Group Unicast for the Real World

Elad Lahav, Martin Karsten, Tim Brecht, Weihan Wang, and Tony Zhao
David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Ontario, Canada
{elahav,mkarsten,brecht,w23wang,y8zhao}@uwaterloo.ca

ABSTRACT

Kernel-based group unicast has been suggested as an efficient
mechanism for transmitting the same data to multiple recipients. In
this paper, we present a new system call, sendgroup (), which
also supports per-recipient private data, but only uses a single in-
kernel copy of the shared data. We assess the performance of the
new system call using micro-benchmarks on three different operat-
ing systems. Further, we incorporate sendgroup () into a popu-
lar multimedia server and demonstrate an efficiency improvement
of ~45% in a representative live-broadcasting scenario. These re-
sults show that the new system call is applicable in real-world sce-
narios, and that its usage can lead to significant performance im-
provements. Moreover, we demonstrate how Amdahl’s Law, when
applied to the results of the micro-benchmarks, along with precise
analysis of the cost of sending packets, can be used to accurately
predict the impact of sendgroup () on this server.

1. INTRODUCTION

Sending the same packet to multiple recipients is a common
operation in several scenarios, including live broadcasting, multi-
player online games, VoIP conferencing and more [1, 6, 17]. We
refer to all recipients of some shared information as a group, and to
the operation of transmitting the data as groupcasting.

There are several ways in which groupcasting can be imple-
mented. The most obvious of those is standard unicasting, in which
packets are sent independently to each recipient. However, such
a technique wastes both local and global resources. Locally, the
server needs to perform a separate system call for each recipient,
with the overhead of mode switches and memory copies that are
associated with such calls. Globally, unicasting results in several
independent packets that are transmitted over the network and con-
sume bandwidth.

Both of these problems are addressed by network-level multi-
casting [5]. In this case, each member of the group is given the
same group address, and the server only needs to send one packet
to the group IP. The actual work of distributing the packets is per-
formed by multicast-aware routers that create extra packets on de-
mand (i.e., when the next hop separates group members). Un-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NOSSDAV °08 Braunschweig, Germany

Copyright 2008 ACM 978-1-60588-157-6/05/2008 ...$5.00.

fortunately, while these properties of multicasting make it an ap-
pealing solution, the complexity of maintaining multicast groups
across networks, and especially between ISPs, has so far inhibited
its wide-spread adoption [7, 21]. We consider multicast in more
detail in Section 2.

We have previously proposed operating-system support for
group unicast as an alternative implementation of UDP groupcast-
ing [14]. With kernel-based group unicast, an application can use
a single system call for sending packets to all group members.
Though the server is still transmitting a different packet to each
group member (and thus there are no bandwidth savings), this in-
terface greatly reduces the number of system calls required for the
operation (from one per group member to one per group). Further-
more, when combined with network interfaces that support scatter-
gather I/0O (virtually all modern server-class NICs provide this fea-
ture), this interface needs to copy the shared data only once, from
user space to kernel space. By comparison, a standard unicast im-
plementation requires a different copy of the shared data for each
recipient.

This paper contains three main contributions:

1. A new API and implementation for group unicast in the form
of the sendgroup () system call;

2. The integration of this system call with a real-world multi-
media server.

3. A performance evaluation showing that micro-benchmarks
can be used to predict real-world application improvements,
by applying Amdahl’s Law.

The new system call provides a more flexible and powerful in-
terface for applications. This gives applications more control over
group management and over the content being sent to different re-
cipients. Specifically, the ability to add per-recipient information
to the shared group data is an important extension to groupcast-
ing, which cannot be implemented with standard IP multicast tech-
niques. Our implementations for FreeBSD, Linux and Solaris en-
sure that only a single kernel-space copy of the shared data is used
for the entire group.

