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Abstract. An h-cluster in a graph is a set of h vertices which maximizes the number
of edges in the graph induced by these vertices. We show that the connected h-cluster
problem is N P-complete on planar graphs.

1. Introduction

The problem of finding the maximum clique in a graph is one of the most fundamen-
tal graph problems and has many applications. In a planar graph, although the
absence of any large cliques makes the clique problem trivial, there may still be a
need for finding a dense subgraph. We thus turn to the idea of a cluster. The deci-
sion problem formulation of the h-cluster problem is as follows: given a graph G
and positive integers h and 7, does there exist an induced subgraph on h vertices
such that this subgraph has at least j edges. It may also be of interest to ensure
that the cluster is connected. Both the h-cluster problem and the connected h-
cluster problem have been shown to be N P-complete even for bipartite graphs
or chordal graphs [S]. The h-cluster problem is also N P-complete for bipar-
tite or regular graphs of fixed degree [7]. In constrast to this, polynomial time
algorithms have recently been developed for the optimization versions of both
the h-cluster problem and the connected h-cluster problem for various subclasses
of planar graphs. These classes include k-outerplanar graphs [2], series parallel
graphs [10,11], Halin graphs [3], A — Y graphs [6] and Y’ — A graphs [6]. The al-
gorithms exist as a result of the above mentioned subclasses of planar graphs being
partial k-trees for fixed k [3,6,11]. Both the h-cluster problem and the connected
h-cluster problem have polynomial time algorithms on partial k-trees for fixed &
[1,4,9]. This then motivates the investigation of the complexity of the cluster-
ing problems on general planar graphs. In this paper we show that the connected
h-cluster problem is N P-complete on general planar graphs.

2. N P-Completeness

To prove the N P-completeness, we use a reduction from the connected vertex
cover problem on planar graphs with maximum degree four, which was proven
N P-complete in [8].
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Theorem. The connected h-clustering problem on planar graphs is N P -complete.

Proof: It is not hard to see that the problem is in NP. To prove the problem
N P-hard, we show that the connected k-vertex cover problem on an arbitrary
planar graph G with maximum degree four may be polynomially reduced to the
connected h-clustering problem for a planar graph G’ which is constructed from
G. Let nbe the number of vertices in G and let m be the number of edges in G. To
construct &’ from G begin by subdividing each edge by introducing 5 new vertices.
Then for each original edge introduce a maximal planar graph withg = 2m + n
vertices and identify a vertex from the exterior face of this graph with the middle
new vertex in each original edge. Note that |V'| = n+ 4 m+ m(2m+n). Wecall
the n vertices in G’ corresponding to vertices in G type G vertices, the m(2m+n)
vertices contained within the maximal planar graphs associated with the edges
type M vertices and the remaining 4 m vertices which subdivided the edges of G
type S vertices. It is clear that G’ can be constructed from G in polynomial time.
Figure 1 shows an example of the construction of G’ from G.

Figure 1

To complete the proof of the theorem it is necessary to verify the following
claim.

Claim. There is a connected vertex cover in G of size k if and only if there is a
gm+ k+2m+2(k— 1) connected cluster inG' withm(3q—6) +3m+3(k—1)
edges.

Proof of Claim: Given a connected vertex cover in G with k vertices, the required
cluster in G' consists of the following sets of vertices: (a) the gm type M vertices
of G', (b) the k type G vertices of G’ corresponding to the vertex cover of G, (c)
the 2 type S vertices of G' for each of the m original edges of G' which serve o
connect an endpoint type G vertex which is in the vertex cover, to the middle type
M vertex in the edge, and (d) the 2( k — 1) type S vertices of G’ which are the two
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remaining subdividing vertices in each of the original edges in a spanning tree of
the subgraph of G induced by the connected vertex cover.

In the cluster, the vertices of (a) are connected to the vertices of (b) via the
vertices of (c). The vertices added in (d) ensure that there is a path between each
pair of vertices in (b). We thus have that the cluster is connected.

