
Memory Contexts: Supporting Selectable
Cache and TLB Contexts

Tim Brecht,
David R. Cheriton School of Computer Science,

University of Waterloo
brecht@cs.uwaterloo.ca

2nd Workshop on New Directions in Computer Architecture (NDCA−2), June, 2011.

ABSTRACT
In this paper I argue that in addition to supporting multiple
cores, future microprocessor designs should decouple cores
from caches and TLBs and support multiple,run-time se-
lectable hardware memory contexts per core. Multiple mem-
ory contexts would allow the operating system and other
threads to run without polluting each others’ cache and TLB
contexts, reduce coherence traffic, and enable better informed
scheduling decisions, thus reducing execution times. In ad-
dition, it add provide significant flexibilty and benefits to vir-
tualized environments.

1. MOTIVATION
An operating system captures a thread’s execution context

in a thread (or process) abstraction. This includes the con-
tents of the processor’s registers at the time of execution and
a pointer to the stack used by that thread. While this abstrac-
tion was perfectly adequate when it was invented and it is
still necessary to save and restore this part of a thread’s con-
text in order to resume execution at a later time or on another
core, it does not sufficiently capture the remaining context
of a thread’s execution. Namely it does not allow the oper-
ating system to keep track the potentially large amounts of
data that have been accumulated in the various levels of a
processors caches and TLBs.

When a thread,T1 runs on coreC1, it usually builds con-
siderable context on that core. This consists of the contents
of the core’s registers, L1, L2, and in some cases a shared
L3 cache. In addition the TLB may contain a large number
of entries for that address space. WhenT1 blocks (e.g., due
to a page fault or blocking operating system call) a mode
switch occurs to execute the operating system. While ser-
vicing the system call or page fault the operating system de-
stroys significant cache and possibly TLB context [7]; it then
dispatches a new threadT2 to that core (C1) which destroys
even more ofT1’s context. With a TLB that doesn’t support
address space identifiers, ifT2 belongs to a different address
space thanT1, the entire TLB will need to be flushed when
switching toT2, completely destroying all of the TLB con-
text. Eventually, when the resource thatT1 was blocked on
is available, the operating system must decide which core
to use to runT1. This is a decision that it is ill suited to

make because it has very little information available. The
best choice of cores depends on how much ofT1’s context
remains onC1, how much contextT2 has accumulated on
C1, how much of that context will be accessed in the future
and how much contextT1 andT2 have remaining on other
cores they have run on. This proposal significantly improves
the information available to the operating system, because
it allows the operating system to associate memory contexts
with threads.

2. MEMORY CONTEXTS
I define amemory context (an MC) to be an operating sys-

tem selectable set of caches along with a selectableTLB seg-
ment set (defined later). This decouples caches and TLBs
from cores and gives the operating system the ability to choose
which MC to use with each core during execution of a thread.
Ideally, an MC consists of multiple cache levels but latency
constraints may require the L1 cache to be excluded (i.e., it
may need to be bound to the core). Prior to dispatching a
thread on a core, the operating system would program a set
of registers in the core’s MMU to choose the combination of
caches and TLBs that is best suited to executing that thread.
The operating system could specify that coreCi use cache
setcj and TLB settk (all levels in each case). If sufficient
interconnect bandwidth could be provided and latencies are
low enough, different components of a set could be chosen.
For example, coreCi usesL1x,L2y, andL3z. This could in-
clude possibly sharing a physical cache with another thread
running on a different core (e.g., L3). A processor should
contain many more memory contexts than cores, allowing
the operating system to easily reuse contexts accumulated
by threads on the same or a different core. If possible all
contexts should be available to all cores (making thread mi-
gration trivial and efficient), but practical considerations may
require having a limited number of MCs private to each core.

3. TLB SEGMENT SETS
The motivation for this part of the proposal comes from

the fact that TLBs are relatively small and they typically
don’t cover the data that resides in all levels of a proces-
sor cache. With a first level TLB of 128 entries, a second
level TLB of 512 entires and a 4 KB page size, a TLB can

1



only cover 2.5 MB. This is only a small portion of modern
cache sizes that are often 8 – 24 MB or greater. The problem
is exacerbated because with 64-bit address spaces and larger
applications that access increasing amounts of data, operat-
ing systems often represent a program’s address space using
multi-level page tables. As a result, a TLB miss requires a
page table walk that must access each level of the page table.
If the page table walk misses in the cache, several memory
accesses may be required to load the TLB. This is despite
the data being available in the processor cache. I believe that
this proposal will improve TLB coverage in addition to in-
creasing the possibility that the page table data remains ina
cache the kernel can access.

