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Abstract

Video streaming applications generate a large fraction of In-
ternet traffic. Much of this content is delivered over HTTP
using standard web servers. Unlike other types of web work-
loads, HTTP video streaming workloads are typically disk
bound, and therefore an important problem is that of opti-
mizing disk access.
In this paper we design, implement and evaluate Libcep-

tion, an application-level shim library that implements tech-
niques for improving disk I/O efficiency. Web servers can
achieve the benefits of these techniques simply by linking
with Libception, without the need to modify source code.
In contrast to making kernel changes or attempting to opti-
mize kernel tuning, Libception provides a portable and rela-
tively simple setting in which techniques for optimizing I/O
in HTTP video streaming servers can be implemented and
evaluated.
We report experimental results evaluating the efficacy of

the aggressive prefetching and disk I/O serialization tech-
niques currently implemented in Libception, for three web
servers (Apache, nginx and the userver) and two operating
systems (FreeBSD, Linux). We find that on FreeBSD, video
streaming throughput with all three web servers can be dou-
bled by linking with Libception. On Linux, performance
similar to that provided with Libception was eventually ob-
tained by examining the kernel source to understand and
tune kernel parameters. With the default kernel parameter
settings, however, and regardless of which Linux disk sched-
uler is selected, we find that use of Libception can approx-
imately double throughput. We find that both aggressive
prefetching and serialization are necessary to achieve these
benefits.
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1. INTRODUCTION
Video streaming over HTTP is now the largest contrib-

utor to Internet traffic. The catalogue of available content
from popular video streaming services has also been growing
rapidly, and although memory caching and SSD can be ef-
fective for the most popular content, HTTP streaming video
server workloads are often disk-bound [13]. Techniques for
improving disk throughput in such systems are therefore of
considerable interest.

There has been much past work on improving disk access
efficiency. In the context of HTTP video streaming, how-
ever, there are two complicating factors. First, unlike early
video streaming systems, HTTP-based video streaming is
pull-based: the server responds to client requests for video
chunks, rather than pushing video data to the client at some
server-determined rate. Second, contemporary servers may
be highly concurrent, responding to video chunk requests
from hundreds or thousands of clients concurrently.

A well-known approach to making disk access more effi-
cient for applications that access files sequentially is to per-
form larger reads, by prefetching data before it has been
requested. In prior work we observed that the serialization
of reads may also be important in some contexts [33, 34]. In
particular, we found that a modification to a web server (the
userver) to both aggressively prefetch, by performing large
reads, and to serialize its reads, yielded large performance
improvements on FreeBSD. Requests are serialized by not
permitting new read or sendfile system calls for data from
video files for one client until the previous request (from an-
other client) has completed. Serialization can be beneficial
if the operating system breaks large reads into smaller I/O
buffer-sized reads, and if sequences of these smaller reads
from concurrently-issued large read requests can get inter-
leaved inside the operating system. This prior work did
not investigate whether the approach of combining aggres-
sive prefetching with serialization could yield similarly large
benefits for other web servers or on other operating systems.

Implementing techniques for improving disk access effi-
ciency inside the application requires detailed knowledge of
the application code, and must be repeated for each applica-
tion of interest. This could be quite difficult for applications
with large code bases like Apache and nginx. On the other
hand, a kernel implementation is operating system specific,
requires detailed knowledge of the relevant pieces of kernel



code, and has the additional problem of potential adverse
impacts on other types of applications.
In this paper, we address the problem of improving disk

access efficiency in HTTP video streaming servers by devel-
oping an application-level shim library in which applicable
techniques can be implemented. We then apply this library
to evaluate the performance improvements provided by ag-
gressive prefetching and serialization, for the widely used
Apache and nginx web servers as well as the userver, and
two operating systems (FreeBSD, Linux).
Our contributions are as follows:

• We design and implement Libception, a portable,
application-level shim library that implements tech-
niques for improving disk I/O efficiency. We demon-
strate that web servers can achieve the benefits of these
techniques simply by linking with Libception, without
the need for source code changes. Comparing a web
server that we had modified to incorporate the tech-
niques directly, and the unmodified server linked with
Libception, we find essentially identical performance.

• We show that the aggressive prefetching and disk I/O
serialization techniques currently implemented in Lib-
ception can approximately double the peak HTTP
video streaming throughput of a variety of web servers
(Apache, nginx, and the userver), both on FreeBSD,
and on Linux when using the default kernel parame-
ter settings, regardless of which Linux disk scheduler
is chosen.

• We apply Libception to address the question of
whether aggressive prefetching by itself is sufficient
on Linux, or whether combining aggressive prefetching
with serialization provides substantial further perfor-
mance benefits. We find that combining the techniques
yields substantially better performance than aggressive
prefetching (or serialization) alone.

• We discover that there is great scope for improv-
ing HTTP video streaming performance on Linux,
when not using Libception, by tuning kernel param-
eters. In particular, by tuning parameters to improve
both prefetching and serialization, we find that peak
throughput can be more than doubled, yielding peak
throughput slightly higher than that obtained with
Libception. In contrast, when using Libception, ker-
nel parameter tuning yields only marginal additional
improvements.

2. BACKGROUND AND RELATED WORK
HTTP streaming video workloads are typically disk-bound

due to the large size of video files and the tendency of the
popularity distributions of these files to have a very long
tail (meaning the large majority of content is accessed in-
frequently) [13]. There are three general techniques for im-
proving the bottleneck of disk performance: file caching,
disk scheduling and prefetching. Our research is primarily
interested in the effects of request scheduling and prefetch-
ing. File caching plays a significant role in improving server
throughput for our workload, but competes with prefetch-
ing for system memory resources [5]. For the purposes of our
experiments, we simply use the kernel file caching algorithm
as-is.

