NeuRA: Using Neural Networks to Improve WiFi Rate Adaptation

Shervin Khastoo, Tim Brecht and Ali Abedi

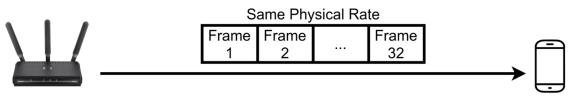
DAVID R. CHERITON SCHOOL OF COMPUTER SCIENCE



Background

Two critical decisions before transmitting each frame

- 1) Which physical (PHY) rate to use
- 2) How many subframes (MPDUs) to aggregate in a frame (A-MPDU length)



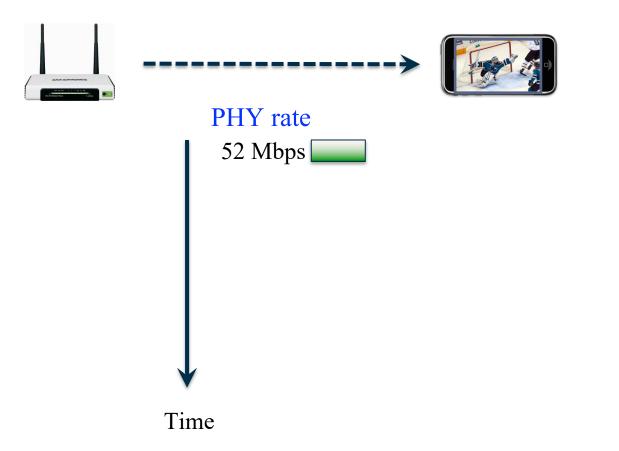
Both can have a big impact on throughput

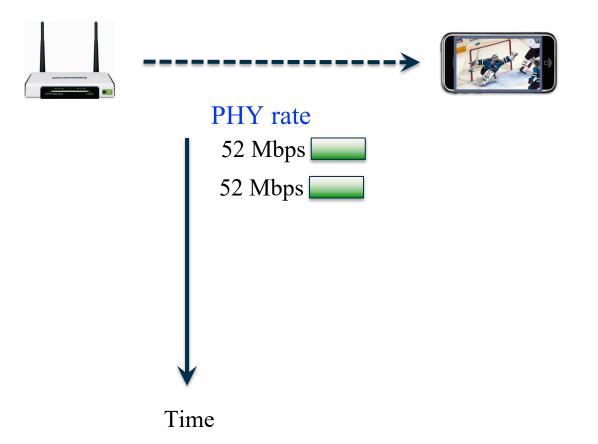
Main Contributions

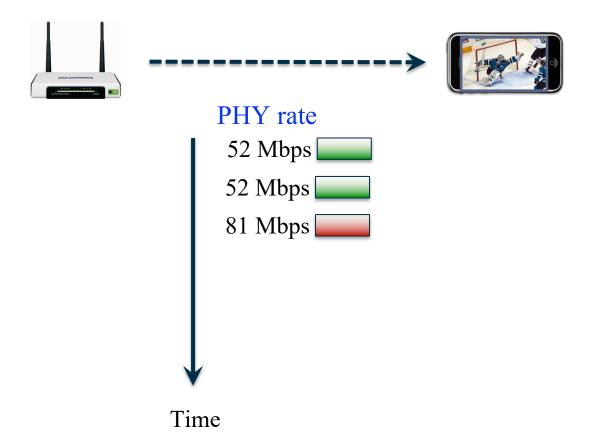
NeuRA: uses a neural network to improve rate adaptation and throughput

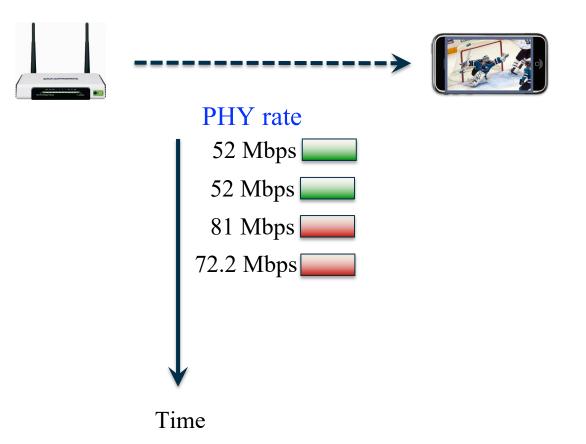
Offline Statistically Optimal: rate adaptation and frame aggregation algorithm Upper bound on throughput

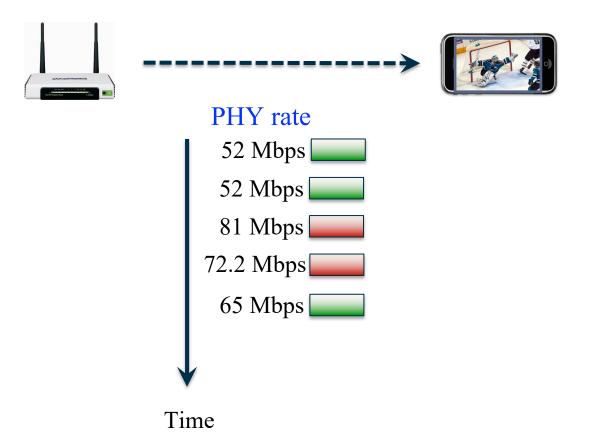
Can finally better determine how well algorithms are performing