I propose extending first level TLB coverage by expand-
ing the notion of separate instruction and data TLBs to in-
clude more address space segments. Separate TLBs could
be used for code, data, heap, shared memory, shared library,
and stack segments forming what I will call aTLB segment
set, or TLBSS. Each TLB in the set is responsible for a dif-
ferent range of contiguous addresses that define the segment.
During an address space switch, the operating system first
selects the desired MC and then loads a pair of registers
in each of the TLB segements in that segment set with the
minimum and maximum addresses that define each segment.
Not all TLBs in a TLBSS are required to be active and this
would also be specified by the operating system. During ad-
dress translation the core’s MMU uses the specified MC and
TLBSS. If the address being translated is outside of the range
of all segment address register pairs, an exception is gener-
ated. The idea of supporting a TLBSS is independent of and
does not require supporting multiple memory contexts.

Ultimate flexibility would be provided to the operating
system by simply requiring the first and last virtual page to
be specified for each TLB segment. However, it may not be
possible to implement such an approach as efficiently as re-
quired for first level TLB accesses. Another approach that
may be somewhat more efficient would be to use the high
order 3 or 4 bits of the virtual address to specify predefined
hard coded regions of virtual address space. This would re-
quire the compiler, linker, and operating system to use prede-
fined ranges of addresses for each segment. While this would
likely prove too restrictive for use in 32-bit machines, divid-
ing a 64-bit address space into 8 or 16 segments each trans-
lated by a different TLB would be unlikely to cause problems
for applications.

4. SOME RELATED WORK
This proposal is similar to previous work that partitions

shared caches so that different threads or different types of
data access do not destroy each others cache context. A few
examples of such work include, [1], [9], [6] [8], [10]. Each
of these previous studies have shown that several applica-
tions can acheive significantly reduced execution times by
reducing cache misses. I believe that these studies provide
evidence that this proposal could reduce execution times ifit
could be implemented efficiently.

However, in contrast to previous work, this proposal ap-
plies to all levels of the cache and also to TLBs. Instead
of partitioning shared caches amount executing threads or
cores, I hope that chip designers could instead replicate caches
to provide a greater total amount of cache than is currently
available but partition it in a way that permits access times
that are equal to or only marginally greater than current sys-
tems.

Soares and Stumm[7] use some simple benchmarks to demon-
strate the direct and indirect costs of mode switches. By sim-
ply entering and exiting the kernel with different frequencies,
they show that the IPC is greatly reduced as the frequency of
mode switches increases. Their work shows suprisingly high
overheads due to simply trapping into and returning from the
kernel.

Nellanset al. [5] are also concerned with the impact that
kernel execution can have on application execution. They
propose using a special cache per core that is used while
executing in priveledged (kernel) mode. This prevents the
operating system from destroying the context of the thread
that was executing prior to the kernel, and that thread from
destroying the kernel’s context. Using simuilations they find
that their approach can improve the IPC of operating system
intensive applications by 18% to 55%.

This proposal is more general because the operating sys-
tem is free to choose whether the kernel does or does not
share caches with user threads and whether or not other threads
share caches with each other. This allows for the possibility
that the kernel (or another user thread) may be able to aug-
ment a thread’s execution context (e.g., by touching data that
the thread will be accessing [3], [2] ). It also allows the ker-
nel to prevent user-level threads from destroying each others’
contexts. I believe that this work also provides evidence that
significant benefits may result from providing the operating
system with the ability to choose memory contexts.

Finally, Mogulet al. [4] argue that there is a growing gap
between what operating system and computer architecture
researchers think is important. They suggest that more com-
munication should occur between these two groups and one
of their proposals for future architectures is that they provide
for software controlled cache management. This proposal is
a modest step in the direction of both of these issues, it is
a means of communicating to architecture researchers some
ideas that I think could be useful for an operating system and
describes one possible approach to cache management.

5. DISCUSSION
One of the driving forces behind these ideas is to signif-

icantly increase the amount of TLB and cache available in
the system without significantly increasing latencies. In fact
I believe that many applications would be better off if we
moved to this type of caching arrangement rather than simply
continuing to add cores. In contrast to previous work which
takes existing shared cache designs and attempts to partition
them among executing threads or cores, I’m proposing that
existing TLB and cache hierarchies are replicated in such a

2



way that they can be selected.
The big question is whether or not these ideas could be

implemented in such a way that the size of the total cache
and TLB available would be significantly larger than exist-
ing systems but with latencies that are sufficiently low to be
beneficial.

One possibility might be to be implement a low latency
high bandwidth switch between cores and contexts. The
hope is that the cost to select the desired memory context
would be incurred at the time of a mode switch and/or con-
text switch (which happens relatively infrequently relative to
loads and stores). This could essentially create a virtual cir-
cuit between the core and the selected memory context. The
hope is that after the memory context has been selected, ad-
ditional overheads to route requests to and from that context
would be small enough to make this approach worthwhile.

Besides the issues related to a possible core-to-cache net-
work, it’s latencies, and bandwidth, other interesting areas of
research would include:

• What are the costs versus the benefits of increased de-
lays in order to provide memory contexts? What levels
of caches and TLBs can be decoupled with low enough
latencies to still provide benefits. As mentioned pre-
viously, level one caches and TLBs may need to be
tightly coupled with cores with perhaps decoupling im-
plemented at higher levels where additional latencies
would be a small fraction of existing latencies.

