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Abstract—Key-value storage systems are an integral part of many data centre applications, but as demand increases so does the

need for high performance. This has motivated new designs that use Remote Direct Memory Access (RDMA) to reduce communication

overhead. Current RDMA-enabled key-value stores (RKVSes) target workloads involving small values, running on dedicated servers

on which no other applications are running. Outside of these domains, however, there may be other RKVS designs that provide better

performance. In this paper, we introduce Nessie, an RKVS that is fully client-driven, meaning no server process is involved in servicing

requests. Nessie also decouples its index and storage data structures, allowing indices and data to be placed on different servers. This

flexibility can decrease the number of network operations required to service a request. These design elements make Nessie

well-suited for a different set of workloads than existing RKVSes. Compared to a server-driven RKVS, Nessie more than doubles

system throughput when there is CPU contention on the server, improves throughput by 70% for PUT-oriented workloads when data

value sizes are 128 KB or larger, and reduces power consumption by 18% at 80% system utilization and 41% at 20% system utilization

compared with idle power consumption.

Index Terms—Computer networks, data storage systems, distributed computing, distributed systems, key-value stores, RDMA

✦

1 INTRODUCTION

By eliminating slow disk and SSD accesses, distributed in-
memory storage systems, such as memcached [17], Redis [6],
and Tachyon [24], can reduce an application’s request ser-
vice time by more than an order of magnitude [27]. In the
absence of disks and SSDs, however, an operating system’s
network stack is often the next largest source of application
latency. With network operations taking tens or hundreds
of microseconds to complete, the performance bottleneck
of large-scale applications has shifted, creating a need for
better networking solutions.

The drive for increasing performance has led recent in-
memory storage systems to use Remote Direct Memory
Access (RDMA) [14], [21], [26], [30]. RDMA enables direct
access to memory on a remote node, and provides addi-
tional performance benefits such as kernel bypass and zero-
copy data transfers. These RDMA-based systems are able to
provide lower latencies and higher throughput than systems
using TCP or UDP.

Although existing RDMA-enabled key-value stores
(RKVSes) perform well on workloads involving small data
sizes and dedicated servers, we have identified three en-
vironments for which these designs are not well-suited.
The first environment includes those where CPUs can not
be dedicated for exclusive use by the RKVS. This includes
applications where it is advantageous for distributed com-
putation and storage to be integrated into the same node,
or where physical CPUs are shared by multiple virtual ma-
chines. Existing RKVSes achieve low latency by using dedi-
cated CPUs on the server to poll on incoming requests [14],
[21]. We refer to these systems, in which client requests are
forwarded to a dedicated server thread for processing, as
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server-driven. This approach is susceptible to performance
degradation in environments with multiplexed resources, as
an increase in CPU usage from a co-resident application or
VM can cause context switching that delays the processing
of requests, and significantly reduces the throughput of the
RKVS. This delay is amplified when a server-thread is pre-
empted, preventing progress for all clients communicating
with that server thread.

The second environment that current designs have not
focused on are those where the RKVS is required to store
large data values. Existing RKVSes use designs that couple
indexing and data storage, resulting in rigid data placement
and unavoidable data transfers for PUTs [11]. As data value
sizes grow, network bandwidth becomes a bottleneck for
performance. This presents issues for a variety of work-
loads, for example when using an RKVS as a memory
manager for a distributed computation framework such
as Apache Spark [31] which manages data units that are
hundreds of megabytes in size. When indexing and data
storage are coupled, writing new data of this size results in
significant overhead as the data is sent over the network to
the node responsible for its key.

The third environment includes those where reducing
energy consumption is important. As previously explained,
server-driven RKVSes use polling threads alongside RDMA
to decrease operation latency. With the current speed of
network interfaces, however, a single polling thread per
machine is often insufficient to saturate the link. Instead,
these RKVSes must dedicate multiple polling threads to
handling requests. While this is useful when operating
at peak load, polling during off-peak periods is energy-
inefficient. In some parallelized data centre applications, it
is possible to consolidate resources by shutting down VMs
during periods of inactivity. For a big memory storage sys-
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tem, however, this means frequently reorganizing hundreds
or possibly thousands of gigabytes of data.

In this paper, we present the design of Nessie, a new
RKVS that addresses some of the limitations of current
RKVSes. Nessie is fully client-driven, meaning requests are
satisfied entirely by the client using one-sided RDMA opera-
tions that do not involve the server process’ CPU. One-sided
reads and writes allow Nessie to eliminate the polling which
is essential for providing high throughput in server-driven
RKVSes. This makes Nessie less susceptible to performance
degradation caused by CPU interference in shared CPU
environments such as in the cloud. Furthermore, Nessie
only consumes CPU resources when clients are actively
making requests in the system, reducing Nessie’s power
consumption during non-peak loads. Finally, Nessie’s de-
coupled indexing and data storage allows indices to refer to
data stored on different nodes in the system. This enables
more flexible data placement, for instance local writes, and
can benefit write-heavy workloads by exploiting locality
and reducing the volume of remote operations.

This paper makes three main contributions:

• We describe the design of Nessie, and show how
its decoupled, fully client-driven design allows it to
operate without server-side interaction.

• We evaluate a prototype of Nessie. For compari-
son purposes, we also evaluate NessieSD, a server-
driven version of Nessie that uses polling, similar
to HERD [21]. We futhermore evaluate NessieHY, a
hybrid version of Nessie that uses client-driven GETs
and server-driven PUTs similar to FaRM [14].

• We identify three problematic workloads for existing
RKVSes: Workloads in shared CPU environments,
workloads with large data values, and workloads
where energy consumption is important. We show
that Nessie performs significantly better than server-
driven approaches for these workloads.

2 BACKGROUND AND RELATED WORK

This work is a follow-up to our previous position paper [29].
We extend our preliminary design and introduce new mech-
anisms and performance optimizations. Additionally we
provide a full system implementation and evaluation. In this
section, we provide an overview of RDMA technologies and
survey other in-memory key-value stores.

2.1 RDMA

Remote Direct Memory Access (RDMA) is an alternative to
networking protocols such as TCP or UDP. RDMA can by-
pass the kernel, providing zero-copy data transfers between
local and remote memory. Therefore, RDMA has less over-
head than traditional protocols, with network operations
completing in several microseconds. RDMA is often asso-
ciated with Infiniband hardware deployments, but is also
compatible with traditional Ethernet networks using the
iWARP [7] or RDMA over Converged Ethernet (RoCE) [5]
protocols. RDMA-enabled network interface cards (NICs)
are becoming increasingly commonplace in data centre set-
tings as costs continue to fall. In fact, RDMA was compet-
itively priced as far back as October 2013 [14]. RDMA can

even be used in virtualized environments. RDMA inside a
VM has been shown to, for larger data transfer sizes like
those we are focused on, provide performance comparable
to that of using RDMA directly on hardware [13].

Communication over RDMA is performed using the
verbs interface, consisting of one-sided and two-sided verbs.
Two-sided verbs follow a message-based model where one
process sends a message using the SEND verb and the
other process receives the message using a RECV verb. This
exchange involves CPU interaction on both the sending
and receiving side. The contents of the sent message are
passed directly into an address in the receiving application’s
memory, specified by the RECV verb.

One-sided verbs allow direct access to pre-designated
regions of a remote server’s address space, without inter-
acting with the remote CPU. The READ and WRITE verbs
can be used to retrieve and modify the contents of these
regions, respectively. RDMA also provides two atomic one-
sided verbs: compare-and-swap (CAS), and fetch-and-add
(FAA). These verbs both operate on 64 bits of data, and are
atomic relative to other RDMA operations on the same NIC.

RDMA supports an asynchronous programming model
in which verbs are posted to a send and receive queuing
pair. By default, operations post an event to a completion
queue when they have finished. An application may block
or poll on this queue while waiting for operations to com-
plete. Alternatively, as noted by the authors of FaRM [14],
most RDMA interfaces guarantee that an operation’s bytes
are read or written in address order. Applications may take
advantage of this fact to poll on the last byte of a region
being used to service RDMA operations, as once the last
byte has been updated, the operation is complete.

2.2 Key-Value Stores

Key-value stores (KVSes) are increasingly popular storage
solutions that map input identifiers (keys) to stored content
(values). They are frequently employed as tools in appli-
cation infrastructure and as components of other storage
systems [26]. Most KVSes provide an interface consisting
of GET, PUT and DELETE operations. GET accepts a key
and obtains it’s associated value. PUT inserts or updates
the value for a key, and DELETE removes a key and any
associated values from the store.

Some KVSes, such as Redis [6], provide persistent stor-
age while others, including memcached [17], are used
for lossy caching. Column storage systems, such as
BigTable [10] and Cassandra [23], are used to store large vol-
umes of structured data. Systems such as RAMCloud [27]
serve a similar purpose but were designed with the inten-
tion of storing data entirely in main memory.