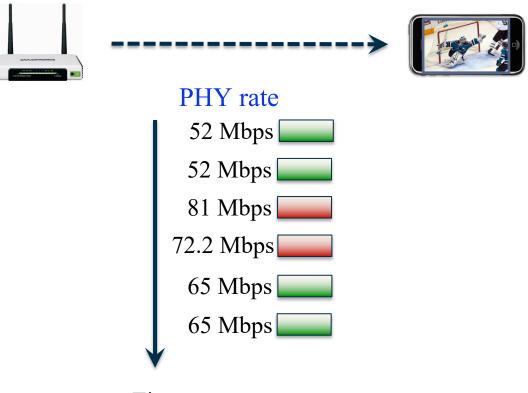


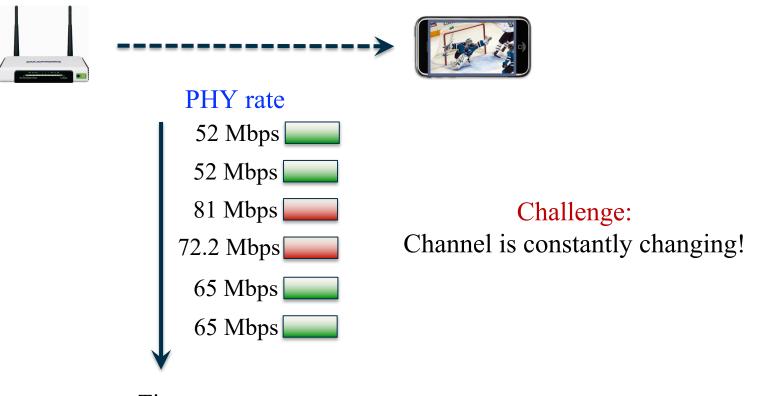


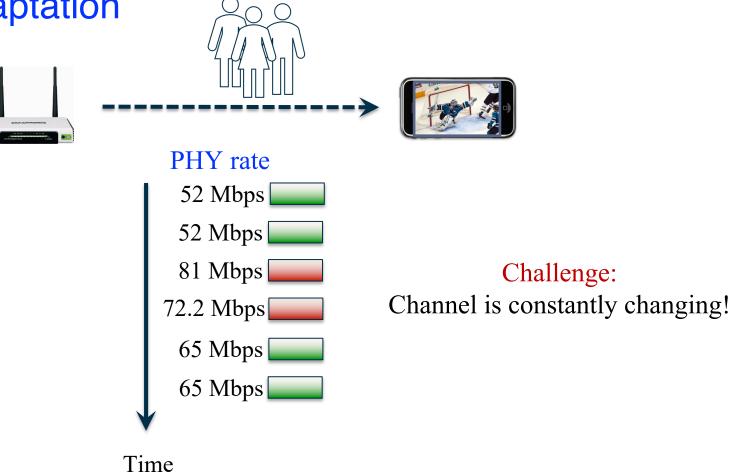


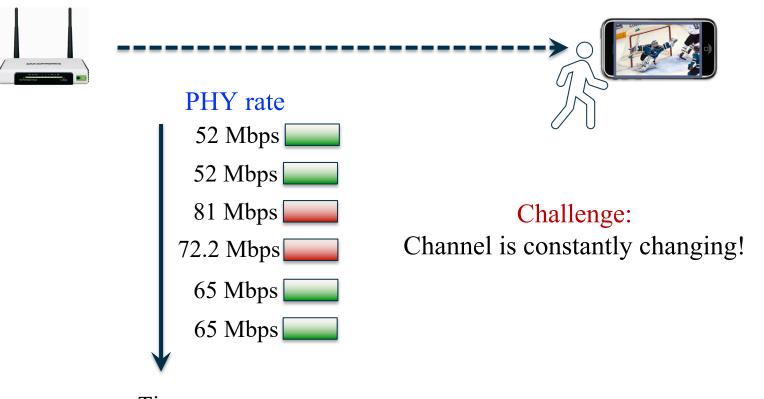


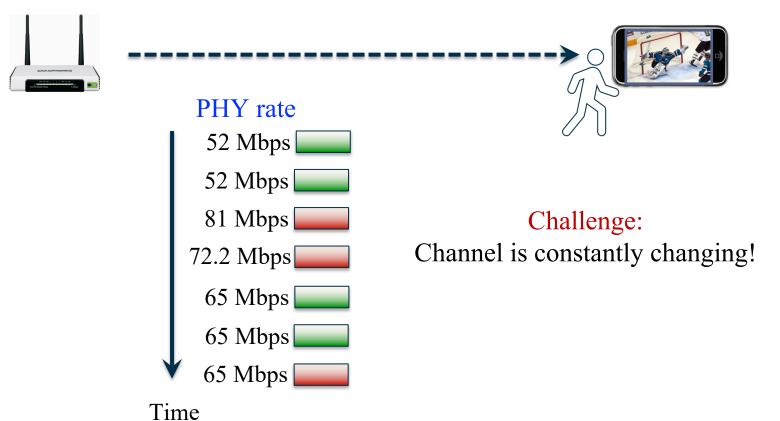


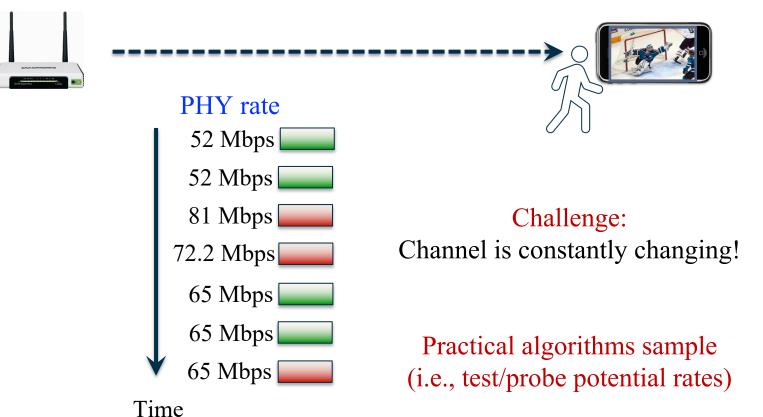


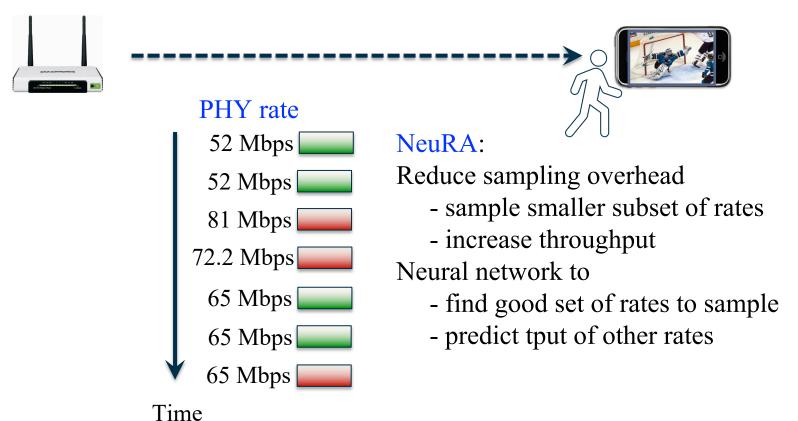




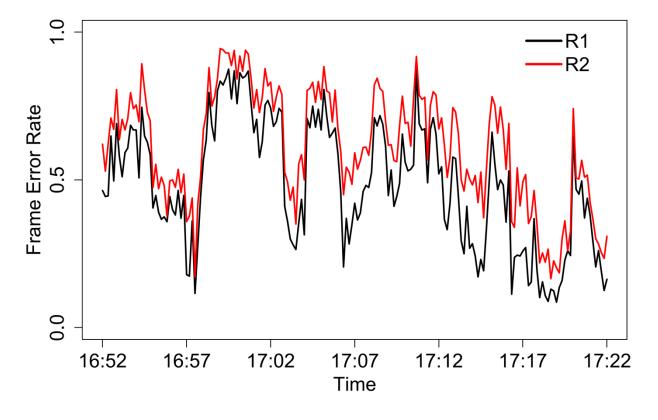




