read-ahead buffer-
ing, which results in smaller and more random disk requests.
This behaviour is manifested as erratic server performance
and low disk-throughput.

To correctly mark page accesses for sendfile, we developed
a patch for the 2.6.24.3 Linux kernel.1 This patch provided
consistent and repeatable performance measurements, by in-
creasing file-system cache hit rates and improving through-
put when reading files from disk. Disk throughput is in-
creased in some of our experiments from approximately
11,000 blocks-in per second (1 block = 1024 bytes) for non-
blocking sendfile and 20,000 blocks-in per second for blocking
sendfile to approximately 28,000–30,000 blocks-in per sec-
ond for both non-blocking and blocking sendfile. Figure 1
shows some representative experiments to illustrate this I/O
problem in later kernels. The patched 2.6.24.3 kernel (line
2.6.24.3+patch run 1) has stable performance and the high-
est throughput. The unpatched 2.6.36.2 kernel (line 2.6.36.2

run 1) has significantly lower throughput and throughput
drops substantially for higher request rates. Repeating the
experiment a second time (line 2.6.36.2 run 2) shows a large
difference in performance at 45,000 and 48,000 requests per
second. After applying our patch for the 2.6.24.3 kernel to
the 2.6.36.2 kernel (line 2.6.36.2+patch run 1), throughput
is significantly higher compared to the unpatched counter-
parts. However, throughput is still significantly lower than
the patched 2.6.24.3 kernel at higher request rates. Even
with the patch, a second run (line 2.6.36.2+patch run 2) has
different throughput, showing large variations similar to the
unpatched kernel. Without the patch, the 2.6.24.3 kernel
exhibited variability problems and poor performance (not
shown in the graph), similar to the newer kernel. These
experiments indicate there may be an additional perfor-
mance regression with the newer kernel or that the code
has changed enough to make the patch less effective. The
variance in throughput for identical experiments, combined
with low throughput, directed us to investigate this anomaly
further and lead to the bug.

As a result of these performance problems, we used the
patched 2.6.24.3 kernel for some of our research [8, 10]
because of experience and expertise with this kernel, its
stability after patching, and the problems and uncertainty
with the newer kernels For other projects we moved to
FreeBSD [19, 20].

1Our patch for small-file evictions (1st bug) is still in place
but the code path for sendfile changed significantly from the
earlier to the later kernels (due to splice). As a result, our
prior knowledge about sendfile could not be used with re-
spect to the new problem.

2.2 Experiences with FreeBSD
As one might expect, the types of problems we have de-
scribed are not limited to Linux kernels. When one of our
projects started, FreeBSD 8.0 was the most recent stable
version of FreeBSD available (released November, 2009).
We spent a considerable amount of time using this ver-
sion and developing expertise with significant portions of
the source code. It performed well and offered stable per-
formance across our benchmarks. Because of the length of
the project, we were eventually faced with the issue of us-
ing a relatively old kernel. We were concerned that it may
be viewed as obsolete. In addition, we were also curious to
see if a newer kernel might provide better performance and
possibly address some issues we were working on. We ob-
tained FreeBSD 9.0 (released January, 2012) and started by
conducting a simple experiment to determine if performance
was stable across multiple runs of the same experiments and
to compare the performance of the older 8.0 kernel with the
updated 9.0 kernel. Figure 2 shows that web-server through-
put is significantly lower using the FreeBSD 9.0 kernel than
the 8.0 kernel. Furthermore, while differences between runs
of the same experiment were fairly small on FreeBSD 9.0,
there was signifantly more variability across runs than when
using FreeBSD 8.0, which was very stable.