The purpose of integrating the system call with the multimedia
server is three-fold: to show that sendgroup () has real-world
applications; to investigate the complexity of modifying existing
code for using the new API; and to demonstrate the performance
benefits that can be achieved by using sendgroup (). We con-
clude that while, in this instance, integration was not as straight-
forward as we had assumed, the improvements to the server result-
ing from the use of sendgroup () easily justify the effort.

Finally, we combine the results of the micro- and macro-
benchmarks by using Amdahl’s Law. The results of the micro-
benchmarks are used to determine the improvement factor of

sendgroup () over a loop of sendmsg () calls. Next, we com-
bine the power of performance counters with careful analysis of the
cost of sendmsg (), to extract the fraction of time spent on send-
ing packets during the multimedia server experiments. These two
numbers are used to predict the overall improvement factor in the
macro-benchmarks, and the result is compared to the actual fac-
tor observed in those experiments. Our prediction turns out to be
highly accurate, suggesting that the cost analysis, as well as the
actual measurements, are correct.

2. RELATED WORK

The two main benefits of using the sendgroup () system call
are reducing the number of user-kernel mode switches and avoiding
redundant memory copies of the shared data. These two aspects of
user-kernel interaction have been the subject of extensive research
in the past, and are still believed to be important factors in the per-
formance of I/O-intensive servers [11]. General techniques for alle-
viating these problems include executing user code in kernel mode
(either entire applications or selected code paths) [16, 24], and ap-
plying smart schemes for memory sharing across the operating sys-
tem [8, 19]. Alternatively, new system calls are often proposed to
address specific scenarios. A common case is for one system call to
consolidate the work of several calls with the immediate benefit of
reducing the number of mode switches. For example, reading a file
and sending it to a socket [9] and several other examples designed
specifically to improve Web server performance [18]. Furthermore,
such an approach may also open up new possibilities for improved
memory usage, as an entire operation is now performed in kernel
mode, without the need to communicate intermediate data through
user space. For example, sendfile () can be used to replace a
loop of read () and write () system calls. Since the calling ap-
plication no longer has to control the process of transferring data
from the file to the socket, the NIC can fetch this data directly from
the file cache, without further copying. The system call proposed in
this paper, sendgroup (), also takes advantage of the in-kernel
implementation of groupcasting for sharing a single memory block
with multiple packets.

Network-level multicast, such as IP multicast [5], is typically re-
garded as the right mechanism for efficient group communication.
However, IP multicast is not deployed on the public Internet for a
variety of reasons. IP multicast is costly, since it requires extra con-
trol overhead for group maintenance. Furthermore, multicast group
addresses cannot be aggregated like unicast IP addresses, thus each
group requires extra space in the forwarding table. This adds to
the cost of packet forwarding in the data path. The trade-off be-
tween this extra control and forwarding overhead in comparison
with the saved bandwidth and reduced sender overhead is some-
what favourable for a relatively small number of large groups, but it
becomes problematic for a larger number of smaller groups. There-
fore, IP multicast is sometimes deployed in enterprise networks, but
not on the public Internet and this is unlikely to change any time
soon. As mentioned earlier, IP multicast is also unable to handle a
mixture of private and shared data.

An alternative approach to reduce the traffic and sender overhead
from group communication in large-scale networks is application-
level multicast (ALM). Here, packet replication is performed by
conventional end systems, rather than network routers. The for-
warding infrastructure is typically implemented as a user-level ap-
plication process on end systems to increase robustness. Examples
of ALM include ALMI [20], Narada [3], NICE [2], Overcast [13],
and Yoid [10]. Since our groupcasting mechanism provides per-
formance improvements even for very small groups (see Section 4

for details), it complements ALM approaches nicely by providing
an efficient operating system interface for implementing the ALM
forwarding infrastructure.

In this paper we consider a new API and implementation for
group-unicast [14]. Our previous API attaches a group to a socket.
A standard sendmsg () system call can then be used to per-
form a groupcast operation on that socket. However, separate
setsockopt () calls are required for managing the group (e.g.,
adding and removing group members). The new interface decou-
ples the group from the socket by using a new system call and dele-
gates the task of group management to the application. We believe
this to be both a more powerful and a more flexible solution (see
Section 3).