In the following sections we describe prior work for disk
scheduling and prefetching, and discuss how the results ap-
ply to an HTTP streaming video workload. We also specif-
ically discuss handling concurrent I/O streams, because the
bulk of the research into scheduling and prefetching assumes
a single-threaded workload (which is not consistent with our
workload).

2.1 Block I/O Scheduling
Block I/O schedulers play a major role in most modern

operating systems, and typically act as a layer between user
I/O requests and requests to block device drivers. As of
kernel version 2.6.33, Linux provides three different default
options for scheduling block I/O devices: NOOP, deadline,
and completely fair queuing (CFQ). All three schedulers at-
tempt to take advantage of different aspects of temporal
and spatial locality between requests in order to yield higher
throughput for disk-bound workloads.

The NOOP scheduler is the least complicated of the Linux
schedulers. It provides a simple first-in-first-out (FIFO)
queue for requests, and also performs basic request merg-
ing [2]. The deadline scheduler maintains sector-sorted read
and write queues, as well as queues which are organized
by expiration times. The deadline scheduler gives priority
to expired requests in the secondary queues, and otherwise
batches requests from the sector-sorted queues. It is tailored
towards workloads that require latency guarantees on I/O
requests [2]. CFQ divides access to the disk into time slices
which are allocated between groups of per-process request
queues and sized by process priority. CFQ idles shortly on
empty queues whose time-slices have not expired, even if
other queues contain outstanding requests [2].

Linux previously offered an anticipatory scheduler (AS),
which was introduced as a means to eliminate “deceptive
idleness”. Deceptive idleness occurs when processes leave
a small data processing gap between I/O requests. During
this time, naive schedulers may switch to servicing other
processes, introducing seeks that can degrade system per-
formance [11]. The abilities of AS are mostly a subset of
CFQ, and as such AS was removed in version 2.6.33 of the
Linux kernel [3].

The schedulers built into the Linux kernel are necessar-
ily designed to handle a wide range of workloads. However,
there are characteristics of streaming video workloads that
can be exploited by specialized scheduling algorithms. There
are many studies, aimed at broadcast streaming scenarios in
which servers push data to clients, where scheduling is used
as a means to maximize throughput [29, 9, 7]. These studies
contain valuable insights, but are not directly applicable to
HTTP streaming video servers, where clients individually
pull requests from the server. As we will demonstrate ex-
perimentally, the choice of block I/O scheduler is not very
important for HTTP streaming video workloads. Regardless
of which scheduler is chosen, significant throughput benefits
are gained from the use of other techniques to improve I/O.

2.2 Prefetching
Prefetching is a well-studied technique, and refers to read-

ing data from the disk into memory before it is actually re-
quested by the user. This allows subsequent read requests to
return immediately instead of blocking on disk operations.
Prior research has shown the effectiveness of using prefetch-
ing as a means of off-setting latency and CPU stalls [22, 6,



36]. Papathanasiou and Scott demonstrated that aggressive
prefetching (prefetching far beyond what is requested by the
user) can be used to offset request latency [20]. However,
latency of disk access is not a significant concern for HTTP
streaming video workloads. Clients use buffering to cope
with potentially high network latencies, so lower latencies
incurred by disk I/O are unlikely to affect the quality of
service experienced by end users.
Instead, HTTP streaming video would benefit from us-

ing prefetching as a vehicle for increasing disk throughput.
Examples of systems that have studied prefetching within
this context are DiskSeen, a system that modifies the Linux
kernel to introduce history-aware prefetching into the op-
erating system [12], and libprefetch, which uses both ker-
nel and application modifications to provide application-
directed prefetching [35]. Unlike previous work, our re-
search considers disk request serialization in combination
with highly aggressive prefetching, and does not require code
changes at the user level nor in the kernel.
Prefetching is commonly performed at the hardware level,

in addition to the software level. We refer to prefetching
done by the disk itself as“lookahead”. Ruemmler and Wilkes
demonstrated that lookahead could improve read times by
up to 42% on Unix-based systems [27], and subsequently
showed that effective use of on-disk caches for lookahead can
yield optimal results for sequential workloads by eliminating
unnecessary rotational delays [26].
An important issue in prefetching concerns how much data

to request with each read operation. A larger prefetch amor-
tizes the overhead cost of a disk access over more bytes of
data but can have adverse consequences, such as the evic-
tion of useful data from the cache. Panagiotakis, et al. [19]
demonstrate that using a large fixed prefetch size to ser-
vice 100 sequential streams improves throughput by up to
4 times compared to not prefetching. Li, et al. [14] provide
a 2-competitive algorithm that uses hard drive performance
specifications to determine a prefetch size. In prior work, we
found that the best prefetch size depends on both available
system resources and specific workload characteristics [32].
We provide an automated algorithm for dynamically deter-
mining a good prefetch size [32], and we demonstrate that
it is possible to further increase the efficiency of servicing
a streaming video workload by exploiting knowledge of spe-
cific workload characteristics to implement a prefetch algo-
rithm [31]. For this paper, we implement a simple prefetch
algorithm in Libception that uses fixed-size prefetches, with
a default size of 2 MB (we experiment with different fixed
prefetch sizes in Sections 5.4 and 5.5). In the future, for
use in a production server or for different workloads, we
could implement an automated workload-specific prefetch
algorithm in Libception.

2.3 Concurrent I/O Streams
It is important to consider the trade-off between read-

ing from disk efficiently using large prefetches and servicing
concurrent disk requests fairly. Panagiotakis et. al demon-
strated rapid degradation of I/O throughput as additional
I/O streams are introduced across a variety of Linux sched-
ulers [19].
The Argon system [37] focused on meeting service-level

agreements by using disk-head time-slicing to ensure mini-
mum levels of throughput to competing applications. Unlike
Argon’s target workload, HTTP streaming video workloads

only require that clients avoid re-buffering (it is not uncom-
mon for clients to buffer about 5 – 30 seconds of video [1,
4]). Because HTTP streaming clients are insensitive to disk
latency, there is scope to reduce fairness between individual
clients in exchange for higher disk throughput.