3. ENTERPRISE KERNELS
To compare the performance of an Enterprise kernel, the
experiments conducted in Section 2.1.3 were run on the

 0

 1000

 2000

 3000

 4000

 5000

 40000 45000 50000 55000 60000 65000 70000

M
b

p
s

Requests/s

2.6.24.3+patch run 1
CentOS 2.6.32.71 run 1
CentOS 2.6.32.71 run 2

Figure 3: Throughput patched/CentOS kernels

CentOS 6.0 enterprise distribution [4] using kernel version
2.6.32.71. CentOS is an open-source redistributor of a promi-
nent North American Enterprise Linux vendor (currently
Red Hat Enterprise Linux). It conforms fully with the up-
stream vendors redistribution policy and mainly changes
packages to remove upstream vendor branding and artwork.
CentOS was chosen because it is one of the top two Linux
distributions used on Linux web-sites where it has 27% of the
market share [25]. Figure 3 shows experimental results are
consistent across multiple runs obtaining about 3,100 Mbps;
hence, the non-repeatable performance problem did not oc-
cur with this distribution. However, its performance is sig-
nificantly lower than the 5,000 Mbps for the 2.6.24.3 patched
kernel and the peak throughput of the patched 2.6.36.2 ker-
nel. While consistent performance is often a first priority
for enterprise users, many of these users may be equally
concerned with maximum performance. There is no reason
why an Enterprise kernel should not provide both.

4. EXPERIENCES FINDING BUGS
All the problems found in Section 2 presented themselves ini-
tially as performance differences among different web-server
architectures or configurations for a single web server. De-
bugging performance problems is difficult, especially track-
ing a performance problem into the Linux kernel. Often the
most difficult part is recognizing a performance problem ac-
tually exists. In isolation, it is difficult to determine if an
application is running reasonably or has a performance issue.
We had the benefit of comparing the throughput of several
web servers across various configurations and workloads, al-
lowing for the identification of performance anomalies.

Once there is suspicion of a performance problem, the next
step is to determine whether the application is defective or
if an external factor is causing the problem. In addition
to verifying the correctness of the application code, cross-
checking application performance with other kernel versions
may help in isolating the source of the problem. Finding
the source of a performance problem can be challenging as
problems often occur only when the application is under
full load. This requirement presents two problems. First,
it is often necessary to deal with the full complexity of the
whole application, which makes isolating the problem more
difficult. Second, any debugging and profiling tools being
employed may significantly perturb the execution and po-
tentially mask performance issues.

Two common tools for tracking bugs in the kernel are OPro-
file [16] and SystemTap [22]. OProfile generates dynamic
call-graphs along with the execution time spent in each func-
tion. We found OProfile was not very helpful because it
tended to be too coarse grained. Rather, tools such as vm-
stat and mpstat were more helpful for our particular web-
server work. Unexpected differences in statistics generated
by these commands helped to confirm a problem and even
suggest the type of problem, e.g., differences in the aver-
age blocks-in from disk or the amount time spent wait-
ing for I/O. SystemTap, which offers capabilities similar to
DTrace [3], was used to track down the read-ahead problem
with non-blocking sendfile in Section 2.1.2, and was helpful
with the other problems. As is the case with DTrace, Sys-
temTap is a scripting language useful for instrumenting a
running kernel by executing a handler on specified events,
such as on entry to or exit from specified kernel functions,
allowing the printing of local context-data from within the
kernel. With SystemTap, it is possible to dynamically intro-
duce events without having to recompile the kernel or reboot
the system, which greatly simplifies the debugging cycle and
significantly speeds up the debugging process. Initially, Sys-
temTap was used to understand and track the behaviour of
sendfile into the kernel. After identifying the important func-
tions and data structures involved, a subset of the function
parameters was printed on entry to these functions. Look-
ing specifically at the output for the functions involved in
managing page-cache read-ahead revealed that read-ahead
was being disabled with non-blocking sendfile. Based on
this information, an examination of the relevant source code
revealed the source of the anomaly: a mismatch between
the amount of disk I/O and network I/O on calls to sendfile.
Without a tool like SystemTap to trace the sendfile call and
narrow the search space, finding these problems would have
taken significantly longer because the Linux kernel is large
and complicated.

