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Abstract

Rate adaptation algorithms (RAAs) in 802.11 networks can
have a significant impact on network throughput. In order to
attempt to maximize throughput, these algorithms dynamically
adapt to inferred changes in the channel being used. Evaluating
and comparing rate adaptation algorithms is extremely chal-
lenging due to the variability of channel conditions. Recent
work on developing and evaluating new RAAs has used traces
to increase the realism of simulators.

We propose a new framework for the trace-driven evalua-
tion of RAAs (called T-RATE) in which we collect and process
traces in environments where interference is caused by WiFi
and non-WiFi devices. T-RATE enables a more comprehensive
evaluation of RAAs in environments that are representative
of those in which 802.11 devices are actually used. A key
to our approach is that we capture, in traces, information
that is relevant to RAAs regarding how channel conditions
affect channel access and channel error rates. Our approach
minimizes the use of wireless channel models and achieves
highly realistic results under a wider variety of scenarios than
previously possible. Our evaluation of T-RATE demonstrates it
can be used to collect and process traces to accurately evaluate
a variety of RAAs under more diverse and representative
channel conditions than previously possible.

I. INTRODUCTION

The throughput of a device using a WiFi network depends
on its rate adaptation algorithm’s ability to successfully infer
the quality of the communication channel being used and
to select the rate that maximizes the device’s bandwidth.
Experimental evaluation and comparison of RAAs is extremely
challenging due to the variability of channel conditions. Non-
WiFi devices, such as microwave ovens, cordless phones,
and other devices operating in the same spectrum make the
situation worse. On the other hand, the complexity of wireless
channels makes the accurate simulation or emulation of RAAs
extremely difficult (and possibly infeasible).

As a result, recent evaluations of RAAs use traces to
increase the realism of simulators and emulators [20] [13]
[22] [11] [9]. Traces are collected and used to capture some
aspects of wireless channel conditions, such as frame loss
due to path-loss and fading, in order to avoid having to
simulating/emulating them. Because the current approaches
to collecting traces are able to capture only some aspects
of wireless channel conditions, the environments under which
this approach can be used is currently limited. For instance,
the most recent approach [20] is limited to interference-free
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environments for trace collection, making it difficult to use in
some important scenarios that are representative of those in
which devices are likely to be used.

Throughput is the main performance metric used to eval-
uate 802.11 RAAs. It can be affected by the sender’s ability
to access the channel and the error rate observed when using
the channel. Figure 1 depicts the environmental factors that
affect the throughput. The properties of a channel that have
been used in previous trace-driven evaluations of RAAs are
represented by the shaded area. In contrast, our work is driven
by the insight that data regarding the important properties of
a wireless channel that affect the throughput and comparison
of 802.11 RAAs can be captured in traces collected during
real experiments. In other words, we capture and utilize all of
the information regarding the factors shown in Figure 1. As
a result, we are able to simulate the operation of the 802.11
MAC layer (as it relates to RAAs) to precisely mimic the
properties of the wireless channel that affect throughput. The
result is a framework for the fair and accurate comparison of
RAAs using scenarios that are more representative of actual
use conditions than previously possible. The contributions of
this paper are:

e  We collect, in traces, environmental factors that affect
the throughput of RAAs. This includes information
pertaining to Channel Access (carrier sensing and
virtual carrier sensing) and Channel Error Rate (signal
propagation, WiFi and non-WiFi interference).

e  We have implemented a trace-processing engine that
relies on relatively simple and yet highly accurate
channel models. This enables the fair comparison and
evaluation of multiple rate adaptation algorithms using
identical channel conditions.

e  We evaluate the efficacy of a trace-driven approach for
comparing RAAs in 802.11 networks and show that it
can produce highly accurate results.

Our prototype implementation of T-RATE uses 2.4 GHz,
802.11g networks. Our goal is to first determine if T-RATE
will work for 802.11g networks before studying more complex
802.11n networks.

II. RELATED WORK

To our knowledge, the first proposal for a trace-based eval-
uation of a wireless network appeared in 1997 [12]. Delay and
loss statistics, computed from a trace of wireless transmissions,
are used to train a wireless channel model. This approach was
applied to a WaveLAN network with only a single transmission
rate. Unfortunately, modern networks such as IEEE 802.11



support multiple transmission rates which makes collecting
traces significantly more challenging (see Section III-A).
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Fig. 1: Factors affecting throughput

More recently, traces have been used to evaluate RAAs by
combining results obtained from experiments with a simulator
or an emulator in an attempt to increase the realism of their
channel models. Table I illustrates (with a check mark) the
information collected in a trace by those papers that have
used traces to compare RAAs. Note that in Table I, we
compare the performance evaluation methodologies used in
the referenced papers and not the RAAs. In some previous
work [22] [9], some portions of the physical models that
are commonly used in simulators or emulators are replaced
with the traces collected in real experiments. In these cases
a trace containing SNR (Signal-to-Noise Ratio) [22] or CSI
(Channel State Information) [6] values obtained from an actual
experiment is used to improve the realism of a simulator (SNR-
to-SIM) and an emulator (SNR-to-EMU) [9]. In SNR-to-SIM
and SNR-to-EMU, only SNR/CSI information is collected in
a trace and frame loss is simulated or emulated from this
data. Unfortunately, the SNR often inaccurately predicts the
fate of a packet [6] [4]. Although the CSI provides a more
accurate measure of channel quality than the SNR [6], both
are oblivious to WiFi and non-WiFi interference and do not
reflect the level of interference experienced at the receiver.
Therefore, accurate frame loss estimation using SNR/CSI can
be very challenging in presence of interference.