We will demonstrate that, by using request serialization
in combination with aggressive prefetching, we can achieve
significantly higher HTTP streaming video server through-
put than if we were to allow the system to process the I/O
requests in parallel.

3. DESIGN AND IMPLEMENTATION
We developed a library shim, Libception, that provides

applications with the necessary capabilities for both I/O se-
rialization and aggressive prefetching without the need for
source code or kernel modifications.

Our library is portable, operates in user space, and has
been tested on FreeBSD, Linux and Mac OS X. It is com-
prised of two components: The first component is Deception,
a dynamically linked shared object which inserts itself be-
tween the application and libc calls. Deception intercepts
I/O requests from the application and forwards them to
the system’s second component, Reception. Reception is
a server process that runs separately from applications us-
ing Deception. Reception receives, services, and responds
to requests generated by applications using Deception (in-
cluding prefetching data when necessary). Figure 1 shows a
high-level overview of the components of Libception.

Figure 1: Libception design

3.1 Deception
Deception is the primary interface for communication be-

tween user applications and the Libception library. It is
implemented as a shared object that is dynamically linked
at launch-time by the application that wishes to make use of
it (for example by using the LD_PRELOAD environment vari-
able on most Unix-based operating systems). Once loaded,
Deception begins silently intercepting calls to a variety of
libc I/O-related functions including open, read and send-

file. This technique allows applications to take advantage
of the Libception library’s benefits without requiring any
source code modifications. Furthermore, because Deception
is implemented in user space, it requires no changes to the
underlying operating system.



Most calls to Deception perform several validity checks,
and then determine whether or not the application’s I/O re-
quest is already resident in the system’s file cache. This is
done by using the system calls mmap and mincore to check all
memory blocks of the request (excluding blocks that would
be prefetched if the request went to disk). If a request is
found to be contained entirely in memory, Deception passes
the call to the original libc function (which returns without
needing to go to disk). Otherwise, disk I/O is required, and
a Libception I/O request is constructed and sent to Recep-
tion using Unix sockets (which duplicates any necessary file
descriptors).
Should a disk read be necessary, Deception waits on a re-

sponse from Reception before it proceeds. To ensure trans-
parency, Deception always finishes by executing the appli-
cation’s original libc call and returning to it the appropriate
return codes (even if a parameter input fails sanity checks).
This allows Deception to run invisibly, without affecting the
guarantees of the API for the associated libc call. This in
turn means that the application can expect the same con-
trol and user-functionality for libc I/O calls that it would
be afforded if Libception was not being employed.
Some additional non-I/O libc functions are also inter-

cepted by Deception (such as getpid and fork). These
functions are intercepted for functionality purposes, do not
communicate with the Reception layer, and are also invis-
ible to the user (as they terminate by making the original
libc calls as well). All initialization for Deception is han-
dled transparently at launch by GCC constructor functions
and all cleanup is likewise handled unobtrusively at termi-
nation by GCC deconstructor functions which are run when
the Libception shared object is loaded and unloaded, respec-
tively.

3.2 Reception
In our experiments, Reception is launched as a separate

user space process by the user, prior to running applications
with the Deception shim. It could also be launched as a
daemon process in a production environment. Reception is
primarily responsible for accepting, serializing and servicing
incoming I/O requests from one or more Deception shims.
Reception furthermore modifies requests as necessary (for
example, by enlarging read sizes to introduce readahead),
executes the prefetch itself, and finally responds to Decep-
tion. These tasks are divided between a single Receptionist
thread, and one or more DiskIODaemon threads.
The Receptionist thread acts as a server, accepting re-

quests over Unix sockets. I/O requests received by the Re-
ceptionist thread are sorted by device, and are placed in
one of multiple queues to be serviced by the appropriate
DiskIODaemon thread. The Receptionist server thread also
may delegate requests to a separate maintenance thread that
performs utility tasks, such as statistics collection and ag-
gregation.
DiskIODaemon threads are responsible for performing I/O

for different devices. By default, Reception runs in a single
DiskIODaemon mode, with all requests being serviced se-
quentially in the system by one thread. Alternatively, the
user may set Reception to create individual DiskIODaemon
threads for individual devices in the system. In this case,
the Receptionist de-multiplexes incoming I/O requests to
the DiskIODaemon threads based on the underlying device
for the file descriptor in the request.

Regardless of which mode is selected, DiskIODaemon
threads each use their own lock-protected request queue,
which is filled by the Receptionist, and drained by the
DiskIODaemon thread. Only one request is removed from
this queue at a time by the DiskIODaemon thread, ensuring
that I/O to whichever device it is servicing is serialized. As
requests are pulled from this queue, they are expanded to in-
clude any necessary prefetch information, and are then sent
to disk. Once finished servicing the request, the DiskIO-
Daemon thread sends a message to the Deception shim that
made the request, allowing it to unblock and proceed.

Libception additionally contains options that allow it to
perform prefetch-free serialization, serialization-free prefetch-
ing, and simple request tracking without either serializa-
tion or prefetching (useful, for instance, in latency profiling
or other statistics gathering). Serialization-only mode in-
dicates to Libception not to extend reads provided by the
user and is identical to prefetching with a prefetch size of
zero. Prefetch-only mode transfers the burden of extending
and performing requests from Reception to Deception. In
this mode, instead of communicating with Reception, De-
ception shims simply immediately extend their requests and
perform application-side pread calls before completing the
original I/O request.