While the FreeBSD and Solaris implementations of group-
casting have not changed since the original paper (other than being
adjusted to the new API), our Linux implementation, which is now
similar to that of the other operating systems, is considerably differ-
ent. The previous implementation, referred to as lazy-copy, reuses
entire socket buffers, and does so only after these buffers are freed
by the network interface. This means that there is no guarantee that
multiple copies of the shared data will be avoided, and that the re-
sult is highly dependent on the different timings of the processor
(the producer) and the NIC (the consumer). The new implementa-
tion ensures that only a single copy of the data is used. Each packet
is allocated a new socket buffer, and the shared data is only pointed
to from within this buffer. Another benefit of this approach is the
ability to prepend and append private data to each message, which
cannot be easily done when the entire payload resides in a single,
contiguous buffer.

Surprisingly, results show that the single-copy-multiple-buffer
technique does not have a clear-cut performance advantage over
lazy-copy. Although the new implementation is better on the main-
stream hardware used in our current tests (see Section 4), the old
one performs better on an old machine, with a relatively slow pro-
cessor and fast network interfaces. This combination results in
most of the packets using reclaimed buffers, thus avoiding both
data copying and expensive socket buffer allocation and initialisa-
tion. It would be interesting to see if this situation repeats itself
when 10 Gigabit NICs are coupled with processors working at to-
day’s speeds.

An analytic framework for assessing the benefits of kernel-based
group unicast was proposed in [15]. These models cover more com-
plex scenarios than are covered by Amdahl’s Law. In this paper, we
present the results of experiments conducted on a commercial mul-
timedia server that is widely used by content providers around the
world. The live broadcast streaming scenario we consider (see Sec-
tion 4) turns out to be quite simple to analyse and as a result we do
not require the more elaborate models presented in [15]. Instead we
show that Amdahl’s Law works well in our case, providing quite an
accurate prediction of the performance benefits.

3. IMPLEMENTATION

The new groupcasting interface consists of a single system call,
sendgroup (), which takes a group structure and uses the infor-
mation contained in this structure to create per-recipient packets.
This interface has two major benefits over the previous one:

1. Management of the group, including adding and removing
members, is now in the hands of the application;

2. Per-recipient information can be prefixed and/or suffixed to

the shared group information block;

Giving applications control over group management allows de-
velopers to come up with schemes that are more suitable for those

applications. Moreover, adding and removing group members no
longer requires separate system calls. This can be especially im-
portant in highly dynamic environments, where group membership
changes often.

The ability to add per-recipient data to each packet was added
in response to community feedback to our original interface and
as a result of more closely examining how other applications send
data to group members. This feature is useful in some scenarios
where the bulk of the information to be transmitted is shared, but
each client also requires a small amount of unique data. For ex-
ample, the Doom/Quake server (quakeforge-0.5.4) sends per-client
and shared data in the same packet [23]. The new API allows this
data to be transmitted in the same packet as the shared data, sav-
ing on both the number of system calls required and the number
of packets generated. The sendgroup () system call has the fol-
lowing signature:

int sendgroup (int sd, struct giobufx buf,
size_t recnum, int flags,
intx gerrno)

where sd is the socket descriptor, buf is a pointer to the group-
description buffer (described below), recnum is the number of re-
cipients, flags has the semantics of its namesake parameter to the
sendmsg () system call and gerrno is an (optional) pointer to an
array, into which the system call writes per-recipient error codes.
The function returns the number of recipients to which the data was
successfully sent out, or an error value if the call failed altogether.

