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Multiplicative inequalities for reliability bounds are derived, by observing that certain reliability
measures are positively correlated. These inequalities can be used to obtain substantial im-
provements on available bounds for network reliability.

1. BACKGROUND AND MOTIVATION

In the network design process, one goal is to select a network topology which is
highly reliable. Although there is no universally accepted measure of reliability, the
most widely used definition is a probabilistic one. The network is modelled as a
probabilistic graph G = (V,E), in which V is a set of nodes representing sites in the
network, and E is a collection of undirected edges representing bidirectional point-to-
point communication links. Nodes are not susceptible to failure, but edges are. Each
edge e operates with some known probability p.: In this setting, the reliability is the
probability that the network can support some desired network operation, when edges
fail independently according to the given probabilities. Three standard reliability mea-
sures arise in this way. An all-terminal operation requires that every pair of nodes has
a path of operational edges connecting them, and all-terminal reliability is the prob-
ability that such an event occurs in the network. A two-terminal operation for specified
nodes sand t requires that there be (at least) a path of operational edges connecting
s with t; two-terminal reliability is then the probability of this event. Finally, a k-
terminal operation requires, for a specified set K of k target nodes, that every pair of
target nodes has a path of operational edges connecting them.

Numerous techniques have been developed for computing these three reliability
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measures [4], but each method requires exponential time for general networks. In fact,
it is #P-complete to compute any of the three measures, and hence for large scale
network design we must resort to approximation strategies. One main line of inves-
tigation here has studied the development of efficiently computable lower and upper
bounds on the reliability measures. If these bounds can be made sufficiently tight, the
bounds alone may suffice in the design process; we need only distinguish between
candidate network topologies.

With this in mind, a number of general strategies have been developed for obtaining
bounds. The most prevalent strategy is subgraph counting. pioneered by Van Slyke
and Frank [11]. Here one makes the additional assumption that every edge has the
same probability of operation, and then computes bounds on the number of i-edge
subnetworks which support the network operation, for each i. A number of powerful
combinatorial theorems lead to bounds on these subgraph counts, and thus to bounds
on the reliability (see [5]). Van Slyke and FnL.'1k[11] used this method to develop the
Kruskal-Katona bounds, which apply in each of the three reliability problems men-
tioned. Subsequently, Ball and Provan [1] used a theorem of Stanley to obtain much
tighter bounds, which apply to all-terminal reliability, but not to the two-terminal or
k-terminal problems.

The second major strategy, pioneered by Polesskii [9], employs edge-packings of
graphs (see [2,6]). In this approach, one partitions the edges of the network into
subnetworks. A lower bound is obtained by computing the probability that at least
one of the subnetworks supports the desired operation; an upper bound is obtained
taking subnetworks whose removal prevents network operation, and computing the
probability that at least one of the subnetworks fails. While much simpler than the
subgraph counting bounds, the edge-packing bounds are competitive. In fact, neither
strategy leads at present to bounds which are uniformly better than the other.

We consider another general strategy here, which differs from the two basic strategies
in an important respect; we assume that bounds from the two basic methods can be
readily computed, and develop some statistical inequalities which tighten the resulting
bounds. In a previous paper, we developed certain additive inequalities and demon-
strated that they often result in a substantial tightening of reliability bounds [3]. In
this paper, we establish some simple multiplicative inequalities. The inequalities are
always at least as tight as the previously known additive inequalities, and are easily
computed. In Section 5 we discuss computational issues and the ramifications for
bounding network reliability.

2. ADDITIVE INEQUALITIES

We first introduce required definitions, and recall the additive inequalities developed
in [3]. Let G = (V.E) be a probabilistic graph, with each edge e having operation
probability p ; A state S of G is an assignment to each edge of a state, either "oper-
ational" or "failed"; the network state is operational if it supports the desired network
operation, failed otherwise. A state is often represented as the subset of operational
edges. The probability of a network state is the product of operation probabilities for
edges operating in this state, and failure probabilities of edges failed in this state. An
event is a Boolean proposition mapping states to {O, I}; a particular event of interest
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to us is denoted C(K), the event that all nodes in a target set K can communicate via
paths of operational edges.