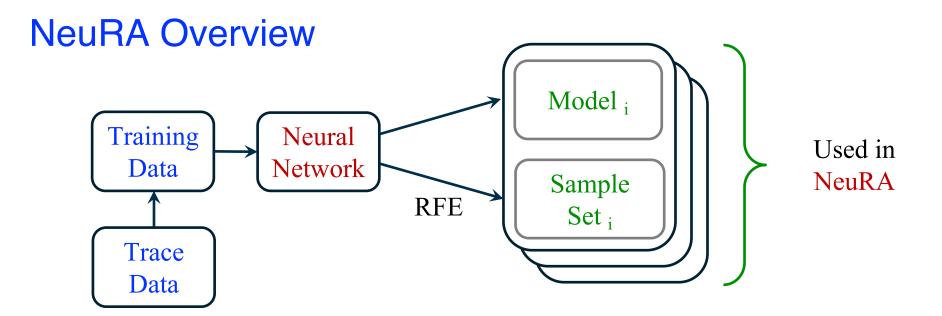




Relationships Exist Between Rates



[Abedi and Brecht, MSWiM, 2016]



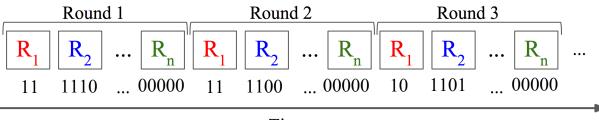
Recursive Feature Eliminate (RFE) optimizes

Estimation Power

Sampling Time

Trace Collection

- Modify WiFi device driver (ath9k)
- Round robin all rates
- Rates see similar channel conditions in round