Another approach that utilizes traces replaces the channel
propagation model in the NS-3 simulator with an actual trace
which specifies the fate of a frame (i.e., frame loss) at any
given time (FL-to-SIM) [20] [13] [19]. This approach is
more realistic than SNR-to-SIM and SNR-to-EMU approaches,
because it directly measures frame loss in contrast with esti-
mating frame loss from SNR. In this case, traces are collected
in ideal interference-free environments and packet loss due
to path loss and fading is stored in the traces. Interference
free environments are required by this approach because the
trace collection mechanism is unable to completely capture the
effect of interference. An additional problem is that wireless
channels are quite complex and cannot be modeled accurately
using only path loss information. For instance, the channel
error rate can also be affected by WiFi and non-WiFi interfer-
ence. In contrast, T-RATE does not require an interference-
free environment for trace collection and can be used to
collect traces to be used to evaluate RAAs using scenarios
that are more representative of environments in which they
will actually be used (see Section III-A).

As shown in Table I, previous work focuses only on
capturing channel propagation properties in a trace (the shaded

area in Figure 1). Ignoring any environmental factor during
trace collection introduces inaccuracies in the results obtained
using these traces. Therefore, the environmental factors that
affect throughput must be captured to accurately replicate
real environments. None of the work shown in Table I is
able to collect traces in uncontrolled environments, instead
they simulate the effect of environment factors. In contrast,
T-RATE captures these factors intrinsically in traces (CT!-to-
SIM) collected during actual experiments, thus simplifying and
minimizing the use of wireless channel models.

Previous work ignores, simulates or emulates carrier sens-
ing and virtual carrier sensing. Unfortunately, modeling carrier
sensing is as complex as modeling frame loss because it
involves modeling signal propagation for interfering sources.
It is extremely difficult to estimate the effect of a WiFi or
non-WiFi source on the channel observed at the sender, since
signal propagation from all other sources should be modeled
and requires complex wireless channel models. As a result,
simple channel models that suffer from a lack of realism are
used. Similarly, previous work ignores or simulates frame loss
due to interference. WiFi interference (the hidden terminal
problem) is simulated using simple and unrealistic models. For
instance, it is assumed that any overlap of two frames results
in the loss of both frames [20]. However, in reality, one of
these frame may be received correctly if the signal strength of
these frames differ considerably.

To our knowledge, none of these method are able to
handle non-WiFi interference®. This is another reason why the
environments in which these techniques can be used is re-
stricted. Recent studies show that non-WiFi devices are widely
used, including public places, and in enterprise and residential
environments [3] [14]. A surprisingly high level of activity for
non-WiFi devices is reported even at midnight [14]. Hence,
a trace collection methodology that can be used to evaluate
RAAs in such environments needs to capture the effect of non-
WiFi devices. By intrinsically capturing environmental factors
that affect throughput, shown in Figure 1, we achieve two
important goals: 1) We minimize the use of wireless channel
models that reduce realism. 2) Our framework can be used in
a wider variety of environments than previously possible.

III. TRACE-DRIVEN FRAMEWORK

At a high-level, the goal of our approach is to enable
traces to be collected with relative ease, under a variety
of channel conditions. To evaluate the performance of rate
adaptation algorithms, each trace is processed using the al-
gorithms being studied. Because each algorithm uses exactly
the same trace and each trace captures the channel conditions
relevant to rate adaptation algorithms, this enables the fair,
realistic, and repeatable comparison of algorithms. Figure 2
provides an overview of our proposed framework. First, in
the trace collection phase, a trace of 802.11 transmissions are
collected to capture different environmental factors that affect
the throughput. Only a single frame with certain properties
(e.g., 54 Mbps transmission rate) can be collected at time 7T'.
However, when we later simulate a rate adaptation algorithm,

'Compete Trace.

2Emulators can incorporate non-WiFi interference for some devices such
as cordless phones that can be physically attached to the emulator but they
cannot handle many other types of devices, microwaves for instance.



Methodology gfégzz;’gzn) Eﬁ‘;‘;elr‘;ze) SNR (V) CS (WiFi) | CS (non-WiFi)
SNR-to-SIM [22] [6] X Simulated X N/A v/ Data frames X Simulated X N/A
SNR-to-EMU [9] X Emulated X Emulated v/ Data frames X Emulated X Emulated
FL-to-SIM [20] [19] [16] v Receiver-based | X Sim. WiFi interference X N/A X Simulated X N/A
T-RATE: CT-to-SIM v/ Sender-based v WiFi & non-WiFi v Data and ACK v v

TABLE I: Comparison of trace-based performance evaluation methodologies — (V) CS: (Virtual) Carrier Sensing
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Fig. 2: Overview of our Trace-driven Framework

a frame with different properties (e.g., 48 Mbps transmission
rate) might be required at time 7. This frame is missing in
the collected trace. Therefore, in the trace preparation phase,
we estimate missing frames using collected frames and store
them in complete traces. Finally, our trace-processing engine
simulates the operation of the 802.11 MAC layer, UDP, and
RAAs using the complete trace to report performance results.

A. Trace Collection

The goal of the trace-collection phase is to obtain a trace
of an actual experiment whose 802.11 frame transmissions can
be used to generate a representative trace for use by the trace-
processing engine to evaluate RAAs. During this phase, an
802.11 network, consisting of an access point and a client
(sender) is built. The sender saturates the link by transmitting
as many frames as possible to the access point. We now
describe the techniques we have developed to capture the
environmental factors shown in Figure 1.

