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ABSTRACT
Although a variety of rate adaptation algorithms have been pro-
posed for 802.11 networks, sampling-based algorithms are preferred
and used in practice because they only require frame loss informa-
tion which is available on all devices. Unfortunately, sampling can
impose significant overheads because it may lead to excessive frame
loss or the inefficient operation of frame aggregation algorithms.
In this paper, we design a novel Neural network-based Rate Adap-
tation algorithm, called NeuRA. NeuRA, significantly improves the
efficiency of probing in sampling-based algorithms by using neural
network models to predict the expected throughput of many rates,
rather than sampling their throughput.

Despite decades of research on rate adaptation in 802.11 net-
works, there are no definitive results which determine which algo-
rithm is the best nor if any algorithm is close to optimal. We design
an offline algorithm that uses information about the fate of future
frames to make statistically optimal frame aggregation and rate
adaptation decisions. This algorithm provides an upper bound on
the throughput that can be obtained by practical online algorithms
and enables us to evaluate rate adaptation algorithms with respect
to this upper bound. Our trace-based evaluations using a wide va-
riety of real-world scenarios show that NeuRA outperforms the
widely used Minstrel HT algorithm by up to 24% (16% on average)
and the Intel iwl-mvm-rs algorithm by up to 32% (13% on average).
Moreover, NeuRA reduces the gap in throughput between existing
algorithms and the offline optimal algorithm by half. Finally, we
implement NeuRA using the ath9k driver to show that the neu-
ral network processing requirements are sufficiently low and that
NeuRA can be used to obtain statistically significant improvements
in throughput when compared with the Minstrel HT.
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1 INTRODUCTION
Wireless networking standards such as 802.11n and 802.11ac can
achieve theoretical throughputs of up to 600 Mbps and 3.5 Gbps,
respectively. These standards use dense modulations, channel bond-
ing, multiple-input multiple-output (MIMO), and frame aggregation
to obtain such throughputs. As a result, modern WiFi devices must
choose from a large number of different physical rates (up to 768).

The best physical rate to use for transmission at any point in time
depends on the channel state and a wide variety of environmental
factors that can change in a fraction of a second. In order to achieve
the highest possible throughput, WiFi devices use a rate adaptation
algorithm to constantly choose the best physical rate for each packet
transmitted. Furthermore, a frame aggregation algorithm is used to
aggregate up to 64 subframes (MPDUs) into an aggregated frame
(A-MPDU) to increase the MAC layer efficiency. Without frame
aggregation, a 450 Mbps physical rate cannot achieve more than
50 Mbps. Rate adaptation and frame aggregation algorithms are
not included in WiFi standards and device manufacturers have to
choose and implement their own mechanisms.

Sampling-based rate adaptation algorithms like Minstrel HT [12]
are highly popular in commercial devices and have been shown to
work in a variety of conditions because they make decisions based
on real-time measurements. These algorithms periodically probe
recently unused physical rates by transmitting data using those
rates. This allows the algorithm to determine the effective through-
put of physical rates empirically. Sampling, however, leads to a
loss in throughput as data will be transmitted using non-optimal
rates. Moreover, because the fate of each packet is unknown when
sampling, drivers such as ath9k disable frame aggregation during
sampling. This also leads to a significant loss in channel efficiency.
As a result, there is an inherent trade-off between the sampling over-
head and the effectiveness of the rate adaptation algorithm. In this
work, we focus on improving practical widely-used sampling-based
algorithms and understanding how they perform when compared
to the statistically optimal solution.

With the growing number of modulation and coding schemes
in newer WiFi standards, naÃŕve sampling methods do not scale
well. Recent work has found that the frame error rate (FER) of one
physical rate may correlate with the frame error rate of several
other physical rates [2]. To our knowledge, no algorithms exist that
utilize relationships between rates to infer information about one
or more rates using feedback obtained from sampling other rates.



In this paper, we propose a neural network model for estimat-
ing the throughput of all physical rates based on the measured
throughput of a subset of rates that we call the sampling set. We
use a feature selection method to search for and find sampling
sets of different sizes (i.e., different numbers of rates) to maximum
the prediction power for estimating other rates. We implement a
rate adaptation algorithm called NeuRA (Neural network-based
Rate Adaptation) that utilizes estimations from the neural network
model to reduce sampling overheads required for rate adaptation.

We compare the performance of NeuRA with several other state-
of-the-art rate adaptation algorithms including Minstrel HT (used
by hundreds of millions of devices [27] and the default rate adapta-
tion algorithm in the Linux kernel’s mac80211 driver development
framework) and the Intel iwl-mvm-rs algorithm (used by modern
Intel WiFi devices included in modern laptops and computers).

In 802.11n and later WiFi standards, the optimal physical trans-
mission rate depends on the optimal number of frames to aggregate
for each rate. In this paper, we derive and compare against a statis-
tically optimal offline algorithm that uses an oracle to choose the
optimal physical rate and the number of frames to aggregate. This
algorithm acts as an upper bound on the throughput that could be
obtained using practical online algorithms (including NeuRA).

Conducting credible empirical evaluations is extremely difficult
in WiFi networks because of constantly changing channel condi-
tions [4]. Therefore, we perform trace-based evaluations across
a variety of traces collected using scenarios that reflect the envi-
ronments in which WiFi devices are actually used. We find that
NeuRA provides significant improvements when compared with ex-
isting algorithms, even on scenarios with previously unseen client
devices and movement behaviours. This demonstrates that the
neural network model learns relationships between rates that are
generalizable across different devices and environments. To study
the practicality of using NeuRA, we evaluate a real-world proto-
type using the ath9k WiFi driver. We find that NeuRA improves
the throughput over Minstrel HT while requiring relatively small
amounts of processing power. The contributions of this paper are:

• We propose a novel rate adaptation algorithm (NeuRA) that uses
a neural network model to estimate the effective throughput of
the rates that are not sampled from a smaller set of sampled rates.
NeuRA reduces sampling overheads and increases throughput.
• We recursive feature elimination (RFE) to recursively reduce the
number of sampling rates while ensuring that remaining rates
incur low overheads and have good predictive power.
• We develop and describe an offline algorithm to calculate the
statistically optimal solution to WiFi rate adaptation and frame
aggregation. This provides an upper bound on the throughput
that can be obtained using online algorithms.
• We find that NeuRA performs up to 24% (16% on average) better
than Minstrel HT and up to 32% (13% on average) better than
Intel iwl-mvm-rs. NeuRA provide throughputs that are relatively
close to that of the offline statistically optimal. This is despite
the offline algorithm’s use of information about the future that
is not available to online algorithms like NeuRA.
• We implement a real-world prototype of NeuRA using the ath9k
WiFi driver to evaluate the practicality NeuRA and find that it
uses relatively little CPU power (< 20% of a 800 MHz CPU core)

to perform estimations. It also increases throughput by 15% on
average when compared to Minstrel HT.

2 RELATEDWORK
The problem of rate adaptation in WiFi networks (sometimes called
“Rate Control” or “link adaptation”) is a long standing and widely
researched problem. Here, we review a subset of these methods for
802.11n and 802.11ac networks that are related to our work. For a
more comprehensive and detailed survey please see Yin et al. [27].
Sampling-Based Rate Adaptation: Many WiFi rate adaptation
algorithms use sampling which was first introduced in SampleR-
ate [6]. Minstrel HT [12] is the most widely used rate adaptation
algorithm that periodically probes recently unused physical rates
and uses those measurements to choose the rate with the highest
expected throughput [27]. It is the default rate adaptation algorithm
in the mac80211 driver development framework of Linux kernel as
well as the widely-used ath9k WiFi driver.

MiRA [24] is one of the earliest sampling-based rate adaptation
algorithms for MIMO WiFi networks. It zig zags between singles
stream and two stream modes favouring MCS index changes over
the MIMOmode changes. Even thoughMiRA uses a novel approach
to deal with hidden terminals, later evaluations shows that Min-
strel HT performs as well as MiRA on average [23]. RAMAS [23]
splits the rates into enhancement groups each representing a com-
bination of the number of spatial streams, guard interval length,
and channel width. It then and adapts the enhancement group and
MCS index concurrently. Intel iwl-mvm-rs is the rate adaptation
algorithm used in the IwlWiFi driver designed for use with Intel
WiFi devices used in many laptops and personal computers [13]. It
splits rates into several groups in a similar fashion to RAMAS but
performs group adaptation andMCS adaptation phases sequentially
(rather than concurrently) [13].
RSSI/SNR-based Rate Adaptation: Several algorithms propose
methods for determining and using some information about the
signal quality at the sender or the receiver to make informed deci-
sions about the best transmission rate to use for the current channel
conditions [6, 7, 11, 14]. Sender-side RSSI is known to be an unreli-
able metric for choosing the best transmission rate [14]. Key issues
with the receiver-side approaches are that they sometimes rely on
information not widely available or accessible on all devices (e.g.,
channel state information) and the information collected at the
receiver needs to be transmitted to the sender. Unfortunately, this
requires modifying control frames [27] (which requires changing
protocol standards) or relies on optional features of 802.11 protocols
that to our knowledge are not implemented by chipset manufactur-
ers. As a result, these approaches are not used in practice.
Other Rate Adaptation Methods: HiWiLA [18] adapts the
transmission rate using a predesigned state transition graph.
SmartLA [19] builds a reinforcement learning model on top of
HiWiLA to perform state transitions based on a reward (the current
bit error rate). SmartLA is related to our work since it employs ma-
chine learning in rate adaptation. We had hoped to include SmartLA
in our evaluation but we were not able to obtain code from the au-
thors and were not able to replicate their implementation because of
missing details in the algorithm’s description and because it would
require access to their training data. We find the claims made in the



SmartLA paper about substantial improvements puzzling because
SmartLA uses all available 802.11ac rates and frame aggregation
while the algorithms they compare with seem to be restricted to
slower 802.11g or 802.11n rates and do not appear to use frame
aggregation. As a result, in many evaluations Minstrel HT through-
put does not exceed 25 Mbps while SmartLA achieves 500 Mbps (a
factor of 20 difference). Across the variety of devices and scenarios
we study, the gap between Minstrel HT and the statistically optimal
solution is much lower (30% on average always less than 60%).
Frame Aggregation Algorithms: Frame aggregation appears in
the 802.11n standard to enable aggregating up to 64 subframes
(MPDUs) into an aggregated frame (A-MPDU) to increase the MAC
layer efficiency. Researchers have observed that in some cases sub-
frames towards the end of an aggregated frame incur higher error
rates [8]. As a result, MoFA [8] and STRALE [9] limit the number
of frames being aggregated in such cases. STRALE also additionally
adapts the physical rate. PNOFA [3] uses a formula similar to Equa-
tion 1 (presented later) to calculate the expected throughput for
all possible aggregation lengths and then chooses the best length
for the current rate. They demonstrate better performance than
MoFA and STRALE. In our offline optimal algorithm we calculate
the statistically optimal aggregation length for each rate based on
a formula adapted from the PNOFA paper [3]. We also include
STRALE and PNOFA in our trace-based evaluations.

3 NEURA
Abedi et al. [2] show that relationships exist between the frame error
rates of many physical rates. It is expected that such relationships
can be used to estimate the reliability of one or more rates based on
the reliability of others. If such estimations are possible, they can
be used to improve the efficiency of sampling-based rate adaptation
algorithms by reducing the number of rates being sampled. While
Abedi et al. [2] focus on discovering that relationships exist, they
have not determined precisely what those relationship are, how to
find them, or which rates are the best predictors of other rates.

In this paper, we use a neural network model to learn the rela-
tionships between the rates and use them to estimate the reliability
of the rates not being sampled. We use neural networks because
with a sufficient number of layers and neurons that are trained on
enough data, they can be used to approximate any function [25].
We also propose a technique for finding the best set of rates to
sample which we combine with models obtained from training our
neural networks to implement our algorithm called NeuRA. We
evaluate the performance of NeuRA in Sections 6 and 7.