For an event <1>,we define Pr{G;<I>}to be the probability that event <I>occurs in G;
more precisely,

Pr{G;<I>}= ~ Pr{S}<I>(S)
state S

Pr{G;1jIA <I>}denotes the probability that events IjIand <I>occur simultaneously; Pr{G;IjII<I>}
denotes the conditional probability that event IjI occurs given that event <I>occurs.
Notice that Pr{G;C(V)} is all-terminal reliability, Pr{G;C({s,t})} is two-terminal reli-
ability, and Pr{G;C(K)} is k-terminal reliability.

The main purpose of adopting this uniform framework for the three problems is to
develop inequalities which relate the reliability measures. The main additive inequality,
used in [3], can be stated as follows:

Theorem 2.1. For any probabilistic graph G and sets of nodes KJ ,K2 with K k KJ U K2
and KJ n K2 :1=0, Pr{G;C(K)} ~ Pr{G;C(K1)} + Pr{G;C(K2)} - 1. •

This additive inequality is easy to prove, either directly or as a consequence of certain
reliability bounds assuming statistical dependence. The proof of Theorem 2.1 is by
no means remarkable, but the resulting improvements in reliability bounds are! Im-
provements over the subgraph counting and edge-packing approaches are found for
each of the three reliability problems [3].

A strengthening of Theorem 2.1 is therefore of significant interest. In the special
case when every edge has operation probability equal to .5, a lemma of Kleitman [8]
shows that

In the next section, we therefore develop a multiplicative inequality which improves
on Theorem 2.1, by extending Kleitman's lemma to all possible assignments of prob-
abilities.

3. MULTIPLICATIVE INEQUALITIES

The proof of Theorem 2.1 requires no knowledge of what the events C(K1) and
C(K2) are, but requires only that together they imply C(K). Hence worst-case as-
sumptions are made about the correlation of the two events. However, in the actual
context at hand, the correlation of the two events cannot realize this worst case;
informally, we can observe that if all nodes in KJ can communicate, this should not
decrease the probability that all nodes in K2 can communicate. The multiplicative
inequalities arise as a result of formalizing (and proving) this observation.

We introduce a sequence of preliminary lemmas.

Lemma 3.1. Pr{G;C(K')} ~ Pr{ G;C(K)} for all K' c K.

Proof. For any state in which C(K) holds, C(K') also holds. •
For an edge e, we define Up(e) to be the event which maps a network state to 1 if e
is operational in this state, 0 otherwise; then observe
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Lemma 3.2. Pr{G;Up(e)IC(K)};;;. Pr{G;Up(e)}.

Proof. Consider all states for which C(K) holds. Partition this collection of states
into two groups, one called U with states having e operational and one called D with
states having e failed. We need only show that the probability of obtaining a state of
U is at least pj(l - Pe) times the probability of obtaining a state from D. But this
follows from the observation that if SED, S U {e} E U. -

Let G be a probabilistic graph and K a target set for G. We use G . e and G - e
to denote the results of contracting and deleting the edge e, respectively. K . e denotes
the image of K under contraction of the edge e.

Lemma 3.3. Pr{G' e;C(K . e)} ;;;. Pr{G - e;C(K)}.

Proof. G - e and G . e have the same edge set, and thus their states are in a
natural 1-1 correspondence. Observe that every state connecting K in G - e also
connects K . e in G . e. -

Lemma 3.4. Pr{G;C(K2)IC(K1)} = Pr{G;Up(e)IC(K1)} Pr{G· e;C(K2 • elC(K, . e)}
+ Pr{G;Up(e)IC(K,)} Pr{G - e;C(K2)IC(K,)}, for any graph G with target sets K,.K2
and edge e.