1) Collecting channel access data: All 802.11 devices
perform carrier sensing before the transmission of a frame.
The delay caused by a busy channel lowers the effective
throughput. We use two mechanisms to detect and capture the
effect of WiFi and non-WiFi interference on channel access.

WiFi sources: We use TCPDUMP [18] to capture the
traffic generated from a sending device in addition to traffic
that does not belong to our experiment (third party traffic).
Third party traffic is used by the trace-processing engine to
mimic the delay caused by detecting WiFi transmissions during
carrier sensing.

Non-WiFi sources:®> Capturing the effect of undecodable
signals from non-WiFi devices detected during carrier sensing
(energy detection) is more challenging. We exploit some
information reported by widely used Atheros-based chipsets
to calculate and capture the delay caused by energy detection
on the channel. This information has been previously used
for localization [5] and channel utilization estimation [1].
To our knowledge, we are the first to use this information
to estimate the amount of time a channel is busy due to
non-WiFi interference. The Atheros-based chipsets can report

3In addition to non-WiFi devices such as cordless phones and microwaves,
we treat WiFi devices operating on overlapping channels as non-WiFi inter-
ferers, because like non-WiFi sources their signal can not be decoded.

Cycle Counter Information (CCI) that indicates the time the
chip spends transmitting and receiving data. This information
is critical to obtaining accurate timing for packet transmission
so we now describe the details of how it is obtained and used.

We have modified the Ath9k driver to report CCI informa-
tion at the end of every transmission (i.e., when an ACK is
received or is timed out). The chip uses a 40 MHz clock and in
addition to the total number of cycles between transmissions
(cycles), it reports the number of cycles spent receiving a
frame (rx_frame), spent transmitting a frame (tx_frame), and
the number of cycles during which the channel was busy
(rx_busy).

In an interference-free environment, we expect to have:
rx_busy = tx_frame + rx_frame. However, when the sender de-
tects undecodable energy on the channel during carrier sensing
(e.g., non-WiFi interference), we have: rx_busy > tx_frame
+ rx_frame, because in addition to the transmission of the
frame and possibly receiving the ACK, the channel was busy
due to non-WiFi interference. Moreover, non-WiFi interference
causes additional delays, since the channel needs to remain idle
for the duration of a DCF inter frame space (DIFS) before
the back-off count down can be resumed. In general, data
transmission is delayed by one DIFS and possibly a portion of
a back-off time slot for each detected burst of energy. Figure 3
shows two different examples where the same amount of busy
time can result in significantly different delays before being
able to transmit data. The example in the top line shows data
transmission being delayed by three DIFS because two bursts
of energy were detected. While the bottom line shows that
despite energy being detected for the same amount of time,
the packet is delayed by only two DIFS because only one
burst of energy was detected.

D Back-off time slot

Fig. 3: Interference and channel sensing

Energy bursts may also occur during DIFS which can lead
to loosing partial DIFS. Therefore, we used the following
formula to calculate the total delay caused by interference
detected at sender:

cycles — (tx_frame + ra_frame)

Delay =
“ay Clock Frequency

—(DIFS + BO x BO_time_slot + SIFS)

where BO is the back-off value used (i.e., the number of back-
off time slots), and BO_time_slot is the time for each back-
off. The first line of the formula (the fraction) calculates the



total time not sending or receiving WiFi frames. The second
line deducts the standard wait times defined by the 802.11
standard (even when there is no interference). As a result,
Delay will represent any additional delay caused by non-WiFi
interference. Because BO is chosen by the physical layer and
is not reported to other layers, it is not possible to determine
the value used. Therefore, we use an average back-off value
of 7.5 in this equation, because values are chosen uniformly
between 0 and 15. During the evaluation of our prototype
implementation, we found that it was necessary to include CCI
along with this heuristic to accurately capture the effect of non-
WiFi interference on the sender.

2) Collecting channel error rate data: A key challenge
of trace collection is that in order to later process a trace,
we would like to be able to determine if a packet could be
successfully received if it was sent at any available rate r at
time ¢ for all R available rates. However, while collecting a
trace, we can send a packet using only one of the R supported
rates, at any given time ¢. Unfortunately, sending packets from
multiple devices on the same sender would causes packet
collisions at the receiver.

Vutukuru et al. [20] propose sampling each of the available
R rates in a strict round-robin fashion to get a sample from
each rate r in a short time window W. The trace file records
whether or not the frame transmission was successful for each
sampled rate. Later during simulation the fate of the single
packet sampled at rate r in a particular window W, is used
to determine the fate of all packets that could be sent at
rate r in the same time window W;. One disadvantage of
this approach is that during simulation it assumes the frame
error rate is either 0% or 100% for all sampling windows. In
some cases, tens of frames can be transmitted during a time
window. Unfortunately, some rate adaptation algorithms are
highly sensitive to the consecutive failure or success of frames
and may react unrealistically if evaluated using this technique.
Therefore, we use a larger time window (i.e., 100 ms) to
obtain several samples for each rate. We then compute the
expected error rate for each rate during each time window. We
choose a time window that is smaller than the expected channel
coherence time. The channel coherence time is the time over
which the channel conditions remain relatively constant and the
channel can be assumed to be stationary. For 802.11 networks
operating in the 2.4 GHz spectrum, where mobility is limited
to a walking pace®, studies show that the channel coherence
time is between 100 and 200 ms [15], [17]. Sadeghi et al. [15]
report that the channel coherence time reduces to 24 ms, 12 ms,
and 6 ms for speeds of 18, 36, and 72 km/hr, respectively. In
our prototype implementation, we use a 100 ms time window
(50 ms before and after the point in time being considered).
Hence, we require the coherence time to be above 50 ms which
is the case when the speed of a mobile device is limited to
walking speed. Our evaluations show that the design choice
of 100 ms for the sampling window produces accurate results
for experiments with mobility speeds up to walking speed.
Studying higher speeds such as those in vehicular networks
are left for future work.