We first present the architecture of our neural network model.
Then, we describe the procedure used to process raw WiFi traces
to generate data sets suitable for training and evaluating the model.
Finally, we explain the approach used for feature selection in order
to find the best subset of rates to sample.

3.1 Proposed Model
We propose the use of a feed forward neural network model that
uses the effective throughput of a subset of physical rates (called
the sampling set) to estimate the expected throughput of the rates
not in the sampling set. The architecture of this model is shown
in Figure 1. Based on our experiments with different regression

and classification model architectures (not included here), this ar-
chitecture provided the best accuracy over the training set for the
two configurations used for training and evaluation (one with 32
physical rates and the other with 64).

The inputs to the model are the effective throughputs (i.e., mea-
sured throughputs) of the rates in the sampling set which can be
of any size from 1 up to the total number of supported physical
rates. The 3 hidden layers and the output layer of the model use
the Rectified Linear Unit (ReLU) activation function. Each hidden
layer contains 64 neurons and the output layer contains a neuron
for each supported rate. Note that the neural network estimates the
throughput of all available rates, however, we are only interested
in the expected throughput of the rates that are not sampled. Also,
we use a 10% dropout [26] after each hidden layer to avoid converg-
ing to solutions that depend on specific connections between the
neurons and to avoid over fitting the model to the training data.

We implement and train the model using the Keras library [10]
and use it for feature selection and prediction. For training parame-
ters, we use a batch size of 50, the mean squared error (MSE) loss
function, and the Adam optimizer [21]. We train the model for 1,000
epochs after which the loss function stabilizes.
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Figure 1: Structure of the proposed neural network model.

3.2 Data Set Preparation
We use recorded WiFi traces to train and evaluate the neural net-
work model. During trace collection, an access point constantly
transmits data packets to a client device using all available phys-
ical rates in a round-robin fashion. For each rate, the maximum
frame aggregation length permitted for that rate is used. The block
acknowledgment frames received from the client are recorded in
the trace. As a result, traces include the required information to
calculate the error rates for each subframe position within an aggre-
gated frame within a time window. Section 5 describes the scenarios
used for trace collection. To perform a valid evaluation, we use two
disjoint sets for training and evaluation (a training set and a testing
set). We now describe the method used to convert our raw WiFi
traces into data suitable for training and testing.

During our experiments (results are not shown here), we found
that models that use effective throughput values obtain better re-
sults than those that use reliability (i.e., frame error rates). We
believe that throughput values yield better results than frame error
rates because neural networks try to minimize the average predic-
tion error across all predicted values. However, an equal amount
of error in frame error rates affects the expected throughput of
different rates differently (e.g., a 3% difference in error rates results
in larger differences in expected throughput for higher rates).

To create a data set, raw traces are processed so that the effective
throughput of each rate is calculated using 1-second time windows.
A 1-second window is used to include enough samples to obtain
useful indications of error rates and the effective throughput for all
physical rates while also capturing the channel state variability.



We obtain the effective throughput of a physical rate R in a time
windoww (t ) using the following equation inspired by PNOFA [3]
with the maximum aggregation length (N ). We add channel access
time to the formula from PNOFA to obtain more accurate through-
puts for scenarios with variable channel access times.

TR (N ,w (t )) =
ρ ×
∑N
i=1 (1 − SFERR (i,w (t )))

C̄ (w (t )) + τR (N )
(1)

for w (t ) we use a 1-second time window containing time t .
TR (N ,w (t )) represents the expected throughput (in Mbps) from
aggregating N packets when using rate R in time window w (t ).
The numerator is the expected number of successful bits and the
denominator is the expected time to transmit the aggregated frame.
ρ is the number of data bits in each subframe (MPDU) for which
we use a typical value of 12,320 (1,540 bytes). SFERR (i,w (t )) is the
average subframe error rate of the i-th subframe in an aggregated
frame sent using rate R in time window w (t ). This is calculated
from the Block ACK frames in the trace. C̄ (w (t )) is the average
channel access time in time windoww (t ) and is calculated from the
channel access information in the trace. τR (N ) is the time required
to transmit an aggregated frame of length N using rate R which is
calculated based on protocol standards using the T-SIMn library.

Finally, we divide all throughput values by the maximum physi-
cal rate in our traces (300 Mbps) to scale all values to the normalized
[0, 1] range to make them suitable for training the neural network
model. An example of the resulting data set which contains the
effective throughputs calculated for all rates in 1-second time win-
dows is shown in Table 1. We construct the training data set by
concatenating the data sets extracted from multiple training traces
and construct the testing data set by concatenating the data sets
extracted from the testing traces.

Table 1: Format of the data set extracted from the traces.
Each column represents a physical rate.

Time (s) TPut1 TPut2 ... TPut64
0 0.015 0.039 ... 0.0
1 0.016 0.035 ... 0.0
... ... ... ... ...

2399 0.009 0.027 ... 0.0

3.3 Feature Selection
An important component of NeuRA is the technique used for feature
selection (or feature elimination). Feature selection is necessary
since we have to choose a subset of physical rates to be sampled
which can be given to our model as input. Only the training data
is used for feature selection. To explain our approach to feature
selection, suppose we have N input features (rates) and we want to
eliminate K features. The goal is that the remaining N −K features
should provide the most accurate throughputs estimations for all
other rates. Additionally, the K eliminated rates should ideally
reduce the sampling overhead as much as possible.

To accomplish this, first, we train the neural network using N
input rates. Then, we calculate the importance δ (R) of each input
rate R as follows:

δ (R) =

∑
d ∈T

���
∂L
∂R (d )

���
τR

where T is the training data set, d is a row (1-second time window)
in the training data, L is the loss function of the neural network,
and τR is the time required to sample rate R using a single frame.