5. EXPERIENCES OF OTHERS
Some web sites contain data that tracks the performance
of different benchmarks over time (in some cases by ker-
nel version) [11, 13]. Browsing through the collections of
benchmarks available on these sites, examples of long and
short term performance regressions and improvements can
be found. Specifically, the web site “Linux Kernel Perfor-
mance!” [13] has tracked the performance of several bench-
marks executing on Linux kernels from version 2.6.22 to
3.5.0 (at the time of writing). An example of a short-
term performance-regression occurs for the Online Trans-
action Processing benchmark (OLTP) on a 4P quad-core
Xeon. Performance drops by approximately 41% from ker-
nel version 2.6.22 to 2.6.23 but improves in subsequent re-
leases until it is back to the 2.6.22 level at 2.6.27, and then
improves again in versions up to 2.6.29, but drops slightly
and remains consistent until 3.5.0. An example of a longer-
term performance-reduction occurs for the benchmark fileio-
cfq on a 4P quad-core Xeon. Performance drops by about
40% from kernel version 2.6.31 to 2.6.38 before recovering to
slightly above the 2.6.31 level and then remaining relatively
consistent until 3.5.0.

Interestingly, changing to a 2P Quad-core Core 2 Duo for the
same two benchmarks, OLTP and fileio-cfq, generates differ-

ent performance regressions. For OLTP, the drop is about
28% (41% on the 4P system) starting at 2.6.23, and perfor-
mance never recovers back to the 2.6.22 level, but instead
stays about 7% below 2.6.22 up until 3.5.0. For fileio-cfq,
the drop in performance is also 40% but it slowly decreases
across a larger range of kernels from 2.6.30 to 3.5.0. If a
regression test is performed for fileio-cfq on the 4P system,
the 8% improvement may be deemed acceptable, but on the
2P system, the 40% reduction may be deemed unacceptable
at 3.5.0. Furthermore, if the range of kernels is reduced to
2.6.32 and 2.6.38 for fileio-cfq, there is little change across
both the 2P and 4P, but you would miss the unresolved 20%
and 40% performance reductions, respectively. These reduc-
tions occurred prior to 2.6.32 but continue to be a problem
for this range of kernels. Therefore, it is necessary to track
performance across a number kernel versions on different
systems to fully understand performance changes.

Some of the benchmarks exhibit huge swings in performance.
For example, on the 4P quad-core Xeon system the bench-
marks hackbenchpth100 and hackbenchpth150 drop by about
80% from kernel version 2.6.36 to 3.1.0, and than improved
by 95% from 3.2.0 to 3.5.0.

Performance regressions can cause problems not only for re-
searchers but also for companies who want to use these ker-
nels in production environments. Conducting benchmarks
and reporting the results is crucial for researchers, compa-
nies, and other users to allow selecting the best kernel for
their needs.

6. CONSEQUENCES
The performance issues raised in the previous sections imply
a number of consequences for researchers.

6.1 Reproducing Results
Based on our experience and other published benchmarking
results, large performance variations can occur depending
on the application and the kernel version. As well, research
experiments conducted can be significantly affected based
on the particular kernel version that is used. The scientific
approach to finding incorrect results or gaining confidence in
existing results is for other researchers to reproduce results.
Unfortunately, if the original results are verified, it is cur-
rently difficult or impossible to publish this work, making
the endeavour risky. As in other scientific fields, Computer
Science needs to value and publish papers verifying previous
results. As well, researchers must provide sufficient method-
ology, analysis, and data to allow others to perform the same
or similar experiments, and hence, reproduce the results.
Other scientists have made similar recommendation, both
in Computer Science and other fields [1, 2, 6, 7, 12, 14, 18].

6.2 Underlying Cause
The systems research community needs a higher standard
for experimentation. Simply reporting performance results
(either positive or negative) is insufficient. Based on our ex-
perience, it is crucial to find the underlying cause for changes
in performance. Experimental results require careful anal-
ysis to understand why a change has or has not produced
a performance effect, and anomalies in performance results
cannot be ignored as they may be “shouting out” that there

is an underlying problem. Determining and explaining the
root cause for performance results are likely to lead to either
an understanding of the observed performance or the discov-
ery of a problem (in some cases, possibly with the kernel).