2.3 RDMA Key-Value Stores

RDMA has recently been employed as a means of increasing
the performance of KVSes. We first explore the dimensions
of the design space of RDMA-enabled key-value stores
(RKVSes). We then characterize existing RKVSes according
to these dimensions.
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2.3.1 Design Space

The RKVS design space spans two primary dimensions:
communication mechanisms for performing remote opera-
tions, and system components for indexing and storing key-
value pairs. In this section, we describe different points in
the design space for both attributes.

Communication Mechanisms: RKVSes can use a client-
driven (CD) communication mechanism where remote op-
erations are performed entirely by the client using one-
sided verbs, a server-driven (SD) communication mecha-
nism where a remote server is instructed to perform an
operation, or a combination of the two. The main distinction
between CD and SD mechanisms is what type of RDMA
operations are being used and, as a result, which CPUs are
responsible for processing requests.

TCP/IP-based KVSes use SD communication mecha-
nisms, requiring server-side interaction in order to service
requests. This can reduce the complexity of synchronizing
resource access from multiple clients, as the server deter-
mines the request order and provides mutual exclusion for
key accesses. However, SD mechanisms require server CPU
processing to handle each request. For high-performance
systems that require low packet processing latency, one
or more dedicated CPUs are needed to poll for incoming
requests to minimize response latency [21], reducing CPU
resources available for other purposes on the server. Al-
though it is possible for a server-driven system to use a
mechanism whereby the server reverts to a higher latency
blocking model during periods of low activity, in practice
existing systems such as FaRM and HERD have rejected
the use of blocking communication mechanisms as they
introduce unacceptable latency overhead.

RKVSes can take advantage of RDMA’s one-sided verbs
to perform CD communication. CD operations are entirely
processed by the server’s NIC rather than the server’s CPUs;
the NIC performs the memory read or write operation. The
server’s idle CPU can instead be used for other purposes, or
powered down to conserve energy. Furthermore, by bypass-
ing the operating system and application on the server side,
CD mechanisms have the added benefit of lower latencies
than SD mechanisms [21]. However, without a server pro-
cess to coordinate concurrent operations, CD mechanisms
must provide per-key mutual exclusion which requires dis-
tributed coordination between concurrent clients.

System Components: In order to provide efficient key
operations, most RKVSes organize their keys using an
O(1)-lookup data structure. The lookup data structure, also
known as an index table, maps each key to a location in a
secondary storage structure. This storage structure contains
the associated value for each key and, depending on the
design, can be on the same server as the index table or on a
policy-determined server in the system. We refer to these
designs as partially-coupled and decoupled, respectively.
Alternatively, some systems combine the index and storage
structures into a single structure in order to avoid a second
lookup operation per key access, which we refer to as
complete coupling. Coupling’s effect on data placement can
impact the efficiency of data lookups for a system. Whereas
systems with tight coupling have limited options in terms

of placement, a decoupled system can place data to exploit
locality and migrate data to suit dynamic access patterns.

2.3.2 Existing Designs

Pilaf [26] is a partially-coupled RKVS that stores its index
in a cuckoo hash table [28]. A Pilaf client uses one-sided
RDMA READ verbs to perform GETs, and SEND verbs to
instruct the server to perform a PUT or DELETE on its be-
half. To avoid consistency issues caused by simultaneously
issuing PUTs and GETs for a key, Pilaf’s hash table entries
contain checksums which allow the client to determine
whether or not a GET has retrieved a corrupted value.

FaRM [14], alongside its distributed memory model,
presents an RKVS design that uses a variant of hopscotch
hashing [19] to store its index. FaRM operates either com-
pletely or partially-coupled, depending on the configured
size of its key-value pairs. FaRM clients use one-sided
RDMA READs to satisfy GET requests, and RDMA WRITE

verbs to insert PUT and DELETE requests into a server-
polled circular buffer. Once a PUT or DELETE is serviced, the
server responds to the client using RDMA WRITEs. FaRM
combines both CD and SD communication mechanisms and
must therefore manage the possibility of conflicting concur-
rent operations. This synchronization is provided through
the use of version numbers on entries, which are protected
through the use of local CAS operations [15].

HERD [21] is a partially-coupled RKVS that uses set-
associative indexing. HERD is fully SD, with clients using
RDMA WRITE verbs to post GET, PUT and DELETE requests
to a server-polled memory region. The HERD server re-
sponds to requests using connectionless RDMA SEND verbs,
which retain no state while completing and therefore aid
with scalability. Because HERD uses only SD communica-
tion, synchronization is inherent in the server-based design.
Furthermore, HERD uses a number of specific RDMA opti-
mizations to reduce the number of required round trips and
request latency. These optimizations include inlining data
into RDMA message headers, and using unreliable RDMA
connections which omit sending acknowledgment packets
for successful operations.

DrTM [30] is an RDMA-enabled system that executes
transactions over large data sets. DrTM distinguishes be-
tween storing unordered data and ordered data, and fur-
thermore decomposes PUT operations into inserts (for cre-
ating new data) and updates (for modifying existing data).
All DrTM operations performed on ordered data are server-
driven, and use RDMA SEND and RECV verbs to pass re-
quests to the appropriate remote nodes. For unordered data,
GETs and updates both use client-driven RDMA operations,
whereas DELETEs and inserts use server-driven RDMA
operations. DrTM uniquely incorporates hardware transac-
tional memory (HTM) into its design using it for operations
on data stored in local memory to increase throughput.
These techniques restrict DrTM to deployments that support
HTM, and require DrTM to be implemented as a partially-
coupled system.

The approaches discussed here may not be appropriate
for certain workloads. In Section 3 we discuss alternative
design principles to those of existing RKVSes, and how they
allows a system such as Nessie to handle workloads that
can be problematic for existing RKVSes.
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3 MOTIVATION

Existing RKVSes use server-driven operations for at least
some aspect of their PUTs, and none are decoupled. Certain
workloads cause performance problems for existing RKVS
designs, and can be better addressed by a client-driven,
decoupled system. In this section, we touch on the high-
level design principles of a client-driven, decoupled system,
and outline workloads for which such a system would
outperform existing RKVSes.

3.1 Design Principles

Deployment Model: A client-driven, decoupled system is
designed to operate in a distributed environment, with each
machine acting as a request-issuing client and as a storage
node. This provides for easy integration with distributed
computation frameworks such as Apache Spark [31]. More
generally, any workload containing collocated CPU-bound
and memory-bound tasks is well-suited to Nessie. This
includes web servers, which often consist of a CPU-bound
process serving small amounts of pages from memory, as
well as a in-memory cache or storage system, for example
memcached [3], that requires little in terms of CPU utilisa-
tion but consumes large amounts of memory.

Client-Driven Operations: Operations in a client-driven,
decoupled system are exclusively one-sided, comprised pri-
marily of RDMA READs and RDMA CASes. While such a
system does use one-way RDMA WRITEs as well, no active
polling is involved on the server-side. This adds complex-
ity to the protocol, but provides unique opportunities for
performance improvements, as we explain in Section 3.2.
We provide a comprehensive breakdown of a client-driven
protocol in Section 4.

Decoupled Data Structures: Although RDMA operations
are quite fast relative to traditional network operations,
they are still up to 23 times slower than a local memory
access [14]. Therefore, taking advantage of local memory
is an important part of maximizing performance in a dis-
tributed environment. However, the ability of systems that
use complete or partial coupling to leverage local memory
is limited by relying on a static partitioning of the data
that is determined ahead-of-time. By using fully decoupled
data structures, the system avoids a static launch-time par-
titioning scheme for its keys and values. A decoupled data
structure is free to dynamically partition the data at run
time, allowing it to exploit local memory for performance
purposes. Furthermore, the system can implement other
optimizations such as a local cache to store recently accessed
remote data table entries, and bits from the key hash,
which we call filter bits, in index table entries to reduce
unnecessary remote memory accesses. These techniques and
optimizations are described in detail in Section 4.

3.2 Targeted Environments

Shared CPU Environments: For modern computing work-
loads, it is often impossible to fully control the environment
in which a KVS runs. This is especially common when using
a cloud or shared cluster deployment. In the cloud, a physi-
cal machine is typically shared between multiple VMs, and

its resources are oversubscribed. As we will demonstrate
in Section 6, an oversubscribed CPU leads to contention
between multiple guest VMs, and as a result the throughput
of a polling server worker thread suffers.

A common strategy for dealing with CPU contention is
to isolate processes through tuning or pinning processes
to particular CPUs, but this is difficult or impossible to
do in a shared CPU environment such as a cloud VM.
Every time a polling server thread is pre-empted in order
to share the CPU with another thread, all clients that have
outstanding requests for that server to process experience a
substantial delay. The magnitude of this delay can be quite
severe given that RDMA operations typically complete on
the order of microseconds, whereas timeslices are often in
the millisecond range. As a result, if polling servers do not
execute on dedicated CPUs, the throughput of the system
can be dramatically reduced. A client-driven protocol elim-
inates server worker threads as potential sources of latency
for operations. This leads to a greater degree of resilience
against the effects of CPU contention.