We use a different technique to scan rates than used previ-

4The channel coherence time is inversely proportional to frequency, there-
fore the channel coherence time of networks operating in the 5 GHz is lower
(about 100 ms).

ously [20]. During the course of our investigation, we observed
that traces collected using a strict round-robin strategy were
not as realistic as desired. We observed that the length of each
round can be synchronized with the duty cycle’ of some non-
WiFi interferers such as frequency-hopping spread spectrum
(FHSS) devices like cordless phones. These devices transmit
signals periodically at a particular frequency. Hence, some
frames sent at a particular rate can experience interference
with higher probability than others. This bias in error rate for
some rates affects the realism of the results obtained from
traces collected using a strict round-robin strategy. In some
experiments, we observed that a strict round-robin strategy
measures error rates with a difference as large as 21% when
compared with base measurements. The base measurements
were obtained using actual experiments that use a constant
rate. By comparison, our pseudo-random approach obtained
differences of less than 4.8%.

To our knowledge, a novel technique we use is the addi-
tion of scanning RTS/CTS protected frames. Previous work
[20] performs sampling in interference free environments,
and therefore ignores RTS/CTS. However, our work targets
environments where WiFi interference may exist. In this case,
the frame error rate depends on the use of the RTS/CTS
protection mechanism. Our goal is also to support RAAs that
may selectively enable and disable RT'S/CTS [21]. As a results,
we scan every other round with RTS/CTS option enabled.

In order to increase the realism of collected traces, we
considered shortening the time required to complete a round
by sampling only a subset of all available rates. For example,
consider two simple heuristics for reducing the number of
samples. 1) Sample rates in order from higher rates to lower
rates. If £ consecutive rates are successful, assume all rates
lower than the lowest sampled rate will be successful (because
they use more robust encodings). 2) Sample rates in order
from lower rates to higher rates. If k£ consecutive rates are
unsuccessful, assume all rates higher than the highest sampled
rate will also be unsuccessful.

When analyzing data collected in environments where there
is no interference the accuracy of these techniques is relatively
high (even when a device is mobile). Unfortunately, such
heuristics do not work in general due to the presence of
interference which is surprisingly prevalent in environments
in which WiFi devices are used [3] [14].

To study the problem, we collected and examined several
traces collected by sampling all rates and then post processing
the trace to determine whether or not the heuristics could
accurately determine the fate of the packets that would not
be sampled using the heuristic. Table II shows that the fate
of a significant percentage of packets would be incorrectly
predicted. As a result of these experiments, our prototype
samples all rates. This provides highly accurate results in the
scenarios we have examined (see Section V).

k | High to Low | Low to High
2 14% 64%
3 12% 52%

TABLE II: Errors in packet fate estimation heuristics

5The fraction of time a device occupies the spectrum by transmitting signals
when the device is active.



If, in future work, we encounter scenarios where we are
not able to sample all rates or need to increase the accuracy
of T-RATE, we would consider using software defined radios.
For example, we could shorten rounds, as is done in Accu-
Rate [16], by extracting physical layer information about the
constellation of a received frame to estimate the fate of other
rates that use different modulation and coding schemes.

3) The trace data: All information is collected on the
sending device, except for the SNR of the received frame
(which is collected on the receiver). In addition to channel
access and channel error rate data, we collect other informa-
tion, such as the SNR of data frames and acknowledgments,
to enable the trace processing engine to evaluate RAAs that
require this information (like RBAR [7] and CHARM [10]).
Note that, if available, addition information could be collected.
For example, physical layer properties could be obtained via
special purpose hardware or from software defined radios [20].

The collected traces (Figure 2) are the Experiment Traffic
Trace (ETT) and the Third-party WiFi Traffic Trace (TWTT).
The ETT includes all frames transmitted by the sender and
the per frame delay to access the channel caused by non-WiFi
sources. The data in the ETT includes:

e Source: Ath9k Driver.
— Channel Cycle Information (CCI).
e Source: TCPDUMP sender side.

— Timestamp: the transmission time of the packet.
802.11 transmission rate.

— Was the packet sent using RTS/CTS.
ACK: specifies if the packet was received.
SNR of ACK.
e Source: TCPDUMP receiver side.

— SNR of Data frame.

The ETT includes channel access data from non-WiFi but
not WiFi sources. Therefore, the TWTT collects frames from
interfering WiFi traffic that cause additional channel access
delays at the sender. The data in the TWTT includes:

e Source: TCPDUMP sender side.
— Timestamp: arrival time of the frame.
— Frame length and transmission rate: used to calculate
the time required to send this frame (carrier sensing).
— Duration: channel time reserved for acknowledgements
or next frames (virtual carrier sensing).