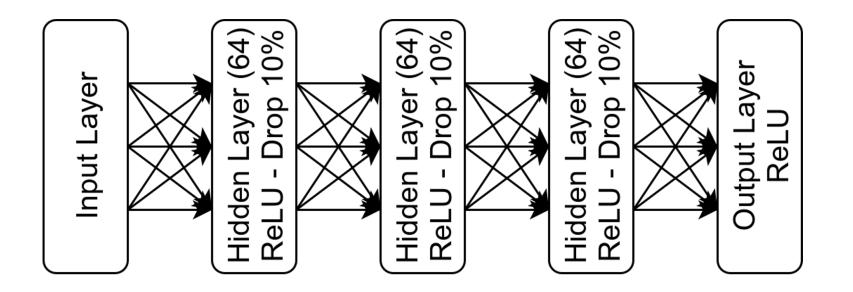
Time

Training Data

- For 1-second time intervals, throughput of each rate is calculated
- Normalize to maximum: ([0, 1] range) to prepare for neural network training

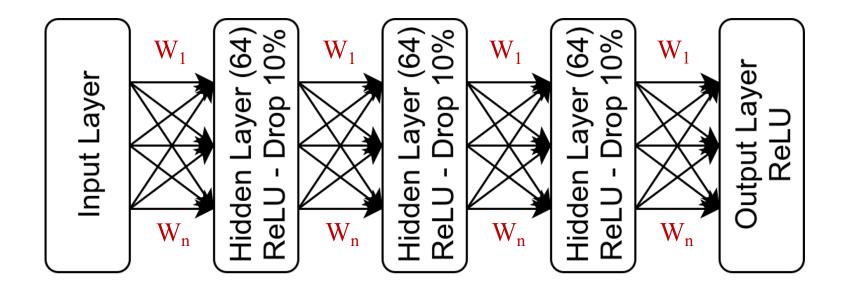
Time (s)	$TPut_1$	$TPut_2$	• • •	$TPut_{64}$
0	0.015	0.039	•••	0.0
1	0.016	0.035	•••	0.0
•••	•••	•••	•••	•••
2399	0.009	0.027	•••	0.0

Neural Network



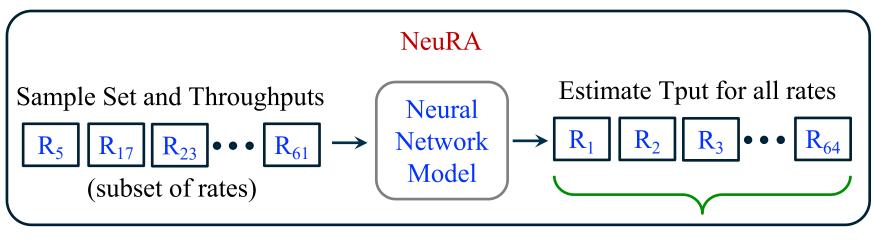
Input: Fixed set of rates and tputs, Output: expected tput of all rates

NeuRA's Resulting Neural Network Model



Weights on edges determined during training

NeuRA



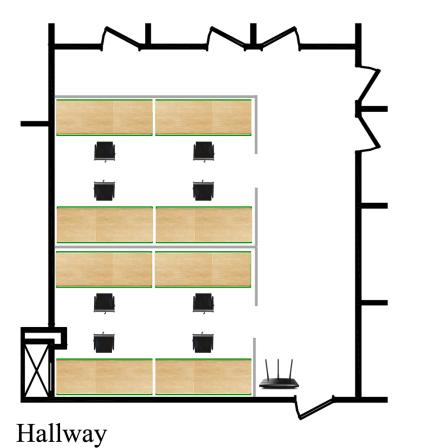
Rate with best expected throughput

Evaluation Methodology

- Two separate models: 2.4 GHz and 5 GHz
- Two separate sets of traces for each: training and testing (evaluation)

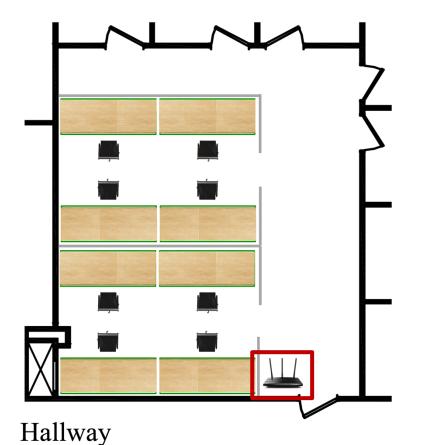
Config	Spectrum	# Streams	Channel Width	# Rates	Channel Condition
A	2.4 GHz	2	20 MHz	32	Congested
В	$5~\mathrm{GHz}$	2	$40 \mathrm{~MHz}$	64	Unoccupied

Scenarios for Trace Collection



Office Environment Graduate student offices / lab

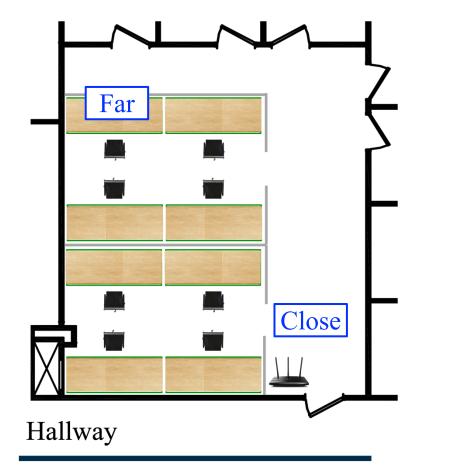
Scenarios for Trace Collection



Office Environment Graduate student offices / lab

Access Point PC with ath9k WiFi (802.11n)