Large Data Values: Previous RKVSes were designed primar-
ily to provide high performance for operations involving
small data values. FaRM [14] and HERD [21] in particular
demonstrate significantly better performance when data
values are small. Small data values allow FaRM, for in-
stance, to inline data values into its indexing data structure,
which is an example of a complete coupling design. HERD,
on the other hand, is explicitly designed with only small
values in mind, and does not consider workloads with
larger data values.

Many applications require storage for, and low latency
access to, larger objects, including web pages, photos, and
distributed data. Apache Spark [31], for example, operates
on objects divided into units called partitions, where each
partition is typically 64 MB to 128 MB in size. Another
system, Redis [6], is an in-memory data structure store
popular with web server operators for its ability to cache
complex structures such as lists and sorted sets. For exam-
ple, Pinterest, a content sharing service, uses Redis to store
social data structures, including lists of users and pages
followed by other users [9]. Given the complexity of the
data structures stored by Redis, they can grow to large sizes.
Nessie’s use of decoupled indexing and storage structures,
together with other optimizations that reduce data transfer
during GET and PUT operations by encouraging the use
of local memory access, helps to improve performance for
workloads involving large data values.

Energy Consumption: The polling nature of server-driven
RKVSes implies that for these systems, CPU on certain cores
of a node will always be 100% busy. This is appropriate for
workloads that constantly saturate the system, but many
workloads, including those found in data centres, exhibit
bursty traffic patterns, with occasional busy peaks but also
periods of little or even no traffic. Heller et al. [18] showed,
for instance, that traffic exhibited diurnal behaviour in both
a large e-commerce application and a production Google
data centre. Berk et al. [8] likewise showed diurnal and
weekly traffic patterns for requests to Facebook’s mem-
cached deployment. During any period of downtime for
a bursty or light workload, a server-driven RKVS would
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continue using relatively large amounts of CPU, wasting
electricity. The client-driven design, which precludes the
need for polling server threads, results in lower power
consumption for these same types of workloads.

4 NESSIE DESIGN

4.1 System Components

Nessie is an RDMA-enabled key-value store that decouples
indexing metadata, which is stored in data structures we
refer to as index tables, and key-value pairs, which are stored
in data structures we refer to as data tables. Each instance
of Nessie contains an index table, a data table, and a small
local cache of remote key-value pairs. Figure 1 depicts a
sample Nessie deployment across three nodes, with one
Nessie instance per node.

4.1.1 Index Table

Index tables are implemented as N-way cuckoo hash ta-
bles [28], with each key hashing to N entries across the
index tables in a deployment. Cuckoo hashing was chosen
because it only needs to examine a maximum of N entries
on each read operation, and is simple to implement without
requiring coordination between nodes. Other approaches
would yield different performance properties. For example,
hopscotch hashing may require fewer network operations
under certain scenarios. We plan to explore other hashing
alternatives in future work. Each index table entry (ITE)
is a 64-bit integer, allowing ITEs to be operated on by
atomic RDMA CAS verbs. This atomic access eliminates
inconsistencies that could result from simultaneous writes
to the same ITE. Because CAS verbs are only atomic relative
to other RDMA operations on the same NIC, all ITE accesses
(even for local ITEs) are managed using RDMA. This means
that each NIC may be responsible for one or more index
tables, but no index table may have entries that are being
managed by more than one NIC. The small size of index
table entries allows Nessie’s index tables to have a very large
number of entries without using much memory.

A possible concern with using RDMA atomic operations
is that they can negatively affect performance [22]. Nessie
reduces the performance impact of using these operations
by using them judiciously. RDMA CASes only occur during
PUTs and DELETEs, and PUTs will typically only require
a single CAS. Additionally, because Nessie is concerned
primarily with large values, the overhead of working with
these values tends to dominate workloads. Moreover, on
some RDMA-enabled hardware which we did not have ac-
cess to, proper placement of data can significantly improve
performance when working with atomic operations. Kalia
et al. [22] demonstrate that some NICs use buckets to slot
atomic operations by address. Nessie’s ITEs are stored in
memory that is completely separate from data table entries
(DTEs), meaning that on such hardware, an RDMA CAS on
an ITE would not conflict with concurrent access to DTEs,
and the large size and low load factor on the index table
could also be exploited to further reduce contention. Even
without special hardware support, Nessie has the ability to
use multiple NICs by creating multiple index tables and
data tables and partitioning them between NICs. This can

further reduce contention for the NIC by different requests,
ensuring that NIC resources do not bottleneck the system.

The 64 bits of an ITE are flexibly divided between several
fields, as illustrated in Figure 1. The first field is a data table
identifier (DTI), which uniquely identifies a data table in the
deployment. The next field is an identifier that determines
a particular DTE in a given data table. Taken together, a
DTI and DTE identify a spatially unique portion of memory
in the cluster. This spatial uniqueness is combined with an
expiration-based system in order to resolve concurrency and
caching issues (see Section 4.3.1). A third field, called the
empty bit, is a single bit wide and is used to represent
whether or not a particular ITE is empty. Because RDMA
operations update their bytes in address order, the last bit
of an ITE is used as a watermark which clients poll on
to determine if an operation has completed [14]. This pro-
vides a lower-latency alternative to RDMA’s event-raising
model [14], [21]. Finally, any remaining bits which are not
needed for the DTI and DTE fields may be used for a field
that we call the filter bits, which helps reduce network
accesses to DTEs.

4.1.2 Data Table

Nessie’s data tables are simple arrays of key-value pairs and
metadata. Key and value sizes are configurable. DTEs con-
tain a valid bit, denoting whether or not a DTE belongs to
an in-progress PUT (see Section 4.2.2). Like ITEs, DTEs also
contain a watermark bit on which clients poll to determine
whether or not an operation has completed. The fields of a
DTE are arranged such that keys and metadata may be read
without reading the value field. Furthermore, DTEs also
contain an eight-byte timestamp and a recycle bit, which
are used to implement a simple expiration-based system for
reclaiming DTEs that are no longer in use (see Section 4.3.1),
and an eight-byte previous version index, which is used to
reduce the abort rate of GETs (see Section 4.3.2).

Once a DTE is assigned to an ITE, that ITE has ownership
over the DTE. Apart from DTEs moving from invalid to
valid, DTEs are not modified after being written. Nessie’s
protocol ensures that it is impossible for operations to read
DTEs which are semi-complete or are in-between valid and
invalid. DTEs may therefore be accessed remotely using
RDMA READ verbs, and locally using simple memory reads.

4.1.3 Local Cache

The immutable nature of valid DTEs allows them to be
locally cached, using their spatially unique ITE as a cache
key. This caching reduces network load, particularly for
workloads with skewed popularity distributions. Our cur-
rent implementation of Nessie uses a small least recently
used (LRU) cache on each node. When a key’s associated
entries are modified, its newly assigned ITE will be spatially
unique from the key’s previous ITE, and the key’s old
cache entry will be evicted over time as further entries
are accessed. The same expiration-based strategy used to
guarantee correctness when accessing DTEs remotely is also
used with the cache in order to prevent stale entries from
being returned in the case where an application waits for a
long duration before accessing the cache again.
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4.2 Protocol Overview

In this section, we present a protocol overview of each
Nessie operation. We later introduce additional mechanisms
that are used to ensure correctness and improve perfor-
mance. For additional details about these operations, we
direct readers to Appendix A, which provides step-by-step
breakdowns of each operation in addition to detailing how
they interact in terms of consistency.

4.2.1 Get

At a high level, Nessie’s GET protocol consists of a forward
pass searching for a DTE containing the requested key, and a
reverse pass to verify consistency. During the forward pass,
Nessie computes a list of possible ITEs for the requested
key using its cuckoo hashing functions. Nessie iterates over
these ITEs, retrieving them using RDMA READs. ITEs that
are empty or have filter bits that do not match those of the
requested key are skipped, as they cannot possibly refer to
a DTE that contains the requested key. ITEs that are not
skipped are used to retrieve candidate DTEs, either from
the local cache, directly in memory from a local data table,
or using an RDMA READ from a remote data table. The key
in a retrieved DTE is compared against the requested key,
and if they do not match then Nessie continues to look for a
match by iterating over any remaining ITEs.

Pending PUT operations set a valid flag in DTEs to
false. To avoid returning inconsistent data, Nessie checks
this flag when retrieving DTEs and returns a concurrent
operation error if the DTE is invalid. A GET that fails in this
manner may retry after a back-off period. The use of pre-
vious versions, an optimization described in Section 4.3.2,
ensures that back-offs for GETs happen infrequently. If a
valid DTE is found containing a matching key, it is cached
and the value is returned. Figure 1 illustrates the basic steps
involved in a sample GET operation. The labelled steps in
the figure are explained in the caption.

If the requested key is not found in any of the candidate
DTEs, another pass is made over the ITEs to account for an
edge case. During the forward pass, a concurrent MIGRATE
could have moved a yet-unexamined ITE into an already-
examined ITE’s slot. Therefore, a GET re-examines the ITEs
in reverse order to determine if any have changed since
they were last read. If a change is detected, a concurrent
operation error is returned, and the GET is re-attempted
after a back-off period. Otherwise, Nessie returns that the
requested key is not in the system. Given that a key-value
store is typically used to access elements that are known to
be present, performing this reverse pass is rare in practice.
Finally, additional precautions are taken to prevent Nessie
from returning recycled DTEs and stale cache values. These
preventive measures are described in Section 4.3.1. More
details on GETs can be found in Appendix A.