4. EXPERIMENTAL METHODOLOGY
We used the methodology described in [33] to generate ex-

perimental workloads and benchmarks. Our workload rep-
resents a large number of HTTP streaming video clients re-
questing videos with characteristics similar to requests for
YouTube videos in 2011. We use a small number of client
machines to generate traffic simulating thousands of concur-
rent sessions. Each session represents an end user viewing
video. The video selected for each session is chosen using
a Zipf distribution with an α value of 0.8. This video is
watched for some fraction of its duration. It is an important
characteristic of video workloads that users do not typically
watch to the end of a video, so this property is reflected in
our workloads: The percentage of a video that any given
user requests is in line with the watching patterns of a typ-
ical YouTube-like workload.

Another important characteristic of our workload is that
the network is not the primary bottleneck. Netflix, for exam-
ple, uses Open Connect Appliance (OCA) servers that have
operational throughputs between 9 Gbps and 36 Gbps [16],
but are provisioned with up to 40 Gbps of network capac-
ity [18]. Instead, the workload is heavily disk-bound. This
can be seen in the findings of our recent work characteriz-
ing the properties of a Netflix video workload [31]. Video
providers maintain a large catalogue of content in order to
appeal to a broad audience. Netflix, for instance, has a cata-
logue which is approximately 2 Petabytes in size [31]. Large
video libraries have long tails [13], meaning they contain a
large amount of infrequently viewed content. Cost effective
storage is achieved by storing videos on large, inexpensive
HDDs and the infrequent access means that the data being
requested must be serviced from disk.

Videos are stored on the server hard drives by storing each
video in a separate file. We stored data for a video in a sin-
gle file rather than multiple chunks because we found this
approach is more efficient in prior experiments [34]. The
disk is populated with 20,000 video files which have an av-
erage duration of 265 seconds, with a similar distribution as



YouTube videos [8]. The files represent videos with a fixed
bit rate of 420 kbps. This bit rate was chosen based on
information available at the time of creation of the bench-
mark [10]. With these duration and bit rate characteristics,
our average file size is 13 MB.
Each client session consists of a sequence of requests for

10 second intervals of video data, which are 0.5 MB in size.
The first three requests in a session are made as quickly as
the server can deliver the results, then subsequent requests
are made on a fixed 10 second interval. This represents the
filling of a playout buffer at the beginning of a session, fol-
lowed by requests to refill the buffer as it is consumed at the
bit rate of the video. This is a simplified model of a pull-
based video client; it does not attempt to represent user
actions like pausing the video, skipping to different points
in the playback, or changing the quality level of the video.
These actions were rare in the YouTube workload we mod-
elled, but our methodology is flexible enough that we could
represent these actions for workloads where they are signif-
icant.
The average duration of a video session is 160 seconds,

using a distribution derived from real-world measurements.
During experiments, video sessions are started at a chosen
rate, using a Poisson distribution for session initiation. Ex-
periments consist of 14,400 sessions, with a maximum of
about 650 concurrent sessions. A total of 118 GB of video
data is requested from 6581 different videos. Each video
is viewed 2.2 times on average and 67.8% of videos are re-
quested a single time during the experiment.
The clients monitor the service time for each request, and

if it takes longer than 10 seconds to completely receive the
data from a request, the client terminates the session and
stops making further requests. For our experiments, we are
interested in determining the highest aggregate client re-
quest rate that can be serviced, so that we can compare
different web servers and configurations. To determine this
rate, the maximum failure-free rate, we conduct a number
of benchmark runs with a range of different aggregate rates
of requests. From this, we determine the highest rate that
results in fewer than 0.3% session failures. This value was
chosen to permit clients to perform a small but very limited
amount of re-buffering.
The clients are connected to the server over a local-area

network with high bandwidth and low delay. To better rep-
resent the conditions available to real-world users, we use
dummynet [23], which allows us to simulate different net-
work types. We throttle 50% of client sessions in the work-
load to 3.5 Mbps, and the other 50% of client sessions to
10.0 Mbps, in order to represent a mix of end-user cable
and DSL access speeds. Furthermore, we add 50 ms of de-
lay to the network in each direction in order to model more
realistic wide-area network conditions.
The equipment and environment we use to conduct our

experiments were selected to ensure that network and pro-
cessor resources are not a limiting factor in the experiments.
We use two server machines, one for FreeBSD experiments
and the other for Linux experiments. Both are HP DL380
G5 systems which contain two four-core Intel E5400 2.8
GHz processors and 8 GB of RAM. The Linux system uses
Ubuntu 12.04 with a Linux 3.2.0 kernel, and a Western Dig-
ital Red (WDC WD10EFRX) 1.0 TB 5,400 RPM 3.5 inch
SATA3 disk to store video files (chosen for its combination
of relatively high throughput and low power consumption).

The FreeBSD system uses FreeBSD 8.0 and stores videos
on an HP 146 GB 10,000 RPM 2.5 inch SAS disk. We use
FreeBSD 8.0 so we can try to match the performance ob-
tained previously with a modified web server [33]. Video
files accessed during experiments are stored on a separate
disk from the operating system.

Four client machines are used to generate the load of thou-
sands of viewers on the servers. Each of these systems con-
tains either dual 2.4 or dual 2.8 GHz Xeon processors and
2 GB or 3 GB of memory. Client machines run Ubuntu 10.04
on top of version 2.6.32-30 of the Linux kernel. They also
use a version of httperf [15] that was modified locally to sup-
port new features in a workload generation module named
wsesslog. These modifications also allow the clients to track
additional statistics. All clients are connected to the server
via multiple 1 Gbps network links through multiple 24-port
switches, helping to further ensure that the network is not
a bottleneck.