Scenarios for Trace Collection: Training Data

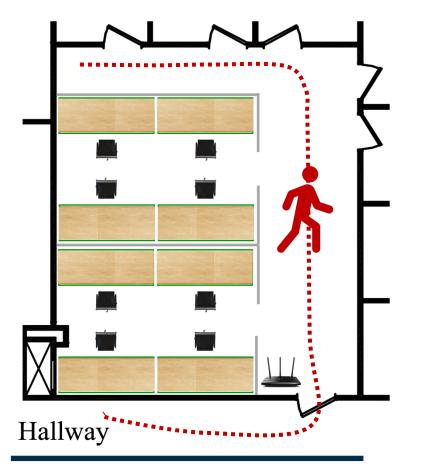


Stationary: Close to AP ~1 m Far from AP ~10 m

Laptop with TL-WDN4200 USB device

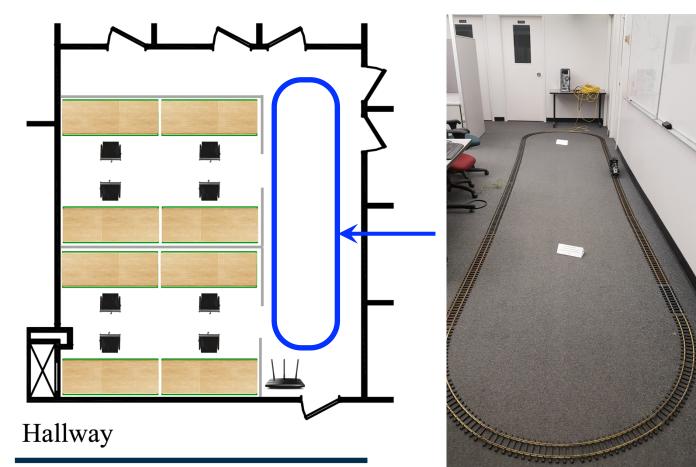
Samsung Galaxy Note 5

Scenarios for Trace Collection: Training Data



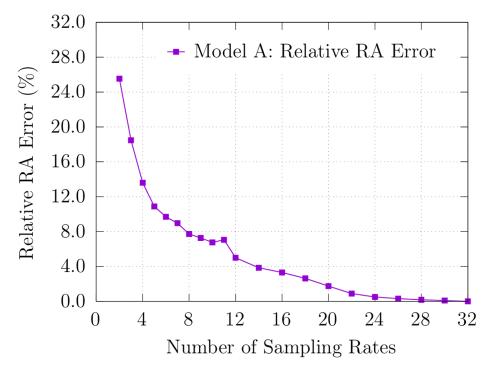
Mobile: Walking

Scenarios for Trace Collection: Training Data



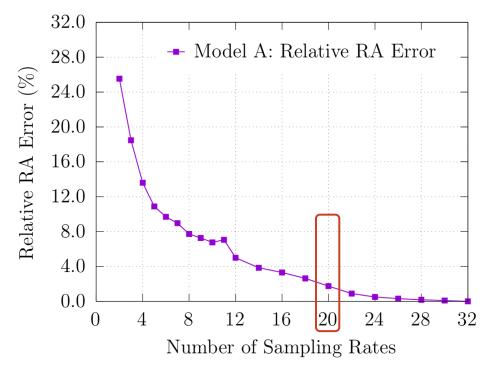
Mobile: Toy Train Fast and slow

Relative Rate Adaptation Error



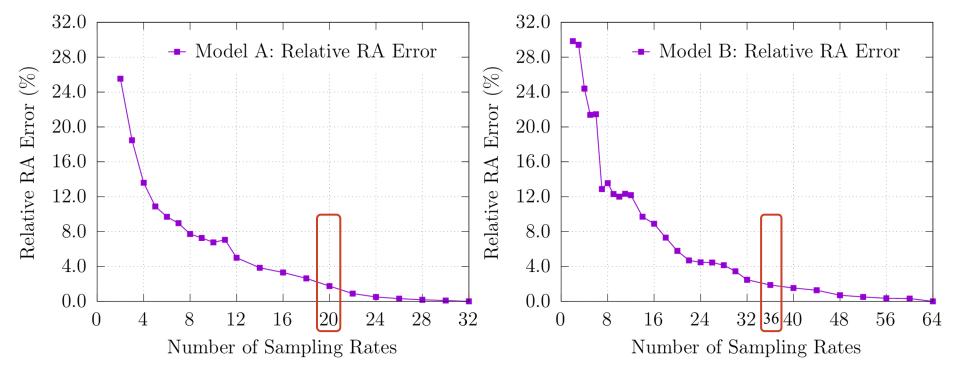
• Rate adaptation using model (avg. error on testing dataset)

Relative Rate Adaptation Error



• Rate adaptation using model (avg. error on testing dataset)