Group information is conveyed in the form of a variable-sized
structure, defined as follows:

struct giovec {
/* Destination address. */
struct sockaddr_in giov_dest;
/* The prepended data. =/
struct iovec giov_prepend;
/+ The appended data. =/
struct iovec giov_append;

}i

struct giobuf {
/* Shared data buffer. =/
struct iovec shared;
/+ Per-recipient information. =/
struct giovec recinfo[l];

}i

The implementation is relatively straight-forward on BSD-based
operating systems (including FreeBSD and Solaris), where a net-
work packet is represented by a chain of buffers (mbuf structures).
A groupcasting packet is thus represented by three such buffers: the
first contains the IP and UDP headers, as well as any per-recipient
information to be prepended to the shared data; the second points
to an external block that contains the single copy of the shared in-
formation; and the (optional) third buffer holds any appended per-
recipient data.

On Linux things are somewhat more complicated, as the na-
tive packet representation uses a single socket buffer (sk_buff
structure). While this structure can only point directly to a sin-
gle chunk of contiguous memory, it also contains an array of page
pointer/page offset pairs that can be used to reference additional
packet data. We use this array by allocating as many pages as are
required to hold the shared data (normally one), copying the shared
data from the user-space buffer directly to these pages, and setting
pointers to these pages in the socket buffer’s array. Per-recipient

appended data, if it exists, is also set as a page pointer in this array.
Any prepended data is copied into the sk_buff’s internal buffer,
along with the required protocol headers.

Both implementations rely on the scatter-gather 1/O feature of
modern network interfaces. This feature allows the operating sys-
tem to keep segments of a single packet in non-contiguous memory.
The network driver places pointers to these segments on the trans-
mission ring, which is shared by RAM and the NIC’s memory. The
network card is then responsible for assembling the packet by fetch-
ing the different segments via DMA. This process avoids the need
to first allocate a contiguous packet buffer in RAM. Moreover, in
many cases the NIC can fetch all packet segments in a single DMA
transaction.

4. EVALUATION

4.1 Environment

All benchmarks are conducted on the same server machine. The
hardware consists of a SuperMicro server with a single Intel Xeon
processor at 3.06 GHz, 2 GB of RAM and four Intel Gigabit NICs
on a single 64 bit/66 MHz PCI-X bus. While the CPU supports
Intel’s HyperThreading technology, this feature is turned off in the
machine’s BIOS, in order to simplify performance analysis.

For Linux, we use the Fedora 7 distribution with a 2.6.22.5 ker-
nel. The kernel is only slightly modified to export a few functions
required by the sendgroup () call implementation. The system
call itself is implemented as a loadable kernel module. All ker-
nel configuration options are specified according to the Fedora de-
fault. While this means that some relevant optimisations are not
applied, we have decided to perform our experiments on a platform
that closely resembles a default user installation, where the kernel
comes pre-compiled by the distribution. For the Helix experiments,
the limit on open file descriptors is increased to 65,535, in order to
handle a large number of clients.

Solaris experiments are performed with build 72 of Solaris
Nevada for x86. FreeBSD tests are conducted on version 6.2 of
the operating system. In both cases there is no need to modify the
kernel, with the sendgroup () system call implemented entirely
in loadable modules.

4.2 Micro-benchmarks

For these tests we use a simple program that repeatedly transmits
packets to a group of clients, using either a loop of sendmsg ()
calls or a single sendgroup () call. Each of the tests is repeated
5 times in a row, and we report the average results. In all cases,
the standard deviation is too small to show up as error bars in the
graphs (less than 1%).

As mentioned earlier, the benefits of using sendgroup () re-
sult from two factors: reducing the number of mode switches and
avoiding multiple copies of the shared data. Let G be the group
size, Cy,s the cost of a mode switch, Ch,em the cost of copying
the shared data and Clserq the cost of sending the packet. Then the
expected improvement factor r of sendgroup () over a loop of
sendmsg () callsis

sendmsg () G- (Cwms + Cmem + Csena)
sendgroup () Cms 4+ Cmem + (G - Csena)

which, for sufficiently large groups, is

r—= C’ms + C’mem + Csend
Csend

We therefore expect the improvement factor to become constant

2 T :
o Linux —e—
1.8 - Solaris ---&-— [E S e T =T o
16 | FreeBSD """E*”"j::.-'’"'E"‘EI NN A—Aﬂ3
. s N -

Improvement

!

