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The probability that a computer network is operational in an environment of statistically
independent link failures has been widely studied. Three natural problems arise, when all
nodes are to be connected (all-terminal reliability), when two nodes are to communicate
(2-terminal reliability), and when k specified nodes are to communicate (k-terminal reli-
ability); the latter case includes the first two. Each of these reliability measures is NP-
hard to compute, and thus efficiently computable reliability bounds are of significant
interest. To date, the all-terminal and 2-terminal cases have been treated separately, and
few results apply to the k-terminal case. In this paper, we develop a simple strategy to
obtain k-terminal reliability bounds. In the process, we demonstrate improvements on the
previous best bounds for all-terminal, k-terminal, and 2-terminal reliability. Computational
experience with these new bounds is reported, by comparing the new lower bounds to
existing lower bounds.

1. INTRODUCTION

A computer network is often modelled as a probabilistic graph G = (V,E); V
is a set of n nodes representing computer centers, and E is a set of e edges
representing bidirectional communications links. In this model, we assume that
nodes are perfectly reliable, but that edges fail statistically independently with
known probability. This model has been widely used [12,16,19]. The ability of a
computer network to withstand random failures is a key component of its reli-
ability. Hence, the all-terminal reliability of such a network is the probability that
all nodes can communicate with one another. Similarly, the 2-terminal (k-ter-
minal) reliability is the probability that 2 (resp., k) specified nodes can com-
municate. We refer the reader to [4] for standard graph-theoretic terminology.

Exact computations for these reliability measures are almost certainly intract-
able, since computing any of the three is #P-complete [3,18]. One major method
used to cope with this intractability is the development of upper and lower bounds
on these reliability measures. Naturally, we are most interested in bounds which
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are efficiently computable. Most of the bounds mentioned below apply only when
all edge operation probabilities are equal; however, the bounds we develop do
not require this assumption.

In the context of all-terminal reliability, Jacobs [10] developed simple bounds.
These were later improved by Frank and Van Slyke [19] using a theorem of
Kruskal [13] and Katona [11], which were improved further by Ball and Provan
[2]. A substantially different approach was employed by Lomonosov and Polesskii
[15]; their bounds are typically looser than the Ball-Provan bounds, but do yield
occasional improvements [7]. Colbourn and Harms [7] describe computational
comparisons of these bounds, and further describe a method using linear pro-
gramming to combine these bounds (indeed, any set of basic bounds) to form a
uniform bound that is at least as good as each basic bound.

In the context of 2-terminal reliability, the Kruskal-Katona bounds once again
apply; however, the Ball-Provan bounds do not. Brecht and Colbourn [5] develop
bounds based on edge-disjoint paths, and compare these bounds to the Kruskal-
Katona bounds. Although there are many bounds for 2-terminal reliability, to
our knowledge no others can be efficiently computed. Finally, in the context of
k-terminal reliability, one can modify the Kruskal-Katona bounds to apply by
using an efficiently computed underestimate for the size of a minimum cardinality
pathset.

There are a number of different strategies used in obtaining bounds. The two
basic strategies are subgraph counting (Kruskal-Katona and Ball-Provan, for
example) and edge-disjoint subgraphs (Lomonosov-Polesskii and Brecht—Col-
bourn, for example). Neither strategy has (thus far) produced bounds which
uniformly improve on the other strategy; this suggests the importance of com-
bining basic bounds to obtain better bounds. A linear programming formulation
can be used to combine basic all-terminal bounds to obtain an improved uniform
all-terminal bound, and to combine basic 2-terminal bounds to obtain a 2-terminal
bound [7]; this method only applies when edge operation probabilities are all
equal. We develop a new method for combining bounds here even when edge
probabilities differ, by exploring a simple relationship between 2-terminal bounds
and k-terminal bounds. Despite its simplicity, it enables us to obtain substantial
improvements, not only on existing k-terminal bounds, but also on all known 2-
terminal and all-terminal bounds!