Proof. Partition the states of G in which C(K,) holds into two groups, according
to whether e is operational or failed; observe:

Pr{G;C(K2)jC(Kt>} = Pr{G;(Up(e) A C(K2»jC(K1)}

+ Pr{G;(Up(e) A C(K2»jC(K,)}

The event (Up(e) A C(K2»jC (K,) holds exactly when Up(e)IC(Kt> holds in G and
the event C(K2 . e)jC (K, . e) holds in G . e. Moreover, thee two events are statis-
tically independent, since the first refers only to the edge e and the second refers only
to the edges of G· e, i.e., edges other than e. Simplifying the event
(Up(e) A C(K2»jC(K,) in a similar way yields the statement of the lemma. -

Corollary 3.5. Pr{G;C(K)} = Pr{G;Up(e)} Pr{G . e;C(K' e)} + Pr{G;Up(e)} Pr{G
- e;C(K)} for any graph G, target set K, and edge e.

Proof. Take K2 = K and K, an arbitrary singleton set in the statement of Lemma
3.4. -

Corollary 3.5 is the well-known factoring theorem, which has been widely used in
reliability investigations (see, for example, [10]). Finally, we are in a position to state
the key lemma, which formalizes the informal observation made at the outset:

Lemma 3.6. For G a connected graph, andK"K2 target sets ofG, Pr{G;C(K2)jC(K,)}
;;;. Pr{G;C(K2)}.

Proof. We use induction on m, the number of edges in G. The base case is when
m = n - 1, when G is a tree. G contains a unique minimal subtree T, connecting
Kt. and a unique minimal subtree T2 connecting K2• Now Pr{G;C(K2)} is the product
of the edge operation probabilities over edges in T2• Next observe that every state of
G in which C(K,) holds has all edges of T, operational; hence we can contract each
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edge of TI in turn to form a graph G . TI' with the image of K2 after the sequence of
contractions being K2 . TI. Then Pr{G;C(K2)IC(KI) = Pr{G . T1; C(K2 . T4)}. Now
contracting T, may leave T2 unaffected, or may contract it onto a subtree n. In either
case, the probability is the product of edge operation probabilities over edges in the
tree/subtree, and hence is at least as great as the probability of T2• This completes the
base case.

Suppose then that the statement holds for all graphs with at most m edges, and
suppose G has m + 1 edges. Using Corollary 3.5, select an edge e whose removal
does not disconnect G and write

Pr{G;C(K2)} = Pr{G;Up(e)}Pr{G . e;C(K2 . e)}

+ Pr{G;Up(e)}Pr{G - e;C(K2)}

(1)

Using Lemma 3.4, write

Pr{G;C(K2)IC(K1)} = Pr{G;Up(e)IC(Kj)}Pr{G . e;C(K2 . e)IC(Kj . e)} (2)

+ Pr{G;Up(e)IC(Kj)}Pr{G - e;C(K2)IC(KI)}

We must show that

Pr{G;C(K2)IC(K1)} - Pr{G;C(K2)} ~ 0

Equations (1) and (2) show this is equivalent to

Pr{G;Up(e)IC(Kj)}Pr{G . e;C(K2 . e)IC(K1 • e)}

- Pr{G;Up(e)}Pr{G . e;C(K2 . e)}

+ Pr{G;Up(e)IC(K1)}Pr{G - e;C(K2)IC(K1)}

- Pr{G;Up(e)}Pr{G - e;C(K2)} ~ 0

Using Lemmas 3.2 and 3.3, it suffices to show that

Pr{G;Up(e)IC(KI)} [Pr{G . e;C(K2 . e)IC(K1 • e)} - Pr{G . e;C(K2 . e)}]

+ Pr{G;Up(e)IC(K1)}[Pr{G - e;C(K2)IC(KI)} - Pr{G - e;C(K2)}] ~ 0

Now by the induction hypothesis, both terms in square brackets are nonnegative, and
hence the inequality holds. -

This key lemma underpins the multiplicative inequality:

Theorem 3.7. Let G be a graph, and KbK2 be target sets of G satisfying
s, n K2 *' 0. Then for any K C KI U K2' Pr{G;C(K)} ~ Pr{ G;C(Kj)}Pr{G; C(K2)}.

Proof. If G is disconnected, it may happen that not all targets in K, (K2) appear
in the same component; in this case, the inequality is trivial. Otherwise, if all targets
in K, and in K2 lie in the same component, so do all targets in K; hence we need only
consider this connected component. Henceforth assume that G is connected.