Relative Rate Adaptation Error



• Rate adaptation using model (avg. error on testing dataset)

Rate Adaptation Algorithms

- Minstrel HT
- NeuRA
- Intel iwl-mvm-rs
- Minstrel HT w/o LGI Sampling

Frame Aggregation Algorithms

- Minstrel HT + PNOFA
- Minstrel HT + OSOFA

Both

- STRALE
- Offline Statistically Optimal

Rate Adaptation Algorithms

- Minstrel HT
- NeuRA
- Intel iwl-mvm-rs
- Minstrel HT w/o LGI Sampling

Rate Adaptation Algorithms

- Minstrel HT
- NeuRA
- Intel iwl-mvm-rs
- Minstrel HT w/o LGI Sampling

- Most widely used algorithm
- 100's of millions of devices
- In Linux
- Use as a basis for comparison

Rate Adaptation Algorithms

- Minstrel HT
- NeuRA
- Intel iwl-mvm-rs
- Minstrel HT w/o LGI Sampling

• From this work

Rate Adaptation Algorithms

- Minstrel HT
- NeuRA
- Intel iwl-mvm-rs
- Minstrel HT w/o LGI Sampling

- Another practical widely used alg
- Used in recent Intel chipsets
- Described in and code ported from [Grünblatt, et al. MSWiM, 2019]

Rate Adaptation Algorithms

- Minstrel HT
- NeuRA
- Intel iwl-mvm-rs
- Minstrel HT w/o LGI Sampling

- From "relationships" paper [Abedi and Brecht, MSWiM, 2016]
- Proof of concept for relationships
- Samples SGI rates, estimates LGI

Rate Adaptation Algorithms

- Minstrel HT
- NeuRA
- Intel iwl-mvm-rs
- Minstrel HT w/o LGI Sampling

Frame Aggregation: all maximize number of frames Except: NeuRA in 5 GHz (PNOFA)

- Practical Near Optimal Frame Aggregation
- Offline Statistically Optimal Frame Aggregation

PNOFA paper [Abedi et al, MSWiM, 2020] Frame Aggregation Algorithms

- Minstrel HT + PNOFA
- Minstrel HT + OSOFA

• Adjusts Frame Length and Rate [Byeon et al. INFOCOM 2017]

Both

- STRALE
- Offline Statistically Optimal

Both

- STRALE
- Offline Statistically Optimal

Offline Statistically Optimal: FA and RA Algorithm

Key contribution

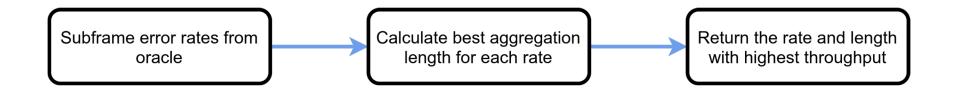
Statistically optimal frame length and rate

Upper bound on throughput of practical RA and FA algorithms

Previously weak understanding of how well algorithms were doing

- Only relative to each other
- No idea of how much room there is for improvement
- When do we stop creating new algorithms?

Offline Statistically Optimal: FA and RA Algorithm

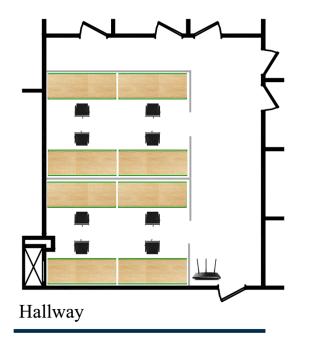


Trace-Based Evaluation

• T-SIMn: trace-driven simulator [Abedi et al. MSWiM, 2016]

- Trace-based: all algorithms see the same channel conditions Differences are due to algorithms not changes in the channel
- Can implement Offline Statistically Optimal (look ahead in trace)