It remains to show that the cluster has the required number of edges. From
Euler’s formula we know that a maximal planar graph with n vertices has 3n— 6
edges, thus the vertices of (a) contribute m(3¢ — 6) edges to the cluster. There
are 3 m edges in the cluster adjacent to the vertices of (¢). The remaining 3(k— 1)
edges are adjacent to vertices of (d).

To complete the proof of the claim we begin with the connected cluster, C, in
@' as specified in the claim and show that the required vertex cover exists. First
we show that the connected cluster contains vertices associated with each edge of
G.

Lemma 1. The cluster C contains at least three type M vertices associated with
each edge of G.

Proof: Assume to the contrary that there is a “short” maximal planar graph with
two or fewer vertices from the cluster C. Then the only vertices available to form
the cluster are the at most 2+ g(m — 1) from the maximal planar graphs plus the
n+4m type G and type S vertices. Thus a total of at most n+4m+g(m—1)+2

vertices are available. But the cluster must be of size gm + k + 2(k — 1) + 2m.
Ifk>2thenn+d4m+qg(m—1)+2 < g(m) + k+ 2(k— 1) + 2m thatis
n+2m+2 < g+3k—2 replacing g by 2m+nwehaven+t2m+4 < 2m+n+3k

or4 < 3k. Thus there are not sufficient available vertices to supply the cluster.
This is a contradiction to the existence of the cluster and lemma 1 follows. |

Since the connected cluster contains vertices associated with each edge of G we
know that the type G vertices in the cluster will form a connected vertex cover of
some size p. If p < k we are done.

It remains to show that the cluster will not have the required number of edges
if it includes more than k type G vertices. The following lemma is useful.

Lemma 2. A portion of the cluster in one of the maximal planar graphs containing
g — x vertices can contribute at most(3q — 6) — 3z edges.

Proof: A maximal planar graph with n vertices contains 3n — 6 edges. A n
vertex maximal planar graph contains the maximum number of edges possible for
an n vertex planar graph. Thus the position of the cluster with ¢ — z vertices can
contribute at most 3(¢g — ) — 6 = (3¢ — 6) — 3z edges. |

The following lemma completes the proof of the claim.

Lemma 3. Anyconnected clusterinG' withb = gm+k+2m+2(k—1) vertices
withp > k type G vertices will have fewer than m(3q — 6) + 3m + 3(k — 1)

157



edges.

Proof: Consider a connected cluster C in G' with b vertices of which p > k are
type G vertices. By lemma 1, C contains vertices in each of the maximal planar
graphs associated with the edges of G. For some z > 0, C will contain gm — x
type M vertices. C must also contain 2m type S vertices of G’ to connect the
type M vertices to the type G vertices. Since C is connected, C must also contain
2(p—1) type S vertices which are the 2 remaining type S vertices in each of the
edges in a spanning tree of the subgraph of G induced by the type G vertices in the
cluster. There will also be y additional type S vertices in C wherey = z—3(p—k).
By lemma 2 if z vertices are missing from the maximal planar graphs then 3z
edges will be lost. Thus the 3m — z type M vertices in M will contribute at most
m(3¢—6) —3z edges. Letall edges in C which lie outside of the maximal planar
graphs be charged to the type S vertices in C. These vertices can contribute edges
to the cluster at a maximum rate of 3/2. Thus the type G and type S vertices in
C contribute at most 3m + 3(p — 1) + 3 /2y edges. Thus the maximum possible
number of edgesin Cis m(39g—6) —3z+3m+3(p— 1) +3/2(z—3(p—k)).
The lemma follows if the above quantity is less than m(3q¢—6) + 3m+ 3(k—1)
thatis if =3 /22 —3/2p+3/2k < 0 orif 0 < =+ (p — k) which is true since
S Aok, |

3. Conclusions

In this paper we have shown that the connected h-cluster problem on planar graphs
is N P-complete. However if the cluster is not required to be connected the com-
plexity of the h-cluster problem on planar graphs remains open.
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