Lower Boundsfor Two-Terminal Network Reliability

Timothy Benedict Brecht

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Weaterl oo, Ontario, 1985

O (Timothy Benedict Brecht) 1985

| hereby declare that | am the sole author of thisthess.

| authorize the University of Waterloo to lend thisthesis to other institutions or individuals
for the purpose of scholarly research.

| further authorize the University of Waterloo to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals for the
purpose of scholarly research.

The University of Waterloo requires the signatures of all persons using or photocopying
thisthesis. Please sign below, and give address and date.

Abstract

One measure of two-termina network reliability, termed probabilistic connectedness,
is the probability that two specified communication centers can communicate. A standard
model of a network is a graph in which nodes represent communications centers and edges
represent links between communication centers. Edges are assumed to have statistically
independent probabilities of failing and nodes are assumed to be perfectly reliable. Exact
calculation of two-termina reliability for general networks has been shown to be #P-
complete. As a result is desirable to compute upper and lower bounds that avoid the
exponential computation likely required by exact algorithms.

Two methods are considered for computing lower bounds on two-terminal reliability
in polynomia time. One method uses subgraph counting techniques and estimates of
subgraph counts to obtain the Kruskal-Katona bounds. The development of the Kruskal-
Katona bounds is outlined along with a method for improving the bounds. The other
method uses the edge-digoint paths of a network. Different techniques for finding edge-
digoint paths are discussed, as well as how the choice of paths affects the bound.

The different methods for computing lower bounds are compared and the advantages
and disadvantages of each are outlined. Results of the thesis demonstrate that the
minimum cost maximum flow technique of finding edge-digoint paths produces a bound
that typically outperforms the other bounds. However, each of the methods investigated
has the potentia for producing the best bound under certain circumstances. Thus a linear
programming technique is suggested to combine all of the bounds to obtain a bound that is
at least as good as the best of the bounds and occasionally better.

Acknowledgements

Many people have played important roles in helping me complete my thesis. In
particular, my supervisor, Charlie Colbourn, introduced me to the area and provided me
with guidance, understanding and support. For these things | thank him. | would also like
to express my gratitude to Charlie for reading the numerous drafts of this thesis so
carefully and quickly. It really makes a students life much easier knowing that your
supervisor will likely have the latest draft of your thesis read over-night.

| would like to thank the members of my committee, Mike Ball and Bill Pulleyblank,
for their time and insightful comments regarding this research. | would also like to thank
Ehab El Mallah (afellow graduate student here) who took time from his busy schedule to
read my thesis, detect typographical errors and provide valuable comments on the contents
and presentation of the materia presented here.

| would aso like to thank Eric Neufeld, Andre Paradis, and Aparna Ramesh for
providing helpful comments and interaction with regards to this thesis. A very special
thanks goes to Daryl Harms, for providing me with a foundation for this thesis as well as
his programs which saved me arbitrarily many hours of time and headaches.

Most importantly | would like to thank the staff and graduate students at the
University of Waterloo; the staff for their constant support and making the impossible,
‘*doable’’ and the graduate students for providing a rich, stimulating and above all fun
environment in which to work and live.

| shall look back on my days at Waterloo and fondly remember the numerous friends
that | have made and the good times that we have had together. | thank them for the most
important thing of all; helping Barb and | to get together. Barb has been a constant
inspiration in my life. She deserves so much of the credit for helping me to complete this
thesis. | thank her for coming into my life, for consoling me when | things looked grim,
and for loving me. | also thank her for providing me with access to her numerous
accounts, without which no one can complete a thesis. Without Barb this thesis would
never have been completed.

| would like to thank my parents and family for providing me with more
encouragement and love than anyone could ever ask or hopefor.

Lastly, | thank the University of Waterloo, Charlie Colbourn and my parents for
providing me with financial support. For financial support for conferences | thank Charlie
Colbourn and Rick Bunt.

Chapter 1
I ntroduction

1.1. Introduction

The use of communication networks has spread tremendoudly during recent years.
The existence of large computer communication networks such as the Arpanet, Telenet,
Datapac, CSNET and the USENET has been complemented by a proliferation of smaller
scale or local area networks. With the widespread use of and dependence upon such net-

works, it becomes imperative for these networks to be highly reliable.

A major problem lies with determining the reliability of a given network. It is desir-
able to be able to obtain a quantitative measure of a given network’s reliability. One com-
mon method for measuring the reliability of a network isto associate a statistical probabil-
ity of failure with each of the components of the network in order to obtain a statistical
measure of the overall reliability of the network. This notion supports an accepted defini-
tion of reliability as: ‘‘the probability that a given system or device is operational’’. This
measure of reliability may be interpreted as along term average availability. That is, over
a specified period of time, what is the probability that the network will remain operational ?
Thisaso includes afairly prevalent notion of reliability as the probability that a network is
operational at any given moment. To avoid conflicts that arise with various levels of
operation within a network’s hierarchy, only the topology of the network is considered.
This allows a network to be modelled by a graph where the communication centers are

represented by the nodes of the graph and communication links are represented by its

edges. Thus, a network is often considered to be operational when each of k specified
communication centers is able to communicate with each of the other specified centers in

the network.

Two vaues of k that are of particular interest are k = n (all nodes) and k =2. These
reliability problems are referred to as all-terminal reliability and two-terminal reliability,
respectively. In the al-terminal problem the network is considered operational if all
centers can communicate with every other center in the network. In thetwo-terminal relia-
bility problem the network is considered operational if the two specified nodes, often

called the source, s, and the sink or target, t, are able to communicate.

1.2. Measuring Reliability

Frank and Frisch [20] and Wilkov [48] provide surveys of the various definitions of
reliability. They identify two distinct classes of reliability measures. deterministic and

probabilistic.

The deterministic criteria make use of discrete measures to define the reliability of a
network. The assumption made when dealing with deterministic measures is that the net-
work is to be subjected to a destructive force or enemy who has complete knowledge of
the topology of the entire network. The purpose of this intelligent enemy is to destroy or
disrupt network communication. Thus the main measure of reliability is the least amount
of damage the enemy must inflict to render the network inoperative. Deterministic meas-
ures can aso be viewed as a simple bound on the reliability of the network, since they are

often measures of a network’ s worst-case vulnerability to failure.

For example, in the two-terminal problem, two deterministic measures of reliability
are the number of edges and the number of nodes that must be destroyed or removed to
disrupt communication between the specified nodes. The minimum number of edges that
must be removed in order to disconnect the nodes s and t is smply the number of edgesin
aminimum cardinality (s,t)-cut. The minimum number of nodes that must be removed to
disconnect s and t is the (node) connectivity between the vertices s and t. Both of these

measures are computable in polynomial time.

One of the main problems with deterministic measures is that they give rise to some
counterintuitive notions of network reliability. For example, consider the graphs shown in

Figure 1.1.

‘)

_/

s NV

NN

‘ ()

_/

(@ (b)

Figurel.l

According to one deterministic measure that uses (node) connectivity as a measure of
the graph’s reliability, the graphs of Figure 1.1a and 1.1b are equaly reliable since the

(s,t)-connectivity of each graph is three. However, intuition leads one to believe that

graph (a) isthe morerdliable of the two.

The same problem arises when the cardinality of a minimum (s,t)-cutset is used as a

measure of reliability. Consider the graphs shownin Figure 1.2.

: O OO
@ (b)

Figurel.2

Both graphs (a) and (b) have a minimum cardinaity (s,t)-cut of size one. Some
deterministic measures therefore imply that both are equally reliable. Thisis again coun-
terintuitive, as one expects graph (a) to be the more reliable of the two. This leads to the
notion that a more intuitively acceptable measure of reliability might be a probabilistic

measure.

1.3. Probabilistic Reliability

The probabilistic methods for measuring the reliability of a communication network
generally assume that the failure of edges and/or nodes are random events. Using
predetermined probabilities that the edges and/or nodes are operational, the probability that
the network remains operational is computed. A network is considered operationad if it is

connected. The probability that the network is connected is often called probabilistic con-

nectedness. This probabilistic model is often more appropriate than the deterministic

model sinceit resultsin a probability that the network is connected at any point in time.

The model used is a probabilistic graph consisting of n nodes representing communi-
cation centers and b edges representing links between the communication centers. The

probabilistic connectedness of a graph is denoted by R.

Two major assumptions are made in order to make the problem of computing proba
bilistic connectedness more tractable. The first assumption is one of statistical indepen-
dence of edgefailures. The second assumption isthat nodes are perfectly reliable. That is,

their probability of failureis zero.

The assumption that edge failures are statistically independent implies that the proba
bility of a link being operational is independent of the states of the other links in the net-
work. The assumption is that link failures are caused by random events and that al links
are affected individually. When modelling areal communication network, this assumption
may not be valid, since links in one particular area may fail due to natural causes such asa
major storm or earthquake. However, this assumption is often made because information
about all dependencies of link failures is extremely difficult to obtain. Consequently, such

dependencies may not be known.

Without the assumption of statistical independence the problem becomes much more
difficult. As a result this assumption is often made, even when modelling networks for
which it is known that link failures are not independent. One such example observed by

Harms[22] isLee smodel of telephone crossbar switching networks [32].

The assumption that nodes are perfectly reliable may, at first, seem unreasonable.
However, there are reasons for adopting it. Node failures necessarily induce edge failures,
and moreover introduce failures that are statistically dependent. Hence the assumption of
statistical independence requires the assumption of perfectly reliable nodes. If it is neces-
sary to make the assumption that nodes do fail, some of the methods discussed in this

thesis could be modified in order to accommodate the assumption.

Much of the development in the area of network reliability has been done under the
assumption of perfectly reliable nodes. Moore and Shannon [35] make this assumption in
their work on the reliability of telephone switching networks. They model electromechani-
cal relays, where relay contacts sometimes fail due to dust particles or mechanica prob-
lems. The connections or circuits between these relays are highly reliable and are there-
fore assumed to be perfectly reliable. The relay contacts are modelled with the edges of a

graph and the connections between the relays are modelled using the nodes of a graph.

All known bounds for all-terminal reliability and for two-terminal reliability make the
assumption that nodes are perfectly reliable, typically for reasons of tractability. It isfor
these reasons, as well as for comparison with existing bounds, that the assumption is used

inthisthesis.

One might also argue that this assumption can be made for large communication net-
works since communication centers are often composed of dedicated processors. Such a
processor may have a backup or stand-by processor which assumes its responsibilities

should it fail.

Thisdefinition of network reliability has many applications outside the realm of com-
puter communication networks. For example the same model can be applied to obtain reli-
ability measures of electrical systems, telephone networks, digital networks and electrical

power networks, to mention afew.

1.4. Two-Terminal Lower Bounds

Unfortunately there are no known polynomia time agorithms to compute two-
terminal reliability exactly. The best known algorithm to compute the reliability exactly
requires O (3"2) steps [9]. It is also likely that no polynomial time agorithm exists for
general networks, since Vaiant [45] has shown this problem to be NP-Hard. In a later

paper, Provan and Ball [40] use different means to derive the same result.

Since computing the exact reliability of general networks is computationally infeasi-
ble, alternative approaches must be considered. If an exact measure of reliability is
required, subclasses of graphs can be examined for which reliability can be computed effi-
ciently (that is in polynomia time). For example, Wald and Colbourn [47] and
Satyanarayana and Wood [41] have shown that the reliability of series-parallel networks
can be computed efficiently. El Mallah and Colbourn [15] have shown that the k-terminal
reliability of A-Y reducible networks is aso efficiently computable. Both series-parallel
networks and A-Y reducible networks are subnetworks of the larger class of planar net-
works. Unfortunately, the exact computation of the two-terminal reliability of planar net-

works has been shown to be #P-complete [39].

For general networks the intractability of the problem necessitates approximation

techniques. One approach taken by Karp and Luby [26] is the use of Monte Carlo methods
for estimating reliability. Another approach is to bound the reliability of the network to
produce strict upper and lower values to guarantee that the exact reliability is within the
resulting range. Since the motivation for bounds is to avoid exponential computation and
obtain a method that can be used for large scale networks, the focus of this thesis is on

bounds that are computable in polynomial time.

Many methods exist for the efficient computation of bounds for all-termina reliabil-
ity. Harms [22] provides an excellent survey as well as an anaytical and practical com-
parison of these bounds. There has been some work conducted on the problem of comput-
ing bounds on two-terminal reliability. Unfortunately, for genera networks most of these
bounds are not computable in polynomia time. There has been no substantial survey or
comparison of efficient methods used for computing bounds on two-terminal reliability.
Hence the focus of this thesis is on computing polynomia time lower bounds for two-
terminal reliability.

The reason that only lower bounds are discussed is straightforward. A lower bound
on the reliability of a network is a much more useful and more important measure than is
an upper bound. If alower bound is known it follows that the network is at least as reli-
able as the value obtained. However, should only an upper bound be known, all that can

be conjectured is that the network is less reliable than the obtained value.

1.5. History of Two-Terminal Reliability

A number of methods for computing bounds have been proposed. Many of these

bounds are based on one of state, cut, or path enumeration. Esary and Proschan [16] have
devel oped bounds based on path and cut enumeration. Messinger and Shooman [34] have
developed two sets of bounds, one based on cut enumeration and the other based on path
enumeration. However, these bounds are not as tight as the Esary-Proschan bounds. Jen-
sen [24] has proposed bounds that are based on state enumeration which can theoretically
be made as tight as desired. Although, in practice these bounds are usually not as good as

the Esary-Proschan bounds.

Shogun [42] uses the concept of strongly connected components to sequentially com-
pute bounds on the reliability of a given network. These bounds have been shown to be
analyticaly tighter than the Esary-Proschan bounds, making them the tightest known

bounds.

All of the above mentioned bounds perform well in practice. However, for genera
networks they require the enumeration of all paths, cuts or states, the number of which
grows exponentialy with the size of the graph. Although these algorithms do offer a sav-
ings in computation in comparison with exact agorithms, they are al still exponential and

are therefore not very useful for large scale communication networks.

1.6. Polynomial TimeBounds

This thesis deals with polynomially computable bounds because they are generaly
more useful for practical application to large communication networks. There are two pre-
viously known polynomial time methods for computing the two-termina reliability: a

bound based on linear programming and a bound based on subgraph counting. The linear

10

programming bounds were originally developed by Zemel [49] and were |ater expanded by
Assous [2]. The method used to obtain these bounds has some theoretical interest but in
practice does not produce very strong bounds. Assous tightens the bounds somewhat by
introducing bounds on the joint probability of each pair of edges failing. These bounds are
known as the second order linear programming bounds. Unfortunately the second order
bounds are not much more accurate than the first order bounds, especialy under the

assumption of statistical independence of edge failures.

The other known efficient bound is a bound which Van Slyke and Frank [46] show
can be developed by making use of a theorem developed independently by Kruskal [30]
and Katona [27]. Thisbound, whichisreferred to as the Kruskal-Katona bound makes use
of subgraph counting techniques and some combinatorial properties to obtain reasonably
good bounds. The computational methods involved in computing this bound are described

along with the development of methods for improving the bound.

A third class of bounds is developed in this thesis that exploits the extensive pool of
graph theoretic research. The idea for the new bound was sparked by the Lomonosov-
Polesskii all-terminal lower bound [33] which uses edge-digoint minimal subgraphs. The
two-terminal equivalent makes use of edge-digoint paths between the specified source and
target nodes. A similar technique has been used by Carey and Hendrickson [10] to bound
expected flow in a transportation network. Different methods for obtaining the paths and
how the choice of paths affects the corresponding bound are discussed. Finally the new set

of edge-digoint path bounds is compared with the subgraph counting bounds.

Chapter 2
Definition of the M odel

2.1. Graph Theoretic Definitions

Since graph theoretic definitions are not standardized the definitions used in this
thesis are presented in this section. Further definitions can be found in graph theory texts
such as [6] or [21].

A network is modelled using a probabilistic graph consisting of nodes representing
communication centers and edges representing links between the communication centers.
A graph G =(V,E) consists of a set of nodes or vertices V and a set of edges E.
Undirected edges are used to indicate two way communication links between two nodes.
They are represented as unordered pairs (vi,V;) where v; and v; represent the nodes which
are joined by the communication link or edge. An edge is said to be incident upon two
nodes if the two nodes are joined by the edge. A graph which consists of undirected edges
iscalled an undirected graph. The graphin Figure 2.1 is an example of aundirected graph
where,

G =(V.E),

V ={st,r,h,w,xy,z}
E={(sr).(sx).(s2),(r,h),(h,w),(h,x),(hy),(W,1),(xy), (). (y:1)}.

Thisgraph is used to illustrate many of the definitions in this chapter.

The cardinality of set X is denoted [X|. The number of nodes in agraph is denoted by

[V] or n, while |E| or b denotes the number of edgesin agraph. For thegraphin Figure2.1,

11

12

Figure2.1

[V]=n=8and [E|=b =11.

A loop or self edgeis an edge that originates and terminates at the same node. Multi-
ple edges, multi-edges or parallel edges occur when two or more edges are incident upon
the same pair of nodes. A simple graph is one which contains no loops or parallel edges.
A graphisplanar if it can be drawn on the plane so that no edges cross. Unless otherwise

stated all graphs are assumed to be undirected simple graphs.