0.6 :
1 10

100

1000

Send}llsg ——

6
%\ 5t Sendgroup ,,,,, N
° 4
Q
é ______ Ao Y. N—, N
o 3 _____ Doemmmm e
2 - Y Aeee
E 5
ol
5 1
w2
0 ‘ ‘ | |
: ? 0 60 80 100

Group Size

Figure 1: The improvement factor of sendgroup () over a
sendmsg () loop for different group sizes.

5 . ‘ ‘ ‘
—~ Sendmsg —e—
g 4 Sendgroup -
: M
L 3
é T N, N
QE) D A afy el e e B A - N— 7 N— N
ER
75}

0 ‘ ‘ ‘ |

0 200 400 600 800 1000
Payload size (bytes)

Figure 2: The amortised per-packet send time in a group of
1000 recipients, as a function of the packet’s payload size.

with respect to the group size, once a certain threshold size is
reached. On the other hand, since C',e, clearly increases with the
size of the payload data to be copied, we expect the improvement
factor to be a function of that size.

The first assumption is confirmed by a set of tests, where the
payload size is fixed at 300 bytes, and the group size varies from
1 to 1000. In Figure 1 we can see that a performance gain is al-
ready achieved when the group comprises only two members (note
the logarithmic X scale of the graph). Moreover, the maximal im-
provement factor is reached for a relatively small group size, and
remains almost constant for arbitrarily large groups.

As can be seen in Figure 1, results are fairly similar across the
three operating systems. In the rest of this section, for lack of space,
we only report Linux results, as those are relevant for the macro-
benchmarks we consider in the next section (the Helix server we
use for those tests is not supported on Solaris and FreeBSD).

In the next set of experiments, the group size is fixed at 1000, and
payload size varies from 100 to 1000 bytes. Figure 2 depicts the
amortised send time per packet for each of the implementations on
Linux, obtained by dividing the total time of the experiment by the
number of packets sent. The widening gap between sendmsg ()
and sendgroup () is the result of increased savings when reduc-
ing the number of copies of larger data chunks. This verifies our
second assumption, namely that the improvement factor is a func-
tion of the payload size.

Interestingly, the packet send time is not constant (with respect
to the payload size) in the sendgroup () case. We conjecture
that it may be the result of memory and bus contention, which in-
crease with the overall throughput. Specifically, at 1000 bytes, the

% of private data in payload

Figure 3: The effect of private data on the overall performance
of sendgroup (). The X-axis gives the percentage of a 1000
byte packet taken by private data. Results are expressed in
amortised time for sending one packet to a member of a group
of size 1000.

PCI bus needs to sustain approximately 3.6 Gbps of packet data,
which, along with the control data, comes close to the maximum
bandwidth supported by a 64 bit-66 MHz bus.

Finally, we consider the new interface’s ability to handle private
data. In this case, each of the clients receives different payload data.
An interesting question is whether sendgroup () is still benefi-
cial in this case. The answer is strictly affirmative: sendgroup ()
performs better than a loop of sendmsg () system calls even if no
data is shared, in which case the benefits of sendgroup () stem
solely from avoiding per-message mode switches. Figure 3 shows
the amortised per packet send time as a function of the percentage
of private (prepended) data. Obviously, the smaller the portion of
shared data the smaller the performance improvements obtained by
using sendgroup (). Nevertheless, an improvement is observed
across the range of shared/private data ratios.

We have assumed that the send time for the sendmsg () case is
constant for a packet size of 1000 bytes, regardless of the mixture of
private and shared data (and have therefore used the relevant send
time from Figure 2). Depending on the application, extra work may
need to be performed to create these packets, so the gap between
sendmsg () and sendgroup () may be slightly larger in reality.