5. PERFORMANCE EVALUATION
We now evaluate the maximum failure free throughput

(often referred to henceforth as throughput) of the Apache,
nginx, and userver web servers while utilizing Libception on
FreeBSD and Linux servers. In all cases, we have tuned the
web server to the best of our ability so that it provides the
greatest maximum failure free throughput. Unless otherwise
specified, the prefetch size used by Libception is 2 MB (we
examine other sizes in Sections 5.4 and 5.5).

5.1 Evaluation on FreeBSD
In previous work [33, 34] we demonstrated how modifi-

cations to the userver web server to perform asynchronous
serialized aggressive prefetching (ASAP) within the applica-
tion significantly increased server throughput when servicing
streaming video workloads. Unfortunately, these benefits
rely on modifying the web server to use the SF_NODISKIO

option [25] to the sendfile system call which is only avail-
able on FreeBSD. This flag causes sendfile calls that would
block on disk I/O to instead return EBUSY.

The basic architecture of the userver using ASAP is to
have a separate thread which performs large disk reads (thus
implementing asynchronous, serialized, aggressive prefetch-
ing). This was relatively straightforward in the userver be-
cause it integrates well with its event-driven architecture and
we were very familiar with the relatively small code base of
the userver.

In this section we are interested in providing similar ben-
efits to the more widely used Apache and nginx web servers
without directly modifying either application. Note that ng-
inx running on FreeBSD is of interest because the servers in
the Netflix Open Connect Content Delivery Network use ng-
inx on FreeBSD [17]. This is particularly relevant because
Netflix currently accounts for a large fraction of peak Inter-
net traffic in the United States [28].

We avoid making code modifications to the web servers
because they each have a much larger code base than the
userver and because Apache uses a significantly different
software architecture (thread-per connection) [21]. Addi-
tionally, we want to determine if Libception can improve
web server performance without using the non-portable
SF_NODISKIO option to the sendfile system call.

Figure 2 shows the maximum failure free throughput ob-
tained when using each of the Apache (labelled “A”), ng-



inx (labelled “N”) and userver (labelled “U”) web servers.
Throughput is shown without Libception (labelled“Vanilla”),
when using Libception (labelled “Libception”), and for the
modified version of the userver that uses the SF_NODISKIO

option (labelled “ASAP”). Additionally, this graph shows
both the disk throughput and the web server throughput as
observed by all of the client machines.
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Figure 2: FreeBSD throughput without and with
Libception and with ASAP

These results show that Libception is able to more than
double disk throughput and total server throughput for all
three web servers. As well, when using Libception, the
maximum failure free throughput obtained by each server
is equal to that obtained by the modified ASAP userver.
This is despite Libception’s use of mincore prior to each
call to sendfile (rather than relying on the non-portable
SF_NODISKIO option) to determine whether or not data needs
to be prefetched before calling sendfile. Although previ-
ous work reports that mincore call overhead can be signifi-
cant [24], these video server workloads are disk-bound and
can therefore easily tolerate the increase in CPU overhead.
It is worth pointing out that, in these experiments, not

all of the data that is requested needs to be read from disk.
For example, two clients requesting the same video content
in quick succession will only require the data to be read
from disk one time. Therefore, the difference between the
total server throughput and the disk throughput is due to
file system cache hits.
To the best of our knowledge, the version of FreeBSD used

for these experiments does not provide any options to control
the block I/O scheduler. There were also relatively few op-
tions available to influence kernel prefetching decisions and
we were not able to significantly improve throughput using
kernel parameters.

5.2 Evaluation on Linux
As noted previously, one of the key goals of Libception

is to provide improved throughput for HTTP video web
servers using techniques that are portable across different
Unix-based operating systems. As a result, we now examine
the performance of Apache, nginx and the userver on Linux.
Recall that the disks used on the FreeBSD and Linux sys-
tems are different so we can not compare performance across
the different operating systems.
Figure 3 shows the disk throughput and maximum fail-

ure free throughput obtained using each of the different web
servers on Linux running with and without Libception. As
was the case for FreeBSD, Libception again provides signifi-

cant improvements in disk and server throughput. On Linux
server throughput is increased by a factor of about 2.5 times
when using Libception.
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Figure 3: Linux throughput without and with Lib-
ception

To our surprise, despite years of research on prefetch-
ing techniques in operating systems, these applications and
workloads do not appear to perform very well on either
FreeBSD or Linux.

5.3 Evaluating Linux Block I/O Schedulers
The default Linux configuration on our system uses the

CFQ block I/O scheduler [2]. We expected that the antic-
ipatory nature of the Linux CFQ scheduler might be well-
suited to this workload. Because web servers simultaneously
process requests from thousands of clients, we expected that
blocks from different requests might provide reordering op-
portunities that could be exploited by CFQ to improve disk
and server throughput. For completeness we now examine
the performance of all web servers with each of the three
block I/O schedulers available in Linux. Figure 4 shows
the throughput obtained without Libception while using the
CFQ (labelled “C”), deadline (labelled “D”) and NOOP (la-
belled “N”) schedulers. Figure 5 shows the results obtained
using the same schedulers but this time while using Libcep-
tion.
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Figure 4: Servers without Libception using different
block I/O schedulers

Interestingly, Figure 4 shows that without Libception the
server throughput is slightly higher with the deadline and
NOOP schedulers than with the CFQ scheduler. On the
other hand, when using Libception (see Figure 5) all web



servers obtain the same maximum failure free throughput of
nearly 50 MB/second regardless of the block I/O scheduler
used. We believe that this is because Libception is serial-
izing all of the reads that go to disk and as a result the
schedulers only ever see a single outstanding request, which
leaves no room for scheduling policies to make a difference.
Note that we have spent some time attempting to adjust the
parameters designed to control the behaviour of the deadline
and CFQ block I/O schedulers. We did not see throughput
improvements when compared with the default values.
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Figure 5: Servers with Libception using different
block I/O schedulers

In summary, the different schedulers do not significantly
improve web server throughput on this workload. More
importantly, Libception provides significant increases in
throughput that are not possible using the block I/O
scheduling algorithms.