6.3 Fixing Problems
If unexplainable behaviour suggests a bug, it may be neces-
sary to look into the Linux kernel. Our experience is that
finding and fixing a kernel bug is extremely difficult and time
consuming, especially because the Linux code-base is large
and a quickly moving target. For example, there are many
levels of indirection (routine pointers) used in the kernel, so
determining what is called and when is difficult. Also, the
tool-set for monitoring dynamic execution is low-level and
complex to use.

Assuming you find and fix a problem, the next logical step
is to have the fix applied to the mainline kernel for the ben-
efit of all. Because the kernel evolves rapidly, it is necessary
to obtain the most recent kernel and check if the bug is al-
ready fixed. If the bug is still present, it may be necessary
to port the fix (again) to the new code base. When the
code base has changed significantly, it may be the case that
people who fixed the bug in the original version no longer
possess the expertise or time required to construct a new
fix for the new code. Finally, to create a bug report it is
important to write small, stand-alone programs that repro-
duce the problem, and to submit these programs along with
the suggested bug fix. Our experience is that bug reports
sent to the kernel-developer mailing-list are not always well
received and getting our fixes into the mainstream kernel
sometimes required a thick-skin and persistence.

6.4 Kernel Upgrading Problems
Once your research team has established that a kernel works
as expected, and generates good, explainable, consistent re-
sults, there is the dilemma of moving to the latest version of
the kernel because there is a general belief the latest kernel
is always better. For researchers, this prejudice appears in
the form of reviewers stating that results are not meaning-
ful because the latest kernel is not used. However, based
on our experience, bugs we found were not fixed in the new
kernel, and new kernels can introduce performance regres-
sions and new problems. Furthermore, new kernels require
rerunning and re-validating experiments to re-establish re-
sults and gain expertise with the new kernel. This work may
take weeks or months, and in the meantime another kernel
is released. An important aspect of our work has become
explaining and justifying why we are using an older kernel.

We expect that other researchers may have similar expe-
riences. Clearly, progress in the Linux kernel is essential,
and the people involved are working actively to do the right
things. Additionally, there are cases where switching to
the newest kernel is absolutely necessary. However, we do
want reviewers, kernel developers, system administrators
and users to understand that the latest kernel is not always
the best kernel. It is incumbent on all parties to clearly
state why an old kernel is better than a new kernel or vice
versa. The reason needs to be particular and specific, and
not just that the new kernel has fixed a number of bugs and
improved performance.

7. RECOMMENDATIONS
Linux kernel developers must employ a systematic, sustained
regiment of performance regression testing (to our knowl-
edge this is not currently being done). We understand the
difficulties in such an undertaking but expect many of the
problems we point out could have been avoided had rigor-
ous performance regression testing been an integrated part
of the kernel-development process. Enterprise versions of
Linux may perform additional testing and contain customer-
driven fixes. However, in the distribution tested (CentOS
6.0) significant performance problems still seem to exist.

Some questions researchers need to ask are:

1. When starting a new project, what version of the ker-
nel should be used and why?

2. When working on a project over an extended period,
should the kernel be upgraded and why?

3. If upgrading to a new kernel during a project, does the
upgrade change the results significantly, and if so why?

4. How can performance changes be explained by the re-
search that has been done?

5. Have the Operating System changes just worked around
or masked problems that were introduced in the newer
version and not present in the older version?

6. If the performance of an improved application is slower
(or only slightly faster) on a new kernel than the orig-
inal application was on an older kernel, what is the
value of the improvement? Moreover, the improve-
ments made to the application may be simply masking
or working around problems in the newer kernel.