The all-terminal reliability problem deals with communication among all nodes in a
network. For all nodes to be able to communicate the graph must be connected. A graph
is connected if there is at least one path between every pair of nodes. The two-terminal
reliability problem deals with communication between two specified nodes. The specified
nodes are referred to as the source node s, and the sink or target nodet. The probabilistic
connectedness measure of two-termina reliability is the probability that the specified
nodes s and t are connected. The nodes are connected if there exists at least one path

between them.

13

A walk is a sequence of nodes (v1,Vo, - - ,Vs) in which (vi,vi+1) is an edge of the
graph. An example of awalk from node sto nodet is(s,r,h,x,y,h,w,t). A pathisawalk
in which al edges and all vertices on the walk are unique with the possible exception of
the first and last nodes. The walk (s,r,h,y,t) isa path. A cycleis a path that begins and
ends at the same vertex. An example of a cycle containing nodey is (y,h,x,s,z,y). An
(s,t)-path, is a path from node sto nodet. An (s,t)-path of the graph shownin Figure 2.1
is(s,zy,x h,w,t). Edge-digoint paths are paths with no edges in common. Node-digoint
paths are paths which share no common nodes other than the source and target nodes. For
example, (s,r,h,w,t) and (s,x,h,y,t) are edge-digoint paths while (s,r,h,w,t) and (s,x,y,t)

are node-digoint paths.

Edges frequently have some form of ‘*weight function’” associated with them which
often represent a physical property of the link. Properties such as the cost of an edge (i, j),
denoted cost(i,j) or the length of an edge (i,]), denoted length(i,j) are often used when

modelling communication networks.

A minimum length (s,t)-path or shortest (s,t)-path is a path from node s to t of
minimum length. Such a path may also be referred to as a shortest path or minimum
length path. In the case when edges are assumed to have equal lengths a shortest path is
smply an (s,t)-path of minimum cardinality. Assuming al edges are of equal length,
(s,x,y,t) and (s,zy,t) are both shortest paths of the graph in Figure 2.1.

An (s,t)-pathset or pathset is a set of edges that contains at least one path from sto't.
It may also contain other edges. A pathset of size x is a pathset that contains x edges.

Examples of some pathsets of sizefivein Figure 2.1 are:

14

{(5:X),(xy).(y,1),(5,2),(zY)}
{(sr),(r,h),(h,y).(y,1),(h,x)}
{(s,r),(r,h),(h,x),(x,y), (y,)}

A network cut or cutset is a set of edges whose removal disconnects the graph. A
minimum cardinality cutset is a cutset that contains the fewest edges. The edge-
connectivity of a graph is the size of a minimum cardinality cutset. An (s,t)-cutset or
(s,t)-cut is a set of edges whose removal disconnects the nodes s and t. The set of edges
{(r,h),(5,%),(s,2),(y,t)} form an (s,t)-cut. A minimal (s,t)-cutset isaminimal set of edges
whose removal disconnects the nodes s and t. The above (st)-cutset
{(r,h),(s,X),(s,2),(y,t)} is not minimal, since the edge (y,t) can be removed from the set
while the remaining edges still form an (s,t)-cutset. The set {(r,h),(s,X),(s,z)} doesform
aminimal (s,t)-cutset. A minimum cardinality (s,t)-cutset is an (s,t)-cutset that contains
the fewest edges. The number of edges in a minimum cardinadlity (s,t)-cutset is denoted by

c. Theset of edges{(w,t),(y,t)} form aminimum cardinality (s,t)-cutset of size two.

A subgraph of G is a graph whose nodes and edges are contained in G. That is,
G =(V,E)isasubgraph of Gif V' OVand E OE. Anexample of a subgraph of the
graphin Figure2.1is G = (V ,E'), where V' ={s,r,h,w,y} and E' = {(s,r),(r,h),(h,w)}.
If the subgraph contains al nodes of the graph the subgraph is a spanning subgraph, since

it spans all nodes of the graph.

A graph that contains no cycles is called an acyclic graph. An acyclic connected
graphiscaled atree. The set of edges{(s,r),(s,x),(s,2)} formsatree. A spanning treeis

atree that spans all nodes of the graph. It is a connected spanning subgraph of the graph

15

and contains n—-1 edges. The edges {(s,r),(sX),(s,2),(x,h),(h,y),(h,w),(y,t)} form a
spanning tree of the graph in Figure 2.1. A spanning tree isaminimal spanning subgraph
since removal of any one of its edges disconnects the subgraph. Edge-digoint spanning
trees are spanning trees with no edges in common. The graph in Figure 2.1 does not con-
tain apair of edge-digoint spanning trees.

The connectivity of agraph is the minimum number of nodes that must be removed in
order to disconnect the graph or reduce it to a single vertex. The (s,t)-connectivity of a
graph is the minimum number of nodes that must be removed from the graph to disconnect
the nodes sandt. The (s,t)-connectivity of the graph in Figure 2.1 is two since the remo-
val of the nodes w and y disconnects the nodes sand t. A cutpoint, is a node whose remo-
val disconnects the graph, or separates it into two or more components. The graph in Fig-
ure 2.2 contains two cutpointsy and z. A graph is biconnected if and only if it contains no
cutpoint. A biconnected component of a graph isamaximal biconnected subgraph. Figure
2.2 contains three biconnected components consisting of the following sets of edges:

{(5:w).(s,%), (W, x),(W,y), (xy)}
{(y.2)}
{zr),(r,0),(z 1)}

The degree of anodev, is the number of edges that are incident uponv. If all nodes
in the graph are of the same degree the graph is regular. Two nodes are neighbours if
there exists a common edge between them. Two nodes that are neighbours are adjacent.
A complete graph is agraph in which all pairs of nodes are adjacent. A complete graph on

n vertices is regular of degree n—-1 and is denoted K,,. Figure 2.3a depicts K4, the

16

Figure2.2

complete graph on four vertices.

O——0O
O—O—0O
O—0—0O

~—
&
~—~
\=)

Figure2.3

A grid graph of dimensions m x n, is m nodes wide and n nodes high. Figure 2.3b

shows an example of a3 x 3 grid graph.

A directed graph, or digraph, is onein which edges are directed. Directed edges are
referred to as arcs. Arcs represent one way communication links between two nodes with
communication taking place in the direction that the arc points. A digraph G = (V,A) con-

sists of a set of nodes or vertices V and a set of arcs A. An arc fromv; to v; is represented

17

as an ordered pair <v;,v;>, Vv; is caled thetail and v; is called the head of the arc. Figure
2.4 isan example of adigraph where,
G =(V,A)

V={(sw,xy,zt}
A ={<sW>, <5 X>,<W,y>,<y,z> <X,W>,<X,Z> <y, t> <zt>}.

e‘:.:’c

Figure2.4

A directed path is an ordered sequence of nodes <vq,va, - ,V,> in which

<V;,Vi+1> isan arc of the graph. For example <s,w,y,zt> isadirected pathfrom stot.

In a directed graph, a strongly connected component is a maximal set of nodes for
which there exists a directed path between every ordered pair of nodes in the component,

such that the paths pass only through nodes that are also in the component.

Figure 2.5 shows two examples of strongly connected components and Figure 2.6
shows two examples of components that are not strongly connected.

2.2. Operational Components

An edgeor link is operational or available if communication is possible viathis link.
If the two nodes joined by a link are unable to communicate through the link it isin a

failed state or smply failed. The probability that edge i is operational is denoted p;. The

18

<>

@ (b)

Figure2.5

(@ (b)
Figure2.6

probability that edgei isfailedisg =1 - ;.

An operational subgraph is a subgraph in which sufficient edges are operational that
permit the sites in question to communicate. For example, in the al-terminal case a
minimal operational subgraph is an operational spanning tree. For a spanning tree to be

operational al of its edges must be operational (since it is a minima operational

19

subgraph), and therefore a spanning tree isin afailed state if any of its edges fail. In the
two-terminal case a minimal operational subgraph is an operational (s,t)-path. A path is
operational if and only if al edges along the path are operational. Therefore, apathisina
failed state if any of the edges aong it have failed. If the nodes s and t are disconnected

the graph or network isin afailed state.

2.3. TheRédiability Polynomial

Moore and Shannon [35] pioneered much of the work that has been done on the prob-
lem of probabilistic connectedness. They modelled electromechanical relays using edges
to represent relay contacts and nodes to represent the perfectly reliable connections

between the relays.

While investigating the problem of constructing arbitrarily reliable networks from
arbitrarily poor components they developed the following important polynomial:
b o
) =3 A p'g°”
where h(p) is the probability that the network is operational, p is the probability of arelay
being operational, g = 1 — p isthe probability that therelay hasfalled. A isthe number of
ways one can select a subset of i of the b relays of the network such that if thesei relays
are operationa and the remaining relays failed, the network is operational. This can also
be written as:
b .
) =1-3 8 p°7 g
where B; is the number of subsets of i relays that exist, such that the network failsif these

relays are failed and all others are operational.

20

Kel’mans [28] modified these polynomias to apply to the probabilistic connectedness

of communications networks, to obtain the well-known reliability polynomial:

b . .
R(p)=3 N p' g°~
i=0

which may also be written as:
b boi
RP)=1-3 CGp’" 0
i=0

In the reliability polynomia N; represents the number of waysthat i of the b edges of
the graph can be operational such that the graph is connected (in the two-terminal connec-
tion problem thisis the number of pathsets containing i edges). C; is the number of ways
that i of the b edges can fail such that the graph is not connected. (i of the b edges form an

(s,t)-cutset). The two equations are related by the identity N; + Cy_ = [ﬂ . Since both

are positive, observethat 0 < N; < [ﬂ and0< G s[ﬂ .

Chapter 3

The Kruskal-K atona Bounds

3.1. Development

There are generally two methods used in computing bounds for reliability. One
method makes use of subgraph counting techniques, and the other method involves finding

edge digoint subgraphs. Thefocus of this chapter is the subgraph counting method.

Harms [22] surveyed bounds for all-terminal reliability, and located four different
bounds which use subgraph counting: the Jacobs bounds, the Bauer-Boesch-Suffel-Tindell
bounds, the Kruskal-Katona bounds, and the Ball-Provan bounds. The four sets of bounds
form a hierarchy with respect to accuracy, from the Jacobs bounds, which provide the least
accurate bounds, to the Ball-Provan bounds, which provide the greatest accuracy. Unfor-
tunately, the Ball-Provan bounds [3] do not apply in the two-terminal case, since their
bound is applicable only to ‘‘shellable independence systems’ (see [3]). Hence the

Kruskal-K atona bounds are examined.

A system is coherent if the failure of any component can not cause a system that isin
a failed state to become operational. In the al-terminal reliability problem a network in
which nodes are perfectly reliable is a coherent system since the failure of edges can in no
way cause a failed system to become operational. If nodes are not assumed to be perfectly
reliable it is possible that a node could become isolated by the failure of an edge, thus
rendering the network inoperative. However, should the isolated node then fail, the net-

work could again be considered operational. Thisisclearly a counterintuitive notion and is

21

22

not considered coherent. In the two-terminal reliability problem a network is coherent
even without the assumption of perfectly reliable nodes, since once the two specified nodes
are disconnected the failure of an edge or node can in no way cause the two nodes to
become connected.

Van Slyke and Frank [46] show that a theorem developed by Kruskal [30] and
Katona [27] can be applied to obtain an upper and lower bound on the reliability polyno-
mia for any coherent binary system. These bounds, which are known as the Kruskal-
Katona bounds, employ the following combinatoria structures whose definition and nota-

tion are taken from [4].

3.1.1. K-canonical Representation of Non-Negative | ntegers
For any non-negative integer m, the k-canonical representation of m is given by

(M, Me_1, . .., M) such that:

wheremy>me_1> - >m=1>1

Them; can be computed successively in increasing order of i so that:

v 11

j=i+l
For example, the 4-canonical representation of 10is(5,4,2).

3+(3+3=0

The 6-canonical representation of 10is(7,5,4,3).

m;
j

23

EMERFRIERE

Thisk-canonical representation of any non-negative integer is unique [27].

3.1.2. The(i,k)th Lower Pseudopower

Let (me,Mc—q1, . .., M) be the k-canonical representation of an integer m. The (i,k)th

lower pseudopower of (my,Mc—1,...,m)fork=1>1is

CRGRES

and is denoted by (my,mc_q, . .., m)"¥.

The (i,k)th lower pseudopower of m is denoted by m'/% and is used to refer to the
lower pseudopower of the k-canonical representation of m. Kruskal and Katona specify

that:

m<O0

_ . r<o
[ﬂ_o if FSm
m=r=0

An example of some (i, k)th lower pseudopowers are:

(g o[4o(f-in w-[](3-(3+(] -
R R N N B R B

Let F; denote the number of waysthat i edges can fail such that the network remains
operational. Note that F; is equivalent to Ny of the reliability polynomial. Therefore the

reliability polynomial can also be written as:

24

Note that the following restrictions must hold for the F; coefficients of the reliability
polynomial:

Fo=1
0<Fu<F'™ i=01..b-(n-1).

Kruskal and Katona' s theorem states that when m = F:
a) m®>F, when izk
b) m*<F;, when i<k

In the al-terminal case, these inequalities are used to obtain bounds in the following
manner. Once avaluefor F¢, (the number of waysthat ¢ edges can fail such that the graph
remains connected, where c isthe size of aminimum cardinality cutset) is computed, equa-
tion (a) can be used to find overapproximations for the F; values wherei >c. Let n;
represent the number of ways that ¢ edges can fail such that the graph is disconnected.

That is, n. is the number of minimum cardinality cutsets. Therefore the number of ways

that ¢ edges can fail such that the graph is connected issimply F. = [g - Ne. The number

of minimum cardindity pathsets, F,-,-1) (in this case spanning trees) and equation (b)
can be used to find an underapproximation for the F; values when i <b—(n-1). The
number of minimum cardinality cutsets for undirected graphs can be calculated in polyno-
mial time using an agorithm by Ball and Provan [4]. This algorithm makes use of results
of Even and Tarjan [17] and Bixby [5]. The number of spanning trees can be efficiently
counted using a result due to Kirchhoff [29]. A more recent paper by Brooks, Smith,
Stone and Tutte [7] also presents this theory in a computational form. Knowing these

values gives the following bounds for all-terminal reliability:

25

R

IN

-1 o d-1 . o
cZ {ﬂ pb—| q| +Fc pb—c qc + Z FCI/C pb—l ql +Fd pb—d qd

i i=c+1

o

. d . L
R > Z [ﬂ pb—l ql +Fc pb—c qc + Z Fdlld pb—l ql
i=0

i=c+1

o -
[N

whered = b—(n-1).

3.1.3. TheTwo-Terminal Bounds

In the two-terminal reliability problem, F; represents the number of sets of i edges
that can fail in such away that s and t can still communicate (that isi edges fail but there
remains at least one path between s and t). The minimum cardinality pathsets in the two-
terminal case are therefore (s,t)-paths of minimum cardinality, or simply, shortest (s,t)-
paths. Suppose that the cardinality of a shortest (s,t)-pathisl. If d now equalsb -l andd
edges fail, then | edges remain operational. Therefore, if al edges aong any shortest (s,t)-
path are operational, the network remains operational. However, if i > d edgesfail, sand t
can not possibly communicate since fewer than | edges are operational. Hence, F;j = 0 for
i>d.

In the two-termina case, c is the cardinality of a minimum cardindity (s,t)-cut. If

fewer than ¢ edges fail, s and t can surely communicate, since not enough edges have

failed to form an (s,t)-cut. HenceF; = [ﬁ fori <c.

The number of shortest (s,t)-paths, Fy, can be computed exactly in polynomial time
using an agorithm developed by Ball and Provan [4]. However, calculating the number of

minimum cardinality (s,t)-cuts, n;, has been shown to be #P-complete for genera graphs

[40]. Therefore the computation of F. = [g - n. is aso #P-complete. Nevertheless, the

26

value of n. can be underestimated to obtain an overestimate for F.. Since every graph

must have at least one minimum cardinality (s,t)-cut n; = 1 is an underestimate that can be

used to obtain the overapproximation of F¢ < F¢ = [g — 1. The resulting bounding relia-

bility polynomials are:
.. d-1 .
Rs [ﬁ pPigi+ 3 Fo ' pP7gl +FgpP !
1=C

L d . L
R> [ﬂ pb—l ql + Z Fdlld pb—l ql

i=0 i=c
whered =b — 1.

These bounds are referred to as the basic Kruskal-Katona bounds or smply the KKO
bounds. Computation of the upper bound can be done in the same fashion as the lower
bound with no additional effort, since only those values required to compute the lower
bound are required to compute the upper bound. The upper bound has been implemented
only for comparison with the lower bound and details of the upper bound are not discussed

henceforth.

3.2. Motivation

The main reason that the Kruskal-Katona bound is of interest is that it performs rea-
sonably well in the tests for computing all-terminal bounds conducted by Harms [22]. Itis
also the most accurate subgraph counting technique found in the literature that can be
applied to the two-terminal problem. Another major reason for studying this method is the
potential of improving the bound. It isanticipated that the bound can be improved by com-

puting exact values for Fj for c <i <d-1. Improvements of this type are discussed in

27

greater detail later in this chapter.