Although the micro-benchmarks in this section show that sig-
nificant benefits can be obtained from using kernel groupcast, the
benefits are not as large as reported in our previous work [14]. We
believe this is due to the more advanced server hardware used in
our current experiments, along with recent changes to the operat-
ing systems examined. In particular, the hardware used previously
combines a slow processor with relatively fast NICs, which creates
an ideal — yet somewhat unrealistic — environment for the lazy-
copy variant on Linux (i.e., very few, if any, copies were required).
The version of FreeBSD used in the previous experiments (5.2.1),
was still a development release, following significant changes to
the design of the kernel. Subsequent versions have significantly im-
proved kernel locking, bringing its performance back in line with
Linux and Solaris and decreasing the gap between the performance
of sendmsg () and kernel groupcast.

4.3 Helix Experiments

In order to determine what kind of benefits a real application
might obtain from using sendgroup (), we have added support
for our new system call to version 11.1 of the open source Helix
multimedia server [22]. The experimental environment consists of
a producer, which generates an RTP stream; the server, which re-

100

‘ Sendmsg —e— .
80 Sendgroup - Aeoe A

60 g
/ /A/,

40 e

20 e

1000 2000 3000 4000 5000 6000
Group Size

CPU Utilisation (%)

Figure 4: A Helix server’s processor utilisation while transmit-
ting a 100 Kbps RTP/UDP stream.

ceives the incoming stream and transmits it to registered recipients;
and a set of client machines, each capable of handling multiple
stream recipients. This type of configuration is common in live-
broadcasting scenarios, where the producer captures video and/or
audio and forwards it to a server for distribution to multiple clients.

We note that incorporating the sendgroup () system call into
the Helix server code is not straight-forward. In the unicast sce-
nario, the server maintains a different stream object for each client.
Each of these objects sends packets independently of its peers, al-
lowing the server to handle both on-demand and live content. We
introduce a group-unicast feature to Helix, loosely based on the
existing multicast code, in which the server uses a single stream
object for all clients. Packet transmission can be accomplished
by either a user-mode loop of sendmsg () calls, or a single
sendgroup () call.

Our experiments require the transmission of a 100 Kbps media
stream to increasingly larger groups of clients. Note that the stream
has a fixed rate, which implies that the task of sending a given
amount of data over RTP would always take the same time to com-
plete. Thus, total execution time cannot be considered as a metric
for the Helix experiments. Instead, we consider processor utilisa-
tion during the experiment, with the expectation that the benefits of
sendgroup () will translate into lower CPU utilisation. To quan-
tify the improvement, we fix the group size and examine the CPU
utilisation for sendgroup () and the sendmsg () loop. Addi-
tionally, we examine the maximum group size supported by the
two methods. These comparisons can be seen in Figure 4. For
group sizes of 1000 to 3500, the graphs show a reduction in CPU
utilisation of 31% when using sendgroup (), i.e., CPU utilisa-
tion is 1.45 times higher when using sendmsg () than when us-
ing sendgroup (). The sendmsg () loop saturates the CPU at
3800 clients, while saturation is not reached until 5400 clients with
sendgroup () (a factor of 1.42 more clients).

We have found that conventional statistical methods, such as
vmstat, yield highly inaccurate results for processor usage. As
a result we use a highly accurate measurement technique, that di-
vides the number of busy CPU cycles by the total number of cycles
(busy and idle). On the x86, we use a performance counter to mea-
sure the former and the TSC (time-stamp counter) register to obtain
the latter.

Since the server uses UDP to transmit packets, examining only
server performance could be misleading, as packets may be silently
dropped at various stages of the transmission path. Figure 5 depicts
the quality of service for all clients in the group, expressed as the
average bandwidth received by the clients (with the expected value

103

‘ Sendmsé —e—
102 + Sendgroup --- Aot

101

Hp
3

100 4

" I

98
97

Average Client Rate (Kbps)

1000 2000 3000 4000 5000 6000
Group Size

Figure 5: Quality of service, expressed as the average rate re-
ceived by clients. The transmitted rate is 100 Kbps.

being 100 Kbps for all clients). A noticeable drop in quality of
service can be seen after 3800 clients in the sendmsg () loop case
and 5400 clients for sendgroup (). We can deduce from the
QoS results that 3800 and 5400 are indeed the maximum supported
group sizes for each of the groupcast methods.