This equation sums the absolute value of the derivative of the
neural network’s loss function with respect to the effective through-
put of input rate R (i.e., the impact of rate R on the neural network’s
loss function) over the entire training set and divides it by the time
required to sample rate R. The intuition behind the equation is that
we are interested in rates with the highest Estimation Power

Sampling Time density
value. This equation was empirically found to choose rates that re-
sult in better training set accuracy when compared to other scoring
schemes we studied (not included here).

After assigning the importance values, we eliminate the K in-
put rates with the lowest importance scores. Since we use the
dropout technique, we expect the neural network to learn different
dependencies that exist between the rates and not rely on a single
dependency for each rate.

Using the described elimination scheme, we start with the initial
sampling set containing all supported rates. Then, we perform Re-
cursive Feature Elimination (RFE) to reduce the size of the sampling
set. After each step, we drop K input features (rates), retrain the
network using the remaining input rates, and recalculate the feature
importance scores. This is done repeatedly until all desired set sizes
have been determined. Since using K = 1 for the whole process
makes feature selection very slow, we set K = 4 for set sizes greater
than 32, decrease it to K = 2 when we reach 32 input rates, and to
K = 1 when we reach 12 input rates. During this process, feature
selection and model training are performed simultaneously.

4 OFFLINE OPTIMAL ALGORITHM
For decades, new rate adaptation and frame aggregation algorithms
have been invented and compared with each other. These evalua-
tions depend on the techniques being used for comparison (which
are prone to problems and errors [4]) and the environments in
which they are evaluated. An important and unresolved question is
how well do these algorithms compare with one that makes optimal
decisions. To that end, we now describe an algorithm for making
statistically optimal decisions for both rate adaptation and frame ag-
gregation. This requires knowledge about the fate of all subframes
for current and future frames for all rates that could be chosen.

Since this method uses information from the future and does
not incur sampling overheads, it is superior to all online (practical)
algorithms. The value in this algorithm is that its throughput can
be used as an upper bound for what could be achieved by a perfect
combination of rate adaptation and frame aggregation algorithms.

Our algorithm first determines the best aggregation length for
each physical rate and the effective throughput associated with that
aggregation length. To do so, we use Equation 1 which is inspired by
PNOFA [3] to calculate the expected throughput valuesTR (N ,w (t ))
for a time window centered at time t and for all possible values
of N (up to the maximum aggregation length for rate R). Defining
w (t ) as a symmetric time window centered around time t allows
us to estimate the expected throughput of each rate R with any
aggregation length N at time t .

After calculating TR (N ,w (t )) for all values of N , we determine
the value N that maximizes the expected throughput and store it



along with its expected throughput as the best possible choice for
rate R. The algorithm then chooses the rate with the maximum
expected throughput along with the computed optimal aggregation
length for time t .

While this algorithm may appear only to be of theoretical inter-
est, we are able to implement this algorithm in the T-SIMn simulator.
Because T-SIMn uses a trace-driven approach to evaluating frame
aggregation and rate adaptation algorithms, this algorithm can be
implemented by allowing the simulator to look ahead into the fu-
ture to compute the statistically optimal decisions for these choices.
This is possible because by design the traces contain information
about the fate of each subframe for all available rates and the sta-
tistically optimal solution can be computed for a given window
size. The results of running this offline optimal solution on the
traces and its comparison with practical algorithms are presented
in Section 6.3.

5 TRACE COLLECTION
T-SIMn [5] is an 802.11n trace-based simulator. It allows one to
record traces from real-world WiFi experiments in a variety of
settings and then simulate running different combinations of rate
adaptation and frame aggregation algorithms on the trace. The
technique used to collect traces is briefly described in Section 3.2.

We use two disjoint sets of traces for training and evaluation (the
training and testing sets). The data set extracted from the training
traces is used to train the models, select the best set of rates to sam-
ple and to determine the best set of parameters to use for NeuRA.
The data set extracted from the raw testing traces is used to evaluate
the accuracy of the models and those raw traces are later used to
evaluate different algorithms using T-SIMn. Trace-based evaluation
enables a fair comparison of different rate adaptation/frame aggre-
gation algorithms because all algorithms are exposed to exactly the
same channel conditions.

It is important to collect a diverse set of traces for both training
and evaluation. Traces should cover stationary and mobile clients,
congested and unoccupied WiFi channels, different environments
(e.g., locations within office spaces), and different devices in case
relationships are different for different scenarios. A diverse set of
training traces helps the model to learn more generalizable rela-
tionships between rates while a diverse set of testing traces helps
us to evaluate the models under a wide variety of conditions. Addi-
tionally, the testing set should also include traces that are different
from all training scenarios (e.g., different client devices or different
conditions) as well as some traces similar to the training scenar-
ios. This way, we can evaluate the accuracy of the model on both
previously seen and unseen scenarios.

A TP-Link TL-WDN4800 802.11n PCI-E wireless card which runs
a modified version of the ath9k driver (included in T-SIMn) is used
as the sending device. We use a variety of receiving devices for
trace collection because they do not require a modified driver.

Most commonly used WiFi devices (including most recent
phones and laptops) have two antennas (and support two streams).
Also, even though the highest available channel width in the 802.11n
standard is 40 MHz, most devices will not use a 40 MHz channel
width when using the 2.4 GHz carrier frequency due to channel
congestion [16]. As a result, we use the two configurations shown

in Table 2 for trace collection. For Configuration A a WiFi channel
is shared with other active devices (which is typical in 2.4 GHz
networks) and for Configuration B an unoccupied 5 GHz channel is
used. We train two separate models (Model A and Model B) because
the two configurations have different available rates and different
frequencies may have different relationships between rates.

Table 2: Two configurations used for trace collection.

Config Carrier # Antennas Channel width # Rates
A 2.4 GHz 2 20 MHz 32
B 5 GHz 2 40 MHz 64

We collect traces using several devices and several environments
in which devices are expected to be used. Training scenarios are
shown in Table 3. Six traces are collected for Model A (using Sce-
narios T1 to T6) and nine traces are collected for Model B (using
Scenario T1 to T9). The length of each training trace is 40 minutes.
Therefore, a total of 4 hours of data is used to train Model A (14,299
points) and 6 hours of data is used to train Model B (21,650 points).