Using Lemma 3.1, we need only consider the case K = KI U K2. Now since
s, n K2 *' 0, Pr{G;C(K)} = Pr{G;C(Kj) A C (K2)}. Equivalently, Pr{G;C(K)}
Pr{G;C(Kj}Pr{G; C(K2)IC(Kj)}. Then Lemma 3.6 completes the proof. -
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It is an easy exercise to check the Theorem 3.6 is at least as strong as Theorem
2.1, and is strictly stronger unless one of Pr{G;C(K,)} or Pr{G;C(K2)} is exactly one.

4. IMPROVING RELIABILITY BOUNDS

In [3], a simple strategy was developed for using Theorem 2.1 to improve reliability
bounds; we extend that strategy to employ the multiplicative inequalities instead.
Consider a graph G = (V,E). We have a number of basic bounding strategies for
obtaining two-terminal lower bounds for pairs of vertices in G; in particular, the
subgraph counting Kruskal-Katona bounds apply [11], and edge-packing bounds apply
[2]. Using these methods, compute, for each pair {x,y} of vertices in G, the best lower
bound on their two-terminal reliability, Lxy. To put theorem 3.6 in a computationally
useful form, we prove the following lemma:

Lemma 4.1. Let SG(K) be a subgraph of the complete graph on vertex set V which
connects all nodes in a target set K of G = (V,E). Then Pr{G;C(K)}:;:" n{X,Y)ESG (K)

t..;

Proof. We may assume that SG(K) contains no cycles, and that every degree one
vertex is in K; that is, SG(K) is a Steiner tree for K in G. If SG(K) contains vertices
not in K, observe by Lemma 3.1 that Pr{G;C(K)} :;:"Pr{G;C(S)}, where S is the vertex
set of SG(K). We therefore need only consider the case S = K. Let z be a degree
one vertex of SG(K), and let x be its neighbor in SG(K). Let K, = S - {x} and
K2 = {x,z} and apply Theorem 3.6 to establish that Pr{G;C(K)} :;:"Lxz Pr{G;C(K,)}.
Repeating this process untillKd = 1 gives the statement of the theorem. -

This reformulation enables us to develop bounds on k-terminal reliability and all-
terminal reliability using only bounds on two-terminal reliability. In the application
to all-terminal reliability, observe that the best bound from Lemma 4.1 arises when
one selects SG(K) to be a spanning tree for which the product of its two-terminal
lower bounds is maximum. Until this point, all of the computation requires only
polynomial time, and hence it is important to note that spanning trees whose edge
weight product is maximum are easily found; one can transform to the usual maximum
weight spanning tree problem by taking logarithms of the edge weights. Hence Lemma
4.1 gives an efficient method for finding reliability bounds in the all-terminal case.

In the case of two-terminal reliability, one might expect no improvement since the
basic bounds used are two-terminal. However, let us remark that one can derive a
simple multiplicative triangle inequality (which is similar in spirit to the additive
triangle inequality of [3]):

Lemma 4.2. For any three vertices x,y,z of G, Pr{G;C({x,z})} :;:"LxyLyz.

Proof. By Lemma 4.1 Pr{G;C({x,y,z})} :;:"LxyLyz; applying Lemma 3.1 completes
the proof. -

Improved bounds on two-terminal reliability can therefore also be efficiently ob-
tained, by repeatedly applying Lemma 4.2 to improve the values of the {Lxy} until no
further improvement is possible.

Finally, note that for k-terminal reliability, the best bound arises from Lemma 4.1
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by taking a Steiner tree for K whose product of edge weights is maximum; however,
finding such Steiner trees is NP-hard [7]. Nevertheless, to obtain reasonable bounds,
it suffices to find a Steiner tree near the maximum. The details here parallel the additive
case quite closely, and so are omitted; see [3].

