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Abstract

This paper introduces Time-lined TCP (TLTCP). TLTCP is
a protocol designed to provide TCP-friendly delivery of time-
sensitive data to applications that are loss-tolerant, such as
streaming media players. Previous work on unicast delivery of
streaming media over the Internet proposes using UDP and per-
forms congestion control at the user level by regulating the appli-
cation’s sending rate (attempting to mimic the behavior of TCP in
order to be TCP-friendly). TLTCP, on the other hand, is intended
to be implemented at the transport level, and is based on TCP with
modifications to support time-lines. Instead of treating all data
as a byte stream TLTCP allows the application to associate data
with deadlines. TLTCP sends data in a similar fashion to TCP un-
til the deadline for a section of data has elapsed; at which point
the now obsolete data is discarded in favor of new data. As a re-
sult, TLTCP supports TCP-friendly delivery of streaming media by
retaining much of TCP’s congestion control functionality. We de-
scribe an API for TLTCP that involves augmenting the r ecvimsg
and sendnsg socket calls. We also describe how streaming me-
dia applications that use various encoding schemes like MPEG-1
can associate data with deadlines and use TLTCP’s API. We use
simulations to examine the behavior of TLTCP under a wide range
of networks and workloads. We find that it indeed performs time-
lined data delivery and under most circumstances bandwidth is
shared equally among competing TLTCP and TCP flows. More-
over, those scenarios under which TLTCP appearsto be unfriendly
are those under which TCP flows competing only with other TCP
flows do not share bandwidth equitably.

1. Introduction

It is widely believed [1] [23] [8] that congestion control
mechanisms are critical to the stable functioning of the Internet.
Presently, the vast majority (90-95%) of Internet traffic uses the
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TCP protocol [3] which incorporates congestion control [11] [26].
However, due to the growing popularity of streaming media appli-
cations and because TCP is not suitable for the delivery of time-
sensitive data, a growing number of applications are being imple-
mented using UDP [15].

Since UDP does not implement congestion control, protocols
or applications that are implemented using UDP should detect and
react to congestion in the network. Ideally, they should do so in
a fashion that ensures fairness when competing with existing In-
ternet traffic (i.e., they should be TCP-friendly). Otherwise such
applications may obtain larger portions of the available bandwidth
than TCP-based applications. Moreover, the wide-spread use of
protocols that do not implement congestion control or avoidance
mechanisms could result in a congestive collapse of the Internet
[8] similar to the collapse that occurred in October, 1986 [11].

The work described here is motivated by these concerns. From
the perspective of the application there is a need for a protocol that
is designed for transporting data with deadlines over a network
that provides no quality of service (QoS) guarantees. From the
perspective of the network there is a need for a protocol that gen-
erates streams that compete fairly with the existing traffic and per-
forms congestion control using robust mechanisms. To this end we
have created a new protocol, called time-lined TCP (TLTCP) de-
signed to support the TCP-friendly delivery of time-sensitive data
over the Internet.

Contributions

o \We have created a new transport protocol, called time-lined
TCP (TLTCP), for delivering time-sensitive data over the In-
ternet. We have devised a way for TLTCP to use the robust
window-based congestion control of TCP without requiring
that the data be delivered reliably. As a result, TLTCP com-
petes fairly with TCP flows (and is TCP-friendly) over a
wide range of network conditions. TLTCP associates each
section of data with a deadline and uses a novel time-lined
data delivery mechanism in TLTCP that uses these dead-
lines to keep track of the sections of data that are obsolete
and ensures that no obsolete data is sent.

e TLTCP provides an interface that is more suited to con-
tinuous media applications than a simple end-to-end byte
stream. We propose augmenting the present socket API
that allows a sending application to specify a deadline when
handing a section of data to TLTCP. The API also allows
TLTCP to inform the receiving application of the gaps in



the data being delivered. The proposed changes do not alter
but extend the semantics of the present socket API.

e We have performed extensive simulation experiments to
evaluate TLTCP. The experiments show that TLTCP indeed
performs data delivery in a time-lined fashion. Furthermore,
using data from our simulations we have quantified the ef-
fect of TLTCP flows on competing TCP flows. Our simula-
tion results show that TLTCP is indeed TCP-friendly over a
wide range of network conditions. In addition, the circum-
stances where TLTCP seems to be TCP-unfriendly are those
under which TCP is unable to share bandwidth equitably.