Here are some practical suggestions to help answer these
questions:

1. Before selecting a kernel, check web sites publishing
benchmarks on different kernels and select a kernel
with good benchmarks in your research area and avoid
those with obvious defects. For example, for reasons
explained in Section 5, it is unwise to use version 2.6.23
for workloads that resemble OLTP.

2. After upgrading kernels, run some sanity checks for
comparison. If performance improves or degrades, try
to determine why. This requires expertise, determina-
tion, and time, with no guarantee of success.

3. In general, experiments must be run multiple times to
check for variability. If there is variability, explain why
and report confidence intervals.

4. When conducting experiments, appeal to your intu-
ition. Researchers sometimes become blind when it
comes to obtaining results. If results are significantly
better or worse than expected, figure out and explain
why.

5. Ensure the experimental environment is sound. For
example: address-space randomization (a computer

security technique) may cause variations in results;
Security-Enhanced Linux (SELinux) may reduce per-
formance for some workloads because of its security
checking; processor dynamic-frequency-scaling may
cause variations in results due to changes in clock fre-
quency. Therefore, it may be appropriate to enable
or disable some of these mechanisms depending on the
particular experiment.

8. SUMMARY
Linux is an excellent platform for both conducting research
and as a production environments. Furthermore, the Linux
kernel developers are doing an excellent job building an inno-
vative and robust operating-system. This paper (and many
others) would not have been written without their dedica-
tion and effort. Working in conjunction with the kernel de-
velopers are university and industrial researchers who use
Linux to demonstrate new ideas, approaches, and techniques
across a spectrum of disciplines. A goal of these researchers
is to see their technologies move from the laboratory into
production. One reason for Linux’s success is its continu-
ous inclusion of innovations and improvements resulting in
frequent release cycles.

This paper highlights the issues and the problems that result
as the kernel evolves. It is unavoidable that changes must be
made to fix bugs, add new features, enhance maintainability,
improve scalability, or increase performance. In many cases,
kernel developers must make complex decisions regarding
tradeoffs among these changes, which can affect different
benchmarks and applications in different ways on different
systems. Coupled with the relentless pace of change, bugs
and performance regressions can occur in newer versions of
the kernel.

Our key points are:

1. For experimentation and production systems, the lat-
est version of Linux is not necessarily the best version
to be using, and researchers, reviewers, kernel develop-
ers, and users need to think through and understand
the pros and cons of different kernel versions. How-
ever, after due consideration, it may be that the most
recent version of the kernel is the best version to be
using.

2. In light of the significant performance bugs we found
and the time periods over which they have been present,
it is possible that performance results published across
an extended time period should be reevaluated.

3. More papers need to provide a deep analysis of their
experimental results. While such analysis is time con-
suming and difficult, it provides understanding of where
the benefits come from and insights into applicability
beyond the scope of the paper.

4. The computer-systems research-community needs to
embrace the scientific approach of publishing papers
that reexamine previous work (in non-trivial ways) to
either confirm or refute their results. This effort should
include different hardware configurations, different op-
erating systems, and different workloads.

9. ACKNOWLEDGMENTS
We thank Jim Summers for his work in obtaining and graph-
ing the FreeBSD 8.0 versus 9.0 results and the anonymous re-
viewers for their suggestions for improving this paper. Fund-
ing for this project was provided by the Natural Sciences and
Engineering Research Council of Canada.

10. REFERENCES
[1] M. Baker. Independent labs to verify high-profile

papers. Nature | News, August 2012.

[2] S. M. Blackburn, A. Diwan, M. Hauswirth, P. F.
Sweeney, J. N. Amaral, V. Babka, W. Binder,
T. Brecht, L. Bulej, L. Eeckhout, S. Fischmeister,
D. Frampton, R. Garner, A. Georges, L. J. Hendren,
M. Hind, A. L. Hosking, R. Jones, T. Kalibera,
P. Moret, N. Nystrom, V. Pankratius, and P. Tuma.
Evaluate collaboratory technical report #1: Can you
trust your experimental results?, February 2012.
http://evaluate.inf.usi.ch/technical-reports/1.