3.3. Implementation Overview

Many of the implementation details of the Kruskal-Katona method are taken from

Harms[22] and Ball and Provan [4].

c-1 .
Evaluation of the term [ﬂ p°7 g' requires the calculation of a value for c, the
i=0

size of a minimum cardinality (s,t)-cut. This can be done in polynomia time using the

well known Max-Flow Min-Cut Algorithm of Ford and Fulkerson [18].

d .
Evaluation of the term S Fq'/d pP~ ' for d =b -1, requires the computation of
i=c

valuesfor |, Fyq and the (i,d)th lower pseudopower of F4 forc <i <d.

Computing avaluefor | can be donein polynomia time using Dijkstra’s shortest path
algorithm [12]. Ball and Provan's agorithm pathcnt [4] can be used to compute the
number of (s,t)-paths of length |. In the same paper, they also describe how to compute
the k-canonical representation of a non-negative integer mand how to compute m'’<. They

also prove that both of these operations can be performed in polynomial time.

Sinceall values required to compute each term of the polynomial can be computed in
polynomial time the Kruskal-Katona bounds on the two-terminal reliability of a given net-

work can be computed in polynomial time.

3.4. Implementation Details

In general the implemented algorithms are not concerned with efficiency, as long as

28

they are computable in polynomial time. That is, the actual algorithms used are not neces-
sarily the most efficient ones available, nor are they necessarily implemented in the most
efficient manner possible. Specific implementations are often chosen for understandability

or ease of programming.

The algorithms presented here are presented for directed graphs since it is usualy
easier to transform an agorithm on directed graphs to apply to undirected graphs rather
than visaversa. However, the methods presented in this thesis are al discussed in refer-
ence to undirected graphs, while conversion of these methods to apply to directed graphs

would be fairly straightforward.

3.4.1. Maxflow Algorithm

The Ford and Fulkerson maxflow labelling algorithm presented here is taken from
Lawler [31]. Let ¢ be the capacity on an arc <i,j>. Let x; be the amount of flow
through thearc <i,j>. If ¢; = 1for al arcs<i,j> and ¢;; = = if thereisno arc <i,j >, the

algorithm produces a minimum cardinality (s,t)-cut.

- l[abel(s) = (=,)
/* labelling and scanning */
- repeat until all labelled nodes have been scanned
- repeat until tislabelled
- find alabelled but unscanned node
- scan nodei asfollows

- for each arc<i,j >
if Xj < ¢jj and j isunlabelled

29
9; = min{cij ~ Xij,0}
label(j) = (i",9))
- for each arc<j,i >
if X;j > 0and j isunlabelled
label(j) = (i, 9;)
- end repeat
[* augmentation */
- Starting at nodet, use the labels to construct an augmenting path. The label on node
t points to the second last node in the path and so on. The flow is augmented by

increasing or decreasing the arc flows by &;. The label i * indicates the flow is to be
increased and i ~ indicates that the flow is to be decreased.

- unlabdl all of the nodes
- end repeat
- amaxima flow has been found
- a cutset of minimum capacity is obtained by placing all labelled nodes in a set Sand all

unlabelled nodes in a set T. Any edge from anode in set Sto anodeinset Tisin a
minimum capacity cutset.

3.4.2. Shortest (s;t)-path Algorithm

If the costs of each edge are assumed to be equal, a breadth-first search technique can
be used to find shortest (s,t)-paths (see [1]). The more genera agorithm presented here
was developed by Dijkstra[12] for networks with positive arc lengths. It is shown herein
aform presented by Lawler [31].

Let u; represent the length of a path from the origin (u4) to the nodei. If thennodei is

labelled permanently (that is, i O P) then u; represents the *“‘true’’ shortest distance from

theorigin. If thenodei islabelled temporarily (that is, i [T) then u; represents a tentative

30

labelling of that nodes distance from the origin. The vector path is used to create a
sequence of nodes corresponding to a shortest path. The length of an arc <i,j > is denoted

g;j. Notethat ;; = oo, if there does not exist an arc <i, j >.

[* initidlize distances and path vector */

'U1:0
-for (j =2,3,...,n)
Uj =&
path(j) =1 /* path will begin at source node*/
-P=1
-T=23,..,n
- while(T # 0)

[* designate permanent labels */

-findk O T whereu, = min

=joT Y
ST=T-k
P=P+k

/* revisetentative labels */

-fordl) OT
-if (U + & < uj)
path(j) =k

- Uy = min{u;, Uy + a}
- end of for loop

- end while

[* get the shortest path from the path vector */
/* nodes can be obtained in reverse order and */
[* alist of nodes in the path made as follows */

- set current_nodetot

- while (current_node # s)
- insert current_node at the front of the path

31

- current_node = path(current_node)
- endwhile
- insert s at the front of the path

3.4.3. Shortest (st)-path Counting Algorithm

The algorithm used to count the number of minimum cardindity (s,t)-paths was
developed by Ball and Provan [4]. The agorithm makes use of the following notation.
For any arc a, let tail(a) be the vertex from which arc a points and let
inarc(v) ={a | a=<w,v>isanarc}. The variable npaths(i) represents the number of

minimum cardinality paths fromstoii.

- perform a breadth-first search on the digraphin
order to produce:

- abreadth-first labelling, using {1,2,...,n} as nodelabels.
- for each node x, the distance from sto x, d(s,x).

- delete all arcs<x,y> for whichd(s,x) = d(s,y).
[* theremaining digraph isa*‘ breadth-first acyclic digraph’” */

-fordlvOV-s
npaths(v) =0

- npaths(s) =1
-for (i =1,2,..,n-1)
npaths(i)= > npaths(tail (a))

aOinarc(i)

- return (npaths(t)) /* number of (s,t)-paths */

32

3.4.4. K-canonical Representation Algorithm

The algorithm k-canon described below is an adaptation of Ball and Provan’s k/dcalc
algorithm [4]. The agorithm computes the k-canonical representation of the positive
integer num and stores the result in the vector M. The parameter x is basically a starting
point for the algorithm. In order to find the d-canonical representation of F, the algorithm
iscaled withk =d, x =b+1 and num = Fy4. In order to find the c-canonical representation

of F., the algorithm is called withk = ¢, x = b+c—2 and num = F.

k —canon (k,x,num, M)
-i =k

-whilenum > 0

R

XxX=x-1
- else
M(i) =x

rom= o [- 17}

Xx=x-1
i=i—-1
-end else
- end while

Harms [22] points out a small problem discovered during the implementation of the

algorithm. During the first pass through the algorithm the computation is, [ﬁ - [ﬁ f

[é =1 the result obtained is the c-canonical representation of num+1. Harms [22] aso

mentions that this can be fixed quite smply by initializing num to be one less than the

33

valuedesired.

Ball and Provan [4] point out that the successive recal culation of [ﬁ - [)I(:llj can be

performed using four arithmetic steps by making use of the following identities:

[]} JTU for j>m=0

130 e eme

3.4.5. Lower Pseudopower Algorithm

The lower pseudopower of a non-negative integer m can be computed using the
method described earlier. The implementation details are taken directly from the defini-
tions except that the identities used in k-canon are also used to determine successive lower

pseudopowers (that is determining z' *V% from z'/¥) by keeping track of the previous value

for each of the {nﬁ caculations.

3.4.6. Other Implementation Considerations

All algorithms have been implemented in the language ‘‘C’’, on a VAX 11/780.
Reliability values were computed using double precision arithmetic (sixty-four bits).
Vaues are usualy reported using enough digits of precision to demonstrate significant

differences in the bounds being examined.

3.5. Improvements on the Kruskal-K atona Bounds

One of the main reasons for investigating the Kruskal-K atona bounds is that they can

be improved upon quite substantially in the two-terminal case.

34

Thereliability polynomial expands as:

R = Fopb—OqO + Flpb—lql + -+ FC_lpb—(C—l)qC—l + Fcpb—CqC +

FoapP €D + oo 4 Fy_pP@Dgd-1 4 F pb-dgd
where the terms which are not shown in bold type are the terms for which exact, efficient,
algorithms are known. The bounds may be improved by computing exact values for some

of the terms shown in bold type rather than estimating them.

Since computing n., the number of minimum (s,t)-cuts is #P-complete [40], comput-
ing F. isaso#P-complete. It istherefore expected that no easy improvement can be made
on the bound from the F. term upward. Thus, the possibility of finding values for
Fa-1, Fq-2,... isexamined. Note that F4_; is the number of pathsets which contain | +1
edges. If the number of pathsets of size (1 +1) can be counted in polynomial time, Fy-1 is

known exactly and the bounds might be improved.

35

3.5.1. Counting Pathsets of Size (1+1)
Using a method similar to that used by Ball and Provan [4] to find the number of
(s,t)-paths containing | edges, it is possible to compute the number of (s,t)-paths contain-

ing (I +1) edges.

3.5.1.1. Algorithm Countwalks

This agorithm iteratively computes the number of walks of the current length, from
the source node to the node in question. Let nwalks (vertex,length) denote the number of

walks of the specified length from the source node to the specified vertex.

-for (i =1,2,...,n)
nwalks(i, 0) =0
- nwalks(s,0) =1

-for (i =1,2,...,1 +k)
- for each vertex v with neighbours N (v)
nwalks(v,i+1) = > nwalks(w,i)
w ON (V)

I* nwalks(t,1) = number of walksof length | fromstot */
I* nwalks(t,1 +k) = number of walks of length | +k fromstot */

Sincewalks of length | and (I +1) are necessarily paths, the algorithm countwalks can
be used to compute the number of (s,t)-paths consisting of | and (I +1) edges, wherel isthe
number of edges in a shortest (s,t)-path. Let numpaths(l) denote the number of paths of
length I. The number of pathsets consisting of (I +1) edges, F4-1, can be computed using

numpaths(l) and numpaths(l+1) in the following manner:

36

Fq-1 = numpaths(l) x (b—I) + numpaths(l +1).
Thisyields the following new bounding polynomials:

c-1 A2 e
R<'s [pria+s B prg

i=c

+Fgo1 pb—(d—l) qd—l +Fyq pb—d qd

1=C

R> Icg [ﬁ ob-i gi + dil Fy_q/d- pb=i i + Fy pb=d gd

These bounds are referred to as KK 1, since they revise the basic Kruskal-K atona bounds
by making use of pathsets of size (I +1).

3.5.2. Counting Pathsets of Size (1+2)

The problem of counting pathsets of size (I +2) is not as simple as counting pathsets
of size (I +1). Complications arise because walks of length (I +k) are not necessarily paths
of length (1 +k) for k=2. In the case k =2, an overcounting occurs in the algorithm
because each edge can be traversed in both directions. For example, using the graph
shown in Figure 3.1, the algorithm counts the following three walks of length | +2 = 4.

1) (S, %,Y,Xt)

2) (S,%,5,%,1)
3) (s,%,t,%,t)

An agorithm has been designed and implemented to count the number of paths of
length | +2, by first using the agorithm countwalks to compute the number of walks and
then subtracting values for the two types of overcounting that can occur. These two types

of overcounting are:

(i)

(i)

37

Figure3.1

overcounting as aresult of an edge which is attached in some way to an (s,t)-path of
length |. This is demonstrated in Figure 3.1 by the path (sxYy,xt). Let
shortpaths(i,j) denote the number of shortest (i, j)-paths and let length(i,j) be the
length of a shortest (i,)-path. The value can be counted using the following ago-

rithm.

- for each vertex x 0 V
- if length (s,x) + length (x,t) = length (s, t)
-if(x=sor x=t)
- count = count + shortpaths (s, x) x
(degree(x) — 1) x shortpaths(y,t)
- else count = count + shortpaths(s,x) x
(degree(x) — 2) x shortpaths(y,t)
- end for

- return (count)
- end

overcounting an edge which is actualy part of an (s,t)-path of length |. This is
demonstrated by the paths (s,x,s,%,t) and (s,x,t,x,t) in Figure 3.1. The overcounting
will be numpaths(l) x | since each path has | edges and these | edges will be over-

counted once for each shortest (s,t)-path.

38

Let numwalks(l +2) represents the number of walks of length (I +2) and overcount (i)
and overcount (ii) denote the number of times configurations of type (i) and (ii) are over-
counted. A count of the number of paths of length (I +2) can be obtained using the follow-
ing:

numpaths (I +2) = numwalks (I +2) — overcount (i) — overcount (ii)

Once the number of paths of length (I +2) is known, the number of pathsets of size

(1+2) is computed. Again an overcounting is obtained, and the number of configurations

that have been overcounted are then subtracted from this value.

overcount = numpaths(l) x [bz_ ﬂ + numpaths (I +1) x (b—(l +1))

+ numpaths (I +2)

This equation results in two types of overcounting: configurations of type A, as
shown in Figure 3.2, and those of type B, as shown in Figure 3.3.

Configuration A:

(s—(J YV)—

Figure3.2

Configurations of type A are counted twice as pathsets of size (I +2). The edges (x,2)
and (z,y) adong with the path (s,x,y,t), form a pathset of size (1 +2). However, the same

edges are also counted when considering the path (s,%,z,y,t) dong with the edge (x,y).

Configurations of type B are aso counted twice. The path (s,x,v,y,t) and the edges

(x,u), (y,u) form a pathset of size (I +2) and the path (s,x,u,y,t) aong with the edges (x,v),

39

Configuration B

Figure3.3

(y,v), form the same pathset of size (I +2). Therefore configurations of type B must also

be counted and subtracted from the overcounting.

Configurations of type A are counted by locating nodes x and y such that length (s,x)
+ length (x,y) + length (y,t)=I. Since the length of the shortest path between x and y must
be one and the number of paths that are one longer than the shortest path can be counted
using the algorithm countwalks, the number of paths from x to y of length two are counted
using this same algorithm. This gives a count of the number of triangles whose base (the
edge (x,y)) isan edge in aminimum (s,t)-path. Each of thesetriangles is counted once for
every minimum path that contains the edge (x,y). Therefore, the count of paths which

contain atriangle with the base (x,y) is:

count_A = minpaths(s,x) x next_to_minpaths(x,y) x minpaths(y,t)

where minpaths(i,j) denotes the number of minimum (i,j)-pahs and
next_to_minpaths(i,j) denotes the number of paths from i to j which contain one more
edge than the minimum (i, j)-path. This value is counted for each edge (x,y) aong all

minimum (s,t)-paths to give the number of configurations of type A. For example Figure

40

3.4 contains twelve configurations of type A.

Figure3.4

The number of configurations of type B can be counted in a similar fashion. The
differences are that length (s,x) + length (x,y) + length (x,t) = | and length (x,y) = 2, before
the nodes x and y are considered to be part of a configuration of type B. Also the number
of paths between the nodes x and y are chosen in groups of two, giving a count of the

number of minimum (s,t)-paths that contain configurations of type B as:

count_B = minpaths(s,x) x [minpatgs(x, y)J x minpaths(y,t)
Thisis donefor all pairs of nodes x, y resulting in a count of the number of configurations

of type B. For example, Figure 3.4 contains six such configurations.

Therefore afinal valuefor the actual number of pathsets of size (1 +2) is:

Fq—2 = numpaths(l) x [bz_ ﬂ + numpaths (I +1) x (b—(l +1))

+ numpaths (I +2) — count_A — count_B

41

The new bounds which make use of the number of pathsets of size (1 +2) are:

c-1 . d=3 _; .
Rs 3 [ﬁ pP7gi+ 3 Fo o pPT gl +Fgp p?T@72 qo2
i=0 i=c

+Fy-1 pb—(d—l) qd—l +Fy pb—d qd

.. d=2) .
R > [ﬂ pb—l ql + Z Fd_2|/d—2 pb—l ql

i=0 i=c

+Fgo1 pb—(d—l) CId—l +Fy pb—d qd

These bounds are referred to as the KK2 bounds, since they revise the KK1 bounds by

using the number of pathsets of size (I +2).

3.5.3. Counting Pathsets of Size (1+k)

This technique of computing the number of (s,t)-paths of length (I +k) to obtain an
overcount of the number of pathsets of size (I +k) and then subtracting the number of dif-
ferent types of configurations that have been overcounted, could, in theory, be applied to
compute the number of pathsets of size (I +k) for any fixed value of k. The number of
pathsets of size (I +k) correspond to values for the terms Fy_, so theoretically the bounds
can be made arbitrarily accurate. Unfortunately, one of the main problems is that for
larger vaues of k, determining the number of actua (s,t)-paths of length (I +k), as well as
being able to identify the many different types of configurations that are overcounted
becomes a difficult task. The cause of this difficulty is that the number of configurations
that are overcounted grow quite rapidly with k. One approach is to generate the types of

configurations that are overcounted and identify how many times the overcounting occurs.

42

This could be done using ‘‘brute-force’” techniques, since it would only have to be done
oncefor any value of k. Therefore, even an exponentia method of enumerating these con-

figurations could be acceptable.

3.5.4. Improving the Boundsfor Planar Networks

Ball and Provan [4] point out that by using the (s,t)-dua of a planar graph the
number of minimum cardinality (s,t)-cuts, n;, and therefore the value F. can be computed
efficiently. Shortest (s,t)-pathsin an (s,t)-dual represent minimum cardinality (s,t)-cutsin
the original network. In genera, paths of length (I +k) in the (s,t)-dual represent cutsets of
size (c+k) inthe origina network. Therefore, for planar networks the same methods used
to count pathset of size (I +k) can be applied to count cutsets of size (c+k). This should
dramatically improve the bounds for planar networks since they can be improved substan-

tially from both ends of the reliability polynomial.