B. Trace Preparation

1) Channel error rate: Because at any point in time ¢, we
can only scan a single rate » with RTS/CTS on or off, if a
rate adaptation algorithm chooses to send a packet at time ¢
using any rate other than r and/or using a different RTS/CTS
configuration, we will not have a corresponding packet in the
collected trace. Therefore, we need to determine or compute
information about all packets that could have been sent starting
at time t. We call this phase trace preparation, because we
use information from the collected trace (which contains only
information about rates that were used and packets that were
sent) to prepare a complete trace (which contains information
about all rates that could have been used).

To predict if a missing packet could be received or not,
our prototype uses a window of 100 milliseconds (50 before
and after) to compute packet reception probability. This is
computed based on the number of packets sent and received
within that time window. At time ¢, for each rate r, and
for RTS/CTS on and off we consider only packets from the
collected trace that are within the window, were sent at rate r
and which were sent with RTS/CTS on and off, respectively.
The computed probability is then used to predict if a missing
packet would be received or not. That is, for each rate r we
record whether or not the packet would have been received
with RTS/CTS on and off. This information is recorded in the
complete trace.

2) Channel access: The delay caused by non-WiFi interfer-
ers is stored in the ETT, while third-party WiFi traffic received
by the sender is stored in the TWTT. The TWTT is used
directly by the trace processing engine. On the other hand,
the trace processing engine needs to know the delay caused
by non-WiFi interference for a packet ready to be transmitted
at time ¢. Unfortunately, we may not have such a sample in
the ETT. We use the 100 ms time window to compute the
expected delay at time ¢, using a technique similar to that used
for estimating the fate of a missing packet. Our evaluations
show that this technique accurately predicts the expected delay
caused by non-WiFi interferers.

3) Additional data: Signal Strength: We currently estimate
the signal strength of a missing packet using a window of two
packets. We use a linear interpolation of the RSSI (Received
Signal Strength Indication) of the two surrounding packets.
The Atheros chipset used in our prototype has a noise floor of
-95 dBm, so the SNR can be determined from the RSSI. To
evaluate the accuracy of our RSSI estimation technique, we
adapt the methodology used in [9]. We down sample the RSSI
data (i.e., remove data) obtained from an actual experiment to
create a trace which is similar the collected trace (i.e., it is
missing the same amount of information as a collected trace).
Then, we apply our RSSI estimation algorithm to the down
sampled trace to prepare a complete trace. We then compare
the information from the complete trace with that from the
actual experiment. In an experiment conducted using a mobile
device moving at the speed of someone walking, we observed
that over 85% of the estimated RSSI values are within 1 dBm
of the actual values and that the error is generally bounded by
a few dBm. Although the trace used for this experiment was
obtained from a challenging mobile experiment with highly
variable channel conditions, our heuristic is highly accurate.

Clearly, other approaches and different parameters could
be used during trace collection and preparation. Although the
evaluation of our prototype in Section V demonstrates that our
prototype produces highly accurate results for the scenarios
we have tested, in future work we plan to explore some of
these choices. For example, the choice of window length is a
design decision that depends on the variability of the wireless
channel conditions and different window sizes may be needed
in environments with faster moving mobile devices or more
transmission rates (e.g., in 802.11n).

C. Trace Processing

During the trace processing phase, a rate adaptation algo-
rithm is simulated using the complete trace. The complete trace
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Fig. 4: Simulation flowchart

consists of the prepared experiment traffic trace (P-ETT) and
the third-party WiFi traffic trace (TWTT). Trace processing
involves tracking the current (simulated) time and determining
which rate would be chosen by the given algorithm. Figure 4
illustrates the approach. Before the transmission of any frame,
the simulator first checks the third party traffic trace (TWTT)
to simulate the delay cause by receiving WiFi frames at the
sender. If any frame was observed at time 7', the delay caused
by receiving this frame is calculated. This includes the time the
received frame is in the air (carrier sensing) plus any additional
time for which the frame reserves the channel (virtual carrier
sensing). Then, the simulation time (7°) is updated and the
TWTT trace is checked again for any unprocessed third party
frames at or before time 7. We consider the unprocessed
frames in the TWTT before time 7', because third party
transmissions that started before 7" also affect channel sensing.
When no such frames exist, the simulator proceeds to the
transmission of the next frame.

The next step is to simulate the delay caused by non-WiFi
devices while performing carrier sensing. This delay is directly
read from the complete trace. Additional delays caused by
the DCF protocol, such as back-off time, are computed and
the simulation time is updated. The trace processing engine
implements DCF inter frame spacing to achieve realistic timing
and to ensure the accurate computation of throughput. The
simulator looks in the complete trace to determine the fate of
the frame sent at time 7', rate R (specified by the RAA), and
with the RTS/CTS option on or off. To accurately compute
packet transmission times, we utilize information about the
structure of OFDM frame formats and the transmission time
of each segment (i.e., header and payload). If the frame
transmission fails, the frame is retransmitted until the frame is
successfully transmitted or the retransmission limit is reached.
The result is logged and is reported to the RAA. The logged
data includes the rate used and whether or not the frame was
received. We then post-process the log file to better understand
an algorithm’s behavior and to compute statistics related to
performance such as the average throughput over different time
scales and the total number of bytes received.

D. Limitations

During the trace collection phase, we sample all rates as
quickly as possible to maximize the number of collected sam-
ples. Although we are able to simulate delays before sending

packets due to third party traffic, when contention is too high
the sender’s access to the channel will be limited and may not
be able to obtain enough samples to produce realistic complete
traces. In some of our experiments the sender’s ability to
access the channel is limited and fewer samples are obtained.
Although we are able to obtain highly accurate results in
several interesting scenarios in this paper (see Sections V-A
and V-C), further work is needed to understand the number of
samples required to obtain realistic results.