[3] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In
Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’04, Berkeley,
CA, U.S.A., 2004. USENIX Association.

[4] CentOS: The community enterprise operating system.
http://www.centos.org.

[5] J. Corbet, G. Kroah-Hartman, and A. McPherson.
Linux kernel development: How fast it is going, who is
doing it, what they are doing, and who is sponsoring
it, Mar. 2012.
http://go.linuxfoundation.org/who-writes-linux-2012.

[6] Evaluate Collaboratory. Experimental evaluation of
software and systems in computer science.
http://evaluate.inf.usi.ch/.

[7] D. G. Feitelson. Experimental computer science: The
need for a cultural change, December 2006.
http://www.cs.huji.ac.il/ feit/papers/exp05.pdf.

[8] A. S. Harji. Performance Comparison of Uniprocessor
and Multiprocessor Web Server Architectures. PhD
thesis, University of Waterloo, 2010.
http://hdl.handle.net/10012/5040.

[9] A. S. Harji, P. A. Buhr, and T. Brecht. Our troubles
with Linux and why you should care. In Proceedings of
the Second Asia-Pacific Workshop on Systems, APSys
’11, pages 2:1–2:5, New York, NY, USA, July 2011.
ACM.

[10] A. S. Harji, P. A. Buhr, and T. Brecht. Comparing
high-performance multi-core web-server architectures.
In Proceedings of the 5th Annual International Systems
and Storage Conference (SYSTOR 2012), pages

2:1–2:12, New York, NY, USA, June 2012. ACM.

[11] M. Larabel. Five Years Of Linux Kernel Benchmarks:
2.6.12 Through 2.6.37. Phoronix Media, Nov. 2010.
http://www.phoronix.com/scan.php?page=article-
&item=linux 2612 2637&num=1.

[12] J. Lehrer. The truth wears off: Is there something
wrong with the scientific method? The New Yorker,
December 13, 2010.

[13] Linux kernel performance!
http://kernel-perf.sourceforge.net.

[14] J. N. Matthews. The case for repeated research in
operating systems. SIGOPS Operating Systems
Review, 38:5–7, April 2004.

[15] Netcraft, Jan. 2012. https://ssl.netcraft.com/ssl-
sample-report/CMatch/oscnt all.

[16] OProfile, 2012. http://oprofile.sourceforge.net.

[17] D. Pariag, T. Brecht, A. Harji, P. Buhr, and
A. Shukla. Comparing the performance of web server
architectures. In Proc. of the 2nd ACM
SIGOPS/EuroSys Conf. on Computer Systems, pages
231–243. ACM, Mar. 2007.

[18] C. Small, N. Ghosh, H. Saleeb, M. Seltzer, and
K. Smith. Does systems research measure up?
Technical report, Harvard University, TR-16-97, 1997.

[19] J. Summers, T. Brecht, D. L. Eager, and B. Wong.
Methodologies for generating HTTP streaming video
workloads to evaluate web server performance. In 5th
Annual International Systems and Storage Conference
(SYSTOR), pages 13:1–13:12, 2012.

[20] J. Summers, T. Brecht, D. L. Eager, and B. Wong. To
chunk or not to chunk: Implications for HTTP
streaming video server performance. In 22nd SIGMM
Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV), pages
15–20, Toronto, Canada, June 2012.

[21] SUSE linux enterprise server for system z: The market
leader for linux on ibm mainframes, May 2010.
http://www.novell.com/docrep/2010/05/-
SLES for system z market share leader.pdf.

[22] The SystemTap home page, 2010.
http://sourceware.org/systemtap/.

[23] W. F. Tichy. Should computer scientists experiment
more? Computer, 31(5):32–40, 1998.

[24] Top 500 supercomputer sites.
http://www.top500.org/statistics/list,
Category→Operating System Family→Submit.

[25] Web Technology Surveys. Historical trends in the
usage of Linux versions for websites, Aug. 2011.
http://w3techs.com/technologies/history details/os-
linux.