4.2.2 Put

Abstractly, Nessie’s PUT protocol performs a forward pass
over a requested key’s possible ITEs to insert a new entry.
After inserting a new entry, the forward pass continues
iterating over any remaining ITEs checking for conflicting
entries to remove. The PUT then performs a reverse pass and
aborts if any conflicting PUTs or MIGRATEs are detected.

These forward and reverse iterations ensure that only one
operation in a set of conflicting operations completes suc-
cessfully.

During the forward pass, Nessie iterates over a re-
quested key’s possible ITEs, searching for a candidate ITE
that is empty or refers to a DTE whose key matches the
requested key (and can therefore be overwritten). This itera-
tion is identical to that used by GETs. When retrieving DTEs
during a PUT, values are excluded as they are not needed.
If the forward pass finds that all ITEs for a requested key
are non-empty and do not refer to matching DTEs, then a
MIGRATE is performed to free one of the ITEs.

With a candidate ITE chosen, Nessie must allocate a
DTE for the PUT’s key-value pair. Nessie’s decoupled design
allows this DTE to be placed on any node. In our prototype,
the DTE is placed on the same node as the client making
the request. This placement scheme is useful for a variety
of workloads, as it avoids network roundtrips and provides
locality for subsequent operations on the key from the same
node. We discuss alternate placement schemes in Section 7,
as well as the selection of empty local DTEs and their re-use
in Section 4.2.5 and Section 4.3.1. The DTE contains a valid
bit that is initially set to false, signifying that it belongs to
an in-progress operation.

Once a new DTE has been written, the candidate ITE
is atomically updated using a CAS verb to contain the
data table identifier and index of the new DTE. If the CAS

on the candidate ITE fails, an error is returned and the
caller may re-attempt the PUT. If the CAS succeeds and the
candidate was initially non-empty, the candidate’s original
DTE is staged for recycling once the PUT completes. After
updating the candidate ITE, the PUT continues its forward
pass, iterating over any unchecked ITEs to ensure there are
no duplicate entries for the key. Any duplicate entries that
are found are marked as empty using a CAS, and their DTEs
are staged for recycling once the PUT completes.

After the forward pass, a reverse pass is used to check for
interference from concurrent operations. The PUT iterates
backwards over the key’s possible ITEs and verifies that
none of them have changed since they were last read. If
a discrepancy is detected, a concurrent operation error is
returned, and the caller must retry the PUT. Otherwise, the
new DTE’s valid bit is flipped to true. Any values that have
been staged for recycling are marked with expiration times
using RDMA WRITEs, although for latency purposes Nessie
may also delay this step until the PUT is complete and the
system is not busy. DTE expiration is further discussed in
Section 4.3.1. The PUT then returns successfully.

An example of a PUT can be seen in Figure 2 (details
for each numbered step are described in the figure caption).
For simplicity, the figure uses two cuckoo hashing functions,
ignores filter bits, and assumes that no interference occurs.
In the sample, the first checked ITE refers to a DTE with a
key mismatch, and the second ITE is found to be empty.
A detailed breakdown of PUTs in Nessie is provided in
Appendix A.

4.2.3 Migrate

If a PUT determines that all of a key’s candidate ITEs point
to DTEs containing other keys, one of the candidates must
be freed by migrating its contents to an alternate location.
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Fig. 1: System architecture overview and sample GET operation on node B. Each node contains a Nessie instance, index table, and data table (for
simplicity, previous versions are omitted). (1) A node and ITE is determined by the key’s hash and is read with RDMA from node A’s index table.
(2) The ITE’s filter bits match the key’s filter bits. (3) No entry is found for the ITE in node B’s local cache. (4) The ITE’s DTI and DTE are used for
an RDMA read from node C’s data table. (5) The DTE’s key matches the requested key. (6) The DTE is valid, and the value is returned retrieved.
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Fig. 2: Sample PUT on key “K1”, value “Val X” by a client on node B:
(1) Starting at time t, read the ITE determined by the first hash function
on “K1” (ITE 10 on node B). (2) Local cache lookup on key “K1” returns
a match with expiration time t. This expired cache entry is evicted. (3)
Read the referenced DTE (DTE 3 on node A). The contents are for a
different key. (4) Read the ITE determined by the second hash function
on “K1” (ITE 20 on node A). (5) ITE 20 on node A is a valid (unused)
candidate. Create a new local DTE. (6) CAS ITE 20 on node A to refer
to the new DTE. (7) Verify that ITE 10 on node B has not changed. (8)
Make the new DTE valid.

A candidate ITE is selected as a source. In our prototype
implementation, we choose the first candidate ITE as the
source. The MIGRATE is aborted if the source refers to
an invalid DTE to avoid interfering with an in-progress
operation. Otherwise, the DTE referred to by the source is
copied to a new local DTE, and the new DTE’s valid bit is
set to false. The list of candidate ITEs is computed for the
key in the newly-copied DTE, and one of these candidates
is selected as a destination. In our prototype implementation,
the destination is chosen to be the first candidate which is
different from the source.

If the destination is not empty, Nessie frees it by perform-
ing a recursive MIGRATE using the destination as a source.
Once the destination is empty, an RDMA CAS overwrites
it to point to the newly-copied DTE, and the source ITE
is marked as empty using another CAS. The newly-copied
DTE’s valid bit is set to true, and the ITE originally re-
ferred to by the source is marked for recycling. The use
of a new DTE for each operation, in combination with the
DTE expiration times and operation timeouts discussed in
Section 4.3.1, ensures that it is impossible for an operation,
such as a GET, to miss an existing value due to concurrent
operations. For example, if a GET reads an ITE during its

forwards pass, and a MIGRATE subsequently moves an exist-
ing value into that ITE, the ITE now contains indexing data
that is different from what was recorded by the GET. Even
if further operations change the ITE, the GET will detect a
mismatch on its backwards pass and return a concurrent
operation error. Figure 3 illustrates an example MIGRATE

operation (step by step descriptions are provided in the
figure caption).

In theory, multiple recursive MIGRATEs may be needed
to free a destination ITE. Therefore, at a configurable re-
cursive depth the PUT is aborted and an error is returned,
informing the caller that the system’s index tables must be
made larger or data must be deleted before re-attempting
the PUT. In practice, because ITEs in Nessie are only 64
bits, Nessie is able to use large index tables with low load
factors without consuming much memory. This makes even
non-recursive MIGRATEs extremely rare. A comprehensive
examination of MIGRATEs is provided in Appendix A.

4.2.4 Delete

DELETEs in Nessie are identical to PUTs, but instead of
inserting a DTE with a specified value, a DELETE inserts a
DTE with an empty value. Just as with PUTs, any operations
running concurrently to a DELETE on the same key will
encounter an invalid DTE, allowing them to abort, back-
off, and retry. Unlike a PUT, a DELETE never marks its
inserted DTE as valid. Instead, the DELETE performs one
last CAS on the ITE referring to the DTE, marking the ITE as
empty. The DELETE then marks the DTE for recycling and
returns. Detailed information about DELETEs can be found
in Appendix A.

4.2.5 Data Table Management

Each node maintains a list of data table entries which may
be allocated during PUTs or MIGRATEs. A DTE is in-use if
an ITE contains a reference to it. When an ITE is changed
to be empty or to reference a different DTE, the original
DTE it referred to can be re-used after an expiration period.
Because ITEs are updated atomically using RDMA CAS

verbs, and only the thread that clears an ITE is allowed to
recycle a DTE, it is impossible for multiple operations to
simultaneously mark a DTE for recycling. Therefore, direct
memory writes and RDMA WRITE verbs (depending on
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Fig. 3: Migration from ITE “SRC” to ITE “DST”. For simplicity, the index table’s DTI and DTE are combined into a single “Index” field. The
shading highlights the component being acted on in each step: 1) Create an invalid copy of SRC’s DTE. 2) Change DST to refer to the new DTE.
3) Clear SRC. 4) Make the new DTE valid.

locality) are sufficient to set the recycle bit and expiration
timestamp of a DTE.

When a node runs out of available DTEs, it scans its
DTEs for entries that have been marked for recycling, and
adds them back into its list of available entries. This scan
is performed when available DTEs are exhausted, but to
reduce the frequency of this occurring on the critical path,
it may be performed lazily by a background thread at
scheduled intervals or when the CPU is idle. Likewise,
the act of marking DTEs for recycling can also be moved
into a background thread, removing the need to do so
from an operation’s critical path. To avoid the case where a
particularly slow GET or PUT operation reads an ITE, waits
for a long duration, and then erroneously reads a DTE which
has been recycled, we use a simple time-based expiration
system. This is explained in greater detail in Section 4.3.1.