Table 3: Scenarios for training traces.

Scenario Device State Description
T1 SM-N920C Stationary Close AP
T2 SM-N920C Stationary Distant AP
T3 SM-N920C Walking Environment 1
T4 SM-N920C Walking Environment 2
T5 SM-N920C Toy train Slow Speed
T6 SM-N920C Toy train Fast Speed
T7 TL-WDN4200 Stationary Close AP
T8 TL-WDN4200 Stationary Distant AP
T9 TL-WDN4200 Walking Environment 1

Testing scenarios are shown in Table 4. Most of these traces are
20 minutes long while a few are under 20 minutes. These scenarios
are chosen to cover most devices, client states, and environments.
Scenarios A1 to A7 are used to evaluate Model A and scenarios B1
to B7 are used for Model B. Scenarios A1 to A4 and B1 to B3 are
similar to a training scenario while scenarios A5 to A7 and B4 to
B7 are different from all training scenarios. We collect traces using
four different receiving devices: a Samsung Galaxy Note 5 phone
(SM-N920C), a TP-Link TL-WDN4200 USB adapter, a Huawei P20
phone (EML-L09C), and an Intel 8265 laptop WiFi card.

Two experiments labelled "extra movement" refer to moving
and shaking the device while walking with the device in hand.
These are included to evaluate rate adaptation algorithms in cases
of high mobility and on previously unseen scenarios. In "toy train"
scenarios, the device is mounted on a toy train which simulates
movement with a constant speed. "Close AP" refers to a scenario
with about 1meter between the client (receiver) and the access point
(sender) and "Distant AP" refers to a distance of about 10 meters.

6 EVALUATION
In this section, we evaluate the accuracy of the trained models and
the approach we use for selecting the best sampling rates. Then, we
compare the performance of NeuRA and the statistically optimal
algorithm to a variety of state-of-the-art sampling algorithms using
trace-based evaluation.



Table 4: Scenarios for testing traces.

Scenario Device State Description
A1 SM-N920C Stationary Distant AP
A2 SM-N920C Walking Environment 1
A3 SM-N920C Walking Environment 2
A4 SM-N920C Toy train Fast Speed
A5 TL-WDN4200 Walking Extra Movement
A6 EML-L09C Stationary Distant AP
A7 Intel 8265 Walking Environment 1 + 2
B1 SM-N920C Stationary Close AP
B2 SM-N920C Walking Environment 2
B3 SM-N920C Toy train Slow Speed
B4 SM-N920C Walking Extra Movement
B5 TL-WDN4200 Walking Extra Movement
B6 EML-L09C Walking Environment 1 + 2
B7 Intel 8265 Walking Environment 1 + 2

6.1 Model Evaluation
After the feature selection phase, we train a neural network model
for varying sizes of sampling sets between 2 rates and the total
number of supported rates. To evaluate the effectiveness of the
neural network’s ability to provide accurate estimations, we first
examine the Mean Absolute Error (MAE) for the neural network’s
predictions compared with the measured values from the traces.

Mean Absolute Error (MAE): MAE is computed as follows.
For each row of data in the data set (1-second time window), the
throughput of sampling rates is fed to the neural network model to
predict the throughput of all rates. Then, the absolute difference
between the predicted throughputs and actual throughputs is cal-
culated. MAE represents the average of these absolute differences
over all rates and all time windows. It is also multiplied by 300 Mbps
to scale the value from the [0, 1] range to a Mbps throughput value.

Figure 2 shows the MAE over the training and the testing set for
models with different numbers of rates. Note that Model A predicts
the throughput of 32 rates while Model B predicts the throughput
of 64 rates. Therefore, the performance of the two models on a
specific size of sampling set cannot be compared directly. The small
difference of MAE between the training and the testing sets shows
that the model is not over fit to the training data and is general
enough to predict cases it has not seen in the training set. We note
that the MAE fluctuates between 2 Mbps and 4 Mbps for reasonable
sizes of the sampling set (i.e., when more than a quarter of rates are
used). This shows that, if the size of the sampling set is reasonable,
the neural network model can effectively predict the throughput of
most of the non-sampling rates most of the time.

A low MAE value for a rate estimation model does not neces-
sarily translate to a small loss in the throughput when performing
rate adaptation using that model. The average relative error when
comparing two rates can be as high as 2 ×MAE. Also, if a single
important rate is predicted with a high error at some points, it
may result in a poor choice of rates and the throughput may drop
significantly. To evaluate the effectiveness of the neural network
model for use in a rate adaptation algorithm, we define some rate
adaptation metrics below.
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Figure 2: MAE for models with different numbers of rates.
Similar MAE on the training and testing sets shows the
model is general enough tohandunseen scenarios. TheMAE
is fairly low when at least 1/4 of the rates are sampled.

Relative RA (Rate Adaptation) Error: For each row of data
in the data set (1-second time window), we only provide the model
with the throughput of rates in the sampling set. The model then
predicts the throughput of other rates and chooses the rate with
the highest expected throughput.

Then, the resulting throughput of the chosen rate is calculated
by looking at its actual throughput in the data set at that point
of time (Tmodel ) which is compared to the maximum throughput
among all rates at that point of time (Tmax ) (which is available in
the trace). Relative RA Error is then calculated by averaging the
Tmax−Tmodel

Tmax
relative differences over all rows (time windows).

Optimal Selection: After determining the rates selected by the
model at each point in time, we then calculate the percentage of
rows (time windows) that the model’s choice results in a throughput
within 5% of the optimal throughput. (i.e.,Tmodel >= 0.95×Tmax ).
We call this metric Optimal Selection.