IV. EVALUATION METHODOLOGY

The purpose of our evaluation section is not to evaluate
different RAAs but instead to evaluate the prototype imple-
mentation of T-RATE and to demonstrate that it can be used
with a variety of RAAs. When possible, we compare the
throughput obtained by T-RATE with throughput from an
actual experiment. This requires us to be able to construct
scenarios where we can ensure that the channel conditions are
repeatable. Thus, we conduct some experiments in a controlled
environment where there is no interference from devices other
than those we use to generate interference.

For some evaluations, we compare the throughput obtained
with an actual experiment run using a fixed MAC data rate
with that obtained by the trace-processing engine using that
same rate. The reasons for this approach are: (1) At any point
in time a rate adaptation algorithm may choose any one of
the available data rates. This ensures that for any rate chosen
by any algorithm the trace-processing engine will match the
throughput obtained in the experiment. (2) It is easier to
reason about the expected throughput for a fixed rate than for
an algorithm that is constantly adjusting the rate. The rates
available in 802.11g are 6, 9, 12, 18, 24, 36, 48, and 54 Mbps.
Most of our graphs show only rates of 6, 24 and 54 Mbps,
because other rates show similar behaviour.

Despite using carefully controlled and monitored envi-
ronments, we could not obtain repeatable results for some
experiments (e.g., for some hidden terminal and mobile ex-
periments). Additionally, we are interested in evaluating our
prototype in environments where repeatability is not possible.
For such scenarios, we use the following approach. Because
the sending device transmits frames as fast as possible during
the trace-collection phase, an experiment is being conducted
during trace collection. The rate adaptation algorithm that
is used repeatedly cycles (pseudo-randomly) through each
rate. Therefore, we implement a similar algorithm in the
trace-processing engine. The difference is that in the trace-
processing engine we ensure that the pseudo-random selection
of rates happens in a different order from that in which the
trace is collected. This ensures that the trace-processing engine
must use information from frames added to the complete trace
(during the trace-preparation phase) that are not present in the
collected trace.

A. Equipment and Software Used

We continuously monitor all of our experiments using an
AirMagnet Spectrum XT [2]. This analyzer is able to find
and classify WiFi and non-WiFi interference. Our 802.11g
networks are constructed using netbooks and laptops running
Linux with the Atheros Ath9k driver. We use a 2.4 GHz FHSS
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device (a controller for an RC helicopter) to generate non-
WiFi interference. This device was chosen because it has a
USB interface which allows us to programatically turn the
device on and off at precisely the same time when repeating
experiments. We use Iperf [8] to send UDP packets as fast as
possible between the sender and the receiver. When plotting
throughput versus time, each point shows the average and 95%
confidence intervals of 10 half second measurements.

B. Different Evaluation Scenarios

Figure 5 illustrates the different devices and their relative
positions in our stationary and mobile scenarios. Not all
devices are used in all experiments and the details of each
experiment are provided in the evaluation section. In mobile
scenarios, we use an electric train to carry a notebook computer
(the mobile device). A train is used to ensure that the same
path is traveled at the same speed (i.e., approximately walking
speed) for multiple runs of the same experiment. The train
moves on a half-oval shaped track. Every time the train reaches
one end one of the track the direction is reversed.

V. EVALUATION

To conduct a comprehensive evaluation of our prototype,
we consider the environmental factors that can affect the
throughput of an 802.11 network as shown Figure 1. In
Section V-A, we evaluate our prototype’s ability to obtained
correct throughput when the sender’s channel access is af-
fected. In Sections V-B1 and V-B2, we evaluate the accuracy
of T-RATE using scenarios where the channel error rate is
affected due to interference.

A. Channel Access

We now evaluate the realism and accuracy of T-RATE
when channel access is limited because of WiFi and non-WiFi
interference near the sender.

1) WiFi Source: Experiment Setup: In addition to the
Sender sending to the Receiver (Figure 5 — top), Sender 2
also sends UDP traffic to the same Receiver at a steady rate
of 3 Mbps, roughly mimicking a video stream. This traffic
is injected from time 40 to 70 seconds. Results of these
experiments are shown in Figure 6(a).

This scenario mainly targets the processing engine’s ability
to implement carrier sensing and virtual carrier sensing caused

by third party traffic. Figure 6(a) is obtained by conducting
four experiments. The environment is controlled and monitored
to ensure that channel conditions are repeatable across each
experiment. One experiment is run to collect a trace and the
others are to run each of the three fixed rates. The throughput
obtained using each of the three fixed rates is compared with
that reported by the trace-processing engine when using those
same fixed rates.

The tight match between the trace-driven and experimental
results suggests that the processing engine is able to handle this
scenario with high precision. As expected, the throughput of
the rates 6 and 24 are only slightly affected while WiFi inter-
ference is present (from 40 to 70 seconds) while the throughput
of the 54 Mbps experiment has a more noticeable 3 Mbps drop.
Also note that when the environment is interference-free (prior
to 40 and after 70 seconds), the throughput obtained for each
rate matches the theoretical throughput expected.

2) Non-WiFi Source: Non-WiFi transmitters can also cause
the carrier sensing protocol to report busy which can decrease
throughput by introducing delays before a packet can bet sent.