5.4 Evaluation Insights
In this section we first conduct a sequence of experi-

ments designed to understand the relative importance of the
prefetching and serialization components of Libception. For
the remainder of the paper we focus solely on the nginx
server and the CFQ block I/O scheduler. We chose ng-
inx because it is used by Netflix for serving HTTP video
streaming workloads. We chose CFQ because it is the de-
fault block I/O scheduler on our Linux server and because
the schedulers did not significantly affect performance when
using Libception (see Figure 5).
Figure 6 shows the maximum failure free throughput ob-

tained using nginx without Libception (labelled “Vanilla”),
with Libception using only serialization (labelled “Serial-
ized”), with Libception using only prefetching (labelled
“Prefetching”), and with Libception using both serialization
and prefetching (labelled “Libception”). As can be seen in
this figure, serialization alone actually reduces throughput.
We believe that this is primarily due to the relatively small
size of reads that the application performs. These small
reads, in conjunction with serialization, result in small re-
quests being issued one at a time, which causes very poor
performance. On the other hand, using prefetching with-
out serialization does significantly increase both disk and
server throughput when compared with the “Vanilla” server.
Finally, by combining both aggressive prefetching and seri-
alization, a further increase of approximately 25% beyond
that of prefetching is alone is achieved. These experiments
demonstrate that, while aggressive prefetches are essential,

the full potential of Libception is not realized unless the
requests to the disk are serialized.
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Figure 6: nginx Vanilla, and nginx with Libception
using serialization only, prefetching only, and both

In previous work [33, 34] and in all experiments in this
paper up to this point, the prefetch size was set to 2 MB.
We now examine a range of prefetch sizes and study the
impact on the throughput of nginx while using Libception
with prefetching but without serialization (see Figure 7) and
with both prefetching and serialization (see Figure 8)

Figure 7 shows that, without serialization, throughput
does not improve until a prefetch size of 2 MB or greater
is used. It also demonstrates that prefetch sizes of 3 and 4
MB provide slightly better throughput than a prefetch size
of 2 MB.
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Figure 7: nginx with Libception using various
prefetch sizes (no serialization)

Figure 8 shows that when using Libception, with both
serialization and prefetching, small prefetch reads actually
slightly reduce server throughput. However a prefetch size of
1 MB does significantly improve server throughput, which is
not the case when prefetching is used without serialization.
When using both serialization and prefetching, throughput
peaks with prefetch sizes of 2 – 4 MB, and also shows that
serialization provides additional benefits (about 10%) when
compared with prefetching alone.

5.5 Using Insights to Improve Linux
We now use the insights obtained from the previous sec-

tion to modify Linux kernel parameters in an attempt to
improve the performance of nginx when running on Linux
without the use of Libception. The question being examined
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Figure 8: nginx with Libception using serialization
and various prefetch sizes

is: can we find and tune appropriate Linux kernel parame-
ters in order to obtain throughput that equals that obtained
using Libception?
It was not too difficult to find a Linux kernel parame-

ter that we were able to adjust to increase the amount of
data being read from disk by the kernel. When obtain-
ing data from disk the Linux kernel may (depending on
several factors the details of which aren’t relevant to this
discussion) extend the read beyond what the user has re-
quested. Roughly speaking, a readahead size is tracked per
file and under proper conditions grows for each successive
read. However, the maximum readahead size for all files on
a device is limited by the kernel parameter read_ahead_kb,
which can be set differently for each device. The default
setting for this parameter for the version of Linux used in
our experiments is 128 KB. This is quite small compared to
the aggressive prefetches we use in Libception (e.g., 2 MB
in many cases) in order to obtain significant increases in
throughput.
Figure 9 demonstrates how the throughput of nginx

changes as the value of the readahead parameter is increased.
As an example of how we set the readahead size to 1024
KB on disk drive used to store video files (/dev/sdb1), we
use the command blockdev -setra 1024 /dev/sdb1. As
can be seen in this graph, read_ahead_kb values of 0.5 MB
and 1 MB provide significant improvements over the default
value of 128 KB (labelled “V” for Vanilla). Larger values
for read_ahead_kb do not perform as well as 1 MB. While
throughput obtained with 1 MB is about 45 MB/second
it is not as high as that obtained using Libception (50
MB/second). Understanding why this is the case involved
significantly more work.

Although the size of the prefetch for files were actually
reaching the limit imposed by read_ahead_kb, using the
Linux blktrace facility we were able to determine that re-
quests to the disk were being limited to 512 KB. We believe
that, as a result, some requests for reads to different files
were being interleaved (this is similar to the Libception case
where prefetching is used but serialization is not).
By examining the Linux kernel source we were even-

tually able to determine that another kernel parameter
was placing further limits on the size of reads. This
value /sys/block/sdb/queue/max_sectors_kb (for the disk
/dev/sdb) uses the default size of 512 KB. We expect that
the default values for these two limits (read_ahead_kb and
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Figure 9: nginx without Libception using various
read_ahead_kb sizes

max_sectors_kb) are chosen in order to ensure fairness
across different disk requests and to keep latencies low.

To ensure that max_sectors_kb does not limit the size
of disk reads we set its value to 16 MB. We then adjust
read_ahead_kb and examine the throughput obtained by
nginx. Figure 10 shows the results of these experiments and
demonstrates the importance of setting both kernel param-
eters to proper values in order to obtain good throughput
on this workload. In this case a read_ahead_kb size of 1 or
2 MB, now results in throughput of about 58 MB/second,
which is slightly better than that obtained using Libception.