2. THE BOUNDING STRATEGY

Any method for computing bounds on 2-terminal reliability can be used to
compute bounds /(x,y) = p(x,y) = u(x,y), where p(x,y) is the probability that
there is an operating path from x to y. By computing /(x,y) and u(x,y) for all
pairs x,y of nodes, we obtain a completely connected network in which each edge
e = (x,y) has success probability between I(x,y) and u(x,y). One might consider
then applying standard bounding methods to this network; however, it is essential
to note that these computed edge probabilities are not statistically independent,
and hence all of the bounds mentioned thus far do not apply. Nevertheless, there
are bounds which apply in this situation.
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The general framework is as follows. For a probabilistic network G = (V,E),
each edge e is operational with probability p,, where [, =< p, = u,; we are given
I, and u,, but not p,. Moreover, no information about statistical dependencies is
given (and none can be assumed). We are to compute lower and upper bounds
on the probability that G is operational. The meaning of “operational” here is
intentionally left unspecified; later, we consider each of all-terminal, k-terminal,
and 2-terminal operations. Notice that this model does apply to the completely
connected network computed above.

For this model, Hailperin [9] developed a linear programming formulation; we
use K* to denote the set of a minimal cutsets of G, and P* to denote the set of
all minimal pathsets of G. Zemel [20] and Assous [1] employed Hailperin’s model
to observe that

Theorem 2.1. For a probabilistic network G = (V,E), given only /, and u, for
each edge e so that [, < p, =< u,, the best upper bound on reliability is given by

B = min(l,czn}(* > u]-)

jec

The best lower bound is given by

min
a=max<0,1 —SEP*ZU —lj))

jes

In other words, to compute an upper bound, we need only find a minimum weight
cutset using the {u} as weights; for a lower bound, we need only find a minimum
weight pathset using 1 — /; as weights.

Our general strategy is now easily described. A complete graph is created using
2-terminal reliability bounds which assume statistical independence. Theorem 2.1
is then applied to find lower and upper bounds for the operational probability
of this graph. :

3. THE APPLICATION TO 2-TERMINAL BOUNDS

In applying Hailperin’s model to 2-terminal bounds from node s to node ¢,
minimal pathsets are just s,#-paths, and minimal cutsets are minimal s,¢-cuts.
Hence to compute a lower bound, we need only compute a minimum weight s, #-
path, and for an upper bound to compute a minimum weight, s,¢-cut. Both
problems have efficient solutions [14], and hence we can efficiently compute the
bounds given by Theorem 2.1.

An implementation of the computation outlined here has been done, and yields
improvements (which are substantial in some cases) on existing efficiently com-
putable 2-terminal bounds. To illustrate this, we applied the method to compute
lower bounds for a 5 X 5 “grid” network, depicted in Figure 3.1. In this and
subsequent examples, each edge is assumed to be operational with the same
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TABLE I. Two-terminal bounds (5 X 5 grid).

)4 Kruskal-Katona Mincost (edp) 2t— > 2t
0.80 0.260232 0.307397 0.599683
0.82 0.302680 0.367043 0.681382
0.84 0.350886 0.434309 0.753712
0.86 0.405724 0.508905 0.816302
0.88 0.468394 0.589932 0.870003
0.90 0.540558 0.675632 0.915261
0.91 0.580852 0.719368 0.933676
0.92 0.624326 0.763044 0.949442
0.93 0.671211 0.806032 0.962702
0.94 0.721587 0.847564 0.973620
0.95 0.775207 0.886714 0.982369
0.96 0.831195 0.922376 0.989136
0.97 0.887532 0.953233 0.994108
0.98 0.940221 0.977728 0.997469
0.99 0.981954 0.994032 0.999386

probability p. The results of this computation are given in Table I, where the
new bound is compared to the previously known Kruskal-Katona and edge-
disjoint path bounds described in [5]. It is worth noting here that on occasion,
the Ball-Provan all-terminal bound improves on the Kruskal-Katona 2-terminal
bound, and on the edge-disjoint path 2-terminal bounds; every all-terminal lower
bound is also a 2-terminal lower bound. We have not included the Ball-Provan
bound in the 2-terminal cases, however. A similar computation on the 25-node
ladder depicted in Figure 3.2 is reported in Table II. It is somewhat remarkable
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TABLE II. Two-terminal bounds (25 node ladder).