4.3 Protocol Modifications

In addition to the basic components of the Nessie proto-
col described in Section 4.2, several other techniques are
used by Nessie to achieve better performance for certain
workloads, and to avoid consistency issues when recycling
memory. In this section, we examine these additional mech-
anisms.

4.3.1 Correctness

Aborting migration: MIGRATEs may be interrupted by
encountering an invalid source ITE, or by failing a CAS on
the destination or the source ITE. If a MIGRATE encounters
an invalid source, or is unable to CAS the destination ITE, it
may safely abort as it has made no changes to the system. If
a MIGRATE fails to CAS the source ITE then it must mark the
destination copy it has created as empty. This is done using
a CAS. If marking the destination as empty is successful, the
DTE referred to by the destination is marked for recycling
and the MIGRATE returns a concurrent operation error. If
marking the destination as empty fails, this means that
another operation has already marked the destination as
empty. The MIGRATE may then safely return a concurrent
operation error.

DTE timestamping and expiration: Nessie does not allow
DTEs to be immediately recycled when they are replaced by
PUT, MIGRATE or DELETE operations. This is to prevent a
case where a slow operation reads an ITE and then delays
long enough before reading the associated DTE that the DTE
has been recycled and re-used by concurrent operations. To
enforce this, DTEs contain a recycle flag, denoting whether
or not they are in the process of being recycled, and an
8-byte expiration timestamp. When the recycle flag is set,

the timestamp is updated to a time in the future after a
configurable expiration period. A Nessie client attempting
to re-use freed DTEs cannot re-use a DTE until it has
fully expired. Furthermore, a DTE is only timestamped for
recycling after the completion of an event that has marked
its ITE as empty. Thus, any node that reads a valid ITE is
guaranteed to receive a consistent value if they subsequently
read the associated DTE within one expiration period. We
therefore enforce the condition that every Nessie operation
returns an error once a single expiration period of time
has elapsed, and must be re-attempted. Although a timeout
at the operation level is more strict than is necessary to
maintain consistency, it is easy to implement and is unlikely
to be exceeded in practice.

Configuring the DTE expiration period: The expiration
period should be chosen so that it is long enough to not
cause unnecessary operation aborts, but also short enough
to keep the data table from running out of entries. It is
possible to determine a safe upper bound on the expiration
period using the rate of PUTs, and the amount of overflow
capacity available in the data table. For example, if the
system is expected to handle 600,000 PUTs per second,
which is more than the highest rate of PUTs we reached
in any experiment, and has 600,000 data table entries of
overflow capacity, which in our experimental set up would
be a data table operating at 80% of capacity, then the
expiration period should be no longer than 1 second. In less
PUT heavy workloads, a rate of 100,000 PUTs per second
would be expected, and would require an expiration period
of 6 seconds. As is shown in Section 6.1, the latency of
GETs and PUTs are on the order of microseconds. Even
when operations have tail latencies in the millisecond range,
this would still be an order of magnitude smaller than an
expiration period on the order of seconds. Thus, a 1 second
expiration period would ensure DTE availability without
causing unnecessary aborts.

Avoiding the ABA problem: If a slow-running Nessie client
were to read an ITE and then stall while other nodes
continued to run, it could be possible for the other nodes
to write over the ITE many times in sequence. If the original
DTE referred to by the ITE were to be recycled and then
used again for the same ITE, the slow-running Nessie client
might re-read the ITE and assume it has not changed. This
is known as the ABA problem [1]. DTEs already have expi-
ration times, and therefore as long we continue to enforce
timeouts on operations, it is impossible for an operation to
use a recycled DTE. Thus, timestamps and expiration times
also eliminate the ABA problem.

Cache consistency: Nessie stores cached DTEs using their
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associated ITEs as keys, and looks up cached entries us-
ing ITEs retrieved during the course of an operation. As
discussed previously, a DTE retrieved using a valid ITE is
also guaranteed to be valid for a full expiration period from
the time the ITE was read. To maintain cache consistency,
Nessie therefore stores items together with their expiration
times in the local cache. If a cache lookup yields an expired
ITE-DTE pair, Nessie treats it as a cache miss, and evicts the
entry from the cache. When an ITE results in an unexpired
hit in the cache, the DTE in the entry is again guaranteed
to be consistent for a full expiration period from the time
at which the ITE was read. This is because reading the
DTE from the cache, so long as it has not expired, is no
different than fetching it from a remote node. This allows
Nessie to extend the expiration time of entries on a cache
hit. Because Nessie is a big memory system, the size of
the dataset implies that the local cache primarily benefits
workloads with highly skewed access patterns. Therefore,
Nessie continues to receive most of its caching performance
benefits even with a relatively short expiration time.

Synchronizing DTE timestamps: Using timestamps for ex-
piration times requires the clocks of nodes in the cluster to
be loosely synchronized. The configurable expiration time
used by a Nessie cluster will typically be on the order of
seconds, whereas operations in the system occur on the
order of microseconds. This means that the simple use of
Network Time Protocol (NTP), which is able to achieve
better-than-millisecond accuracy in data centre environ-
ments [4], provides sufficient synchronization accuracy for
Nessie’s purposes. This minor variance is then accounted
for by operations when they check if their timeout period
has expired.

Consistency and availability during node failure: Nessie
does not provide replication, and as a result a node failure
leads to the loss of indices and data. Additionally, portions
of the keyspace for which the lost node shared responsi-
bility or was operating on may be unavailable until the
node is restored. There are potential challenges involved
in adding fault tolerance to Nessie. This could involve the
implementation of a client-driven version of a consensus
protocol or the use of external failure detection. We intend
to explore providing a fault-tolerant client-driven system in
future research.

4.3.2 Performance

Filter bits: Nessie uses filter bits in ITEs to prevent the
unnecessary retrieval of DTEs that would not match the
requested key. This is similar to hash table optimizations
used by MemC3 [16], MICA [25], and MemcachedGPU [20].
This optimization is particularly important for workloads
with densely populated index tables, and workloads with
large DTEs. When a new DTE is being inserted, the trailing
bits of its key hash are stored in the ITE that references the
DTE. Upon reading an ITE, the filter bits may be compared
against the filter bits of the requested key. If these bits do not
match, then it is guaranteed that the ITE’s referenced DTE
does not contain an entry for the requested key.

Previous versions: If clients attempt to GET a key for which
a PUT is simultaneously occurring, the clients performing
the GETs would be unable to complete as they would see an

invalid DTE. This could cause large latencies for PUT-heavy
workloads with a small subset of popular keys. We avoid
this issue by taking advantage of the fact that Nessie retains
removed DTEs for a timeout period. While a PUT has not
yet completed and therefore has not officially occurred, as
it could still be interrupted, a previous DTE for the same
key is, by design, still in the system. The previous DTE
is only invalidated and set to be recycled and given an
expiration timeout once the PUT has completely finished.
To allow other clients to access the previous DTE, when
a PUT modifies a non-empty ITE, it copies the ITE being
replaced into the DTE associated with the current operation.
When another client accesses the DTE of the in-progress
operation, the client can then use the previous ITE field to
retrieve the previous DTE. If this previous DTE is valid,
and matches the requested key, the GET successfully returns
it. The result is a significant improvement in throughput,
which is demonstrated in Section 6.2.

Back-offs and avoiding retries: The use of previous ver-
sions prevents Nessie’s PUTs from interfering with its GETs.
However, it is still possible for PUTs on colliding keys to
interfere, and in these circumstances, one of the PUTs must
be aborted and retried after a back-off period. To avoid a
scenario where newly arriving PUTs continually interrupt
in-progress PUTs, Nessie aborts PUTs that encounter an
invalid DTE while choosing a candidate ITE, as this implies
another PUT is already occurring. We use a standard expo-
nential back-off for retrying PUT operations.

Multiple reads: When the values stored by Nessie be-
come large, filter bits may not be enough to eliminate the
overhead of unnecessarily reading invalid or non-matching
DTEs during a GET. To account for this, we allow GETs to
split RDMA READs from DTEs into two, one READ to fetch
all non-value fields, and another READ to fetch the DTE
with value, if the key matches and the DTE is valid. De-
spite incurring an additional round trip, only transmitting
necessary values decreases completion times for Nessie op-
erations with large values, as we demonstrate in Section 6.

5 IMPLEMENTATION

We have constructed a working prototype of Nessie con-
sisting of about 4,400 lines of C++, which sits on top of
networking, configuration and benchmarking infrastructure
consisting of another 8,500 lines of C++. Nessie allows for
quick and easy deployment across a cluster of RDMA-
enabled nodes. It supports configurable numbers of cuckoo
hashing functions, networking parameters, data table sizes,
index table sizes, and more. Our prototype supports a
key size and data size configurable at launch time. Future
implementations could be made to partition data tables into
entries of different sizes in order to accommodate more
efficient storage of variably-sized data. This is similar to
the approach used by memcached, which divides slabs
of memory into pieces using configurable chunk sizes [3].
Our current implementation of Nessie supports partitioning
across a fixed number of machines. For a discussion of
supporting dynamic node join and leave, please refer to
Section 7. Nessie uses RDMA reliable connections (RC) to
provide network connectivity between nodes in the system,
as they are required in order to support Nessie’s use of
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RDMA READ and CAS verbs. RC connections also guarantee
transmission, and therefore prevent the need to implement
an extra, external layer of reliability for Nessie’s networking
protocol.