 0

 10

 20

 30

 40

 50

 60

 70

V 0.5MB 1MB 2MB 3MB 4MB 5MB

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

Figure 10: nginx without Libception using various
read_ahead_kb sizes, with max_sectors_kb = 16 MB

Figure 11 now shows results obtained using Libception
in addition to using modified Linux kernel parameters. In
this case max_sectors_kb is set to 16 MB to ensure that it
does not limit read sizes and the Libception prefetch size
and read_ahead_kb are adjusted together using the values
shown along the x-axis of the graphs. The column labelled
“V” is showing the vanilla case where nginx runs without
Libception and the default kernel parameter values are used.
Although these results show a slight improvement in maxi-
mum failure free throughput when compared with just using
Libception, they are still lower than adjusting the kernel pa-
rameters alone and not using Libception.

We observe that for some configurations of the experi-
ments conducted in this section, the disk throughput exceeds
the total server throughput. In these cases data that is being
prefetched is actually being evicted before it is requested by
and sent to the client. This means that, for the amount of
memory in the current system, prefetching has become too
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Figure 11: nginx with Libception using various
prefetch and read_ahead_kb sizes, with max_sectors_kb

= 16 MB

aggressive and is causing evictions. We expect that in these
cases, increasing the amount of memory in the system will
likely increase total server throughput because there will be
less memory pressure created by aggressive prefetching. It
seems that, in HTTP video streaming workloads, it may be
more important to have memory acting as a buffer for large
aggressive prefetching (in order to obtain high disk through-
put) than as a file system cache.

5.6 Evaluating Latencies
When servicing HTTP video server workloads, server

throughput is strongly influenced by disk throughput. This
is because video services like YouTube and Netflix have large
numbers of videos that are viewed infrequently (i.e., the pop-
ularity distribution of videos has a long tail). In order to im-
prove disk throughput Libception prefetches relatively large
amounts of data and serializes access to each disk. This nat-
urally increases disk throughput while potentially increasing
latencies for some requests. The potential for increased la-
tencies should be relatively harmless when servicing video
server workloads because clients are designed to be able to
tolerate fairly significant latencies by using a play out buffer.
The play out buffer is filled before play begins and is used
to seamlessly continue playing the video even during periods
where the client may experience latencies due to the network
or HTTP server. For example, a client with a 10 second play
out buffer can tolerate nearly 10 seconds of latency for some
requests. As long as the data being requested arrives (and
can be decoded before) within 10 seconds of when it is re-
quested, the user will not experience any problems.
Before delving into further empirical analysis, it is impor-

tant to note that all of our results place an implicit bound
on latency. Client timeouts occur when a request has not
received a corresponding response after 10 seconds. This
latency includes the time to transmit the request, service
the request at the server, and transmit the response. There-
fore, if a client completes a session without errors, all of the
latencies must have been acceptable.
In order to better understand the latencies incurred by

using Libception and the aggressive tunings of Linux kernel
parameters that support high server throughput, we now
examine the latencies experienced by server processes. We
use an existing system call tracing facility that exists in the
userver to record the time required for every call to sendfile
in memory and print those times to disk after the server

has finished servicing all requests. While client-side latency
measurement would give an indication of end-user quality
of experience, latency measurement at the server simplifies
the collection process. Furthermore, as noted in Section 4,
in our workload the network does not serve as a bottleneck.
Therefore, server-side latencies should be reflective of client-
side latencies, minus network transfer time.

Figure 12 shows the cumulative distribution function of
sendfile call times without Libception and with default
kernel parameters (labelled “Vanilla”), with Libception, and
with the aggressive kernel parameter tunings. The “Vanilla”
and “Libception” lines are created using data from one
run with the userver using the configuration that obtains
the highest error free rate (i.e., the two userver configura-
tions used in Figure 3). The “Aggressive Kernel Params”
line was created by setting read_ahead_kb to 2 MB and
max_sectors_kb to 16 MB and using the same request rate
as used for the configuration of nginx shown in Figure 10.
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Figure 12: userver sendfile latency CDF

Figure 12 shows that Libception has the smallest density
of requests that are serviced in the lowest range of laten-
cies (i.e., below 0.1 ms). This is due to the extra overhead
incurred from the mincore system call, which is used to de-
termine if the data being requested is in memory or if it
should be prefetched from disk. In cases where the data is
already in memory, the lowest latencies are achieved by call-
ing sendfile directly. For requests where the desired data is
not in memory at the time of the sendfile call, the“Vanilla”
configuration results in a blocking call to sendfile because
the data being requested needs to be read from disk. When
a disk read occurs using either Libception or aggressively
tuned kernel parameters, the application-initiated read is
serialized and increased in size (to 2 MB in this case) to
implement prefetching. Although this incurs some overhead
for that individual request, subsequent reads will often be
served directly from the file system cache with compara-
tively low latencies. The net result is a significant reduction
in latencies for a large number of sendfile calls. While
about 49% of sendfile calls take less than 1 ms under the
“Vanilla” configuration, about 85% of sendfile calls take
less than 1 ms for the Libception configuration, and about
95% of sendfile calls take less than 1 ms for the aggressive
kernel parameters configuration.

The key observation from this experiment is that, al-
though one might expect latencies to increase because of
large serialized prefetches, for this workload they actually
decrease for a large number of data requests.



5.7 Evaluation Summary
Table 1 summarizes the main results from our experi-

ments. Entries marked with an asterisk are not possible to
obtain (e.g., the ASAP userver requires an option to send-

file that is only available on FreeBSD so it can’t be run
on Linux). Entries marked with “–” are not included due
to space and/or because they are unlikely to provide new
insights. On FreeBSD, the use of Libception more than
doubled the peak server throughput for Apache, nginx and
userver. We were not able to improve the poor performance
achieved by these web servers without Libception by tuning
FreeBSD kernel parameters. Comparing the results for the
userver modified to directly incorporate aggressive prefetch-
ing and serialization (ASAP) shows that the overhead of im-
plementing these techniques in a shim library, rather than
directly, is negligible for our HTTP video streaming work-
load (on FreeBSD the throughput obtained with Libception
for all servers matches that obtained with ASAP).