Experiment Setup: A non-WiFi transmitter (Figure 5 — top)
near the Sender operates from time 40 to 70 seconds. Results
from this experiment are shown in Figure 6(c).

Figure 6(b) and (c) show the importance of the channel
cycle information (CCI). When CCI is not used (Figure 6(b))
the throughput obtained using T-RATE does not closely match
the experiment. However, Figure 6(c) shows the excellent
match obtained for all rates by including CCI in T-RATE.

B. Channel Error Rate

A sender’s throughput also depends on the channel error
rate. A channel’s error rate can be influenced by two important
factors: interference (which can come from WiFi and non-WiFi
sources near the receiver) and signal propagation (i.e., path
loss and fading). In this section, we examine the accuracy of
T-RATE using scenarios where these influences are present.

1) Non-WiFi Interference: Experiment Setup: In this ex-
periment we place a non-WiFi interferer near the Receiver
(Figure 5 — top) and out of range of the Sender, so that it does
not affect channel access. The non-WiFi transmitter operates
from time 40 to 70 and the results are shown in Figure 7(a).

Figure 7(a) compares the throughput obtained from real
experiments using the PID (Proportional-Integral-Derivative)
and Minstrel algorithms from the Linux Ath9K driver with
throughput obtained using the trace-driven evaluation of these
algorithms. These graphs show that for both algorithms, there
is a tight match between the experiments and those obtained
with T-RATE. The RAAs implemented in the trace-processing
engine change rates at times that closely match the experiment.
This suggests that the trace-processing engine correctly imple-
ments these algorithms and that the information required by
and available to them in the complete trace is also accurate.

2) WiFi Interference: Experiment Setup: The Hidden
Terminal WiFi transmitter in Figure 5 (top) transmits a 3
Mbps UDP stream for 30 seconds starting at time 40. The
Hidden Terminal is configured to use a 6 Mbps MAC rate in
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this scenario in order to maintain connectivity with the access
point. Results from this experiment are shown in Figure 7(c).

In the area of the building we used to conduct our
experiments, we needed to lower the transmission power of
the Sender in order to create a hidden terminal scenario. As
a result, the throughput obtained when using fixed rates of
48 and 54 Mbps were consistently zero due to a low SNR.
Unfortunately, for the same reason, the throughput obtained
with 24 and 36 Mbps is very unstable and was not repeatable
across experiments. Since RAAs may choose rates of 24 or 36
Mbps the throughput is also very unstable when a real RAA
is in place. Figure 7(b) shows that for two identical runs of
an experiment using PID, the throughput can be significantly
different. Thus, under this scenario, it is not possible to
compare results obtained from experiments with those obtained
from the trace-driven framework.

Because channel conditions change significantly from one
experiment to the next, the experiments can not be repeated.
Therefore, we can not expect the results obtained using the
trace-driven framework to match those from experiments.
Instead, we utilize the alternative method for evaluating our
results described in detail in Section IV. That is, we compare
the results obtained during the trace collection experiment
with those obtained using the trace-driven framework while
implementing a similar RAA. The excellent match between the
experimental and trace-based throughput shown in Figure 7(c),
suggests that T-RATE handles interference caused by a hidden
terminal accurately.

3) Stationary Path Loss: Experiment Setup: We peri-
odically change the transmission power of the Sender in a
controlled fashion (Figure 5 — top). The transmission power
starts at 17 dBm and is reduced by 1 dBm every 3 seconds
until it reaches 0 dBm. It is then increased by 1 dBm every 3
seconds until 17 dBm is reached. Figure 8 shows results from
experiments conducted using this scenario.

This experiment is designed to evaluate T-RATE’s ability
to handle frame loss due to path-loss and to evaluate the
trace-processing engine’s implementation of RBAR [7]. RBAR
proposes modifications to the 802.11 standard to transmit

SNR information back to the sender. The sender then uses
a table lookup to determine an appropriate rate for a given
SNR. RBAR is implemented to demonstrate that T-RATE can
accommodate SNR-based algorithms. To test the correctness
of the operation of RBAR in our trace-processing engine, we
have provided RBAR with the values shown in Table III. We
constructed this table to cover the RSSI ranges experienced in
this experiment and to force RBAR to select all rates.

[ RSSI Rate [ RSSI Rate | RSSI Rate | RSSI Rate |
> —58 54 > —60 48 > —62 36 > —64 24
> —66 18 > —68 12 > —170 9 < -71 6

TABLE III: RBAR rate selection table

Figure 8(a) shows how the RSSI of the received frames
(right y-axis) changes as the result of changing the trans-
mission power over time (the x-axis). The left y-axis shows
the rates chosen by RBAR. This graph shows that the trace-
processing engine’s implementation of RBAR operates cor-
rectly based on Table III.

Figure 8(b) shows results obtained using the PID and
Minstrel algorithms both experimentally and using T-RATE.
The good agreement between the results obtained from the
processing engine and experiments shows that T-RATE handles
path-loss accurately for this scenario.

Figure 8(c) shows the throughput reported by T-RATE for
the same experiment when RTS is on. As expected throughput
is lower than in Figure 8(b) where RTS is off. We compare
the throughput achieved by the PID, Minstrel, and RBAR
algorithms with an algorithm that chooses the best possible
rate at each moment in time (Optimal). RBAR, which has now
been properly calibrated for this environment, outperforms the
loss-based RAAs. This is as expected because it can react to
changes in signal strength faster. The ability to determine the
optimal rate at any moment in time is an additional strength
of T-RATE and should provide insights in some scenarios.