In order to compare our fully decoupled, client-driven
Nessie prototype against equivalent approaches that use
other communication mechanisms, we have also imple-
mented a server-driven version of Nessie, called NessieSD,
and a hybrid version of Nessie, called NessieHY. Similar to
HERD [21], NessieSD uses RDMA WRITE verbs to insert re-
quests into a server’s request memory region. These regions
are polled by server worker threads, which service both GET

and PUT requests, and respond to them using RDMA WRITE

verbs. In the case where a request is made by and serviced
by the same node, the request and response are optimized to
be written directly, without using RDMA. Although HERD
is described and evaluated within the context of a single
server node, we expand the design of NessieSD to run
with multiple nodes. Like Nessie, NessieSD’s index tables
are implemented as cuckoo hash tables. Unlike Nessie,
however, an ITE in NessieSD only ever refers to DTEs
on the same node (making it partially coupled instead
of decoupled). This design decision also emulates HERD,
limiting the number of network operations necessary for
NessieSD to complete a single round trip, but potentially
limiting opportunities for locality-based optimizations.

Inspired by the RKVS demonstrated in FaRM [14],
NessieHY employs a hybrid communication system that
uses client-driven GETs and server-driven PUTs. For its pro-
tocol, NessieHY combines techniques from both Nessie and
NessieSD. As in NessieSD, NessieHY uses RDMA WRITE

verbs to push PUT requests to remote servers. These servers
use polling server worker threads to service and respond
to the PUT requests using RDMA WRITE verbs. NessieHY’s
GET protocol is largely similar to that of Nessie, described in
in Section 4.2.1. For comparison with Nessie and NessieSD,
index tables for NessieHY are implemented as cuckoo hash
tables. Similar to the index tables of NessieSD, NessieHY’s
index tables are partially coupled. This allows NessieHY
to minimize the number of round trip operations required
to service a PUT. Additionally, NessieHY is optimized to
use direct memory accesses in place of RDMA operations
whenever possible when dealing with same-node data, for
example when reading DTEs. This helps to reduce unneces-
sary consumption of NIC resources.

Despite NessieSD being inspired by HERD, we have
eschewed some of the low-level RDMA optimizations ex-
amined in HERD, including using RDMA unreliable con-
nections (UC) and data inlining, which allows small mes-
sages to avoid a copy over the PCIe bus. While we do
understand and value the performance benefits of UC and
inlining demonstrated in the HERD paper, we avoid using
UC to focus on environments that require guaranteed reliable
delivery. Additionally, our goal is to build a storage system
that is not designed specifically for very small value sizes
and as a result we have not been concerned with obtain-
ing the benefits of inlining. Likewise, although NessieHY
draws inspiration from the hybrid design of FaRM, it does
not include other features that FaRM’s hashtables do, for
example the use of chained associative hopscotch hashing,
the ability to perform multi-item transactions, and the use

of data replication. Rather, we have provided a system
that closely resembles Nessie and NessieSD apart from
communication mechanisms, allowing for easy comparison
between the three. Furthermore, we have not implemented
several of Nessie’s optimizations in NessieHY, including fil-
ter bits, caching, previous versions, and multiple reads. This
is primarily because these feature are not present in other
hybrid systems, furthermore implementing these features
in a NessieHY requires significant engineering effort which
is outside the scope of our work.

The NessieSD and NessieHY implementations are about
3,600 lines of C++ and 4,200 lines of C++ respectively, and
employ the same underlying infrastructure, configuration
and deployment options as Nessie.

6 EVALUATION

To evaluate Nessie, we use a cluster of 15 nodes, where
each node is a Supermicro SYS-6017R-TDF server containing
one Mellanox 10 GbE ConnectX-3 NIC, 64 GB of RAM,
two Intel E5-2620v2 CPUs, each containing 6 cores with a
base frequency of 2.1 GHz and a turbo frequency of 2.6
GHz. To simplify experiments and to ensure repeatability
we have disabled hyperthreading. Each node is connected
to a Mellanox SX1012 10/40 GbE switch. All nodes run
an Ubuntu 14.04.1 server distribution with Linux kernel
version 3.13.0.

All experiments use an index table load factor of 0.4. This
load factor is small enough that cuckoo hash collisions occur
infrequently. We believe it is reasonable to use a lower load
factor because each index table entry is 64 bits, meaning
that the index table can be sparse without wasting memory.
For example, with 1.2 billion keys and a load factor of 0.4,
only 1.5 GB are required per node to store the index table.
Index table entries in all Nessie experiments are configured
to use seven filter bits. Due to the low load factor used
in our experiments, these filter bits do not play a major
role in the results that we present. Similar to the results
presented by Pilaf [26], we empirically determined that
using three cuckoo hash functions struck a good balance
between memory efficiency and performance and therefore,
we use this value for all of our experiments.

All experiments use a key size of 128 bytes, and we vary
the size of the value from 256 bytes to 128 KB. The number
of keys used per experiment is chosen such that, when all
key-value pairs are present in the system, each node should
contain 20 GB worth of data on average. As a result, experi-
ments with smaller data values have a larger number of key
than experiments with larger data values. Since each update
requires a new DTE, for workloads with enough PUTs, all
DTEs will eventually become full and further additions will
require recycling. To prevent excessive recycling we use data
table sizes of 30 GB per node. Additionally we use a cache
size that is able to accommodate data for 0.5% of the total
number keys on each node. The cache provides negligible
benefits for experiments with uniformly distributed access
patterns. Therefore, the cache size was determined exper-
imentally by its impact on Zipfian-distributed workloads.
The nature of the Zipfian distribution means that the cache
provides diminishing benefits as it continues to grow.
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Our Nessie experiments use 12 client worker threads
per node (one for each core on our nodes) which drive
load by performing operations in parallel, as we found that
exceeding one worker per core caused contention which re-
duced throughput. Similarly, NessieSD and NessieHY were
tuned to have one worker thread per core, however these
are divided between server workers handling requests and
client workers making requests. For these systems, tuning
the number of client and server workers presents a trade-
off between throughput and latency. In our experiments,
we adjust these values for maximum system throughput.
Through manual tuning, we determined that NessieSD’s
peak performance is obtained by having 3 server workers
and 9 client workers per machine when value sizes are less
than 1 KB. If value sizes are greater than or equal to 1 KB,
we found that 2 server workers and 10 client workers per
machine obtained the peak performance for NessieSD. With
NessieSD, server worker threads service all operations, and
therefore tuning their number is a simple matter of trying to
accommodate the load being generated by the system. With
NessieHY, however, client workers service GETs, and server
workers service PUTs. Tuning the number of server workers
versus client workers depends on additional factors such as
the ratio of an experiment’s GETs to PUTs. Through manual
tuning, we discovered that NessieHY’s best throughputs for
50% GETs workloads were achieved with 3 server workers
and 9 client workers for data sizes less than or equal to
32 KB, and 2 server workers and 10 client workers for larger
data sizes. For 90% and 99% GETs workloads, NessieHY
performed best with 1 server worker and 11 client workers
for most data sizes, with results at 2 server workers and
10 client workers providing comparable throughput as in-
dividual operations are serviced with lower latency but less
load is driven by the system overall.

While it is possible to create server-driven mechanisms
that reduce CPU usage by alternating between polling and
blocking modes during periods of high and low activity,
blocking communication mechanisms have been avoided
by systems such as FaRM and HERD due to the dramatic
increase in operation latency that they cause. We do not
compare against such an approach, as the results would be
difficult to interpret meaningfully due to the unacceptably
high service latency when serving requests using blocking
communication mechanisms.

6.1 Shared CPU Environments

Our first set of experiments emulate a shared CPU environ-
ment as might be found in a cloud data centre. In such envi-
ronments, external processes compete for the CPU, causing
contention. In this experiment, each server worker thread is
pinned to its own core, all client worker threads are pinned
to a separate set of cores that does not include those being
used by the server worker threads, and background threads
are not pinned to any CPUs. The background threads mimic
the behaviour expected in a cloud computing environment
where external processes can not be controlled. Figure 4
shows an experiment on a 15 node cluster with an increasing
number of background CPU-consuming processes, in which
key accesses are randomly distributed in a uniform fashion
across the entire keyspace and the size of a data value is
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Fig. 4: Throughput for Nessie (CD), NessieSD (SD), and NessieHY (HY)
as other processes are introduced, using 16 KB values and 90% GETs.

16 KB. Repeating this experiment with smaller data sizes
yielded data demonstrating similar trends. The ratio of GET
to PUT operations in the experiment is 90 to 10. The figure
shows that, with no background processes (i.e., no CPU con-
tention), Nessie and NessieSD both perform equivalently
well, while the goodput for NessieHY is slightly lower.
However, as CPU contention is introduced in the form
of external processes, NessieSD’s throughput declines dra-
matically, NessieHY’s throughput declines somewhat but
not nearly as dramatically, while Nessie remains relatively
unaffected.