p Kruskal-Katona Mincost (edp) 21— > 2
0.75 0.031682 0.054681 0.054681
0.80 0.068803 0.119917 0.430912
0.82 0.092654 0.161200 0.558991
0.84 0.124041 0.214282 0.669269
0.86 0.165305 0.281396 0.761945
0.88 0.219694 0.364529 0.837486.
0.90 0.291856 0.464826 0.896659
0.91 0.336579 0.521297 0.920440
0.92 0.388392 0.581555 0.940574
0.93 0.448415 0.644934 0.957259
0.94 0.517724 0.710375 0.970720
0.95 0.597041 0.776313 0.981207
0.96 0.686113 0.840514 0.989003
0.97 0.782518 0.899895 0.994420
0.98 0.879474 0.950274 0.997801
0.99 0.961964 0.986085 0.999524
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that such significant improvements to 2-terminal bounds are obtained by the
appropriate application of Theorem 2.1. One possible explanation is that Theo-
rem 2.1 exploits “local structure” of the graph, whereas the edge-disjoint path
bounds exploit only the “global” structure of the number and length of s, #-paths.

It is also useful to note that the 2-terminal bounds obtained in this way could,
in turn, be used to construct another set of probability bounds for the complete
graph and the process repeated. However, this can be rendered unnecessary by
a simplification of the method, using the following easy observation:

Lemma 3.1 (the triangle inequality). 1 — I(x,z) = (1 — I(x,y)) + (1 — I(y,2)).
Proof. This follows directly from Theorem 2.1 applied to the 2-terminal case.

With Lemma 3.1 in mind, we can preprocess the complete graph using an all-
pairs shortest path algorithm to increase any lower bounds which fail to satisfy
the triangle inequality. Once this is done, the edge (x,y) always forms a minimum
weight x, y-path.

Of course, Lemma 3.1 can be applied to improve the bounds in the complete
graph directly; in the 2-terminal case, this obviates the need for Theorem 2.1.
Even in the other cases, we can apply Lemma 3.1 to improve the bounds on the
edges of the complete graph prior to applying Theorem 2.1.

4. THE APPLICATION TO ALL-TERMINAL RELIABILITY

In the all-terminal case, minimal pathsets are spanning trees, and minimal
cutsets are minimal network cuts; once again, a minimum weight spanning tree
and a minimum weight network cut can be found efficiently [14]. Hence we can
compute the bounds from Theorem 2.1 efficiently in this case.

At the outset, it is worth remarking that this appears to be the first time that
2-terminal bounds have been used to compute all-terminal bounds. One might
expect that since more sophisticated bounds (e.g., Ball-Provan) are available in
the all-terminal case, the simple observation of Theorem 2.1 would not provide
an improvement. However, considering the 25-node ladder again, we find an
improvement over the Ball-Provan bounds (see Table III). Similar improvements
are found for the 5 X 5 grid graph (see Table IV).

Once again, the apparent explanation is that the appropriate application of
Theorem 2.1 allows us to exploit local structure. It is particularly interesting to
observe improvements in the all-terminal case, since most of the work on effi-
ciently computable bounds has concentrated here.

5. THE APPLICATION TO k-TERMINAL RELIABILITY

Many bounding techniques have been developed, but most cannot be effectively
applied to the “hardest” of the three problems, k-terminal reliability. To apply
Theorem 2.1 directly, observe that a pathset is a Steiner tree, and a cutset is a
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TABLE III.  All-terminal bounds (25 node ladder).

p Ball-Provan 2t— > all-term
0.80 0.152922 0.285760
0.82 0.205936 0.457070
0.84 0.274281 0.600709
0.86 0.359969 0.718239
0.88 0.463470 0.811492
0.90 0.582322 0.882580
0.91 0.645523 0.910550
0.92 0.709467 0.933900
0.93 0.772323 0.952978
0.94 0.831873 0.968147
0.95 0.885609 0.979793
0.96 0.930922 0.988319
0.97 0.965470 0.994149
0.98 0.987767 0.997726
0.99 0.998113 0.999515

Steiner cut. Minimum weight Steiner cuts can be found in polynomial time using
network flows [14], but it is NP-hard to find a minimum weight Steiner tree [§],
even when the triangle inequality is satisfied. At first, this seems to preclude
applying our general strategy. The difficulty can be largely circumvented using
heuristic algorithms for Steiner trees. Theorem 2.1 states that when w is the
weight of a minimal Steiner tree, the k-terminal reliability is at least max(0,1 —
w). Suppose we compute any Steiner tree, of weight w'. Since necessarily w' =
w, max(0,1 — w') = max(0,1 — w), and hence 1 — w' is a lower bound on the
k-terminal reliability. -