3.6. Comparison of Methods and Computational Results

The computation of the number of pathsets of size (1+1) and (1 +2) has been
described to demonstrate the practicality of these methods for improving the basic
Kruskal-Katona bounds. A comparison of some results obtained using each of the
methods KKO, KK 1, and KK2 is presented to illustrate the improvements gained by using

these improved methods.

Table 3.1 illustrates the coefficients computed for the 10 node ladder depicted in the
appendix. They were computed using the KK0, KK 1, and KK2 methods and a technique

for computing exact reliability of series-parallel networks developed in [47]. The

43

Coefficients for 10 node ladder
Fi KKO lower KK1 lower KK2 lower exact KK2 upper
Fo 1 1 1 1 1
Fi 17 17 17 17 17
Fo 77 88 90 134 135
Fa 285 340 362 643 665
Fa 714 879 989 2073 2275
Fs 1286 1616 1945 4671 5733
Fe 1708 2177 2829 7403 11011
F- 1688 2177 3073 8078 16445
Fg 1231 1612 2484 5756 19305
Fg 645 870 1469 2458 17875
F1o 230 331 613 613 613
Fu 50 84 84 84 84
Fio 5 5 5 5 5
Table3.1

coefficients produced for the upper bound by the KK2 method are included for interest and
comparison’s sake, since they produce an absolute upper bound on the reliability of the
network. Table 3.1 demonstrates how knowing the exact value for an extra coefficient can
dramatically affect the bounds. Table 3.2 depicts the reliability values obtained by using
the coefficients of Table 3.1. The increase in accuracy of the coefficients is reflected by
the tightening of the bounds. This example is not meant to demonstrate typical behaviour
of the bounds but rather to demonstrate the potential power that exists for using this

method to improve the bounds.

Reliability Results for 10 Node Ladder

p KKO KK1 KK2 Exact
0.10 0.0000409510 0.0000562040 0.0000687793 0.0000742847
0.20 0.0010757116 0.0015250012 0.0022165203 0.0029734859
0.30 0.0067385833 0.0092529739 0.0141760289 0.0241842722
0.40 0.0236085387 0.0312412637 0.0462748820 0.0955346843
0.50 0.0605545044 0.0777969360 0.1065139771 0.2436523438
0.60 0.1285654555 0.1607078562 0.2007626807 0.4586913633
0.70 0.2428156278 0.2927375241 0.3353783955 0.6890327298
0.80 0.4301397466 0.4901456259 0.5227844138 0.8721058722
0.90 0.7279011487 0.7684233106 0.7815387689 0.9732904939
0.91 0.7631727458 0.7994351962 0.8105402996 0.9788740513
0.92 0.7986710793 0.8303271364 0.8394946226 0.9837181988
0.93 0.8339442950 0.8607237497 0.8680534036 0.9878540988
0.94 0.8684065014 0.8901464966 0.8957672824 0.9913151900
0.95 0.9013089334 0.9179917230 0.9220639998 0.9941369051
0.96 0.9317059579 0.9435047703 0.9462225923 0.9963563916
0.97 0.9584151291 0.9657495444 0.9673430499 0.9980122394
0.98 0.9799703949 0.9835728568 0.9843107484 0.9991442158
0.99 0.9945674374 0.9955627602 0.9957548793 0.9997930117

Table3.2

Results for example flow graph 1

p KKO KK1 KK2
0.10 0.0010000000 0.0012439000 0.0012746422
0.20 0.0080000000 0.0111232000 0.0116067613
0.30 0.0270000000 0.0394173000 0.0411333050
0.40 0.0640000001 0.0941056000 0.0972685666
0.50 0.1250000491 0.1796875346 0.1835327493
0.60 0.2160088640 0.2968766472 0.3001808084
0.70 0.3435463935 0.4435062396 0.4454494096
0.80 0.5248603153 0.6226064723 0.6232596781
0.90 0.8223618631 0.8668610716 0.8669223894
0.91 0.8566941176 0.8930703977 0.8931114770
0.92 0.8895211886 0.9179065502 0.9179325107
0.93 0.9197074617 0.9405666327 0.9405818560
0.94 0.9460669318 0.9602201001 0.9602281853
0.95 0.9675241929 0.9761248654 0.9761286109
0.96 0.9833401889 0.9877889781 0.9877903989
0.97 0.9933802170 0.9951612370 0.9951616289
0.98 0.9983539372 0.9987998061 0.9987998663
0.99 0.9998702229 0.9999055904 0.9999055926

Table3.3

45

Resultsfor Kg
p KKO KK1 KK2
0.10 0.1000026982 0.1243905913 0.1291971799
0.20 0.2002510848 0.2781340672 0.2974278656
0.30 0.3030036258 0.4386022617 0.4688246091
0.40 0.4150208512 0.5912270848 0.6212859904
0.50 0.5449218750 0.7275390625 0.7490234375
0.60 0.6927148032 0.8416601088 0.8528077824
0.70 0.8388493498 0.9273068497 0.9311909131
0.80 0.9476395008 0.9788526592 0.9795670016
0.90 0.9947027862 0.9980410473 0.9980712279
0.91 0.9963569675 0.9986630906 0.9986814343
0.92 0.9976165447 0.9991318573 0.9991423331
0.93 0.9985361360 0.9994706888 0.9994762174
0.94 0.9991722835 0.9997028351 0.9997054666
0.95 0.9995819480 0.9998509509 0.9998520387
0.96 0.9998207048 0.9999365068 0.9999368734
0.97 0.9999406123 0.9999791076 0.9999791971
0.98 0.9999877223 0.9999957084 0.9999957206
0.99 0.9999991971 0.9999997211 0.9999997215
Table3.4

46

A study by Frank and Chou [19] used the assumption of equivalent and statistically

independent link failures to study the Arpanet. They discovered a typica vaue for

p=0.98. As aresult the bounds here are calculated with a greater concentration of values

of p between 0.90 and 0.99. Note also that practical networks such as the Arpanet are typi-

cally very sparse. The size of aminimum cardinality (s,t)-cut is usualy only two or three.

For this reason the majority of the test cases presented here are relatively sparse. The
results shown in the tables which follow were computed using the network stated in the

title of thetable. Diagrams of these networks can be found in the appendix.

a7

Arpanet 1979 s=1S122 t = CCA
p KKO = KK1=KK2
0.10 0.0000010000
0.20 0.0000640000
0.30 0.0007290000
0.40 0.0040960000
0.50 0.0156250000
0.60 0.0466560000
0.70 0.1176490008
0.80 0.2621475296
0.90 0.5346365516
0.91 0.5734980575
0.92 0.6159781768
0.93 0.6628758466
0.94 0.7150016592
0.95 0.7727654047
0.96 0.8352877904
0.97 0.8988771008
0.98 0.9552067419
0.99 0.9914138687
Table3.5

Table 3.3 demonstrates the typical improvement gained by using the different sub-
graph counting methods. The graph used is the example flow graph 1 shown in the appen-
dix. Inthiscase the KK1 bound dramatically improves on the KKO bounds while the KK2

bound only dightly improves on the KK 1 bound.

Table 3.4 shows the results obtained for the complete graph on five vertices. Again
there is a substantial improvement in the KK1 bound over the KKO bound while the

improvement in the KK 2 bound over the KK 1 bound is not as dramatic.

Resultsfor 7 x 7grid
p KKO KK1 KK2
0.10 0.0000000001 0.0000000001 0.0000000002
0.20 0.0000000979 0.0000001188 0.0000002145
0.30 0.0000058649 0.0000071449 0.0000119043
0.40 0.0001047754 0.0001300234 0.0001972150
0.50 0.0009765029 0.0012207031 0.0016782284
0.60 0.0060466014 0.0074978058 0.0093706539
0.70 0.0282475235 0.0341795051 0.0391953831
0.80 0.1073741999 0.1245540673 0.1331096404
0.90 0.3488357172 0.3802008500 0.3871709320
0.91 0.3897708376 0.4216281521 0.4279343938
0.92 0.4351706648 0.4670626819 0.4726214307
0.93 0.4856635613 0.5170013044 0.5217435175
0.94 0.5421209522 0.5721458541 0.5760234641
0.95 0.6057775408 0.6335095520 0.6365030496
0.96 0.6782813259 0.7024601573 0.7045875537
0.97 0.7612905280 0.7803552887 0.7816826342
0.98 0.8543882458 0.8666635386 0.8673171943
0.99 0.9477608984 0.9523719676 0.9525528440
Table3.6

48

Table 3.5 contains the results of computations done using the 1979 representation of

the Arpanet taken from [4] (see the appendix for the configuration used here). The two

sites chosen are [S122 and CCA since they are on the west and east coast respectively and

have an (s,t)-cut of sizethree. It isinteresting to notethat for the Arpanet no improvement

is gained by knowing the exact value of the extra coefficients. The reason in this case

being that the two coefficients Fy_; and Fy_, are estimated correctly by the KKO method.

Theresultsfor the 7 x 7 grid graph are shown in Table 3.6. Again an improvement is

gained using each of the methods KK 1 and KK 2.

49

In genera the subgraph counting bounds perform well when the size of the minimum
cardinality (s,t)-cut is relatively large in comparison with the number of edges. Thisis
because the first term of the bounded polynomia which can be computed exactly predom-
inates. It al'so means that fewer terms of the reliability polynomial are estimated. Aswell,

the performance is quite good when the number of shortest (s,t)-pathsis high.

The method for improving the Kruskal-Katona bounds has been shown to be of prac-
tical use since the improvements are quite substantial in most cases. The amount of
improvement that each method produces depends upon how well the original Kruskal-

K atona method estimates the unknown coefficients.

Chapter 4
Edge-Digoint Path Bounds

4.1. Development

Harms [22] reports on some bounds for all-terminal reliability developed in the Rus-
sian literature [38], which use an approach quite different from that used to obtain bounds
by using subgraph counting techniques. A lower bound on the reliability of a graph can be
obtained by observing that the probability of a graph failing is no larger than the product of
the failure probabilities of each member of any set of edge-digoint operational subgraphs.

Thisfollows from the assumption of statistical independence of edge failures.

Polesskii [37] shows that the maximum number of edge-digoint spanning treesin a

graphis at least [%‘ , Where c is the size of a minimum cardinality cutset. This also fol-

lows from a stronger result developed independently by Nash-Williams [36] and Tutte
[44]. Polesskii [38] uses the fact that each of the edge-digoint spanning trees must fail

before the graph fails, to obtain the lower bound on the all-terminal reliability:

C

2

R> 1—(1—p”_1){

The only value that must be computed to obtain this bound is c; a polynomia time ago-
rithm was given for thisin Chapter 3. This bound can thus be computed quite easily, in

polynomia time.

Polesskii’s bound can be improved in some instances by enumerating edge-digoint

gpanning trees of a graph. This can be accomplished using a result on matroids, developed

50

51
by Edmonds [13]. If the number of edge-digoint spanning trees is computed, it can be

used in the Polesskii bound in place of the previous value of l %‘ .

4.1.1. TheTwo-Terminal Bound

Polesskii’s idea of using edge-digoint spanning subgraphs can be easily applied to
the two-terminal problem. In the two-terminal case a minimal operationa subgraph is
simply a path; hence edge-digoint paths are employed. Ford and Fulkerson’s Max-Flow
Min-Cut Theorem [18] guarantees that there will be at least ¢ edge-digoint paths between

sand t, which gives the following lower bound on two-terminal reliability:

Cc
R>1- {n P
i=1

where P; is the probability that thei™ path fails. P; can be expressed as:

Li
Pi=1-T1n
j=1
where p; is the probability that the j edge in the path is operational and L; denotes the

length of thei ™ path.

For example alower bound on the reliability of the graph in Figure 4.1 can be deter-
mined by using the two obvious edge-digoint paths. This gives the following lower bound

on therdiability:

R>21-[(1-p1p2p3)(d-psps)]

52

P2

Ps t

5
N
Figure4.1

4.2. Motivation

The edge-disoint method of obtaining bounds has one distinct advantage over the
family of bounds which uses subgraph counting techniques. The subgraph counting tech-
nigues depend on the edges having equal failure probabilities, while the edge-digoint
method uses edge-digoint operationa subgraphs, so the failure probability need not be the
same for each edge. The edge-digoint method is therefore very useful in computing a
lower bound on two-terminal reliability when the failure probability of each edge is known

and is different.

As stated earlier, the number of edge-digoint spanning treesin the all-terminal caseis

typically lessthan c, the size of aminimum cardinality cutset, and could be aslow as [%‘ .

In the two-termina case however, the number of edge-digoint paths between sand t is
equal to c, the size of a minimum cardinality (s,t)-cut. Harms [22] shows that for some
classes of graphs, the Lomonosov-Polesskii [33] edge-digoint method produces the best
all-terminal lower bounds. Thus, edge-digoint path methods were developed in the hope

that they might produce strong two-terminal lower bounds.

53

The edge-digoint path bound makes use of elementary graph theoretic results, mak-
ing the bound quite easy to understand. It is aso simple to compute, as all that is required
is one or more edge-digoint paths between s and t. In fact, a crude lower bound on two-

terminal reliability can be obtained by using any (s,t)-path.

The first order linear programming bounds proposed by Zemel [49] and Assous [2]
essentially make use of one (s,t)-path. The second order linear programming bounds [2]
are useful for graphs or networks for which edges do not fail independently since they are
able to compute a bound on the reliability by using the joint failure probability of every
pair of edges. However, they are not much more sophisticated than the first order linear

programming bounds and are therefore not discussed in further detail.

Another important reason for investigating the edge-digoint path bound is that it
makes use of different information than the Kruskal-Katona bounds. This makes it
interesting to compare the two bounds since, athough they use different techniques and

make use of different information, they are both computable in polynomial time.

4.3. Implementation Overview

The implementation of the edge-digoint path bounds is relatively ssmple in com-
parison with the Kruskal-Katona bounds. All that is required to compute an edge-digoint
path bound is any algorithm that generates edge-digoint paths between sandt. Thefailure
probability of each edge on a path is used to compute the probability that the path fails.
The path fails when any single edge of that path fails. The bound on the probability that

the two specified nodes s and t can communicate is one minus the product of the failure

probabilities of each of the chosen edge-digoint (s,t)-path.

Any agorithm which generates edge-digoint paths can be used to compute an edge-
digoint path bound. For example a greedy agorithm can be used to obtain a number of
edge-digoint paths. It first findsthe most reliable path and marks the edges along that path
as ‘‘used’’ so they will not be chosen in the formation of other paths, thus ensuring that the
paths are edge-digoint. The algorithm is greedy in that it finds the most reliable (s,t)-path
possible, then using the remaining edges it finds the next most reliable path and so on until
no more paths can be found. It isasimple method, and because of its greedy nature it does

not guarantee that the maximum number of edge-digoint paths will be found.

If edges are assumed to fail with varying failure probabilities the most reliable path
can be found using an algorithm much like a shortest path algorithm by assuming that the
cost of each edgeis (1 - p;), where p; is the probability that edgei is operationa. Instead
of summing the costs of each edge they are multiplied, since the failure probability of each
edge is multiplied to obtain the probability that the path fails. The object is to find the
most reliable path, which means that the probability of the path failing is to be minimized.
Alternatively, the cost of each edge could be assigned the value log (1 — p;), thus alowing

the use of the standard shortest path algorithm using addition rather than multiplication.

Edges are often assumed to have equal failure probability, especialy since failure
probabilities for each individua edge are not usually available. Since the subgraph count-
ing bounds are valid only under the assumption that all edges have equal failure probabili-
ties, much of the testing and discussion is done with the assumption that the edges fail with

equal probabilities. Under this assumption the most reliable path in a graph is smply the

55

shortest path.

To ensure that the maximum number of edge-digoint paths is found a maximum flow
algorithm isused. Thisalgorithm finds the maximum flow between the specified nodes by
augmenting flows along edges that have aready been used if such an augmentation leads
to an increase in the (s,t)-flow. If each edge is assumed to have a capacity for carrying
one unit of flow this algorithm determines which edges are used in making up the max-
imum number of edge-digoint paths. The paths themselves can then be easily obtained

and used to produce alower bound.

Another algorithm that can be used to compute edge-digoint paths is a minimum-cost
flow agorithm. This algorithm finds the maximum flow through the graph subject to the
constraint that the overall cost of the edges used is to be minimized. If edges fail with
equal probabilities the cost of each edge and its capacity are assumed to be one. The ago-
rithm determines which edges comprise the maximum number of edge-digoint paths while
using the least total number of edges possible. Jewell [25] and Busacker and Gowan [§]
have shown that the augmentation by 8, of a minimum-cost flow of value v along a
minimum-cost augmenting path yields a minimum-cost flow of value d+v. The
minimum-cost maximum flow algorithm therefore uses a shortest path computation to find
minimum-cost augmenting paths. The flow is iteratively incremented until a final flow of
c isreached. If failure probabilities are different for each edge then the most reliable path

is obtained rather than the shortest.