NessieSD’s performance decline occurs because its
server workers are unable to maintain the same level of
high performance when faced with CPU contention. In
NessieSD clients must wait for a server worker to respond
when a server worker thread is unable to access the CPU
due to contention. When this occurs, all clients sending
them requests are unable to make any progress. In contrast,
Nessie clients operate independently so if a single individ-
ual client worker thread is unable to access the CPU it only
impacts that operation. NessieHY’s performance similarly
declines as CPU workers are introduced, however this rate
of decline is lower than that of NessieSD as NessieHY only
uses its server worker threads for PUTs. CPU contention is
therefore less impactful on NessieHY than on NessieSD, and
more impactful of NessieHY than Nessie. It is worth noting
that the impact of competing background threads would
decrease for NessieHY with a lower percentage of PUTs,
and increase for a higher percentage of PUTs.

6.2 Large Data Values

Unlike existing RKVSes, Nessie is designed to efficiently
support large data values. We now evaluate Nessie’s per-
formance using a range of data sizes and GET/PUT ratios
under both uniform and Zipf distributions. Unless other-
wise stated, all experiments use 15 nodes and throughput
results are presented as goodput, which is defined by the
number of operations performed per second multiplied by
the size of the data value.

Figures 5, 6 and 7 show the throughput of Nessie,
NessieSD and NessieHY using random, uniformly dis-
tributed keys with 50%, 90%, and 99% GETs, respectively.
The results show that, although NessieSD performs better
than Nessie for small data sizes, the opposite is true as
data sizes increase. With a 2 KB data size and 50% GETs,
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Nessie performs 30% worse than NessieSD. However, for
the 50% GET workload at 8-KB data values and beyond the
performance of Nessie begins to outpace that of NessieSD.
For data values of 128 KB, Nessie’s throughput is about
70% higher than NessieSD’s throughput. For GET-heavy
workloads, both Nessie and NessieSD perform equally well
at 16 KB and beyond, with Nessie making small relative
gains for GET-intensive workloads thereafter. The through-
put of NessieHY is consistently lower than both Nessie and
NessieSD, primarily due to its lack of filter bits which we
will discuss next.
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Fig. 5: Uniform random key access using 15 nodes, for 50% GETs.
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Fig. 6: Uniform random key access using 15 nodes, for 90% GETs.
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Fig. 7: Uniform random key access using 15 nodes, for 99% GETs.

To explain the differences between performance for each
system, we need additional information about how the sys-
tems operate. Figure 8 shows a CDF of the average number
of RDMA operations required during GETs and Figure 9
shows a CDF for the average number required by PUTs in
Nessie (labelled CD), NessieSD (labelled SD) and NessieHY
(labelled HY). Similarly, Figures 10 and 11 show a CDF for

the average number of bytes sent over the network by both
systems during individual GETs and PUTs, respectively. All
four figures are presented using data from the 50% GETs,
50% PUTs workload using 16 KB DTEs and uniform key
access across 15 nodes. 16 KB DTEs are used because at
this point Nessie begins to trend away from NessieSD and
NessieHY in Figure 5.
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Fig. 8: CDF of RDMA operations required for GETs in a uniform
random workload, with 50% GETs on 16 KB data values across 15
nodes.
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Fig. 9: CDF of RDMA operations required for PUTs in a uniform
random workload, with 50% GETs on 16 KB data values across 15
nodes. SD-PUT and HY-PUT are overlapping.

Figure 8 and 9 show that the server-driven aspects of
NessieSD and NessieHY allow them to complete a small
number of operations without using RDMA, as about 6%
of ITE and DTE lookups would be hosted on the node
making a request. This benefit would shrink as the size of a
cluster scales. Non-local NessieSD operations and non-local
NessieHY PUTs use two RDMA WRITEs. Comparatively,
Nessie GETs and PUTs must always read at least one ITE
using RDMA. A Nessie GET uses no other RDMA operations
if data is local or can be serviced from the cache, but
otherwise data is serviced remotely using RDMA. When the
load factor of the system’s hash tables increases, a small
number of Nessie and NessieHY GETs require more than
two RDMA operations as they iterate over cuckoo hash
indices. In these cases, Nessie is often able to avoid DTE
lookups using filter bits. NessieHY, which does not use
filter bits, incurs additional operations on each cuckoo hash
iteration. Nessie’s PUTs require a minimum of 5 RDMA
READs to ITEs and an RDMA CAS on an ITE. Despite using
more RDMA operations, as values grow larger performs
increasingly better than NessieSD and NessieHY. This can
be attributed to Nessie’s ability to exploit data locality and
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prevent network usage through local writes. We believe
that introducing filter bits into NessieHY would bring its
throughput in line with some Nessie results at small data
sizes and NessieSD results at large data sizes. Note that filter
bits are not available on any current hybrid systems.

Examining the number of bytes transferred during GET

and PUT operations in Figures 10 and 11 reveals that,
although Nessie and NessieSD transfer similar amounts of
bytes on average during GETs, Nessie transfers far fewer
bytes than NessieSD and NessieHY during PUTs due to
its local DTE placement scheme. For PUTs, NessieHY on
average transfers the same number of bytes as NessieSD.
However, for GETs a significant fraction of the NessieHY
16 KB GETs require two or three cuckoo hash iterations
before successfully retrieving the data. Unlike Nessie, which
uses filter bits to prevent data transfer in this specific case,
NessieHY requires a data transfer in these circumstances (as
can be seen by the fraction of operations requiring 32 or
48 KB transfers) and therefore obtains lower throughput in
Figures 5, 6 and 7.
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Fig. 10: CDF of bytes transferred for GETs for a uniform random
workload, with 50% GETs on 16 KB data values across 15 nodes.
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Fig. 11: CDF of bytes transferred for PUTs for a uniform random
workload, with 50% GETs on 16 KB data values across 15 nodes. SD-
PUT and HY-PUT are overlapping.

Table 1 contains data showing the GET, PUT and overall
average latencies incurred for different data sizes, in addi-
tion to the total number of bytes transferred in each case.
The total number of bytes includes not only goodput, but
also bytes caused by overhead such as cuckoo hashing. Min-
imum values for each grouping are shown in bold. As seen
in Table 1, when values grow large transfer times and net-
work contention begins to impact performance, causing in-
creased average operational latencies. This table also shows,
however, that Nessie sends substantially fewer total bytes

over the network compared to NessieSD and NessieHY for
all data sizes. By eliminating unnecessary data transfers
with filter bits, and by preventing GETs from needing to
compete with PUTs for network resources through the use
of local writes, Nessie continues to operate at lower levels
of latency than NessieHY and NessieSD at large data sizes.
Interestingly, average PUT latencies are minimized for data
sizes larger than 16 KB when using NessieHY because its
server workers, which only process PUTs, are more lightly
loaded than those of NessieSD.

Data Size (KB) 2 4 8 16 32 64 128

CD GET Lat. (µs) 19 27 46 86 172 391 811
SD GET Lat. (µs) 25 43 82 184 412 875 1732
HY GET Lat. (µs) 24 47 109 231 524 1193 2455

CD PUT Lat. (µs) 61 83 133 233 447 858 1533
SD PUT Lat. (µs) 25 41 77 171 381 816 1602
HY PUT Lat. (µs) 42 42 69 129 271 709 1388

CD All Lat. (µs) 40 55 89 159 310 624 1172
SD All Lat. (µs) 25 42 80 178 397 846 1667
HY All Lat. (µs) 33 45 89 180 398 951 1922

CD Sent (GB) 514 729 877 975 999 989 1053
SD Sent (GB) 1245 1503 1590 1439 1291 1212 1230
HY Sent (GB) 957 1287 1461 1445 1314 1219 1208

TABLE 1: Latency averages for different operations, and total bytes sent
over the network for Nessie (CD) NessieSD (SD) and NessieHY (HY)
for uniform random key access using 15 nodes and 50% GETs.

Data access patterns are also important to consider when
values become large. Many applications exhibit skew in
the access patterns for keys. In order to highlight some of
the features of Nessie that have been explicitly designed
to optimize for such cases, we next examine the perfor-
mance of Nessie and NessieSD under these circumstances.
NessieSD is, by its design, not able to make use of these
optimizations. We do not compare against NessieHY as it
lacks the optimizations necessary for it to achieve acceptable
performance for this workload. We consider a workload that
uses a Zipfian distribution with an alpha of 0.99, following
the guidelines of the YCSB benchmark [12], which shows
the percentage difference in goodput between Nessie and
NessieSD. The results of these experiments are shown in
Figure 12. case for workloads that use a uniform distri-
bution of keys, Nessie provides its peak performance for
large value workloads with 50% GETs (an improvement
of over 50% compared to NessieSD). However, unlike the
uniform random workload, Nessie also performs well for
large values with a large percentage of GETs, outperforming
NessieSD by over 40% for workloads with 99% GETs.