Figure 3 shows Relative RA Error, and Figure 4 shows Optimal
Selection for models with different numbers of sampling rates.
These metrics are calculated on the testing set to evaluate the
model’s performance on cases it has not seen before. Two different
x-axes are shown for Model A and Model B as they have different
numbers of supported rates. As can be seen, the model does a good
job of choosing rates when the size of the sampling set is large
enough (e.g., contains at least half of the supported rates). However,
as we lower the number of sampling rates, the error increases and
the optimal selection decreases considerably.
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Figure 3: Relative RA Error measures the average through-
put loss (as a result of inaccuracies in the predictions) when
simulating rate adaptation on the testing data set. The error
gets high when less than 1/2 of rates are sampled.
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Figure 4: Optimal Selection measures the fraction of time
that model predictions result in choosing a rate that per-
forms at most 5% worse than the actual optimal rate. A rea-
sonable value (>90%) requires sampling at least 1/2 of rates.

6.2 Feature Selection Evaluation
In this section, we evaluate the recursive feature elimination (RFE)
approach to selecting the best rates for sampling. To do so, we
consider the sampling sets of equal size chosen by our approach
and other approaches to selecting rates and train separate models
for each of these sampling sets. Then, we compare the performance
of the trained models on the testing set to see which sampling set
provides the most accurate estimations.

We compare the RFE approach to two other approaches. (1) uses
only SGI (short guard interval) rates, chosen because this was the
sampling set used by Abedi et al. [2]. (2) uses a random set of
sampling rates picked from the supported rates. To compare with
the SGI method, the size of the sampling set for RFE and models is
set to half of the supported rates (i.e, 16 rates for Model A and 32
rates for Model B).

Table 5 shows the previously defined metrics for the different
models trained with these three approaches to rate selection on the
testing set. Sampling time is the total time required to probe every
rate in the sampling set once. As can be seen, rates selected by
RFE are both faster to sample (our importance calculation method
considers sampling time) and results in significantly lower errors
compared to other methods for both Model A and Model B.

Table 5: Models using different feature selection techniques.
Rates chosen by RFE are both faster to sample and provide
more accurate estimations.

Method Sampling
Time MAE Relative

RA Error
Optimal
Selection

SGI (A) 8.9 ms 4.1 Mbps 7.7% 70.7%
Random (A) 9.5 ms 4.0 Mbps 7.4% 66.6%
RFE (A) 8.2 ms 3.0 Mbps 3.3% 90.7%
SGI (B) 15.0 ms 3.9 Mbps 3.1% 84.7%
Random (B) 16.0 ms 3.9 Mbps 5.1% 76.8%
RFE (B) 12.9 ms 2.5 Mbps 2.5% 91.4%

6.3 Trace-Based Evaluation
As discussed previously, a trace-based evaluation is the most sound
way to compare different rate adaptation and frame aggregation
algorithms because different algorithms are all exposed to the same
channel conditions. We use T-SIMn because it has previously been
shown to be extremely realistic and highly accurate [5]. We have
implemented NeuRA and other algorithms using the rate adaptation

algorithm class in T-SIMn. T-SIMn is written in C++ and we have
added a set of python bindings using pybind11 [17] to enable using
the Keras models with T-SIMn. The NeuRA implementation uses 3
main parameters described below.
• Number of sampling rates (N ): the size of the sampling set
used in the neural network model.
• Single rate sampling probability (F ): the probability of sam-
pling a rate. So the probability of sampling is N × F .
• Frame aggregation algorithm (FAA): options are “Default”,
“MoFA”, and “PNOFA”. “Default” is the algorithm from the ath9k
driver which aggregates as many frames as possible.
When NeuRA needs to select a rate, with a probability of N × F

it chooses the next sampling rate and sends a probe A-MPDU of
size 1. Otherwise (with a probability of 1 − N × F ), it chooses the
rate predicted to result in the highest throughput. Every 1 ms (of
simulated time), the best rate for transmission is updated based
on the sampling results and estimations from the neural network
model. This is done by calculating the effective throughput of the
sampling rates based on their measured frame error rates. The
throughput of the sampling rates is then fed to the neural network
to estimate the throughput of the other rates.

The possible values of N are between 2 and the total number
of supported rates. We tested F values between 0.001 and 0.01
using 0.001 increments. We have run simulations with all possible
combinations of these three parameters for all training traces and
have chosen the parameters that most consistently perform better
than the others. The chosen parameters are listed in Table 6 for the
two models and Table 7 shows the set of sampling rates used with
these parameters. These parameters are used for all NeuRA results.

Table 6: Best parameters for NeuRA. Found empirically by
trying all combinations of parameters on the training traces.

Model Best N Best F Best FAA
A 20 0.004 Default
B 36 0.004 PNOFA

Table 7: Sampling rates used in best NeuRA configurations.

Model Group MCS Indices
A

(2.4 GHz)
20 MHz - LGI 4, 5, 6, 7, 10, 11, 12, 13, 14, 15
20 MHz - SGI 4, 5, 6, 7, 10, 11, 12, 13, 14, 15

B
(5 GHz)

20 MHz - LGI 7, 12, 13, 14, 15
20 MHz - SGI 6, 7, 11, 12, 13, 14, 15
40 MHz - LGI 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15
40 MHz - SGI 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15

By examining Figure 3 and Figure 4, we see that the best sampling
set size (best value of N ) corresponds to the smallest sampling set
with a relative rate adaptation error lower than 2% that also provides
estimates that for at least 95% of the time lead to choosing a rate
that is within 5% of the optimal rate.

We now compare the performance of the following rate adap-
tation/frame aggregation algorithm combinations on the testing
traces. These were chosen from the best algorithms that are either
available in T-SIMn or that we could find an implementation for.



While conducting our experiments, we observed that STRALE al-
ways performs better than MoFA and MoFA is therefore not shown
in our result to reduce clutter.

(1) Minstrel HT (ath9k): This is the default rate adaptation algo-
rithm in the ath9k driver. It uses the default frame aggregation
algorithm to aggregate as many frames as possible.

(2) Minstrel HT w/o LGI sampling: The same as (1), except the
sampling frequency is decreased by half by only sampling SGI
rates. LGI rates are assumed to be equal to their SGI counter-
parts. This algorithm was included in Abedi et al. [2].