It is worth noting that it is important to be able to serve large
numbers of clients in such scenarios. For example, the RealNet-
works broadcast of the television show Big Brother 10 required
support for tens of thousands of viewers [4].

4.4 Performance Prediction

In previous work [14] [15], we claim that micro-benchmarks can
be used to predict the expected benefits to an application from using
kernel groupcast. We now show that this is indeed the case and
demonstrate how Amdahl’s Law predicts quite nicely the benefits
obtained from using sendgroup () in the Helix server. In these
calculations we use a group size of 1000 clients and a payload size
of 1000 bytes.

To use Amdahl’s Law, we require the improvement factor for the
sped-up part of the application, which, from the micro-benchmarks,
is s = 1.664 for the given group and payload sizes (see Figure 2).
Next, we need to determine the relative time the Helix server spends
executing that part. We define this fraction of time as

Tsc + Ti'rq + Tbh - Tsleep
Teacp

f=

where T, is the time spent in the sendmsg () system call; Tjq
and Ty, is the time spent servicing the asynchronous parts of trans-
mission (hard and soft interrupts) outside the time frame of the sys-
tem call (asynchronous time inside that time frame is already ac-
counted for in Ts.); Tsieep 1s the time the calling thread spends in
a non-running state during the system call’s time frame; and 7%z,
is the total running time of the experiment. We use performance
counters [12] to obtain the number of busy CPU cycles for each of
these components, with a result of f = 0.791.

Applying Amdahl’s Law, we get a predicted improvement factor
of

1 1
T f+ LT 1—0914 0

1.664

=1.461

compared with the observed value of 1.45 for CPU utilisation (see
Figure 4). The predicted value also agrees with the achieved ca-
pacity improvement factor of 1.42. These results demonstrate that
it is possible to predict the benefits that can be obtained from us-
ing sendgroup () in areal and complex application, prior to ac-

tually modifying it. This permits relatively informed cost-benefit
decisions about whether to perform such an integration.

5. CONCLUSION

In this paper we have presented a new system call,
sendgroup (), that can be used to efficiently send copies of the
same data to multiple recipients. The API for this system call is
much more flexible than the previous interface for kernel-based
group unicast, and allows both shared and private data to be trans-
mitted to clients. We have shown that the system call can be intro-
duced into the existing code base of a complex application, permit-
ting an increase in group size of a factor of 1.42. This improvement
in efficiency translates naturally to significant cost and environmen-
tal savings due to the reductions in energy consumed to cool and
power fewer servers.

The benefits of using kernel-based group unicast come from re-
ducing the number of mode switches and from avoiding redundant
memory copies of the shared data. The first of these factors is con-
stant per system call, and depends on both the hardware and the op-
erating system. Even though some platform advances have reduced
the mode switch overhead (e.g., the introduction of the sysenter
instruction on the x86 and its adoption by operating systems), our
work shows that avoiding system calls when possible is still a good
strategy for improving performance. On the other hand, the cost
of memory copies is proportional to the amount of memory being
copied and also depends on overall memory access contention.

We have also shown that relatively simple techniques can be used
to collect the performance data required to predict the benefits of
using sendgroup () in a real application. The prediction turns
out to be quite accurate in the relatively complex Helix streaming
server we examined. The accuracy of the results suggests that this
technique may be of value in other scenarios. In the future we
hope to extend the ad-hoc framework we have built to obtain these
results into a more generally-applicable framework for precise per-
formance analysis.

6. ACKNOWLEDGEMENTS

This work has been supported by RealNetworks, Sun Microsys-
tems, and the Natural Sciences and Engineering Research Council
of Canada.