The remainder of this paper is organized as follows. In Section 2
we describe related work and in Section 3 we explain our approach
to the problem. Section 4 describes how our protocol would be
used in conjunction with streaming media applications. How the
TLTCP protocol operates is described in Section 5. We report the
results from our simulation experiments using the ns-2 network
simulator [29] in Section 6. This is followed by conclusions in
Section 7.

2. Reated work

Previous work [4] [25] [18] [23] has examined rate-based algo-
rithms for implementing TCP-friendly congestion control. In each
case the sender throttles the rate at which it injects packets into the
network in order to perform congestion control. To compete fairly
with TCP, the sending rate is regulated, thus attempting to achieve
the same throughput as a TCP-stream would if operating under
the same conditions. These approaches are based on models that
attempt to characterize TCP congestion control mechanisms [12]
[14] [17]. As data is sent, the application measures or estimates
values for the parameters of the model; such as packet loss rates,
round-trip times, and timeout values. Using these parameters and
the model the application periodically recomputes the appropriate
sending rate. The proposed schemes differ primarily in the com-
plexity and accuracy of the model used.

RAP [23] employs a relatively simple additive-increase,
multiplicative-decrease (AIMD) model of TCP’s congestion con-
trol mechanisms and is able to obtain relatively TCP-friendly be-
havior when competing for bandwidth with TCP Sack flows [6].
While it is targeted towards future Internet scenarios in which TCP
Sack and RED [9] are widely deployed, it is not able to share
bandwidth fairly with common implementations of TCP [6], TCP
Tahoe or TCP Reno [22]. A significant advantage of TLTCP is
that it is based on and is TCP-friendly with TCP Reno implemen-
tations, which is the most widely used TCP implementation in the
Internet today [19] [20].

Sisalem et al. [25] propose a rate based equation that is de-
signed to be used with RTP/RTCP. Their scheme dynamically
computes an additive increase rate and also performs backoff. Ex-
periments conducted with RED gateways are reported and show
that their scheme does not share bandwidth equally under situa-
tions with low loss rates. We expect TLTCP to be more stable and
share bandwidth equally under conditions with low loss rates.

Padhye et al. [18] describe and evaluate a rate control proto-

col based on a more detailed model of TCP throughput [17]. Al-
though they are able show that their protocol is TCP-friendly under
a variety of network configurations and conditions, the recompu-
tation interval (the time between rate adjustments) must be chosen
carefully. As can be seen from their simulation results the best
recomputation interval may vary across different network condi-
tions, making it difficult to use one recomputation strategy under a
variety of circumstances. They also point out that they do not share
bandwidth fairly with TCP streams when bottleneck link delays
are small or large because it makes it difficult to obtain accurate
estimates of loss rates.

Ramesh et al. [21] describe a number of potential drawbacks of
model based approaches. In particular, they point out that several
factors can result in inaccurate packet loss estimates in the model
developed by Padhye et al. [17]. These inaccurate estimates can
lead to under or over-allocation of bandwidth to non TCP flows.
TLTCP is not model based but ACK-clocked and thus is not im-
pacted by these drawbacks.

Cen et al. describe a streaming control protocol (SCP) [4], that
uses a congestion window based policy for congestion avoidance.
While their approach is similar to TCP they they do not perform
retransmission and are not faithful to TCP in order to improve
smoothness in streaming. The experimental results reported us-
ing an implementation of SCP on top of UDP show that the packet
rates of competing SCP and TCP sessions differ significantly un-
der a variety of network configurations.

Another scheme reported by Jacobs et al. [10] attempts to
mimic TCP’s congestion window in user space. The window size
is used to estimate bandwidth which is then used to drive a media
pump at the sender that uses UDP to send data to the receiver. At-
tempting to mimic the congestion window of TCP at the user level
is likely to be inaccurate. This is because, the fact a message is
written to the UDP socket does not mean that the packet has been
released into the network. A mechanism in the user space would
have no means of knowing if the message or its acknowledgement
is waiting in the kernel buffers or traversing a link. TLTCP does
not use a media pump to regulate its data sends but instead it uses a
sliding window protocol like TCP. TLTCP also does not use UDP
and is meant to be implemented in the kernel by making changes
to the TCP stack. Furthermore unlike the schemes proposed in
past, TLTCP uses the time-lined nature of continuous media to
drive its data sends. Details of the scheme proposed by Jacobs et
al. [10] are not provided and it is unclear how TCP-friendly such
an approach would be.