As mentioned earlier, any method for producing edge-digoint paths can be used to

obtain alower bound. Unfortunately, there is no known method for determining the most

56

reliable set of edge-digoint paths. As a result, heuristic approaches are considered.
Besides the mincost, maxflow and greedy methods investigated here other possibilities
exist. Of particular interest is the Edmonds and Karp method for finding maximum flows
[14]. Their method is similar to the Ford and Fulkerson maxflow labelling algorithm
described in Chapter 3 except that during the labelling process nodes are scanned on a
““first-labelled first-scanned’’ basis. That is, before scanning alabelled node u, scan those
nodes that were labelled before u. Thus a maximum flow is obtained by augmenting the
flow along an augmenting path containing the fewest arcs, until no more augmenting paths
exist.

Of the methods mentioned the Ford and Fulkerson maxflow labelling algorithm, the
mincost algorithm and the greedy algorithms have been implemented. The implementation
of the maxflow algorithm is essentially the same as shown in Chapter 3. The only differ-

enceisthat the paths are actually produced.

4.4. Implementation Details

Because edge failures are independent the edge-digoint bounds can make use of one
very simple observation to improve the bounds obtained by the ‘“strict’”” mincost and max-
flow algorithms. If the graph has one or more cutpoints it can be divided into biconnected
components. The two-terminal reliability of the entire graph is equal to the product of the
reliability of each component containing a cutpoint that is a node aong a shortest (s,t)-
path. For example, the reliability of the graph in Figure 4.2 can be computed, by first com-
puting a bound on the probability that the nodes s and x can communicate (the probability

that at least one of the paths in the first component is operational). Call this bound C.

S7

Figure4.2
Then compute a bound on the probability that nodes x and t can communicate (the proba
bility that a path in the second component is operational), and call this bound D. A bound
on the probability that the two nodes s and t can communicateis C x D.

An agorithm for finding biconnected components of a graph can be foundin [43].

4.4.1. Mincost Algorithm

The minimum-cost flow algorithm presented here determines a minimum-cost flow
for a given network flow value v. Most algorithms for solving minimal cost flows are
based on linear programming optimality conditions. Such approaches are discussed by

Ford and Fulkerson [18].

The agorithm presented here is the Edmonds and Karp minimum-cost maximum
flow algorithm [14] taken from Lawler [31]. If the cost of each edgeisoneand v = ¢, the
algorithm determines which edges make up a maximum flow using the minimum total
number of edges. Thisis desirable, since the more edges a path consists of, the more sus-

ceptible that path isto fallure.

The following new costs are used to compute an augmenting path using a shortest

path computation. For agiven flow x = (x;) and arc costs a;j, let

i

aj, if x;j < Gj, X;i =0.
_ min (aj, —ai), if xi; < Gj, X;i > 0.
A7 -a, if xj = cij, X;i > 0.
+00, if x;j = Gj, Xji =0.

58

Note also that g; = + if (i,]) isnot an arc of the network.

- repeat until no more flow-augmenting paths exist

- apply a shortest path algorithm with respect to (nonnegative) arc lengths
g . tofind the shortest (s,t)-path, where
L LU= S iy)
&j =&t T

- augment the flow by o, wherev' + & < v, dong a minimum cost (s,t)-path as
found using the shortest path computation

- let u;®) denote the length of a shortest path from s to j with respect to arc

lengths &;) , compute
kD) =7 K) 4y K

where ;@ =0and u;® = ® =+
if node j isinaccessiblefrom s

- end of for loop

Edmonds and Karp [14] have shown that for networks with arc costs that are ini-
tially positive, each cost & j(k) is nonnegative. Thus, Dijkstra’s algorithm for finding
shortest paths in networks with positive arc costs, presented in Chapter 3, can be used to

perform the shortest path computations.

4.4.2. How the Algorithms are Used

The maxflow and mincost algorithms determine the edges of the graph that are
used in forming the edge-digoint paths. The actual paths used in computing the bound
on thereliability of the graph must be determined from these edges. This has been done
by first choosing the shortest path (or the most reliable), then choosing the second shor-
test (second most reliable) and so on in a greedy fashion until all the paths have been

determined. This method will yield the greatest reliability value over the fixed number

59

of edgesif there are exactly two edge-digoint paths.

Proposition:

Let Ty and T, be edge-digoint (s,t)-paths and let i3 and 1y be two other edge-
digoint (s,t)-paths, such that E(my) [] E(T®) = E(13) [] E(Ty), where E(15) denotes
the set of edges that make up the path 15. If 1y is a shortest (s,t)-path, then the lower
bound obtained using the paths Ty and 1, will be no less than the lower bound obtained

using the path 13 and Ty.

Proof:

Leta=|E(m)|, b=|E(m)].

Lete= |[E(TB)|, f=[E(TU)].

Since the sum of the lengths of the paths of each set isequal:
atb=e+f.

AssumeO< p < landaef > b; otherwise the bounds are equal.

Thisis shown diagrammatically in Figure 4.3.

a e
b f

Figure4.3

60

Assume to the contrary that the paths 13 and 1y produce the best bound. There-
fore, using the methods described to compute lower bounds given a set of edge-digoint

paths, yields:

1-[(1-p®A-p)] < 1-[(1-p®)(@-pN)
1-[1-p*-p°+p*™®] < 1-[1-p°-p'+p°*"]
pa+pb _pa+b pe+pf _pe+f

since a+th=e+f

N

pe+p’
pf—pb

p? (p' P -1)
pf—b -1

p* +p°

pa _ pe

pe (p?°-1)

pe™® (p*° - 1)
Since the length of ashortest pathisb, f —b > 0 and pf ™ - 1 is negative. Hence,

N NNA

PP (-1
(P -1)

Recdl that a+b=e+f, therefore a—-e=f-b. Thusleaving:
pe—b > 1
However, since the length of a shortest pathisb, e —b > 0.

Therefore p®™® < 1 for O<p<1.

Thisyields a contradiction. Hence, the original assumption must be false.

Consequently:

1-[1-p)@-p”] > 1-[L-p%)@-pN.
Therefore, the set of paths containing the shortest path produces the best bound.

61

Unfortunately this method of choosing paths in a greedy fashion does not guaran-
tee that the greatest reliability valueis obtained when dealing with more than two paths.

For example, consider the paths in Figure 4.4.

Figure4.4

The set of three paths that result by greedy selection is a set of paths P, containing
paths of lengths 3,7 and 7. Another possible set of three pathsis P’, containing paths of
lengths 4,4 and 9. Each set of paths contains 17 edges and neither produces a uniformly
better bound than the other. Table 4.1 demonstrates the bounds obtained using these

two sets of paths.

Although the greedy method does not guarantee the best reliability value possible it
is easy to compute. It also works quitewell in practice, since practical networks usualy

contain awider range of path lengths.

In an attempt to achieve an as accurate bound as possible, the lower bound is actu-
ally computed over all possible numbers of edge-disoint paths. That is, the bound is

computed first using one path, then two, until the maximum number of paths has been

Note: * denotes the better of the two bounds

Bounds using different sets of paths
p P=377 P'=4,4,9
0.10 0.0010001998 * 0.0001999910
0.20 0.0080253954 * 0.0031979506
0.30 0.0274255470 * 0.0161537580
0.40 0.0670645754 * 0.0507935370
0.50 0.1386184692 * 0.1228103638
0.60 0.2592796259 * 0.2500387020
0.70 0.4467577310 * 0.4458542098
0.80 0.6952197552 * 0.6982125908
0.90 0.9262409756 * 0.9275520912
0.91 0.9424540526 * 0.9435063045
0.92 0.9567336876 * 0.9575444792
0.93 0.968962839%4 * 0.9695568288
0.94 0.9790656551 * 0.9794734759
0.95 0.9870211027 * 0.9872776793
0.96 0.9928791981 * 0.9930216286
0.97 0.9967802107 * 0.9968451911
0.98 0.9989772802 * 0.9989980499
0.99 0.9998629268 * 0.9998657208
Table4.1

62

found. Thelargest bound over all number of pathsisthen used. Thisisimportant, since

in certain types of graphs a better bound results, for some failure probabilities, by using

asmall number of short paths rather than alarger number of longer paths. For example

alower bound for the graph in Figure 4.5 using one path is:

R>1-(1-p3%=p3
When two paths are used the bound becomes:

R21-(1-p?)?®=2p®+p®

Note:

() () () ()
/ N N N
()
N

() () () ()

N N N _/

Figure4.5

Bounds for Graphin Figure 4.5
p 1 path 2 paths
0.10 | 0.00100000 * 0.00000011
0.20 | 0.00800000 * 0.00001536
0.30 | 0.02700000 * 0.00028430
0.40 | 0.06400000 * 0.00229269
0.50 | 0.12500000 * 0.01168823
0.60 | 0.21600000 * 0.04431957
0.70 | 0.34300000 * 0.13525475
0.80 | 0.51200000 * 0.34230299
0.90 | 0.72900000 * 0.70287298
091 | 0.75357100* 0.74400537
0.92 | 0.77868800 * 0.78476807
0.93 | 0.80435700 * 0.82458182
0.94 | 0.83058400 * 0.86275473
0.95 | 0.85737500 * 0.89846650
0.96 | 0.88473600 * 0.93075068
0.97 | 0.91267300 * 0.95847502
0.98 | 0.94119200 * 0.98031945
0.99 | 0.97029900 * 0.99475169
Table4.2

* denotes the better of the two bounds

63

64

As can be seen in Table 4.2 the bound computed using one path is a better bound than
the bound computed using two paths for vaues of p < 0.92. For this reason the best
bound obtained over all numbers of paths from 1 to c is retained for each value of p.
Since the mincost and maxflow agorithms find ¢ edge-digoint paths one at a time, the
largest value for the bound over all possible numbers of paths can be obtained quite
easlly.

The bounds referred to as the maxflow bounds and the mincost bounds are bounds
which are computed using the techniques outlined in this chapter. That is, usng a
greedy selection of paths after the original maxflow or mincost flow technique is used to
determine the edges and then obtaining the best bound over al possible numbers of

paths.

During preliminary testing, the bounds obtained using the greedy method to pro-
duce edge-digoint paths were generally not as good as the maxflow or mincost bounds.
For this reason the greedy method is not included in the discussion and comparison of

results.

For testing and comparison purposes edges are assumed to fail with equal probabil-
ity. This is especialy useful for comparison with the subgraph counting techniques,

since they are based on the assumption that all edges fail with equal probability.

45. Results

One might expect the mincost method of finding edge-digoint paths to outperform
the maxflow method in all cases, since the mincost method uses the minimum total
number of edges such that the flow is maximized. In fact, it appears to be better than
the maxflow agorithm for all but extreme cases. In general, edge-digoint path bounds

produce better bounds when more reliable (shorter) paths are used, even at the expense

65

of making the more unreliable (longer) paths even more unreliable (longer). That is,
short paths are favoured, even when it means increasing the total number of edges used.
The reason that the maxflow method doesn’t normally produce better bounds than the
mincost method is that there is no guarantee that the maxflow method will retain the

short paths until all ¢ paths have been found.

Since there is no guarantee on the performance of the maxflow algorithm, it could
be used in conjunction with the mincost method by using the maximum of the two
results. If only one bound is to be computed, however, the mincost algorithm should be

used sinceit yields the better bound in the vast mgjority of the test cases.

To obtain the best possible bound using edge-digoint paths requires finding the
most reliable combination of edge-digoint paths of lengths which lead to the greatest
reliability values. A related problem, which, if used, would likely improve on the min-
cost bound is one that involves finding a maximum number of edge-digoint paths with
length constraints on each path. That is, given agraph G with distinct nodes s and t, and
an integer k, find the maximum number of edge-digoint paths of length < k. It has been
shown that except for values of k < 4 the problem is NP-complete [23]. It is therefore
likely that finding the most reliable combination of paths and path lengths is also NP-

complete.

45.1. Tabulation of Results

The bounds shown in Table 4.3 for the 1979 version of the Arpanet as depicted in

[4], and shown in the appendix, were computed using the nodes 1S122 and CCA as the

66

source and target nodes respectively. The results illustrate how the mincost method per-

forms as well or better than the maxflow method on an average graph of practica

interest.
Results Using Edge Digoint Path Bounds
Arpa Example flow graph 1

p mincost maxflow | # mincost maxflow #
0.10 | 0.000001 0.000001 | 2 | 0.001001 0.001001 | 2
0.20 | 0.000064* | 0.000064 | 2 | 0.008063 0.008063 | 2
0.30 | 0.000735* | 0.000731 | 2 | 0.027709 0.027709 | 2
040 | 0.004200* | 0.004138 | 2 | 0.067834 0.067834 | 2
0.50 | 0.016586* | 0.016107 | 2 | 0.138672 0.138672 2
0.60 | 0.052421* | 0.050149 | 2 | 0.252578 0.252578 | 2
0.70 | 0.142573* | 0.135786 | 2 | 0.420295 0420295 | 2
0.80 | 0.341371* | 0.333302 | 3 | 0.662010* 0.639926 | 2
0.90 | 0.732100* | 0.717569 | 3 | 0.912096 * 0911417 | 4
091 | 0.777147* | 0.763311 | 3 | 0.930844 *0.933242 | 4
0.92 | 0.820938* | 0.808264 | 3 | 0.947559 *0.952038 | 4
093 | 0.862411* | 0.851351 | 4 | 0.963511 * 0967585 | 4
0.94 | 0.900367* | 0.891307 | 4 | 0.977469 *0.979790 | 4
0.95 | 0.933533* | 0.926721 | 4 | 0.987559 *0.988722 | 4
0.96 | 0.960673* | 0.956147 | 4 | 0.994160 *0.994645 | 4
0.97 | 0.980780* | 0.978306 | 4 | 0.997880 *0.998033 | 4
0.98 | 0.993388* | 0.992439 | 4 | 0.999519 *0.999548 | 4
0.99 | 0.999038* | 0.998885 | 4 | 0.999965 *0.9999%7 | 4

Table4.3
Note:

* denotes the best of the two methods for that graph
if thereisno * in either column the results were equal
denotes the number of paths used to obtain the bound

Table 4.3 aso shows the bounds obtained for the example flow graph 1, shown in

the appendix. These results show that the maxflow method can provide a better bound

67

than the mincost method on certain types of graphs. The reason that the bound is better
using the maxflow algorithm is because in this case it retains shorter paths at the
expense of increasing the total number of edges used. The mincost method on the other
hand maintains the fewest number of edges possible at each stage. The bound is com-
puted for each method over all possible numbers of paths. The number of paths, the
path lengths and the total number of paths obtained at each phase of the mincost method

are shown in Table 4.4. The same results are shown for the maxflow method in Table

45,

Mincost Path Information

#of paths | pathlengths | total
1 3 3
2 3,6 9
3 3,88 19
4 7,799 32

Table4.4

Maxflow Path Information
of paths | pathlengths | total
1 3 3
2 3,6 9
3 48,8 20
4 4,8,8,15 35
Table4.5

The bounds show how the lengths of the paths and the number of paths affect the

bound obtained with each method. For up to two paths the path lengths of each path and

68

the total number of edges used are exactly the same for each method. Thisis reflected
in the bounds in the fact that the bounds are the same for 0.10< p < 0.70. Once three
paths have been determined the mincost method uses paths of lengths 3,8 and 8 while
the maxflow method finds three paths of lengths 4,8 and 8. The difference in the total
number of paths used and the difference in the length of the shortest path is reflected in
the bounds obtained for 0.80< p < 0.90. For these vaues of p the mincost method pro-

duces better bounds than the maxflow algorithm.

When the algorithm reaches the four path stage the mincost method uses paths of
lengths 7,7,9 and 9 for a total of 32 edges. Because the maxflow method is not con-
cerned with minimizing overall path length it chooses paths of lengths 4,8,8 and 15 for a
total of 35 edges. The interesting results in this case are reflected in the bounds for
values 0.91< p <0.99. For these values of p the maxflow method now yields a better

bound than the mincost method.

Another interesting note is that the maxflow method obtains its best bounds using
only two paths for 0.10< p < 0.90 and four paths for 0.91 < p <0.99. The reason that
the use of three paths does not produce a better bound for any of the values of p tested,
is because three of the four paths used at the four path stage of the agorithm are the
same three paths used at the three path stage. Although the fourth path is one of length
15 the results indicate that the extra path helps to obtain a better bound when the proba-
bility of an edge being operational isrelatively high (in this case, > 0.90).