In addition to showing results for large data values, Fig-
ure 12 also shows the relative performance between Nessie
and NessieSD for small data values of 256 bytes. Because
Nessie’s operations require more roundtrips to complete,
smaller data values are negatively impacted by Nessie’s
design. However, GET-heavy workloads with data sizes
greater than 2 KB, or balanced workloads with data sizes
greater than 16 KB, are able to take advantage of Nessie’s
design, which is specifically targeted at those workloads.

Nessie’s performance results with a Zipf workload are
obtained through a collection of optimizations. Figure 13
shows the breakdown of each optimization’s contribution
for 50% GETs and 99% GETs with 16 KB data values. In
its most basic form (labelled basic), Nessie is not able to
provide competitive throughput because it uses a form of
optimistic concurrency control. Our protocol assumes that
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Fig. 12: Zipf random key access using 15 nodes, for 50%, 90%, and
99% GETs. Relative goodput is the percentage improvement in goodput
between Nessie and NessieSD.

no other clients are trying to manipulate the same data at
the same time and then checks for conflicts at the end of
the operation. Such a design is not naturally suited for high
levels of contention.

The first optimization we introduce for Nessie is filter
bits (labelled + filter) which allow GETs and PUTs to skip
non-matching DTE lookups during cuckoo hashing by ex-
amining hash bits stored in ITEs. Normally filter bits have
a moderate impact on throughput by reducing unnecessary
bytes sent over the network, especially as data sizes grow
or index table load factor increases. In this Zipf workload it
appears that the most popular keys, which are accessed by
Nessie far more often than other entries, do not require mul-
tiple lookups as filter bits have little impact. By comparison,
the uniform workload results seen in Figure 8 and Figure 11
show that Nessie with filter bits eliminates a value-sized
RDMA READ in 20% of GETs and another value-sized READ

in 5% of GETs, as well as two round-trips in 35% of PUTs.
NessieHY, which does not use filter bits but otherwise uses
almost the same protocol, does not receive these benefits.

The second optimization we introduce is caching (la-
belled + caching), which shortcuts the GET protocol if the
key has not changed since its last update. As one might ex-
pect, caching is not useful for PUT-heavy workloads because
the majority of key accesses are for the keys that change
the most frequently. In contrast, GET-heavy workloads make
good use of caching by avoiding large data accesses, thereby
freeing up network bandwidth for other operations.

While caching does increase Nessie’s throughput, it does
not solve the fundamental problem of high contention on
the most popular keys. The problem occurs when a PUT is
in progress for a key and other clients are trying to acquire
the value for the same key. Once the PUT changes the ITE to
reference its new, but still invalid, data table entry, all of the
GETs are forced to back-off and retry until the PUT is able
to finish. This is particularly problematic because each time
a GET reads the invalid DTE, it is consuming a large portion
of the network resources and thereby potentially blocking
the PUT from finishing.

To alleviate this contention, DTEs contain a copy of
the old ITE so that the GET can read the previous value
referenced by the ITE (labelled + prev. vers.). Importantly,
this allows clients to read a valid DTE even after the PUT

has replaced the candidate ITE. However, it is wasteful
to read the entire DTE when the large value portion is

only used if the DTE is valid. Therefore, we add our final
optimization which uses multiple READs to access a DTE
to avoid unnecessary data transfers (labelled + multi. read).
The first READ of a DTE is for the key and metadata only, and
then a second READ is for the value field only if it the value is
useful. Taken together, with 16 KB data values, the protocol
optimizations produce a 60% improvement for workloads
with 50% GETs, and a 90% improvement for workloads with
99% GETs compared to Nessie without any optimizations.
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Fig. 13: Optimization impacts for a Zipf random workload, with 50%
and 99% GETs on 16 KB data values across 15 nodes.

6.3 Energy Consumption

Our last set of experiments seek to determine the effects of
server-driven versus client-driven RKVSes on power con-
sumption. We use IPMI [2] to measure the energy consump-
tion of the machines hosting these instances throughout
the duration of the experiments. Figure 14 shows aver-
age power consumption across all nodes given varying
levels of total system load (measured as a percentage of
maximum possible throughput) for experiments using 15
nodes, uniform key access distribution, a 16 KB data value
size, and a 90 to 10 GET to PUT ratio. The data point for
100% maximum throughput represents Nessie, NessieSD
and NessieHY when they are generating requests as fast
as possible. We use this value to determine a mean for
a Poisson distribution that produces interarrival rates for
workloads operating at 5%, 20%, 40%, 60% and 80% of
maximum throughput.

NessieSD and NessieHY expend energy on server
worker threads which poll and process requests, and client
worker threads which make requests and poll for responses.
Nessie’s energy consumption derives entirely from worker
threads making requests and polling for responses. At 100%
of maximum throughput, each system is saturated with
requests. Because every thread in each system is busy either
servicing a request or polling, the energy consumption of
the systems is the same, at around 139 W.

As the percentage of maximum throughput decreases,
some client worker threads in each system idle when no
work is available. This translates into energy savings for
all three systems. Nessie, however, decreases its energy con-
sumption at a more rapid rate than NessieHY and NessieSD,
thanks to its strictly client-driven design. NessieHY and
NessieSD both contain server worker threads which always
run at 100% capacity. These systems therefore consume
more energy than Nessie at lower percentages of maximum
throughput. NessieSD, which requires more server workers
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Fig. 14: Energy consumption for Nessie (CD), NessieSD (SD), and
NessieHY (HY) for varying percentages of maximum throughput. The
dark line at 81 Watts is the power consumption of an idle machine.

at the same level of throughput than NessieHY due to
its strictly server-driven design, likewise consumes more
energy than NessieHY. At 80% maximum throughput, the
difference between the worst performer, NessieSD, at 130 W
and the best performer, Nessie, at 121 W is 18% over the
system’s idle wattage of 81 W. At 20% maximum throughput
this difference increases to 113 W for NessieSD and 100 W
for Nessie, or 41% over the idle wattage. In both cases,
NessieHY falls between the other systems. We therefore
conclude that for realistic data centre workloads where
inactivity can fluctuate, such as the workloads described
in Section 3.2, a client-driven approach provides significant
energy savings over a server-driven approach.

7 DISCUSSION

One concern with Nessie’s design is potential contention on
NIC resources from multiple requests, from collocated com-
putation, or from other tenants in a cloud environment. This
can result in the NIC becoming the system’s performance
bottleneck. However, in many environments including the
cloud, servers are equipped with more than one NIC. Pro-
viding Nessie with a dedicated NIC would ensure that it
consumes network resources separate from those used by
other applications. Additionally, if NIC saturation becomes
an issue, a single Nessie node is able to make use of more
than one NIC by creating multiple index and data tables,
and partitioning them across the NICs. This can help to
ensure that NIC resources do not bottleneck the system.

In this paper we have primarily focused on workloads
where data is generated roughly equally across all nodes,
memory is not fully utilized, or minor imbalances can
be remedied by migrating data between nodes during off
peak periods. These workloads benefit from Nessie’s local
writes in order to improve performance. Because of this
focus, we have not added support for remote writes to our
Nessie prototype, and as a result it is not possible for us
to isolate the performance improvements Nessie receives
from writing locally. In future work, Nessie’s protocol could
be updated to support the placement of DTEs non-locally
by replacing direct memory writes with RDMA writes and
adding a background mechanism to lazily request lists of
empty DTEs on remote nodes. This would allow us to
support other workloads that do not share these charac-
teristics and to place data according to other criteria, for

example by using application-speficic knowledge of data
locality. Nessie’s performance would be different under
these circumstances, as the amount of data written over
the network would change for PUTs based on workload-
dependant factors.

The current Nessie design does not support dynamic
group membership changes. Failed nodes can be re-added
or replaced, but the number of nodes in the system cannot
be changed. This is something that we intend to examine in
future work, perhaps through the implementation of client-
driven consistent hashing for data partitioning.

8 CONCLUSIONS

In this paper, we design, implement and evaluate the
performance and energy consumption of Nessie, a high-
performance key-value store that uses RDMA. The benefits
of this work derive from Nessie’s client-driven operations,
in addition to its decoupled indexing and storage data
structures. Nessie’s client-driven architecture eliminates the
heavy loads placed on CPUs by the polling threads used
for low latency server-driven designs. This allows Nessie to
perform favourably in shared CPU environments compared
to an equivalent server-driven approach, more than dou-
bling system throughput. Additionally, the decoupling of
index tables and data tables allows Nessie to perform write
operations to local memory, which is particularly beneficial
in workloads with large data values. This provides Nessie
with a 60% throughput improvement versus a fully server-
driven equivalent when data value sizes are 128 KB or
larger. Nessie also demonstrates throughput wins against
a hybrid system in this case. Furthermore, Nessie’s client-
driven approach allows it to consume less power than a
fully server-driven system during periods of non-peak load,
reducing power consumption by 18% at 80% system utiliza-
tion and 41% at 20% system utilization when compared with
idle power consumption. Nessie likewise improves power
consumption over a hybrid system to a lesser extent.
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