3. Proposed approach

Unlike previous work, our approach is not based on models of
TCP. Instead we propose a new protocol, called time-lined TCP
(TLTCP), that is intended to be implemented at the transport level,
and is based on TCP with modifications to support time-lines.
Time-lines are used for the delivery of time-sensitive data to loss-
tolerant applications such as streaming media players. Such appli-
cations are time-sensitive because data that arrives after the dead-
line by which it was meant to be played is not useful and will
simply be ignored. Although using TCP will ensure that an ap-
plication is TCP-friendly, TCP is unsuitable for such data transfer



because it will potentially send obsolete data that would no longer
be useful to the receiving application.

When using TLTCP, in addition to specifying the data and its
size, an application includes the deadline after which the transport
protocol should stop trying to send that data. TLTCP attempts to
send the data until the deadline has expired, at which point it is
presumed that the data would be obsolete by the time it would
reach the receiver. Once a deadline has expired TLTCP abandons
the obsolete data in favor of new data that is associated with later
deadlines. Note that deadlines are defined to be relative to the
sender. For best-effort service, the present scheme could be easily
extended to make the deadlines relative to the receiver by factoring
in the RTT estimates to the deadlines. TLTCP is intended to be
implemented in the transport level of the kernel. Since TLTCP is
ACK-clocked, it is able to mimic the behavior of TCP over a wide
range of conditions. As TCP continues to evolve [11] [26] [2] [6]
we believe that it would be relatively easy to implement a time-
lined version of the protocol. However, we expect that it will be
relatively difficult to produce accurate models and develop TCP-
friendly protocols for each future variation of or modification to
TCP.

4. Applications

The continuous media application that uses TLTCP is expected
to handle the encoding scheme specific functions, while relying on
TLTCP to perform congestion control and best effort data deliv-
ery. The sending application would typically calculate a schedule
for the transmission of its data. Each section of data being sent
(e.g., sequence of video frames, layers of video, or audio samples)
would be assigned a deadline that is determined by the schedule
(which would account for buffering and delay characteristics of the
encoding and decoding schemes). The receiver application would
begin playback after first receiving and buffering some portion of
the data. During playback portions of data are decoded and pre-
sented to the user. If the sender is not be able to send all or even
portions of a section before the deadline associated with the sec-
tion expires, the receiver may be able to continue with a lower
quality playback, depending on the application’s ability to tolerate
lost data.

For example MPEG-1 video [24] that has frames with vary-
ing degrees of importance for the playback application, I, P and
B respectively. Roughly speaking, the | frames can be displayed
independently while the P frames can only be displayed if the pre-
vious | or P frames has arrived. The B frames are bidirection-
ally encoded and cannot be displayed unless the previous non-
bidirectionally encoded (I or P) frame as well as the next non-
bidirectionally encoded (I or P) frame are delivered. Because of
the bidirectional dependencies, the display order of frames dif-
fers from the order in which they are stored in a file or trans-
ported. For instance the display order of an MPEG-1 video
may be, {I1, P}, Bi, P}, 12, P2, B? 1%, ...}. However, the or-
der in which this sequence is stored in an MPEG file will be
{]117P117P217]127B%7P1271137B127" }

TLTCP sections are created from an MPEG-1 file in the same
order as they are stored but the deadlines are assigned according to
the order of display. The same deadline is assigned to an | frame,

the P frames directly dependent on the | frame, the P frames that
are dependent on the P frames that depend on the | frame an so
on. The B frames are assigned the same deadlines as the ear-
lier frames they depend upon, but they are sent after the frames
they depend upon. Thus in the example above the deadline assign-
ments would be as follows. {{I{, P!, P} : d'}, {I? : d*},{B] :
d'},{P? : &*}, {1} : &}, {B? : d*},...}. The sending ap-
plication would start by writing the encoded frames to the socket
as described above and TLTCP would try to deliver the sections in
the order they were written. However, if the available bandwidth is
insufficient to deliver all of the section {7}, P!, P; } TLTCP may
discard P; at the expiry of d* and start sending the more impor-
tant frame, I? since it is associated with the later deadline d2. In
other words, if the bandwidth is insufficient TLTCP will discard
the less important data and instead attempt to deliver the more im-
portant data that still has a chance of reaching the receiver in time
for playback. Note that, if the available bandwidth decreases fur-
ther (due to congestion), the sending application upon receiving
feedback from the playback application may decide to change its
transmission schedule and just send the | and P frames or even just
the | frames so that the important frames have more time to get de-
livered. Reusing the example, the data sections handed to TLTCP
in these two reduced bandwidth cases described above would look
like {{]117P117P21 : d1}7 {]12 : d2}7 {P12 : d2}7 {]io) : d3}7 < }
and {{I} : &'}, {1 : &}, {1} : d®},...} respectively. The
MPEG receiver on the other hand, will be able to continue play-
back but the quality of playback would worsen as more frames are
skipped.