Table 4.6 demonstrates bounds obtained on a complete graph on five vertices, Ksg,

and a seven by seven grid graph. These graphs demonstrate examples of graphs for

69

Results Using Edge Digoint Path Bounds
Ks 7x7grid
p mincost maxflow mincost maxflow
0.10 | 0.12673090 | 0.12673090 | 0.00000000 | 0.00000000
0.20 | 0.29221120 | 0.29221120 | 0.00000001 | 0.00000001
0.30 | 0.47250030 | 0.47250030 | 0.00000106 | 0.00000106
0.40 | 0.64437760 | 0.64437760 | 0.00003355 | 0.00003355
0.50 | 0.78906250 | 0.78906250 | 0.00048822 | 0.00048822
0.60 | 0.89514240 | 0.89514240 | 0.00434883 | 0.00434883
0.70 | 0.96020470 | 0.96020470 | 0.02749099 | 0.02749099
0.80 | 0.99066880 | 0.99066880 | 0.13271659 | 0.13271659
090 | 0.99931410 | 0.99931410 | 0.48509263 | 0.48509263
091 | 0.99954284 | 0.99954284 | 0.54096053 | 0.54096053
0.92 | 0.99971009 | 0.99971009 | 0.60015420 | 0.60015420
093 | 099982739 | 0.99982739 | 0.66196973 | 0.66196973
0.94 | 0.99990537 | 0.99990537 | 0.72534048 | 0.72534048
0.95 | 0.99995366 | 0.99995366 | 0.78873115 | 0.78873115
096 | 0.99998072 | 0.99998072 | 0.85000627 | 0.85000627
0.97 | 0.99999381 | 0.99999381 | 0.90626750 | 0.90626750
0.98 | 0.99999876 | 0.99999876 | 0.95365311 | 0.95365311
0.99 | 0.99999992 | 0.99999992 | 0.98709160 | 0.98709160
Table4.6

which the mincost and maxflow method produce paths of the same length for all

numbers of paths and as a result produce the same bounds. Diagrams of both graphs

can be found in the appendix.

Chapter 5
Discussion and Comparison of Results

5.1. Accuracy of Results

It is difficult to determine exactly the accuracy of the results obtained. An imple-
mentation of the bounds in a language such as Maple or Bc, that allow for calculations
using much greater precision, would perhaps be better since they would ensure the pre-
cison of the results. This is especialy true since for some large graphs with an
extremely large number of shortest paths the subgraph bounds can not be computed
because of arithmetic overflow. Thisis not a serious problem, however, since it only

occurs when the number of shortest pathsisin the millions.

All results are computed using double precision arithmetic (sixty-four bits) and are
reported to only enough digits to demonstrate the difference between the bounds being
compared. The values obtained for the edge-digoint path bounds using the**C’’ imple-
mentations were checked against values obtained using the polynomials determined
from the paths and a ssimple implementation donein Bc. It was determined that the ori-

gina “'C’"’ implementation isin fact quite accurate.

5.2. Casesin Which the Bounds Produce Exact Values

The bounds discussed here actually produce exact reliability values for certain
types of graphs. Some of these graphs are classified and explanations given as to why

the method used produces a bound which is exact.

70

71

The edge-digoint path bounds produce an exact measure of reliability if the graph
contains only (s,t)-paths that are both edge and node digoint. For example the edge-
digoint path bound computed for the graph in Figure 5.1 is an exact measure of the reli-

ability of the graph.

Figure5.1

The results are exact because the graph contains only edges that are along a node
and edge-digoint path, and no other edges. The paths must be node-digoint to prevent
undercounting that would occur because alternative paths that exist at the point at which

the paths are no longer node-digjoint, can not be considered.

Figure5.2

72

For example, consider the graph in Figure 5.2, an edge-digoint path method for

computing alower bound for reliability finds the following three paths:

(s.9,h.t)
(s,a,b,d,t)
(s,c,b,e f,t)

The three edges (s,a), (e,f) and (s,g) can all fail and the graph would still be opera
tional, since the path (s,c,b,d,t) remains operational. However, the edge-digoint path

method is not able to take thisinto account and the result is therefore not exact.

The family of subgraph counting bounds produce an exact measure of reliability if
c=b — (I +k), where c is the size of a minimum cardinality (s,t)-cut, b is the number
of edges in the graph, | is the length of a shortest path and (I + k) indicates the use of
exact values for pathsets of size (I +k). The term k may be thought of as the value used

inaKKk method. That is, for the KKO method, k = 0.

For example, the KK2 method computes the exact reliability of a graph if
c=b-(l+2). Thegraphin Figure 5.3 has parametersb =8, c=4 and | =2. There-

fore the KK2 method is able to compute the reliability exactly because4>8 - (2 + 2).

Figure5.3

73

Note that the KK 1 and KKO methods do not compute the reliability of the graphin
Figure 5.3 exactly. However, they do compute the exact reliability of the graphs of Fig-
ure 5.4 and 5.5 respectively. Note that the KK2 bound is exact for any graph that KK1

and KK 0O measure exactly.

Figure5.4 Figure5.5

Since the graph in Figure 5.5 consists only of paths that are both node and edge-
digoint the edge-digoint path bounds aso produce exact results for this particular
graph. Table 5.1 contains the results obtained by the subgraph counting method and the
edge-digoint path methods. It illustrates using a smple example that all methods pro-
duce the same exact reliability values.

5.3. TheEffectsof Various Parameterson the Bounds

Various parameters such as the size of the minimum cardinality (s,t)-cut and the
number of edges in the graph affect the performance of each bound in different ways.

The effect on each family of bounds by such parameters is discussed.

5.3.1. TheMinimum Cardinality (st)-cutset

The accuracy of both sets of bounds is quite dependent upon the size of the

74

Bounds for Figure5.5
p KK 0=KK1=KK2=mincost=maxflow
0.10 0.0199000000
0.20 0.0784000000
0.30 0.1719000000
0.40 0.2944000000
0.50 0.4375000000
0.60 0.5904000000
0.70 0.7399000000
0.80 0.8704000000
0.90 0.9639000000
0.91 0.9704503900
0.92 0.9764070400
0.93 0.9817479900
0.94 0.9864510400
0.95 0.9904937500
0.96 0.9938534400
0.97 0.9965071900
0.98 0.9984318400
0.99 0.9996039900
Table5.1

minimum cardinality (s,t)-cut. In the case of the edge-digoint path bounds the size of
the minimum (s,t)-cut is directly related to the number of edge-digoint paths contained
in the graph.

Generaly the edge-digoint path bounds are improved by considering all of the
possible edge-digoint paths. This is especialy true since the implementation of the
edge-digoint path bounds calculates a bound for each of the possible number of paths,
and uses the best bound. If the larger number of paths are relatively long (unreliable) in

comparison with the length (reliability) of the paths when only a few paths are known

75

the bound is not substantially improved, especialy for values of p near 0. Although one
expects to find a better bound when the maximum number of paths is used, thisin not

always the case.

In the case of the subgraph counting bounds it is more difficult to see the effects of

changes in the the size of the minimum cutset. It is evident that it does affect the first

c-1 . .
term [ﬂ p' qP~ of the Kruskal-Katona family of bounds. The greater the edge-
i=0

connectivity between the specified nodes, the fewer terms that are estimated using the
lower pseudopower. The more terms there are that are approximated, the weaker the
bound. As a result the bounds are quite good for graphs with high edge-connectivity

and relatively few edges.

5.3.2. Using More Paths

The edge-digoint bounds are usually improved when more paths are used to com-
pute the bound. The bound isimproved over al values of p if the paths being added are
relatively close in length to the existing paths. If the paths being added are relatively
unreliable (longer), the overal bound may not be improved for all values of p. Thisis
especialy true for lower values of p, since knowing the existence of a path that is highly
unreliable does not greatly increase the bound on the reliability. This was exhibited in
Chapter 4, in Figure 4.4 and Table 4.1. It is clear that in this case the bound obtained
using one path is better than the bound obtained using two paths for al but afew values

of p that are near one.

76

5.3.3. Adding Termsto the Kruskal-Katona Bounds

one. having to settle for an estimate of their value is a goal often sought after.
This was the goal in mind when initially pursuing methods for improving the Kruskal-

K atona bounds.

The results obtained for each of the three subgraph counting methods demonstrate
that knowing the exact values for the extra terms results in bounds that are equal in
some cases, but are frequently better than the original Kruskal-Katona bounds. The sub-
graph counting bounds form a strict hierarchy with respect to accuracy in the order in

which they make use of the most information.

KK2 = KK1= KKO.

5.4. Comparison of the Bounds

A few examples of some networks for which each type of bound produces an exact
measure of areliability were presented earlier in this chapter. What may not be evident
in the discussion is the small number of graphs for which the subgraph counting bounds
produce exact results. Of these bounds the KK2 bound is the best bound currently
implemented. Consider the 3-edge connected graphs for which the KK2 bound will be
exact. For the graph to be 3-edge connected both nodes s and t must have degree >3.
Since only ssimple graphs are considered the configuration shown in Figure 5.6 would

result.

The KK2 bounds are exact when c>b — (I +2). Therefore the KK2 bound is

exact forc =3, when3=b - (I +2). Thisoccurswhen| =1andb =5or 6 and when

77

Figure5.6

| =2andb=6o0r 7. Table5.2 demonstrates the small number of graphs for which the

KK2 bound computes the reliability exactly.

Parameters for Exact Bounds Using KK 2
c I | b
c=1 [<b<I+3
c=2 =1 b=3 405
=2 b=4,5 06
| =3 b=6or7
=4 b=8
c=3| I=1 b=5o0r 6
| =2 b=6or 7
c=4 =1 b=7
=2 b=8
Table5.2

The edge-digoint bounds on the other hand may produce exact measures of relia-
bility for any value of c. Again all that is required is that the paths be node and edge-
digoint. Even though the types of graphs that the edge-digoint path bounds produce
exact results for are quite limited, they do produce exact results for a much larger

number of graphs than do the subgraph counting bounds. The purpose of developing

78

bounds is not, however, to find a class of bounds that produce exact values for the larg-

est number of networks. A comparison of these bounds on various types of graph is

therefore demonstrated.
Comparison of Results for example flow graph 1

p KKO KK2 mincost maxflow ranking
0.10 | 0.00100000 | 0.00127464 | 0.00100010 | 0.00100010 | 2,mM,0
0.20 | 0.00800000 | 0.01160676 | 0.00806349 | 0.00806349 | 2,mM,0
0.30 | 0.02700000 | 0.04113331 | 0.02770932 | 0.02770932 | 2,mM,0
0.40 | 0.06400000 | 0.09726857 | 0.06783386 | 0.06783386 | 2,mM,0
0.50 | 0.12500005 | 0.18353275 | 0.13867188 | 0.13867188 | 2,mM,0
0.60 | 0.21600886 | 0.30018081 | 0.25257830 | 0.25257830 | 2,mM,0
0.70 | 0.34354639 | 0.44544941 | 0.42029539 | 0.42029539 | 2,mM,0
0.80 | 052486032 | 0.62325968 | 0.66200965 | 0.63992627 | mM,2,0
0.90 | 0.82236186 | 0.86692239 | 0.91209638 | 0.91141714 | mM,2,0
091 | 0.85669412 | 0.89311148 | 0.93084404 | 0.93324177 | M,m,2,0
0.92 | 0.88952119 | 0.91793251 | 0.94755882 | 0.95203751 | M,m,2,0
0.93 | 091970746 | 0.94058186 | 0.96351142 | 0.96758464 | M,m,2,0
0.94 | 094606693 | 0.96022819 | 0.97746942 | 097978954 | M,m,2,0
095 | 096752419 | 0.97612861 | 0.98755884 | 0.98872170 | M,m,2,0
0.96 | 098334019 | 0.98779040 | 0.99415976 | 0.99464503 | M,m,2,0
0.97 | 099338021 | 0.99516163 | 0.99788034 | 0.99803257 | M,m,2,0
0.98 | 099835394 | 0.99879987 | 0.99951932 | 0.99954799 | M,m,2,0
0.99 | 099987022 | 0.99990559 | 0.99996548 | 0.99996709 | M,m,2,0

Table5.3

Comparison of Results for example flow graph 2

p KKO KK2 mincost maxflow ranking
0.10 | 0.00100000 0.00100000 0.00100000 0.00100000 20mM
0.20 | 0.00800000 0.00800000 0.00800000 0.00800000 20mM
0.30 | 0.02700000 0.02700000 0.02700000 0.02700000 20mM
0.40 | 0.06400005 0.06400005 0.06400000 0.06400000 20,mM
0.50 | 0.12500286 0.12500286 0.12500000 0.12500000 20,mM
0.60 | 0.21607312 0.21607312 0.21600000 0.21600000 20,mM
0.70 | 0.34402590 0.34402590 0.34300000 0.34300000 20,mM
0.80 | 0.52064691 0.52064691 0.51200000 0.51200000 20,mM
0.90 | 0.76952555 0.76952555 0.72900000 0.72900000 20,mM
0.91 | 0.79856455 0.79856455 0.75357100 0.75357100 20,mM
0.92 | 0.82791235 0.82791235 0.77868800 0.77868800 20,mM
0.93 | 0.85724965 0.85724965 0.80435700 0.80435700 20,mM
094 | 0.88613626 0.88613626 0.83058400 0.83058400 20,mM
0.95 | 0.91397804 0.91397804 0.85737500 0.85737500 20,mM
0.96 | 0.93998630 0.93998630 0.89694743 0.89694743 20,mM
0.97 | 0.96312815 0.96312815 0.93704246 0.93704246 20,mM
0.98 | 0.98206596 0.98206596 0.96958794 0.96958794 20,mM
0.99 | 0.99508406 0.99508406 0.99173070 0.99173070 20,mM

Table5.4

79

Comparison of Resultsfor 7 x 7 Grid Graph

p KKO KK2 mincost maxflow ranking
0.10 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 20mM
0.20 | 0.00000010 | 0.00000021 | 0.00000001 | 0.00000001 | 2,00mM
0.30 | 0.00000586 | 0.00001190 | 0.00000106 | 0.00000106 | 2,0mM
0.40 | 0.00010478 | 0.00019722 | 0.00003355 | 0.00003355 | 2,00mM
0.50 | 0.00097650 | 0.00167823 | 0.00048822 | 0.00048822 | 2,00mM
0.60 | 0.00604660 | 0.00937065 | 0.00434883 | 0.00434883 | 2,00mM
0.70 | 0.02824752 | 0.03919538 | 0.02749099 | 0.02749099 | 2,00mM
0.80 | 0.10737420 | 0.13310964 | 0.13271659 | 0.13271659 | 2,mM,0
0.90 | 0.34883572 | 0.38717093 | 0.48509263 | 0.48509263 | mM,2,0
091 | 0.38977084 | 0.42793439 | 0.54096053 | 0.54096053 | mM,2,0
0.92 | 043517066 | 0.47262143 | 0.60015420 | 0.60015420 | mM,2,0
0.93 | 048566356 | 0.52174352 | 0.66196973 | 0.66196973 | mM,2,0
094 | 054212095 | 0.57602346 | 0.72534048 | 0.72534048 | mM,2,0
0.95 | 0.60577754 | 0.63650305 | 0.78873115 | 0.78873115 | mM,2,0
0.96 | 0.67828133 | 0.70458755 | 0.85000627 | 0.85000627 | mM,2,0
0.97 | 0.76129053 | 0.78168263 | 0.90626750 | 0.90626750 | mM,2,0
0.98 | 0.85438825 | 0.86731719 | 0.95365311 | 0.95365311 | mM,2,0
0.99 | 094776090 | 0.95255284 | 0.98709160 | 0.98709160 | mM,2,0

Table5.5

80

Comparison of Results for K ;

p KKO KK2 mincost maxflow ranking
0.10 | 0.10000000 | 0.14601438 | 0.1441089% | 0.14410896 | 2,mM,0
0.20 | 0.20000001 | 0.32980446 | 0.34770184 | 0.34770184 | mM,2,0
0.30 | 0.30000389 | 0.49681702 | 0.56317750 | 0.56317750 | mM,2,0
0.40 | 0.40019022 | 0.63577530 | 0.74907283 | 0.74907283 | mM,2,0
0.50 | 050295448 | 0.74954176 | 0.88134766 | 0.88134766 | mM,2,0
0.60 | 0.62038078 | 0.84350833 | 0.95705033 | 0.95705033 | mM,2,0
0.70 | 0.77125233 | 0.92196549 | 0.98964924 | 0.98964924 | mM,2,0
0.80 | 0.92592965 | 0.97820014 | 0.99879068 | 0.99879068 | mM,2,0
0.90 | 0.99568255 | 0.99884979 | 0.99997524 | 0.99997524 | mM,2,0
091 | 099738669 | 0.99930915 | 0.99998649 | 0.99998649 | mM,2,0
0.92 | 099853245 | 0.99961489 | 0.99999316 | 0.99999316 | mM,2,0
0.93 | 099925052 | 0.99980470 | 0.99999685 | 0.99999685 | mM,2,0
094 | 099966195 | 0.99991250 | 0.99999872 | 0.99999872 | mM,2,0
0.95 | 099987130 | 0.99996690 | 0.99999956 | 0.99999956 | mM,2,0
0.96 | 0.99996167 | 0.99999020 | 0.99999988 | 0.99999988 | mM,2,0
0.97 | 0.99999225 | 0.99999803 | 0.99999998 | 0.99999998 | mM,2,0
0.98 | 0.99999923 | 0.99999981 | 1.00000000 | 1.00000000 | mM,2,0
0.99 | 0.99999999 | 1.00000000 | 1.00000000 | 1.00000000 | mM,2,0

Table5.6

81

Comparison of Results for 10 Node Ladder

p KKO KK2 mincost maxflow ranking
0.10 | 0.00004095 | 0.00006878 | 0.00002000 | 0.00002000 | 2,0,mM
0.20 | 0.00107571 | 0.00221652 | 0.00063990 | 0.00063990 | 2,00mM
0.30 | 0.00673858 | 0.01417603 | 0.00485410 | 0.00485410 | 2,00mM
0.40 | 0.02360854 | 0.04627488 | 0.02037514 | 0.02037514 | 2,00mM
0.50 | 0.06055450 | 0.10651398 | 0.06152344 | 0.06152344 | 2,mM,0
0.60 | 0.12856546 | 0.20076268 | 0.14947338 | 0.14947338 | 2,mM,0
0.70 | 0.24281563 | 0.33537840 | 0.30789248 | 0.30789248 | 2,mM,0
0.80 | 043013975 | 0.52278441 | 054798582 | 0.54798582 | mM,2,0
0.90 | 0.72790115 | 0.78153877 | 0.83230156 | 0.83230156 | mM,2,0
091 | 0.76317275 | 0.81054030 | 0.85864817 | 0.85864817 | mM,2,0
0.92 | 0.79867108 | 0.83949462 | 0.88377459 | 0.88377459 | mM,2,0
0.93 | 0.83394430 | 0.86805340 | 0.90739443 | 0.90739443 | mM,2,0
0.94 | 0.86840650 | 0.89576728 | 0.92919293 | 0.92919293 | mM,2,0
0.95 | 090130893 | 0.92206400 | 0.94882494 | 0.94882494 | mM,2,0
0.96 | 093170596 | 0.94622259 | 0.96591276 | 0.96591276 | mM,2,0
0.97 | 095841513 | 0.96734305 | 0.98004392 | 0.98004392 | mM,2,0
0.98 | 097997039 | 0.98431075 | 0.99076879 | 0.99076879 | mM,2,0
0.99 | 099456744 | 0.99575488 | 0.99759802 | 0.99759802 | mM,2,0

Table5.7

82

The tables of this section compare the results obtained using the KK0O, KK2, min-

cost and maxflow methods. The results of the KK 1 method are not shown since KKO is

the base method and the KK2 method improves on the KK1 method for all but a few

cases. The networks used are depicted in the appendix. Thetitle of each tableindicates

which network was used to obtain the results and in cases where the source and target

nodes are not indicated on the figures of the appendix, they are also specified in thetitle

of thetable.