Theorem 3.7 also leads to upper bounds on reliability measures as follows. We can
write

for K, U K2 C K and K, n K2 "4=I 0. Although none of these quantities are known
exactly, we can overestimate Pr{G;C(K)} by using an efficiently computable upper
bound, and underestimate Pr{G;C(K2)} by using the lower bound just computed. This
leads to an upper bound on Pr{G;C(K,)}. In order to efficiently compute the upper
bound on Pr{G;C(K)}, we can always take K to contain all vertices, and employ the
Ball-Provan upper bound on all-terminal reliability. While this approach is somewhat
less direct than that taken for the lower bounds, it is of interest that the multiplicative
inequalities lead to improved upper bounds, while the additive inequalities do not.

5. SOME COMPUTATIONAL RESULTS

The main goal of deriving methods for improving bounds is to achieve a substantial
tightening of the bound while retaining the existence of efficient algorithms for de-
termining the bound. We have seen that the multiplicative inequalities can be employed
in an efficient manner, but it remains to see that some substantial improvement results.
We content ourselves with some small examples on a skeleton of the 1979 Arpanet,
a network whose analysis is of some practical importance (primarily as a concrete

2 V""-_J..

9 56

24

FIG. 1. A skeleton of the 1979 Arpanet.
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TABLE I. Arpa skeleton: two-terminal example.

Additive
p Mincost improvement

Multiplicative
improvement

.3 .016350 .016350

.5 .127960 .127960

.7 .470107 .470107

.9 .938300 .961890

.95 .989620 .994491

.98 .999205 .999615

.99 .999895 .999950

.019268

.153597

.539538

.962369

.994500

.999615

.999950

example of bidirectional point-to-point communication networks in existence). This
network is depicted in Figure 1.

We first give a two-terminal example, using nodes 5 and 56. The best basic bound
here is the mincost bound of [2]. We report the mincost bound, the results of using
additive improvement [3], and the result of using the multiplicative improvements,
assuming that each edge has operation probabilityp (see Table I). Whereas the additive
inequalities only afforded improvements for high p, the multiplicative inequalities
yield improvements throughout the range. The improvements seen here are substantial
except for p near zero or one.

In k-terminal problems, two main strategies are competitors to the multiplicative
inequalities. The first is the Ball-Provan all-terminal lower bound, which provides a
lower bound on k-terminal reliability for every set of target nodes. The second is the
additive method used earlier. We used a heuristic method for finding Steiner trees [12]
to implement the additive and the multiplicative bounds for a 4-terminal problem in
the Arpa skeleton, using nodes 5, 9, 34, and 55. Results for selected values of p are
given in Table II. Except forp values very near 1, the multiplicative inequalities yield
the best available bound on this 4-terminal problem. It is important to remark that this
good behavior is observed despite the fact that heuristics rather than exact methods
are used to find the Steiner tree used.

In the all-terminal problem, the best available bound typically is the Ball-Provan

TABLE II. Arpa skeleton; 4-terminal problem.

p Ball-Provan
Additive

improvement
Multiplicative
improvement

.3

.5

.7

.9

.95

.98

.99

0018סס.

.009154

.154748

.861718

.982022

.999227

.999936

o
o
o

.918666

.987908

.999141

.999889

.000578

.023955

.284424

.921048

.987961

.999142

.999889
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bound [1]. In our example, the Ball-Provan bound outperforms even the multiplicative
improvements at present, since they are using two-terminal lower bounds. For the
Arpa skeleton with p = .98, the Ball-Provan bound yields .999227, while the mul-
tiplicative bound is only .998247. It appears that better two-terminal basic bounds are
required if one wants to outperform the Ball-Provan bounds with this strategy.

Computational results for upper bounds are also easily obtained. No improvements
are obtained in the all-terminal case, but worthwhile improvements result in the two-
terminal and k-terminal problems.

VI. CONCLUDING REMARKS

The multiplicative inequalities developed here improve not only on the additive
inequalities used earlier, but provide significant improvements on the basic bounding
strategies which were previously available. While the observations used are straight-
forward, the observed tightening of reliability bounds is substantial. It appears that
the strategy here is successful largely because it considers the local structure of the
network, whereas the basic bounding strategies consider only "global" information.
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