7. REFERENCES

[1] M. Ammar, K. Almeroth, R. Clark, and Z. Fei. Multicast
Delivery of Web Pages or How to Make Web Servers Pushy.
In Proceedings of the Workshop on Internet Server
Performance, 1998.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable
Application Layer Multicast. Technical Report UMIACS
TR-2002, University of Maryland, 2002.

[3] Y. Chu, S. Rao, and H. Zhang. A Case for End System
Multicast. In Proceedings of ACM SIGMETRICS, pages
1-12, 2000.

[4] A. Colwell. Challenges with Developing a Commercial P2P
System. In Panel Presentation, NOSSDAV 2007, July 2007.

[5] S. E. Deering. Multicast routing in internetworks and
extended LANSs. In Symposium Proceedings on
Communications Architectures and Protocols, pages 55-64,
1988.

[6] C. Diot and L. Gautier. A Distributed Architecture for
Multiplayer Interactive Applications on the Internet. /[EEE
Network, 13(4):6-15, 1999.

[7] C.Diot, B. N. Levine, B. Lyles, H. Kassem, and

D. Balensiefen. Deployment Issues for the IP Multicast

Service and Architecture. IEEE Network, 14(1):78-88, 2000.

P. Druschel and L. L. Peterson. Fbufs: A High-Bandwidth

Cross-Domain Transfer Facility. In Symposium on Operating

Systems Principles, pages 189-202, 1993.

K. Fall and J. Pasquale. Exploiting in-kernel data paths to

improve i/o throughput and cpu availability.

[10] P. Francis. Yoid: Your Own Internet Distribution.
http://www.aciri.org/yoid. accessed February
2008.

[11] P. Halvorsen, T. A. Dalseng, and C. Griwodz. Assessment of
Linux’ Data Path Components for Download and Streaming.
The International Journal of Software Engineering and
Knowledge Engineering, 17(4):465-481, 2007.

[12] Intel. Intel®64 and IA-32 Architectures Software Developer
Manual, Volume 3b, 2007.

[13] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and
J. O’Toole, Jr. Overcast: Reliable Multicasting with an
Overlay Network. In Proceedings of Operating System
Design and Implementation, pages 197-212, 2000.

[14] M. Karsten, J. Song, M. Kwok, and T. Brecht. Efficient
Operating System Support for Group Unicast. In
Proceedings of the 15th International Worshop on Network
and Operating Systems Support for Digital Audio and Video,
pages 153-158, 2005.

[15] M. Kwok, T. Brecht, M. Karsten, and J. Song. Modelling and
Improving Group Communication in Server Operating
Systems. In Proceedings of the IEEE International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 207-217,
2006.

[16] T. Maeda and A. Yonezawa. Kernel Mode Linux: Toward an
Operating System Protected by a Type Theory. In V. A.
Saraswat, editor, 8th Asian Computing Science Conference,
pages 3—17, 2003.

[17] S. McCanne and V. Jacobson. vic: a flexible framework for
packet video. In Proceedings of the Third ACM International
Conference on Multimedia, pages 511-522, 1995.

[18] E. Nahum, T. Barzilai, and K. Kandlur. Performance Issues
in WWW Servers. 10(1), February 2002.

[19] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a unified
I/0O buffering and caching system. ACM Transactions on
Computer Systems, 18(1):37-66, 2000.

[20] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI:
An Application Level Multicast Infrastructure. In
Proceedings of the 3rd USENIX Symposium on Internet
Technologies and Systems, pages 49-60, 2001.

[21] S. Ratnasamy, A. Ermolinskiy, and S. Shenker. Revisiting IP
multicast. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, pages 15-26, 2006.

[22] The Helix Community. The Helix DNA Server.
https://helix-server.helixcommunity.org/.

[23] The QuakeForge Project. http://quakeforge.net.
accessed February 2008.

[24] E. Zadok, S. Callanan, A. Rai, G. Sivathanu, and A. Traeger.
Efficient and Safe Execution of User-Level Code in the
Kernel. In 19th IEEE International Parallel and Distributed
Processing Symposium, pages 8—15, 2005.

[8

—

[9

—