83

The column labelled ‘‘ranking’’ displays the order of the accuracy of the various
methods. The entries of the ranking column are separated by commas unless the results
are equal, in which case the entries are ssimply concatenated. The entries in the ranking
column are as follows:

m = mincost
M = maxflow
2=KK2
0=KKO

Most of the tables presented here are self-explanatory. However Tables 5.3 and
5.4 are of particular interest. Table 5.3 demonstrates how the maxflow method can, on
occasion, produce better estimates of reliability than the mincost or any of the other
methods. It isaso afine example of various properties of each of the methods used. In
this case the KK2 bound is the best bound for values of p < 0.70. The mincost method

gives the best bound for values of p between 0.80 and 0.90 and the maxflow method

produces the best results for p > 0.91.

Table 5.4 illustrates an example of how the subgraph counting bounds can occa-
sionally outperform the edge-digoint path bounds by producing bounds that are at |east
as good or better than those produced by the edge-digoint path methods over all values

of p tested.

Arpanet 1979 s=1S122 t=CCA

p KKO KK2 mincost maxflow ranking
0.10 | 0.00000100 | 0.00000100 | 0.00000100 | 0.00000100 mM20
0.20 | 0.00006400 | 0.00006400 | 0.00006410 | 0.00006402 | m,M,20
0.30 | 0.00072900 | 0.00072900 | 0.00073490 | 0.00073077 | m,M,20
0.40 | 0.00409600 | 0.00409600 | 0.00420043 | 0.00413778 | m,\M,20
0.50 | 0.01562500 | 0.01562500 | 0.01658630 | 0.01610659 | m,M,20
0.60 | 0.04665600 | 0.04665600 | 0.05242051 | 0.05014943 | m,M,20
0.70 | 0.11764900 | 0.11764900 | 0.14257323 | 0.13578609 | m,M,20
0.80 | 0.26214753 | 0.26214753 | 0.34137068 | 0.33330151 | m,M,20
0.90 | 053463655 | 0.53463655 | 0.73210029 | 0.71756913 | m,M,20
091 | 057349806 | 0.57349806 | 0.77714686 | 0.76331135 | m,M,20
0.92 | 061597818 | 0.61597818 | 0.82093818 | 0.80826410 | m,M,20
093 | 0.66287585 | 0.66287585 | 0.86241100 | 0.85135133 | m,M,20
094 | 0.71500166 | 0.71500166 | 0.90036703 | 0.89130686 | m,M,20
095 | 0.77276540 | 0.77276540 | 0.93353284 | 0.92672090 | m,M,20
0.96 | 0.83528779 | 0.83528779 | 0.96067268 | 0.95614715 | m,M,20
0.97 | 0.89887710 | 0.89887710 | 0.98078046 | 0.97830622 | m,M,20
0.98 | 095520674 | 0.95520674 | 0.99338764 | 0.99243873 | m,M,20
0.99 | 099141387 | 0.99141387 | 0.99903806 | 0.99888472 | m,M,20

Table5.8

84

Tables 5.5, 5.6 and 5.7 present results produced for afew special classes of graphs,

such as a grid graph, a complete graph and a ladder. Tables 5.8, 5.9, 5.10, 5.11, 5.12

and 5,13 are examples of fairly typical results obtained using these bounds on a network

of practical importance. The results were obtained by computing two-terminal bounds

for the 1979 representation of the Arpanet [4]. Each table heading specifies which node

isthe source and which is the target.

Arpanet 1979 s= STANFORD t = ABERDEEN

p KKO KK2 mincost maxflow ranking
0.10 0.00000001 | 0.00000001 | 0.00000001 | 0.00000001 2mMO0
0.20 0.00000256 | 0.00000347 | 0.00000307 | 0.00000307 | 2,mM,0
0.30 0.00006561 | 0.00009465 | 0.00008545 | 0.00008529 | 2,mM,0
0.40 0.00065536 | 0.00095924 | 0.00092404 | 0.00091733 | 2,mM,0
0.50 0.00390625 | 0.00560760 | 0.00597310 | 0.00585180 | m,M,2,0
0.60 0.01679616 | 0.02307804 | 0.02797578 | 0.02670920 | m,M,2,0
0.70 0.05764801 | 0.07447282 | 0.10443722 | 0.09584856 | m,M,2,0
0.80 0.16777680 | 0.20106191 | 0.31908334 | 0.28287449 | mM,2,0
0.90 0.43467225 | 047718075 | 0.73979754 | 0.67894513 | mM,2,0
0.91 0.47766090 | 0.51907979 | 0.78587890 | 0.72846185 | mM,2,0
0.92 0.52588736 | 0.56542971 | 0.82996950 | 0.77779115 | mM,2,0
0.93 0.58050051 | 0.61718777 | 0.87100699 | 0.82579083 | m,M,2,0
0.94 0.64267519 | 0.67532635 | 0.90786687 | 0.87104513 | mM,2,0
0.95 0.71307107 | 0.74035424 | 0.93943518 | 0.91188768 | mM,2,0
0.96 0.79066412 | 0.81128495 | 0.96472400 | 0.94649588 | mM,2,0
0.97 0.87073662 | 0.88386573 | 0.98304592 | 0.97311064 | mM,2,0
0.98 0.94245497 | 0.94845308 | 0.99426922 | 0.99046713 | m,M,2,0
0.99 0.98892312 | 0.99010267 | 0.99918169 | 0.99856806 | m,M,2,0

Table5.9

85

These tables indicate that of the methods considered the mincost method performs

better than the other bounds over awider range of success probabilities and over alarger

variety of graphs. They aso show that the KK2 method performs quite well when the

edges have a low probability of being operational. The KK2 method often outperforms

the mincost method for values of p closeto zero.

Arpanet 1979 s= MOFFET t=COLLINS

p KKO KK2 mincost maxflow ranking
0.10 | 0.00000100 | 0.00000111 | 0.00000110 | 0.00000100 | 2,m,MO
0.20 | 0.00006400 | 0.00007719 | 0.00007680 | 0.00006451 | 2,m,M,0
0.30 | 0.00072900 | 0.00093674 | 0.00094754 | 0.00074867 | m,2,M,0
0.40 | 0.00409600 | 0.00545653 | 0.00572769 | 0.00435707 | m,2,M,0
0.50 | 0.01562500 | 0.02099609 | 0.02331543 | 0.01754761 | m,2,M,0
0.60 | 0.04665600 | 0.06161578 | 0.07334353 | 0.05626351 | m,2,M,0
0.70 | 0.11764900 | 0.14910011 | 0.19031440 | 0.15325505 | mM,2,0
0.80 | 0.26214420 | 0.31214026 | 0.41688362 | 0.36117736 | mM,2,0
0.90 | 053181695 | 0.58431138 | 0.75555132 | 0.71297036 | mM,2,0
091 | 0.56860257 | 0.61912742 | 0.79117758 | 0.75279088 | m,M,2,0
0.92 | 0.60775584 | 0.65567540 | 0.82594853 | 0.79221896 | mM,2,0
0.93 | 0.64960268 | 0.69418497 | 0.85939650 | 0.83070040 | mM,2,0
094 | 0.69460404 | 0.73499619 | 0.89098228 | 0.86757278 | mM,2,0
0.95 | 0.74336700 | 0.77856975 | 0.92008710 | 0.90205007 | m,M,2,0
0.96 | 0.79653615 | 0.82539838 | 0.94600390 | 0.93320541 | mM,2,0
0.97 | 0.85431689 | 0.87561200 | 0.96792776 | 0.95995187 | mM,2,0
0.98 | 091501709 | 0.92776300 | 0.98494552 | 0.98102104 | mM,2,0
0.99 | 097117047 | 0.97558544 | 0.99602447 | 0.99493904 | mM,2,0

Table5.10

86

Arpanet 1979 s= MOFFET t=XEROX

p KKO KK2 mincost maxflow ranking
0.10 | 0.00010000 | 0.00011908 | 0.00011000 | 0.00001000 | 2,m,0M
0.20 | 0.00160000 | 0.00214075 | 0.00191949 | 0.00032000 | 2,m,0,M
0.30 | 0.00810000 | 0.01153930 | 0.01051032 | 0.00243000 | 2,m,0,M
0.40 | 0.02560000 | 0.03716448 | 0.03557786 | 0.01024017 | 2,m,0,M
0.50 | 0.06250000 | 0.08935547 | 0.09179688 | 0.03125739 | m,2,0,M
0.60 | 0.12960000 | 0.17780374 | 0.19728230 | 0.07791610 | m,2,0,M
0.70 | 0.24010000 | 0.31006267 | 0.36781639 | 0.17000532 | m,2,0,M
0.80 | 0.40960013 | 0.49084376 | 0.60306227 | 0.34281930 | m,2,0,M
0.90 | 0.65635063 | 0.72182394 | 0.85916951 | 0.65878473 | m,2,M,0
0.91 | 0.68623849 | 0.74777500 | 0.88185195 | 0.69969006 | m,2,M,0
092 | 0.71732685 | 0.77435307 | 0.90331312 | 0.74169361 | m,2,M,0
0.93 | 0.74979367 | 0.80166842 | 0.92332930 | 0.78430774 | m,2,M,0
094 | 0.78390513 | 0.82989708 | 0.94165818 | 0.82684598 | m,2,M,0
0.95 | 0.82002299 | 0.85928739 | 0.95803778 | 0.86836773 | mM,2,0
0.96 | 0.85853213 | 0.89010758 | 0.97218526 | 0.90761006 | m,M,2,0
0.97 | 0.89952274 | 0.92240978 | 0.98379578 | 0.94290397 | mM,2,0
0.98 | 094181797 | 0.95530143 | 0.99254119 | 097207187 | mM,2,0
0.99 | 0.98038956 | 0.98499663 | 0.99806881 | 0.99230265 | m,M,2,0

Table5.11

87

Arpanet 1979 s=1S122 t = NPS

p KKO KK2 mincost maxflow ranking
0.10 | 0.00010000 | 0.00011120 | 0.00011100 | 0.00001101 | 2,m,0,M
0.20 | 0.00160000 | 0.00195594 | 0.00198337 | 0.00038654 | m,2,0,M
0.30 | 0.00810000 | 0.01058329 | 0.01123165 | 0.00322263 | m,2,0,M
0.40 | 0.02560000 | 0.03463414 | 0.03952813 | 0.01494005 | m,2,0,M
0.50 | 0.06250000 | 0.08496094 | 0.10598755 | 0.05011177 | m,2,0,M
0.60 | 0.12960000 | 0.17234934 | 0.23473390 | 0.13555541 | m,2,M,0
0.70 | 0.24010000 | 0.30523889 | 0.44219216 | 0.30826250 | m,M,2,0
0.80 | 0.40960239 | 0.48814015 | 0.70711712 | 058715229 | mM,2,0
0.90 | 0.65825822 | 0.72268320 | 0.93401261 | 0.89071828 | mM,2,0
0.91 | 0.68955050 | 0.74984305 | 0.94894460 | 0.91393337 | mM,2,0
092 | 0.72288962 | 0.77825677 | 0.96193969 | 0.93467356 | m,M,2,0
093 | 0.75877355 | 0.80827833 | 0.97293449 | 0.95268808 | m,M,2,0
094 | 0.79770500 | 0.84026421 | 0.98190644 | 0.96777991 | mM,2,0
0.95 | 0.83991228 | 0.87436148 | 0.98888387 | 097982971 | mM,2,0
0.96 | 0.88474929 | 0.91005309 | 0.99395746 | 0.98882526 | mM,2,0
0.97 | 092966964 | 0.94538185 | 0.99729344 | 0.99489734 | mM,2,0
0.98 | 0.96900800 | 0.97603404 | 0.99914852 | 0.99836314 | mM,2,0
0.99 | 0.99408509 | 0.99544227 | 0.99988699 | 0.99977843 | mM,2,0

Table5.12

88

Arpanet 1979 s=15122 t = OTI

p KKO KK2 mincost maxflow ranking
0.10 | 0.00001000 | 0.00001009 | 0.00001001 | 0.00001001 | 2,mM,0
0.20 | 0.00032000 | 0.00033024 | 0.00032256 | 0.00032256 | 2,mM,0
0.30 | 0.00243000 | 0.00258309 | 0.00249546 | 0.00249545 | 2,mM,0
0.40 | 0.01024000 | 0.01122304 | 0.01088971 | 0.01088907 | 2,m,M,0
0.50 | 0.03125000 | 0.03515625 | 0.03506363 | 0.03504890 | 2,m,M,0
0.60 | 0.07776000 | 0.08895744 | 0.09367643 | 0.09350589 | mM,2,0
0.70 | 0.16807000 | 0.19277629 | 0.21975106 | 0.21863447 | mM,2,0
0.80 | 032768296 | 0.36962545 | 0.46016306 | 0.45622576 | mM,2,0
0.90 | 059317036 | 0.64049879 | 0.81479049 | 0.80998850 | m,M,2,0
091 | 0.62875304 | 0.67437779 | 0.84923144 | 0.84487549 | mM,2,0
092 | 0.66715159 | 0.71026682 | 0.88155914 | 0.87775820 | m,M,2,0
0.93 | 0.70900836 | 0.74862729 | 0.91110175 | 0.90794292 | mM,2,0
094 | 075497317 | 0.78991981 | 0.93717557 | 0.93471151 | mM,2,0
0.95 | 0.80535700 | 0.83432160 | 0.95913461 | 0.95737084 | mM,2,0
0.96 | 0.85938691 | 0.88112038 | 0.97644534 | 0.9753299 | mM,2,0
0.97 | 091393000 | 0.92768042 | 0.98879593 | 0.98821556 | m,M,2,0
0.98 | 096197252 | 0.96822085 | 0.99625145 | 0.99603965 | m,M,2,0
0.99 | 099272644 | 0.99394974 | 0.99947014 | 0.99943758 | mM,2,0

Table5.13

89

Chapter 6
Conclusions and Futur e Resear ch

6.1. Conclusions

This thesis investigates efficiently computable lower bounds for the two-terminal
reliability of a given network. The two-terminal reliability problem concerns methods
for measuring the reliability with which two specified communication centers of a net-
work can communicate. The measure of reliability used is the probabilistic connected-

ness, R, whichis simply the probability that the two specified centers can communicate.

A network is modelled using a probabilistic graph in which the communication
centers are represented by n nodes and the links between the communication centers are
represented by b edges. Nodes are assumed to be perfectly reliable and edge failures are
assumed to be statistically independent. The reliability is computed as a probability that

the specified source node s and the target node t can communicate.

Chapter 1 introduces the problem of network reliability and provides some of the
background necessary for the rest of the thesis. Chapter 2 discusses basic graph
theoretic definitions as well as definitions specific to the problem of computing reliabil-
ity.

In Chapter 3 the method used by Van Slyke and Frank [46] to develop a class of
bounds known as the Kruskal-Katona bounds is discussed. These bounds, which are
part of a larger family of bounds known as subgraph counting bounds, use a theorem

developed by Kruskal [30] and Katona [27] to obtain bounds on the coefficients of the

0

91

reliability polynomial.