Different Traces and Scenarios for Testing

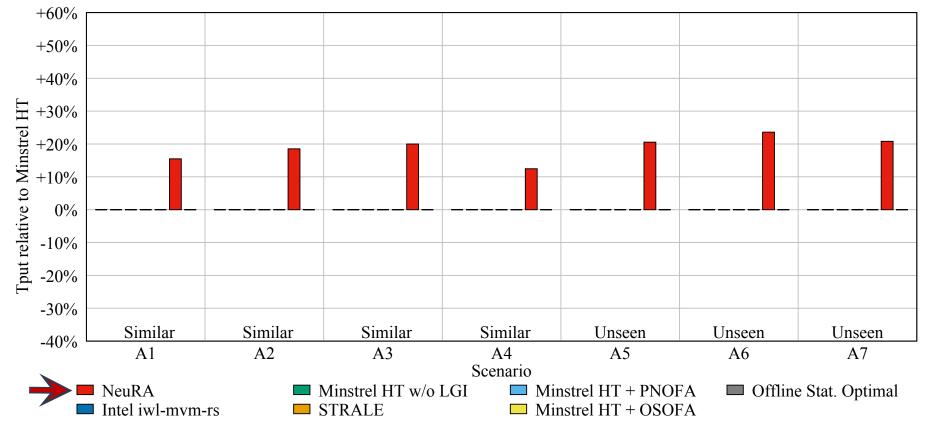


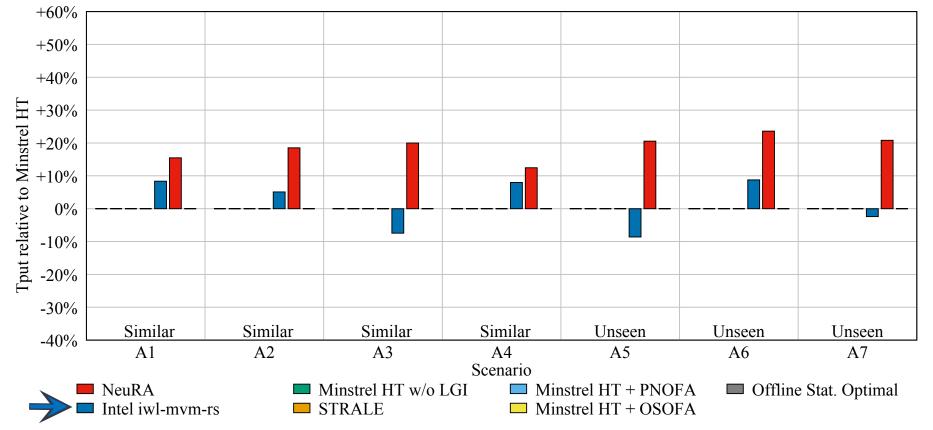
- All new traces
- Some similar setting as training
- Previously unseen scenarios
 - 2 new devices
 - New mobility patterns (extreme movement)
- 7 scenarios for each model
- 5 20 minutes each
- Stationary and mobile

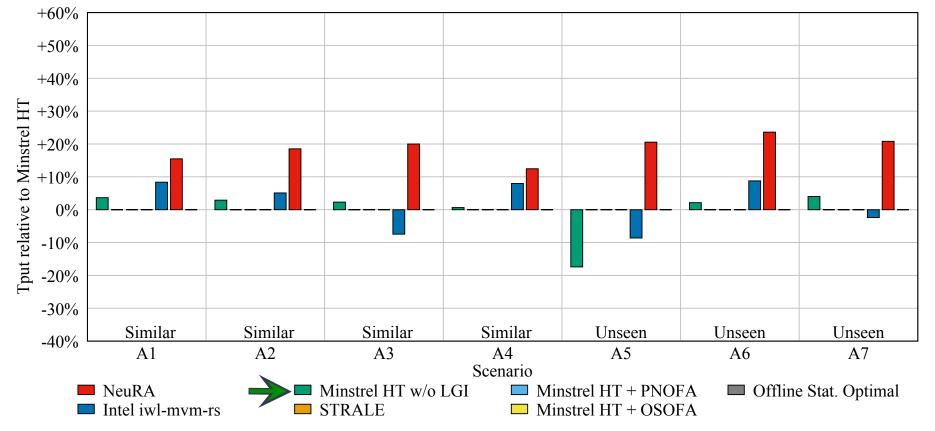
Intel 8265 laptop WiFi card Walking

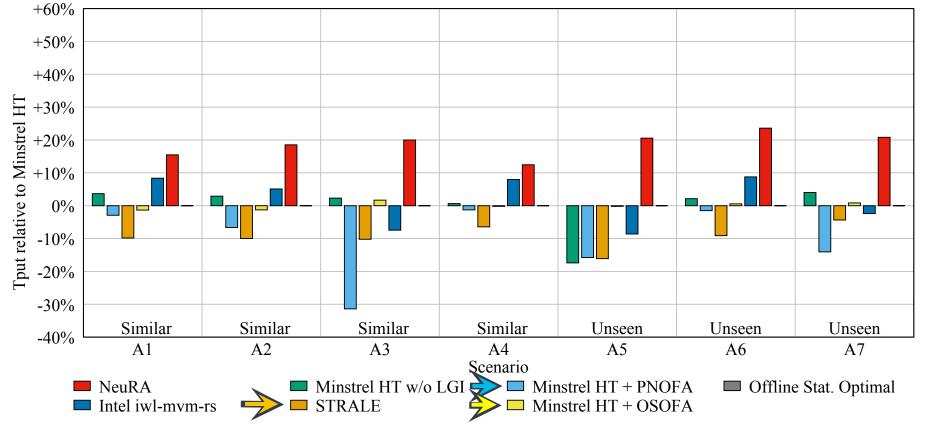
Traces from WiFi experiments collected using real-world conditions