(3) Minstrel HT + PNOFA: The same as (1), but it uses the PNOFA
frame aggregation algorithm.

(4) STRALE: This is using the STRALE holistic approach to frame
aggregation and rate adaptation.

(5) Minstrel HT + OSOFA: The same as (1), but the Offline Sta-
tistically Optimal Frame Aggregation (OSOFA) length for the
current rate is chosen by examining the past and future in-
formation in the trace (as is done in (8)). It provides an upper
bound on the how much the throughput of Minstrel HT can be
improved with better frame aggregation.

(6) Intel iwl-mvm-rs: The rate adaptation algorithm used in re-
cent Intel WiFi devices. Intel WiFi cards are a popular choice
for laptops and desktop computers. We have used the code
from Grünblatt et al. [13] and ported it to T-SIMn. The default
frame aggregation algorithm is used since the frame aggrega-
tion mechanism of Intel devices is not known.

(7) NeuRA:NeuRAwith parameters from Table 6 with predictions
and rate changes being made every 1 ms.

(8) Offline Statistically Optimal: As described in Section 4, the
past and future information in the trace is used to make statis-
tically optimal choices for both the rate and the aggregation
length for each transmission.

The combination (5) and (8) are not practical combinations as
they require information about the future. However, they are in-
cluded because they provide useful upper bounds on throughput
that could be obtained by improving rate adaptation and frame
aggregation algorithms.

We have generated several synthetic traces with known be-
haviours to verify the expected behaviour of all algorithms (not
shown here). Interestingly, these enabled us to find a minor bug in
the original STRALE implementation and a bug in our porting of
the Intel iwl-mvm-rs algorithm. These bugs have been fixed and the
simulation results obtained using the synthetic traces now match
the expected results. A thorough description of this process and
more details of the experimental results can be found in Shervin
Khastoo’s thesis [20].

The results of our trace-based evaluations are shown in Figure 5.
All throughputs are shown relative to that ofMinstrel HT (1). Table 8
presents the average throughput of obtained by Minstrel HT (1)
on each of the testing traces. These traces cover a wide spectrum
of link capacities between the sender and receiver. As can be seen
in these graphs, NeuRA consistently improves the throughput on
scenarios that are similar (but not identical) to those in the training
set and those that are different from those in the training set (unseen
scenarios). Interestingly, some of the biggest improvements are
obtained in the previously unseen scenarios (probably due to their

higher mobility). Note that in these comparisons, for each scenario,
all algorithms are subject to identical conditions from a single WiFi
trace. As a result, all differences are statistically significant and
confidence intervals are not applicable.
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Figure 5: Average throughput relative to Minstrel HT.
NeuRA improves the throughput on previously seen and un-
seen scenarios. The offline statistically optimal throughput
is an upper bound and is not achievable in practice.

Table 8: Average throughput of Minstrel HT (1) on traces.

Scenario A1 A2 A3 A4 A5 A6 A7
Tput (Mbps) 18.7 15.9 5.7 27.1 6.0 16.6 7.1
Scenario B1 B2 B3 B4 B5 B6 B7

Tput (Mbps) 110.7 28.5 118.4 55.7 43.3 84.3 39.8

6.4 Observations
Here, we list several observations made from examining the results
of our trace-based evaluation (Figure 5.) Recall that these traces are
mainly collected from commonly used environments representative
of those in which devices would actually be used.
Key Observations 1: NeuRA achieves up to 24% (16% on average)
higher throughput than Minstrel HT and up to 32% (13% on aver-
age) higher throughput than Intel iwl-mvm-rs. Furthermore, if we
compare NeuRA with the maximum throughput across all practical
combinations, NeuRA still provides throughput up to 20% (9% on
average) higher. Also, NeuRA’s throughput is almost never lower
than any other practical algorithm (except Scenario B1 where Intel
outperforms NeuRA by 0.8%).
Key Observations 2: The offline statistically optimal solution
achieves throughput up to 58% (30% on average) higher than Min-
strel HT, up to 74% (28% on average) higher than Intel iwl-mvm-rs,
and up to 58% (22% on average) higher than the maximum through-
put among practical combinations (except NeuRA). It shows that
the widely-used algorithms can be improved but not the amounts



reported in some previous research. When compared with NeuRA,
the offline statistically optimal algorithm achieves only up to 31%
(12% on average) higher throughput. Another way of looking at
these results is that NeuRA reduces the gap between the practical
algorithms and the offline optimal algorithm by roughly half.
Other Observations 1: Minstrel HT w/o LGI sampling (2) per-
forms up to 5% (1% on average) better than vanilla Minstrel HT. It
shows that if the relationships between rates are not used with a
proper prediction model, the improvement is not significant and
the throughput may even decrease in some case. Furthermore, we
note that Intel iwl-mvm-rs performs up to 15% (3% on average)
better than Minstrel HT. However, in several scenarios it performs
up to 8% worse.
Other Observations 2: We note that Minstrel HT + OSOFA (5)
improves Minstrel HT by less than 2.5% on average. Even though
there is significant improvement of up to 14% for Scenarios B5 and
B7, by comparing OSOFA (5) and Offline Statistically Optimal (8),
we see that frame aggregation has a less significant role than rate
adaptation for the devices and scenarios used in this study. Limiting
the aggregation length is only useful when there is high variability
in the subframe error rates of the rates being used. Figure 6 shows
the maximum SFER variability for A3 (no impact from subframe
position) and for B7 (significant impact from subframe position).
We observe that our cellphone devices (SM-N920C and EML-L09C)
show much less SFER variability (mostly flat curves) when com-
pared to other devices. Also, both STRALE and PNOFA perform
worse than vanilla Minstrel HT in 2.4 GHz scenarios (A1-A7). In
5 GHz scenarios (B1-B7), STRALE obtains some minor improve-
ments (up to 5%) while in some case PNOFA obtains slightly larger
improvements (up to 10%).
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Figure 6: Examining the rates with highest variability in sub-
frame error rates (SFER) suggests that only some scenarios
benefit from limiting the frame aggregation length.