Practical methods for improving these bounds are developed by counting pathsets
of size (I+1) and (I +2), where | is the number of edges in a shortest (s,t)-path. The
practical use and improvements obtained using this method are demonstrated by com-
paring the bounds obtained using the origina method KKO with those obtained using
exact values rather than estimates for the number of pathset of sizel +1, (KK1) and | +2,

(KK?2). Theresults show that the improvements can be quite substantial.

In Chapter 4 a lower bound is described that makes use of edge-digoint paths.
Various methods for finding edge-digoint paths are investigated and a comparison is
made of some of the corresponding bounds. One possible approach is a greedy method.
However, this approach does not guarantee that the maximum number of paths will be
found. In order to find the maximum number of edge-digoint paths, a maximum flow
algorithm is used to obtain the edges that make up a maximum flow. The bound
referred to as the maxflow bound is a bound that results from using the Ford and Fulker-
son maxflow labelling algorithm [18] as the underlying method of determining the edges
of a maximum flow and a greedy selection to determine the paths used to obtain the
bound. Since each new path is computed in an iterative fashion a potential bound is
computed after each iteration and the maximum of the potential bounds is used for the
actual bound. The minimum-cost maximum flow method minimizes the total number of
edges used while maximizing the number of edge-digoint paths. Since this method
minimizes the total number of edges used, it produces paths that are quite reliable. The

bound referred to as the mincost bound is computed in a manner similar to the maxflow

92

bound, except that the underlying method used to obtain the edges of the flow is a

minimum-cost maximum flow algorithm.

During preliminary tests the bounds obtained using the greedy method were not as
good as bounds obtained using the maxflow and mincost bounds, for graphs in which it
could not find the maximum number of edge-digoint paths. As a result the greedy
method is not discussed in the comparison of the various results. The mincost and max-
flow bounds are compared and the mincost is shown to be the better of the two bounds

for avast mgjority of graphs although the maxflow bound is better in some instances.

In Chapter 5 the subgraph counting bounds are compared with the edge-digoint
path bounds. One advantage of the edge-digoint path bounds is that they are far smpler
to compute than the subgraph counting bounds. The edge-digoint path bounds also
have the added advantage of being applicable to networks for which failure probabilities
of links are known to be different, while the subgraph counting bounds are only applica-

bleif the edges have equal failure probability.

The results obtained using each bound show that the mincost bound produces the
best bound for alarger variety of graphs and a wider range of success probabilities than
the other methods. Although, the mincost bound is occasionally outperformed by the

KK2 bound for small values of p.

Since no one bound produces the best result for al networks, and each of the
methods does in some instance produce the best bound, it is desirable to be able to com-
bine the bounds to obtain the best possible bound. One possible method involves the

calculation of all of the bounds and keeping track of the best bound for each value of p.

93

A method developed recently by Colbourn and Harms [11] uses linear program-
ming to obtain bounds that are tighter than the best of the existing all-terminal bounds.
This method uses the best of the al-terminal bounds as objective functions to a linear
program to produce a uniform bound that is at least as good as the best of al the incor-
porated bounds and occasiondly better. This linear programming technique can be
applied in the two-termina case by incorporating all of these bounds into a linear pro-
gram to obtain a bound that is at least as good as the best basic bound for that particular

network, and better in some cases.

The linear programming bound has great potential for improvement since any new
bound can also be incorporated to obtain a better bound. As well the linear program-
ming bound will also profit from any improvements that are made to the existing basic
bounds. Possible methods for improving the existing bounds are a source of problems

to be considered for future research.

6.2. FutureResearch

Techniques have been developed here for improving the basic Kruskal-Katona
bounds by computing the number of pathsets of size (I +k) for fixed values of k. The
method used to compute pathsets of size (1 +2) is relatively complex since it involves
allowing for overcounting that occurs. It is apparent that this technique can be applied
to obtain an exact count of the pathsets of size (I +3). However, the amount of over-
counting that occurs increases dramatically as k increases. Therefore, in order to make
the computation practical for large networks, clever counting techniques are required for

counting pathsets of size (I +k). Since obtaining exact counts for any of the unknown

94

coefficients will improve the bound, an interesting area of research would be complexity

results concerning the unknown coefficients of the reliability polynomial.

Another possibility for improving the subgraph counting bounds is to find better
approximations of the number of minimum cardinality (s,t)-cuts so that a better estimate
of F¢ can be obtained. In general better approximations for (s,t)-cutsets of size (c+k)
might be obtained to improve the bound from the lower terms of the reliability polyno-
mial. Theseresults appear to be most useful for improving the upper bounds. However,
if the new estimated values are better than those estimated using lower pseudopowers

the lower bound could also be improved.

In light of the complexity result reported by Itai, Perl and Shiloach [23] it appears
that the problem of finding the most reliable combination of paths and path lengths for
each value of p might be computationally intractable. However, a complexity result
would be valuable in thisarea of research. Alternatively, amethod of computing a com-
bination of paths and path lengths which improves on the mincost method would be of
substantial interest. The Edmonds and Karp maxflow method [14] might be of some
interest for producing sets of edge-digoint paths that produce good bounds. As well
other variations of flow techniques might prove fruitful, especialy if used in conjunc-

tion with the linear programming technique that combines all of the bounds.

Another avenue of possible research is decomposition methods that allow a graph
to be decomposed into smaller subgraphs. The reliability of the small subgraphs could
be computed and then combined to form a bound on the reliability of the entire graph.

There is a greater potentia for using this technique in conjunction with the edge-digoint

95

path bounds than with the subgraph counting bounds due to the property of statistical

independence of the edge-digoint paths.

Naturally the lower bounds would be complemented by good techniques for com-
puting upper bounds. As mentioned earlier the Kruska-Katona methods do produce
upper and lower bounds. It isimportant to note that the methods suggested for improv-
ing the Kruskal-Katona lower bounds also improve the upper bounds. As a result any
improvements to the Kruskal-Katona lower bounds actualy serve also to tighten the

upper bounds.

As well, different techniques for computing upper bounds should be investigated.
Any bound that makes use of different information than the subgraph counting bound,
but produces a bound which is good, will certainly be useful, especially when combined

with other bounds by using the linear programming technique.

Not much work has been done on computing the reliability of computer networks
for which the assumptions of statistical independence and perfectly reliable nodes are
relaxed. Some promising work has been done by Zemel [49] and Assous [2] using the
assumption that edge failures are not statistically independent. However, the dependence
of edge failures has only been extended to pairs of edges. If the assumption of perfectly
reliable nodes is relaxed, a bound can be obtained on the reliability of a network by not-
ing that node-digoint paths are also edge-digoint. A node would simply be another
component in the path. If node failures are assumed to be statistically independent
node-digoint paths can be used in much the same way edge-digoint paths are used to

obtain abound.

96

Any developments in these areas of research could dramatically improve the
bounds developed here. Some of the problems mentioned would surely have practical
uses outside the realm of network reliability and might be interesting results in them-
selves. Moreover, any positive results in any of these areas would nicely complement

thework donein thisthesis.

[1]

[2]

[3]

[4]

[S]

[6]

[7]

97

References

A.V. Aho, JE. Hopcroft, and J.D. Ullman, Data Structures and Algorithms,

Addison-Wesley Publishing Company, Reading, Massachusetts, 1983.

J.Y. Assous, ‘‘Bounds for Terminal Reliability’’, Temple University, Philadelphia,

Pennsylvania, preprint, 1984.

M.O. Bal and J.S. Provan, ‘*Bounds on the Reliability Polynomia for Shellable
Independence Systems’, SAM Journal on Algebraic and Discrete Methods, Vol.

3, pp. 166-181, 1982.

M.O. Ball and J.S. Provan, *‘Calculating Bounds on Reachability and Connected-

nessin Stochastic Networks'’, Networks, Vol. 13, pp. 253-278, 1983.

R.E. Bixby, ‘* The Minimum Number of Edges and Vertices in a Graph with Edge

Connectivity N and M N-Bonds'’, Networks, Vol. 5, pp. 253-298, 1975.

JA. Bondy and U.S.R. Murty, Graph Theory with Applications, MacMillan

Press Ltd., Great Britain, 1976.

R.L. Brooks, C.A.B. Smith, A.H. Stone, and W.T. Tutte, ‘‘ The Dissection of Rec-

tangles into Squares’’, Duke Mathematical Journal, Vol. 7, pp. 312 - 340, 1940.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

98

R.G. Busacker and P.J. Gowan, ‘‘A Procedure for Determining a Family of
Minimal-Cost Network Flow Patterns’, ORO Technical Report 15, Operations

Research Office, John Hopkins University, Baltimore, Maryland, 1961.

J.A. Buzacott, ‘*A Recursive Algorithm for Finding Reliability Measures Related

to the Connection of Nodesin aGraph'’, Networks, Vol. 10, pp. 311 - 327, 1980.

M. Carey and C. Hendrickson, ‘‘Bounds on Expected Performance of Networks

with Links Subject to Failure’’, Networks, Vol. 14, pp. 439 - 456, 1984.

C.J. Colbourn and D.D. Harms, ‘‘Bounding All-Terminal Reliability in Computer
Networks’, Technical Report E-123, Computer Communications Network Group,

University of Waterloo, Waterloo, Ontario, 1985.

E.W. Dijkstra, *‘A Note on Two Problems in Connexion with Graphs'’, Numer-

ische Mathematik, Vol. 1, pp. 269-271, 1959.

J. Edmonds, ‘‘Matroid Partitions’, M athematics of the Decision Sciences: Part
I, ed. G.B. Dantzig and A.F. Veinott Jr., American Mathematical Society, Provi-

dence, Rhode Iland, pp. 335 - 346, 1968.

J. Edmonds and R.M. Karp, ‘‘ Theoretical Improvements in Algorithmic Efficiency
for Network Flow Problems”’, Journal of the ACM, Vol. 19, No. 2, pp. 248 - 264,

April, 1972.

99

[15] E. El Mdlah and C.J. Colbourn, ‘‘Reliability of A-Y Reducible Networks’,
Proceedings of the 16th International Southeastern Conference on Combina-

torics, Graph Theory and Computing, to appear, 1985.

[16] JD. Esary and F. Proschan, ‘*‘A Reliability Bound for Systems of Maintained
Interdependent Components'’, Journal of the American Statistical Association,

Vol. 65, pp. 329 - 338, 1970.

[17] S. Evenand R.E. Tarjan, ** Network Flow and Testing Graph Connectivity’’, SAM

Journal on Computing, Vol. 4, pp. 507-518, 1975.

[18] L.R. Ford Jr. and D.R. Fulkerson, Flows in Networks, Princeton Univ. Press,

Princeton, New Jersey, 1962.

[19] H. Frank and W. Chou, ‘‘Network Properties of the ARPA Computer Network’’,

Networks, Vol. 4, pp. 213 - 239, 1974.

[20] H. Frank and I.T. Frisch, ‘**Analysis and Design of Survivable Networks'’, IEEE

Transactions on Communications, Vol. COM-18, pp. 501 - 519, 1970.

[21] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.

[22] D.D. Harms, ‘‘An Investigation into Bounds on Network Reiability’’, M.Sc.
thesis, Department of Computational Science, University of Saskatchewan, Saska-

toon, Saskatchewan, 1983.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

100

A. Itai, Y. Perl, and Y. Shiloach, ** The Complexity of Finding Maximum Digoint

Paths with Length Constraints’, Networks, Vol. 12, pp. 277 - 286, 1982.

B.D. Jensen, ‘A Technique for Predicting the Reliability of Large Complex Sys-

tems’, Bell Laboratories Memorandum, Holmdel, New Jersey, Oct. 25, 1972.

W.S. Jewdl, ““‘Optima Flow Through Networks'’, Interim Technica Report No.

8, Massachusetts I nstitute of Technology, Cambridge, Massachusetts, 1958.

R.M. Karp and M.G. Luby, ‘*Monte Carlo Algorithms for Enumeration and Relia-
bility Problems’, Twenty-Fourth Annual Symposium on the Foundations of

Computer Science, Tucson, Arizona, pp. 56 - 64, Nov, 1983.

G. Katona, ‘*A Theorem on Finite Sets’, Theory of Graphs (Proceedings of
Tihany Colloquium, September, 1966), ed. P. Erdbs and G. Katona, Academic

Press, New York, New Y ork, pp. 187-207, 1966.

AK. Kd’mans, ‘‘Connectivity of Probabilistic Networks’, Automation and

Remote Control, No. 3, pp. 98 - 116, 1967.

G. Kirchhoff, ‘*Ueber die Auflésung der Gleichungen, auf welche man bei der
Untersuchung der linearen Vertheillung Galvanischer Strbme geflihrt wird.”’,
Annalen der Physik und Chemie, Vol. 72, pp. 497-508, 1847. [English trandation,

IRE Transactions on Circuit Theory, CT-5, pp. 4-8, 1958. |

101

[30] J.B. Kruskal, ** The Number of Simplices in a Complex’’, Mathematical Optimi-
zation Techniques, ed. R. Bellman, University of California Press, Berkeley, Cali-

fornia, pp. 251-278, 1963.

[31] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,

Rinehart and Winston, San Francisco, California, 1976.

[32] C.Y. Lee, ‘*Analysis of Switching Networks’, Bell Systems Technical Journal,

Vol. 34, pp. 1287 - 1315, 1955.

[33] M.V. Lomonosov and V.P. Polesskii, ‘‘Lower Bound of Network Reliability’’,

Problems of Information Transmission, Vol. 8, pp. 118 - 123, 1972.

[34] M. Messinger and M. Shooman, ** Reliability Approximations for Complex Struc-
tures”’, IEEE Proceedings of the Annual Symposium on Reliability, pp. 292 - 301,

Washington, D.C., 1967.

[35] E.F. Moore and C.E. Shannon, ‘‘Reliable Circuits Using Less Reliable Relays'”’,

Journal of the Franklin Ingtitute, Vol. 262, pp. 191 - 208, 281 - 297, 1956.

[36] C. St. JA. Nash-Williams, ‘*Edge-Digoint Spanning Trees of Finite Graphs’,

Journal of the London Mathematical Society, Vol. 36, pp. 445-450, 1961.

[37] V.P. Polesskii, ‘* A Method of Constructing a Structurally Reliable Communication

Network’’, Discrete Automata and Communication Networks [in Russian],

[38]

[39]

[40]

[41]

[42]

[43]

102

Moscow, pp. 13-19, 1970.

V.P. Polesskii, ‘A Lower Boundary for the Reliability of Information Networks'’,

Problems of Information Transmission, Vol. 7, pp. 165-171, 1971.

J.S. Provan, ‘* The Complexity of Reliability Computation on Planar and Acyclic
Networks’, Technical Report No. UNC/ORSA/TR-83/12, University of North

Carolinaat Chapel Hill, November, 1983.

J.S. Provan and M.O. Ball, ** The Complexity of Counting Cuts and of Computing
the Probability that a Graph is Connected’’, S AM Journal on Computing, Vol. 12,

No. 4, pp. 777-788, November, 1983.

A. Satyanarayana and K. Wood, ‘‘Polygon-to-Chain Reductions and Network
Reliability’’, Technical Report ORC 82-4, Operations Research Center, University

of California, Berkeley, California, March, 1982.

A.W. Shogun, ‘‘ Sequential Bounding of the Reliability of a Stochastic Network’’,

Operations Research, Vol. 34, No. 6, pp. 1027 - 1044, Nov. - Dec., 1976.

R. Tarjan, **Depth First Search and Linear Graph Algorithms’, SSAM Journal on

Computing, Vol. 1, No. 2, pp. 146 - 160, 1972.

[44] W.T. Tutte, ‘*On the Problem of Decomposing a Graph into N Connected Fac-

tors'’, Journal of the London Mathematical Society, Vol. 36, pp. 221-230, 1961.

103
[45] L.G. Vaiant, ‘** The Complexity of Enumeration and Reliability Problems”’, SSAM

Journal on Computing, Vol. 8, pp. 410 - 421, 1979.

[46] R. Van Slyke and H. Frank, ‘‘Network Reliability Analysis: Part I'”, Networks,

Vol. 1, pp. 279-290, 1972.

[47] JA. Wad and C.J. Colbourn, ‘“‘Steiner Trees in Probabilistic Networks'’,

Microelectronics and Reliability, Vol. 23, No. 5, pp. 837 - 840, 1983.

[48] R.S. Wilkov, **Analysis and Design of Reliable Computer Networks'’, IEEE Tran-

sactions on Communications, Vol. COM-20, pp. 660 - 678, 1972.

[49] E. Zemd, *‘Polynomia Algorithms for Estimating Network Reiability’’, Net-

works, Vol. 12, pp. 439 - 452, 1982.

O
o)

Appendix

104

()
N

()

Y)
NN

O

()
N

N>

O—0-0

Example Flow Graph 1

105

O
O
O
O
O
O

C

A A N WA WA
NN N N

Example Flow Graph 2

S a5 () a5

NN N

10 Node L adder

106

N

N

()

()

N

a5 a5 () a5 ()
N

N

()

()
_/ _/ N> N> N

()

A A WA W
NN NN
A A N W
NN N N 4
A A WA W
NN N N
A A A WA WA
NN N N
A A WA W
NN NN
A A WA W
NN N N
A A N W
NN N N

7x7Grid Graph

107

Complete Graph on 5 Vertices

108

Complete Graph on 7 Vertices

109

1979 Ar panet

110

()

(vi)