4) Mobile Path Loss and fading: Experiment Setup: The
scenario used is as shown in Figure 5. To repeat experiments a
mobile device (the Sender) is placed on an electric train which
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moves at approximately walking speed and results are shown
in Figure 9(b).

Unfortunately, despite controlling for all environmental
factors, including the exact path traveled, these experiments
are not repeatable. Figure 9(a) shows the variability across
two experiments and results obtained using our framework
when the Minstrel algorithm is used. Because of the inability
to repeat experiments we again rely on our alternative approach
to evaluate T-RATE. These results are presented in Figure 9(b).
The excellent match suggests that the results from the trace-
driven framework are highly accurate despite the continual
changes in signal strength that occur in this mobile scenario.

C. Field Trial

We now test our framework in an environment that is
not under our control and is subject to many sources of
interference, path loss and fading.

Experiment Setup: The receiver is placed in an office envi-
ronment with multiple cubicles. The sending laptop is carried
to different areas of the same office at walking speed. A
spectrum analyzer is used to monitor natural interference (i.e.,
we do not inject any controlled interference) from WiFi and
non-WiFi sources. Other settings are kept the same as in our
controlled experiments and result are shown in Figure 9(c).

Figure 9(c) shows the throughput reported by the trace-
driven framework and that obtained from an actual experiments
where the transmission rate is changed in a round-robin
fashion (recall that the trace-processing engine uses a different
ordering from that used in trace-collection). The figure shows
that the trace-driven results match those from the experiment.

We now further analyze the field trials results. The goal
is to determine if T-RATE can produce accurate and realistic
results when using algorithms other than round robin. Recall
that if, for each available rate, at every point in time, the
trace-processing engine produces the correct throughput, then
no matter which rate is selected by an RAA it will obtain
the correct throughput. For this reason, we examine results
obtained via the trace-processing engine, PID and Optimal.

The top graph in Figure 10 shows the throughput reported by
T-RATE using different algorithms. To make the graphs more
legible, we have excluded some constant rates, all confidence
intervals and Minstrel.
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Despite the significant variation in the throughput over
time, the 54 Mbps rate provides the best throughput of all the
rates (excluding the optimal choice). Except for at 65 seconds,
where 48 Mbps provides the best throughput. To understand
the variation in throughput, and why 54 Mbps provides the
best throughput, we first consider the RSSI of received frames.
The RSSI graph (second from the top in Figure 10) shows
that the RSSI of the received frames are mostly greater than
—60 dBm, so it is unlikely that any transmission rate will
experience frame loss due to path loss. Therefore, any decrease



in throughput is due to other factors such as limited channel
access and/or frame loss due to interference. Indeed, the
spectrum analyzer reports that a microwave oven was active
at times during this experiment.

The bottom graph in Figure 10 shows the average error rate
for fixed rates of 24, 48, and 54 Mbps. Comparing the error
rate graph with the throughput graph, we see that for each rate,
as the error rate increases, the throughput decreases. At time 10
the error rate of all fixed rates is close to 0 and the throughput
of all rates is maximized. The cause of the changes in the error
rate can be seen in the graph that is second from the bottom.
This “interference graph” shows the average expected delay
per packet sent, caused by non-WiFi and WiFi interference.
Although there is WiFi traffic, the average delay imposed by
this traffic is low relative to that from non-WiFi sources. The
shape of the average error rate graphs roughly corresponds to
that of the non-WiFi interference graph.

The behavior of PID can be explained by examining the
error rates. When the error rate exceeds a threshold, PID
reduces the selected data rate. Because the cause of frame
errors in this experiment is non-WiFi interference, reducing
the transmission rate may not help. Figure 10, shows that as
the error rate increases from 10 to 30 seconds, PID reduces its
MAC data rate until it reaches 6 Mbps at time 30. It remains
near 6 Mbps until after 40 seconds when the error rate starts
to decrease and PID starts to choose higher rates.

Overall, the results obtained using our prototype and the
behaviour of the algorithms are as would be expected given
the environment and channel conditions under which the trace
was collected. We believe that T-RATE is a significant step
towards improving the evaluation of 802.11 RAAs.

VI. DISCUSSION

One of the strengths of our approach is is that it captures
data related to properties of the channel under conditions in
which traces are collected. However, a trace is specific to the
devices used when capturing the traces. We note that this
is also an issue for existing trace-driven and experimental
approaches for evaluating RAAs. We plan to study the degree
to which results might be used across different devices and
scenarios in future work. We also plan to: examine scenarios
where mobile devices move at higher speeds, better understand
and outline limitations that might be caused by limited channel
access (e.g., due to dense WiFi use), to collect traces using
a wide variety of scenarios, and to examine 802.11n and
802.11ac networks. We expect that T-RATE will translate
relatively easily to 802.11n networks. However, new trace
collection techniques may be required for devices with 3 or
more antennas because of the large number of available rates.

VII. CONCLUSIONS

In this paper, we present the design, prototype implemen-
tation and evaluation of T-RATE, a trace-driven framework
for evaluating 802.11 RAAs. We devise mechanisms that
allow us to capture traces on communicating 802.11 devices,
while conducting experiments under realistic conditions. We
show that T-RATE can be used to conduct highly accurate
evaluations of RAAs under a variety of channel conditions
that are more representative of scenarios under which devices
are likely to be used than previously possible. Moreover,

our portable traces and trace-processing engine seamlessly
couple with different algorithms to provide for easy, portable,
repeatable, and realistic evaluations.
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