Default Libception Kernel Libception
Tuning + Kernel

Tuning
FreeBSD
nginx 39.75 83.71 * *
Apache 30.10 83.88 * *
userver 39.74 83.56 * *
ASAP 83.99 – * *
Linux
nginx 25.11 49.06 58.29 53.85
Apache 25.18 49.26 – –
userver 25.16 49.18 – –
ASAP * * * *

Table 1: Summary of Results: Throughput in
MB/sec.

These FreeBSD results raise the question of whether they
might reflect some deficiency in the block I/O scheduler in
that system. This prompted us to take a careful look at per-
formance on Linux, which supports three different block I/O
schedulers. We found that use of Libception approximately
doubled the peak server throughput on Linux, for all three
web servers, regardless of the choice of block I/O scheduler.
However, using our insights from Libception as a guide and
in some cases examining the Linux kernel source code, we
were able to discover kernel parameters that we could tune
to obtain slightly better performance than that with Libcep-
tion. In contrast to Libception which is highly portable, we
could not run our modified version of the userver on Linux
since it makes use of a system call option that is not available
on that system. Finally, a potential concern might be that
these throughput improvements have significant cost with
respect to latency, but as shown in Section 5.6 this does not
appear to be the case.

6. DISCUSSION
Perhaps surprisingly, our results show that, without Lib-

ception, none of the web servers we investigated yield good
performance for HTTP video streaming workloads, on ei-
ther FreeBSD, or Linux with default kernel parameter set-
tings. This finding suggests that web server implementa-
tions are still optimized for more traditional web workloads,

despite the rapid growth of HTTP video streaming. Also,
web server developers might assume that, after many years
of research and development, prefetching (or readahead) in
operating systems, to efficiently use a magnetic disk is a
“solved problem”, but evidently this is not the case. Al-
though with Linux, it was eventually possible to achieve
good performance after kernel parameter tuning, it is note-
worthy that such manual tuning was required. For services
like Netflix and YouTube, due to the large amounts of video
available, the wide variety of bit rates at which each video is
encoded, and because of the large number of videos that are
viewed infrequently, it is not economically viable to store
it all on SSDs. As a result, obtaining good performance
when servicing video from disks is still important in these
settings. We have found Libception to be a relatively sim-
ple and portable platform for implementing and evaluating
techniques for improving disk I/O efficiency. In particular,
using Libception we were able to readily evaluate the bene-
fits of aggressive prefetching and I/O serialization for HTTP
video streaming workloads, using multiple web servers and
operating systems.

As demonstrated in Section 5.4 and Section 5.5, select-
ing a prefetch size which is too small results in low disk
throughput. Likewise, selecting a prefetch size which is too
large leads to a drop in system throughput. As a result ob-
taining peak server throughput requires choosing the most
appropriate prefetch size. In previous work we have demon-
strated how the best prefetch size and the benefits obtained
from prefetching are sensitive to workload and system prop-
erties [32]. We show how the best prefetch size can be af-
fected by the amount of available system memory, the dis-
tribution of the popularity of videos requested, hard drive
characteristics, and the bit rates of files being served.

In order to avoid having to exhaustively and repeatedly
determine the best prefetch size when workload or system
characteristics change, we have designed an algorithm for
dynamically and automatically adjusting the prefetch size
with the goal of obtaining peak server throughput [32]. We
demonstrate that a gradient descent algorithm, which mini-
mizes a score based on a combination of disk transfer times
and file system cache miss ratio, is effective at selecting
prefetching sizes that result in high server throughput. This
adaptive algorithm results in throughputs that rival those
obtained by exhaustive manual tuning across a variety of
different workload and system characteristics. We believe
that such a strategy could be added to Libception, allowing
it to continue providing high throughput while also elimi-
nating the need to manually set a prefetch size.

In more recent work [30, 31] we have analyzed log files
of HTTP requests to characterize the workloads of two dif-
ferent types of production Netflix servers. We use simula-
tion to show that workload-specific adjustments can be used
to increase server throughput. However, some of these im-
provements require knowledge of request streams and other
information about the workload that may be difficult to in-
fer in Libception. An interesting question is how much in-
formation can be provided to Libception, without requir-
ing changes to web server code and whether or not it such
changes can compete with the performance that can be ob-
tained by directly modifying the web server. We intend to
explore such questions in future work.



7. CONCLUSIONS
HTTP video streaming has become an important class of

web server workloads. Such workloads have quite different
characteristics than the web server workloads that have been
the focus of most prior work on web server performance. In
particular, the requests to HTTP video streaming servers
are for large chunks of data commonly stored on disk, so
these servers are frequently disk-bound.
In this work, we have designed, implemented and evalu-

ated Libception, an application-level shim library incorpo-
rating techniques for improving disk access efficiency. HTTP
video streaming servers can achieve the benefits of these
techniques simply by linking with Libception, without the
need for any source code modification. Experiments with
three web servers (Apache, nginx and the userver) and two
operating systems (FreeBSD and Linux) showed that with
the aggressive prefetching and disk I/O serialization tech-
niques currently implemented in Libception, peak server
throughput can be doubled. Only on Linux with kernel pa-
rameters tuned for this workload was it possible to achieve
performance competitive with Libception. We believe that
Libception could be fruitfully applied to investigate other
techniques for improving HTTP video streaming perfor-
mance, and possibly for improving the performance of other
disk-intensive applications.
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