The development of a good lower bound hinges on the accuracy with which
we can compute Steiner trees. We consider two strategies. The first strategy was

TABLE IV. All-terminal bounds (5 x 5 grid).

p Ball-Provan 2t— > all-term

0.80 0.205198 0.0

0.82 0.260718 0.000992
0.84 0.329549 0.252695
0.86 0.413092 0.463491
0.88 0.511367 0.634428
0.90 0.621856 0.767480
0.91 0.679862 0.820687
0.92 0.738132 0.865614
0.93 0.795066 0.902788
0.94 0.848744 0.932792
0.95 0.897007 0.956261
0.96 0.937626 0.973873
0.97 0.968607 0.986337
0.98 0.988698 0.994373

0.99 0.998170 0.998700
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TABLE V. k-Terminal bounds (5 X 5 grid k = 4).

p Ball-Provan Spanning Steiner
0.80 0.205198 0.0 0.204861
0.82 0.260718 0.175133 0.376270
0.84 0.329549 0.353877 0.511763
0.86 0.413093 0.510520 0.639370
0.88 0.511367 0.647677 0.736298
0.90 0.621856 0.766342 0.831804
0.91 0.679862 0.815376 0.868273
0.92 0.738132 0.857851 0.899990
0.93 0.795066 0.894044 0.924814
0.94 0.848744 0.924266 0.947472
0.95 0.897007 0.948853 0.964568
0.96 0.937626 0.968168 0.978325
0.97 0.968607 0.982579 0.988234
0.98 0.988698 0.992459 0.994937
0.99 0.998170 0.998160 0.998772

chosen for its simplicity. We compute a minimum spanning tree on just the target
nodes of the network. The result is a Steiner tree. Our second strategy is a more
sophisticated heuristic method due to Wong [17]. Our only adaptation to Wong’s
method is to excise degree 2 nodes which are not target nodes. The triangle
inequality (Lemma 3.1) ensures that we need no degree 2 nodes in the Steiner
tree; a degree 2 node with neighbors x and y is therefore deleted and replaced
by the edge (x,y). Applying these two heuristics to the 5 X 5 grid graph from
Figure 3.1 shows that the extra computational effort in Wong’s method does yield
substantial improvements (see Table V). In this example, the four corner nodes
are the k = 4 required nodes. Another example is given by the same graph using
the k = 16 outside nodes as required (see Table VI), and a third is the 1979
Arpanet (see Table VII and Figure 6.1).

TABLE VI. k-Terminal bounds (5 X 5 grid k = 16).

)4 Ball-Provan Spanning Steiner

0.80 0.205198 0.0 0.0

0.82 0.260718 0.0 0.031148
0.84 0.329549 0.167288 0.242797
0.86 0.413093 0.382956 0.453222
0.88 0.511367 0.566819 0.628150
0.90 0.621856 0.716641 0.759554
0.91 0.679862 0.778748 0.811307
0.92 0.738132 0.832416 0.861959
0.93 0.795066 0.877809 0.903084
0.94 0.848744 0.916306 0.931489
0.95 0.897007 0.946466 0.956346
0.96 0.937626 0.968722 0.973547
0.97 0.968607 0.984104 0.986282
0.98 0.988698 0.993693 0.994362

0.99 0.998170 0.998613 0.998698
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TABLE VII. k-Terminal (Arpanet k = {3,5,55,56}).

p Ball-Provan Spanning Steiner
0.960 0.642423 0.946886 0.948431
0.970 0.779466 0.973140 0.973994
0.980 0.901378 0.989747 0.990072
0.990 0.979896 0.997964 0.997964
0.999 0.999922 0.999985 0.999985

It is difficult to establish a standard for comparison in these tables, as no
powerful k-terminal bounds appear to be available. One could employ the Krus-
kal-Katona bounds here, but since no efficient algorithm for Steiner trees is
likely to exist, one would be forced to underestimate the number of edges in a
minimal Steiner tree. The underestimate k — 1 could be used in general, but
leads to poor bounds. Therefore, in our tables of lower bounds here, we have
compared against the Ball-Provan all-terminal lower bound. The justification for
this is immediate: any all-terminal lower bound is a k-terminal lower bound for
any set of any k nodes.