7 REAL-WORLD PROTOTYPE
We have seen that NeuRA consistently improves the throughput
of rate adaptation algorithms in trace-based evaluations. However,
that evaluation does not consider the required processing power
and other obstacles that may prevent NeuRA from working in real-
time. In this section, we develop and describe a real-world NeuRA
prototype developed for the ath9k WiFi device driver and compare
its performance with the default rate adaptation algorithm (Min-
strel HT). Empirical evaluations can be quite difficult to perform
correctly when comparing the performance of different rate adapta-
tion algorithms because of the high variability inWiFi channel state.

To ensure that the evaluation is sound, we utilize the randomized
multiple interleaved trials method [4] to neutralize the effect of
changes in the environment on the comparison.

The architecture of this prototype is shown in Figure 7. It consists
of amodified ath9k Linux kernelmodule and a user space process for
performing predictions. During NeuRA’s setup phase the sampling
set and sampling frequency are sent to the driver.
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Figure 7: NeuRA implementation using ath9k driver.

The modified driver writes all received Block ACKs into kernel
message ring buffer which is read by the NeuRA process. NeuRA
keeps a exponentially weighted moving average (EWMA) of the
frame error rate for each sampling rate and updates it whenever it
reads a block ACK of that rate. Every 1 ms, NeuRA calculates the
effective throughput of the sampling rates, feeds them to the neural
network model to predict the throughput of each rate. The three
best rates are then sent to the ath9k driver via debugfs to be used as
the transmission and retry rates. The user space process is written
in C++ for performance reasons. We use the same Keras models
derived from our training set and use the frugally-deep library [15]
to perform the predictions in C++. We used the same parameters
and sampling rates as used in the trace-based evaluations.

In each experiment, we compare the maximum achievable
throughput using Minstrel HT and NeuRA. We saturate the link
between the sender and receiver using iperf3 [22] to send UDP pack-
ets. We exclude the first and last 2 seconds of each experiment (the
warm up and cool down periods). We use 20 randomized multiple
interleaved trials [4] (10 randomly interleaved trials for Minstrel HT
and 10 for NeuRA). The length of each trial is 14 seconds (10 seconds
when excluding warm up and cool down).

Table 9 describes the scenario for each experiment. E1 is per-
formed with Configuration A (2.4 GHz, 20 MHz, 2 antennas) and
E2 is performed with Configuration B (5 GHz, 40 MHz, 2 antennas).
The TP-Link TL-WDN4800 802.11n PCI-E card and ath9k driver are
used as for the wireless access point (sender). This runs on an AMD
Phenom™ II X4 955 Processor at 800 MHz. We observe, that the
average CPU utilization of NeuRA does not exceed 20% of a single
core when with predictions done every 1 ms. We observe that it
takes 2-6 packets (depending on the rates used) from the time a
new set of transmission rates are set (by the user-space process)
until those rates are used in transmission.

Table 9: NeuRA prototype scenarios (tput for Minstrel HT).

Exp Client Description Avg. Tput
E1 TL-WDN4200 Stationary, Close AP 58.3 Mbps
E2 TL-WDN4200 Stationary, Close AP 159.7 Mbps

Figure 8 compares the relative throughput of Minstrel HT and
NeuRA with 95% confidence intervals for each experiment. In these



stationary experiments, confidence intervals do not overlap and
the graphs show that NeuRA produces higher average throughput
(14% and 16%) than Minstrel HT. We also performed experiments
with mobile clients but in those scenarios, confidence intervals are
wide and overlap due to constant changes in the environment. We
do not include those results because they only demonstrate the
difficulty of conducting repeatable experiments in environments
with highly variable channel conditions.

Note that this prototype is designed to study the practicality
of NeuRA and measure its required computation power, not to
maximize throughput. The low measured CPU utilization demon-
strates that NeuRA processing power requirements are relatively
small and should easily be supported by access point CPUs or
an application-specific integrated circuit (ASIC). We also found
reducing the prediction interval to 5 ms does not seem to affect
throughput but lowers CPU utilization to 12%.
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Figure 8: Real-world experiments with the NeuRA proto-
type show that it improves the throughput.

8 CONCLUSIONS
In this paper, we present NeuRA, a neural network based rate
adaptation algorithm. NeuRA learns the relationships between the
throughput of WiFi physical rates and uses those relationships
to estimate the expected throughput of some rates based on the
measured throughput of other rates. We use a novel application of
recursive feature elimination (RFE) to choose the best set of rates to
sample. These rates and the derived models are then used to reduce
the number of rates that are sampled, thus decreasing sampling
overhead, making good choices in rates to select and increasing
WiFi throughput. Additionally, we derive an previously unknown
offline algorithm to calculate the statistically optimal combination
of the number of frames to aggregate and rate to choose. This
provides an upper bound on the throughput that can be obtained
by practical online algorithm.

Trace-based evaluations are used to compare the performance of
NeuRA and the statistically optimal solution with widely-used rate
adaptation and frame aggregation algorithms. The neural network
model learns (from training data) fairly generalizable relationships
between rates that work well on previously unseen devices, types
of client motion and environments. NeuRA performs up to 24%
(16% on average) better than Minstrel HT and up to 32% (13% on
average) better than Intel iwl-mvm-rs. Interestingly, NeuRA pro-
vide throughputs that are surprisingly close to that of the offline
statistically optimal algorithm (especially given that the offline al-
gorithm uses information about the future that is not available to
NeuRA). Finally, we implement a prototype of NeuRA using the
ath9k driver and find that it uses a relatively low amount processing

power to increase the average throughput by 15% when compared
to the default Minstrel HT scheme. While our evaluations of NeuRA
have focused on using 802.11n devices, we believe that even better
results may be obtained when using 802.11ac and 802.11ax devices
with more physical rates.

We plan to make the traces and source code used in this paper
publicly available [1].
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