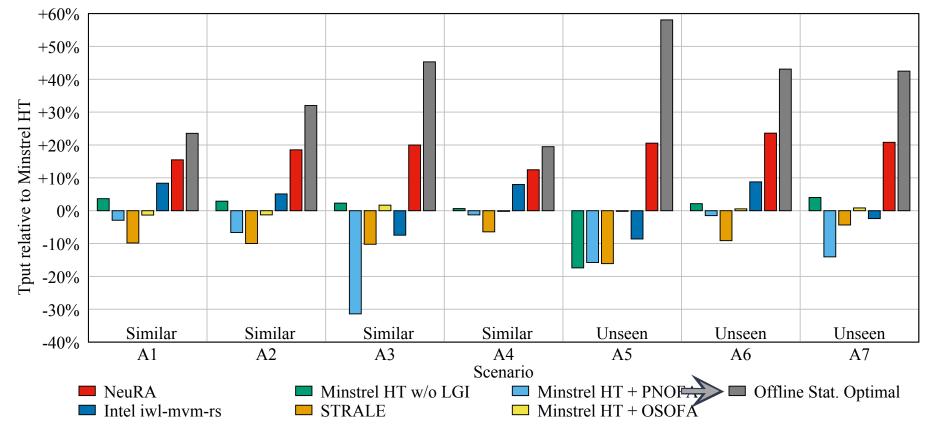
Huawei P20 (EML-L09C) Walking and Stationary

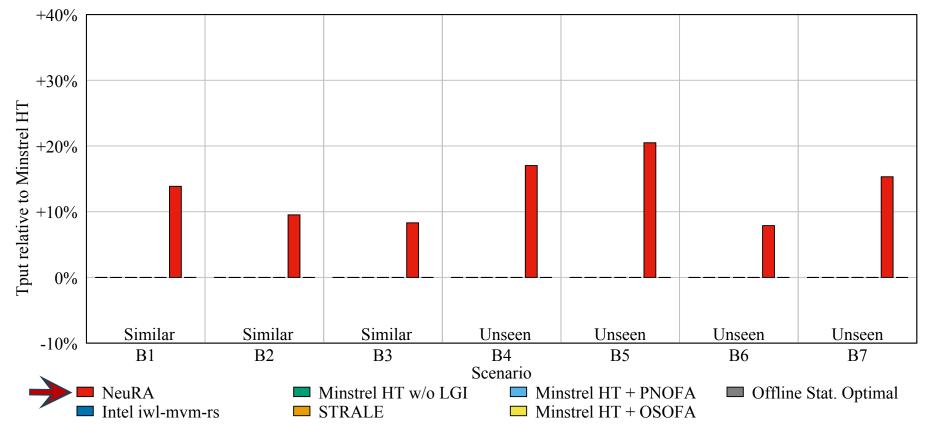


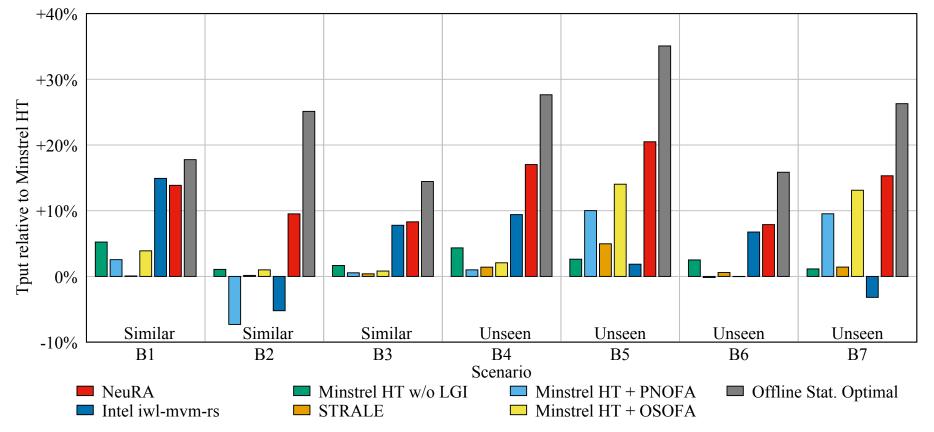








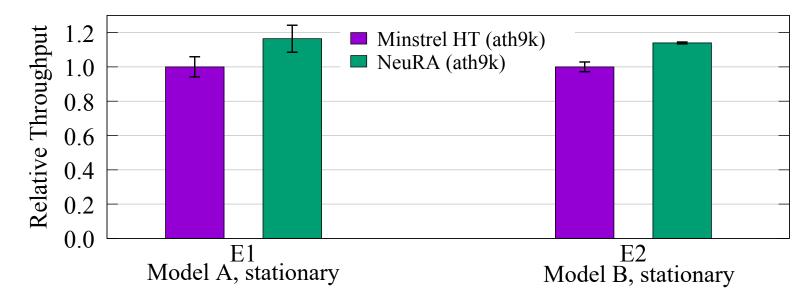




Summary of Trace-Driven Evaluation

- NeuRA
 - Up to 24% higher tput than Minstrel HT (16% on average)
 - Up to 32% higher tput than Intel iwl-mvm-rs (13% on average)
 - Reduces gap between Minstrel HT and upper bound by half
 - Remaining gap not overly large

Real-World Prototype (in Linux)



• CPU: 20% of a 800 MHz core

Conclusions

NeuRA

- Use predictions from neural network model, reduce sampling overhead
- Generalized model improves throughput on unseen scenarios
- Low processing overhead to improve throughput in real world
- Potentially greater impact with more rates (802.11ax: up to 768!)

Offline Statistically Optimal Algorithm

• Obtain upper bound on throughput (NeuRA is not that far from opt)

Simulator, Traces, Algorithms to be made available https://cs.uwaterloo.ca/~brecht/neura