6. PRACTICAL ISSUES

We have thus far illustrated improvements on simple small networks. One
concern is that the method may not be able to handle larger networks, despite
its polynomial running time. For a 100-node network, the complete graph con-

FIG. 6.1 The 1979 Arpanet.
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TABLE VIII. Two-terminal bounds (5 X 5 grid) using neighbors.

D Kruskal-Katona Mincost (edp) 2t— > 2t Neighbors
0.75 0.175208 -~ 0.190203 0.358514 0.234690
0.80 0.260232 0.307397 0.599683 0.544598
0.82 0.302680 0.367043 0.681382 0.645411
0.84 0.350886 0.434309 0.753712 0.732517
0.86 0.405724 0.508905 0.816302 0.805921
0.88 0.468394 0.589932 0.870003 0.865915
0.90 0.540558 0.675632 0.915261 0.913116
0.91 0.580852 0.719368 0.933676 0.932205
0.92 0.624326 0.763044 0.949442 0.948480
0.93 0.671211 0.806032 0.962702 0.962111
0.94 0.721587 0.847564 0.973629 0.973284
0.95 0.775207 0.886714 0.982369 0.982199
0.96 0.831195 0.922376 0.989136 0.989062
0.97 0.887532 0.953233 0.994108 0.994083
0.98 0.940221 0.977728 0.997469 0.997463
0.99 0.981954 0.994032 0.999386 0.999385

structed has 4900 edges; this implies 4900 computations of 2-terminal bounds,
which may be unacceptably large. Therefore, let us note that one need not use
the same method to compute the reliability bounds for each pair; it is perfectly
acceptable to employ a lower bound of 0. If bounds are computed for sufficiently
many edges, the lower bounds for the “0 edges” will be modified by the appli-
cation of Lemma 3.1. We considered another possibility for large networks:
computing bounds only for neighboring nodes. For sparse large networks, this
approach saves dramatically on the number of basic bounds to compute. The
effect of this restriction to the 2-terminal bounds on the 5 X 5 grid graph are
given in Table VIII. The results suggest that computational effort can be saved
at the expense of loosening the bound.

It is also reasonable to ask whether improvements arise in practical situations.
For this reason, we considered the 1979 Arpanet, depicted in Figure 6.1. Improve-
ments to 2-terminal lower bounds via Lemma 3.1 are common here; an example
is from node ISI22 (node 5) to CCA (node 56), with improvements given in Table
IX. Moreover, k-terminal lower bounds often improve on the Ball-Provan lower
bound. An improvement to the all-terminal lower bound is not obtained. How-
ever, the lower bound obtained is competitive with the Ball-Provan bound (see
Table X).

TABLE IX. Two-terminal bounds (Arpanet s = ISI22 ¢t = CCA).

p Kruskal-Katona Mincost (edp) 2% —>2
0.960 0.835288 0.960673 0.973129
0.970 0.898877 0.980780 0.987606
0.980 0.955207 . 0.993388 0.995981
0.990 0.991414 0.999038 0.999455

0.999 0.999987 0.999999 0.999999
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TABLE X. All-terminal bounds (Arpanet).

p Ball-Provan 2t— > all-term
0.960 0.642423 0.483473
0.970 0.779466 0.712135
0.980 0.901378 0.874147
0.990 0.979895 0.969321
0.999 0.999922 0.999703

7. CONCLUDING REMARKS

The combination of 2-terminal bounds with statistical independence and bounds
with statistical dependence is remarkably fruitful. Efficiently computable bounds
for all-terminal, k-terminal, and 2-terminal reliability result which occasionally
improve on the best previously known bounds. Moreover, techniques which give
2-terminal bounds can now be effectively used to improve all-terminal bounds,
partially putting an end to the division in reliability investigations. Finally, the
method proposed yields substantial bounds for k-terminal reliability, especially
as p approaches unity. '

A major area for further investigation here is to attempt to exploit the extension
of Hailperin’s model when limited information concerning statistical dependen-
cies is available. When information regarding pairs of edges is available, the so-
called second order bounds result [1,6]. The extension of our work here to
incorporate second order information may provide some improvement. Another
area for future research is the combination of the method proposed here with
the linear programming combination in [7].

We thank Steve Lui for providing a Pascal implementation of Wong’s algorithm, and
Nancy Ross for help with bounds with statistical dependence. Research of the second
author is supported by NSERC Canada under grant A0579.
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