• What is a good number of segments to support in a
TLB segment set? Can it be implemented in such a
way that level 1 TLB coverage can be increased with-
out significantly increasing delays.

• What are the costs and benefits of providing flexibility
in choosing memory contexts? The most flexible ap-
proach would be to permit any L1, L2, L3 and any seg-
ments from any of the TLB segment sets to be chosen
from (associated with) any core. However, this would
require a relatively large network and switching mech-
anism and as a result it is likely the approach that would
incur the highest latencies. Less flexible approaches
may still provide significant benefits but

• How much flexiblity is required in order to still obtain
benefits?

• What is a good number of memory contexts to sup-
port? This is likely to vary with the workload and
perhaps processors could be sold with different num-
bers of cores and memory contexts. Once all memory
contexts have been utilized, the operating system needs
to decide which contexts to share between threads (as-
suming threads that were using those contexts are still
alive).

• One of the key questions is are applications better off
with a greater number of partitioned caches or just larger

shared caches. As noted earlier, the hope is that an im-
plementation could be provided that permits the mem-
ory context selection to essentially set up virtual cir-
cuits, thus permitting subsequent accesses to incur only
minimal additional delays when compared with current
processors.

I expect that it would also be beneficial if the operating
system could specify caches that belong to a coherence set
(i.e., the set of caches among which coherence is to be main-
tained). Because an inactive memory context may not re-
quire coherence with active memory contexts, it may present
opportunities for more efficient and possibly lazily imple-
mentation (coherence is only needed when the inactive mem-
ory context is activated).

Increased flexibility could also be provided by implement-
ing different replacement algorithms in different subsetsof
contexts, this would allow the most suitable algorithms to be
selected for some applications.

6. EXPECTED BENEFITS
The expected benefits of this approach are:

• Significant reductions in cache and TLB pollution and
thus execution time.

• Improved ability for a helper thread [3] [2] or the op-
erating system to prefetch cache and/or TLB context
for another thread. For example, when executing disk
reading code the kernel might select an L3 data cache
that is being used by the thread that will ultimately pro-
cess the data being read from disk.

• Simplification of the operating system’s scheduling de-
cisions. With this proposal, each core is separated from
its cache and TBL context and the operating system
controls whether threads share memory contexts and
what parts are shared (or are not shared).

• Increased TLB coverage (from TLB segment sets).

• The potential for reduced cache coherence traffic.

• TLB shootdown may be done on inactive TLBs without
an inter-processor interrupt. For example, an inactive
memory context may not require coherence with active
memory contexts, or if coherence is required, it may
be more efficient to implement this lazily (i.e., the next
time the memory context is activated).

• Faster execution of operating systems and applications
in virtualized environments. Virtual machines could
each “own” a subset of memory contexts for them to
manage. This would permit virtual machines to exe-
cute without destroying each others context as well as
threads and kernel code within each virtual machine.

3



Acknowledgements
I would like to thank the members of the LabOS group at
EPFL for several interesting discussions related to tryingto
understand and capture a more complete notion of a thread’s
context within an operating system. This work has been sup-
ported by the Natural Sciences and Engineering Research
Council of Canada.

7. REFERENCES
[1] B. Bershad, D. Lee, T. H. Romer, and J. B. Chen.

Avoiding conflict misses dynamically in large
direct-mapped caches. InIn Proceedings of the 6th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 158–170, 1994.

[2] M. Kamruzzaman, S. Swanson, and D. M. Tullsen.
Inter-core prefetching for multicore processors using
migrating helper threads. InProceedings of Sixteenth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
2011.

[3] D. Kim and D. Yeung. Design and Evaluation of
Compiler Algorithms for PreExecution. In
Proceedings of Tenth International Conference on
Architectural Support for Programming Languages
and Operating Systems, 2002.

[4] J. C. Mogul, A. Baumann, T. Roscoe, and L. Soares.
Mind the gap: Reconnecting architecture and os
research. InIn Proceedings of Hot Topics on
Operating Systems, XIII, 2011.

[5] D. Nellans, R. Balasubramonian, and E. Brunvand.
Interference aware cache designs for operating system
execution. Technical Report UUCS-09-002, School of
Computing University of Utah, 2009.

[6] M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO 39, pages 423–432, 2006.

[7] L. Soares and M. Stumm. Flexsc: Flexible system call
scheduling with exception-less system calls. In
USENIX Symposium on Operating Systems Design
and Implementation, 2010.

[8] L. Soares, D. Tam, and M. Stumm. Reducing the
harmful effects of last-level cache polluters with an
os-level, software-only pollute buffer. InProceedings
of the 41st annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 41, pages
258–269, 2008.

[9] G. Suh, L. Rudolph, and S. Devadas. Dynamic
partitioning of shared cache memory.The Journal of
Supercomputing, 28(1):7–26, 2004.

[10] X. Zhang, S. Dwarkadas, and K. Shen. Towards
practical page coloring-based multicore cache
management. InProceedings of the 4th ACM

European conference on Computer systems, EuroSys
’09, pages 89–102, 2009.

4