The API

The API for TLTCP has two main functions. First, the send-
ing application needs to be able to specify to TLTCP segments of
data along with their associated deadlines. Second, the receiving
end needs to be able to deliver to the client application the re-
ceived data along with information about where gaps are located.
We propose augmenting the UNIX socket calls of r ecvimsg and
sendnsg [28] for this purpose.

To see how the API would be used consider the following ex-
ample. The server process first creates a SOCK_STREAM socket
and connects it to the receiver to establish the data connection.
Then the various fields of the msg_header structure are filled
in before calling sendnmsg with a MSG.TL flag used to indi-
cate time-lined data. Pointers for each of the data sections to
be sent by TLTCP are stored in an array of nsg_i ov structures.
These are made up of a pointer to the data, i ov_base and the
size of the data, i ov_l en. The size of the msg_i ov array is
equal to the number of sections being written and is stored in the
nsg-i ovl en field of the msg_header. Deadlines correspond-
ing to the data sections are provided using an ancillary data mes-
sage. The value of the deadlines are stored in nsg_cont r ol field
of meg_header, with the message type (cnsg_t ype) specified
as, TL_DEADLI NE. The length cnsg_l en, is again equal to the
number of data sections.

At the receiver end when r ecvnsg is called the MSG_TL flag
indicates that the data received is time-lined. The receiver can
then read the ancillary data pointed to by msg_contr ol , in or-
der to distinguish between the data and gaps. If a field in the
ancillary data contains TL_DATA then the corresponding field of



the nsg_i ov structure points to valid data and the application
can store the pointer in order to retrieve the data later. On the
other hand the ancillary data contains TL_GAP then the applica-
tion needs to make a note of the size and location of the gap and
take this into account during playback.

5. Functioningof TLTCP

As discussed previously, except for the additional mechanisms
to support time-lines, the functionality and thus the data sending
characteristics of TLTCP are similar to TCP. The following de-
scription of TLTCP is based on TCP-Reno. We assume that the
reader is familiar with TCP-Reno and we use TCP to refer to TCP-
Reno.

5.1 The Sender

The TLTCP sender accepts time-sensitive data from the appli-
cation via the TLTCP API. Each section of data is associated with
a deadline by which it should be sent. The sender maintains a
linked list, called time-line list, that stores the deadlines for the
time-lined data. A node in this list that stores the deadline and
starting sequence number for the associated section of data. Note
that the data itself is stored in the kernel buffers as TCP and the
| owest _seqno field of the list node points to the first data byte
of a section in the buffer.

The sender performs data sends as a normal TCP sender would
until the expiry of the lifetime timer which indicates that the dead-
line for the current section of data has expired. It then selects the
next section of data to be sent from the list and sets the lifetime
timer to the deadline for this section. All of the data up to the
lowest sequence number of the new section of data is discarded.

5.2 Lifetime Timer

In addition to the TCP timers, TLTCP has a timer called the
lifetime timer. This new timer keeps track of the deadlines asso-
ciated with the oldest data in the sending window (the minimum
of the receiver’s advertised window and the congestion window).
The lifetime timer counts down in the same fashion as the TCP
timers. When a lifetime timer expires any data associated with
that deadline that has not already been sent is considered obsolete
and is discarded from the sending window. In other words, in re-
sponse to a deadline expiry the sending window is moved forward
to sequence numbers that are not obsolete. TLTCP then attempts
to send the data associated with the next deadline and the life-
time timer is set to that deadline. Furthermore, upon expiry of the
lifetime timer the time-line list is updated to contain only entries
for the data sections that are not obsolete. Figure 1 shows the se-
guence of actions that are taken after expiry of the lifetime timer.
Due to expiry of the deadlines some data sections may not be de-
livered completely leaving gaps in the sequence of bytes that is
delivered to the receiver.

Let us consider an example that illustrates how a TLTCP sender
transports continuous media data to a receiver. Suppose that the
sender has a send window size of 10 bytes. For simplicity assume
single byte payload for all packets. The sender can then send 10

if ( Lifetime_tnr has EXPIRED ) {
remexpired_data(tineline_list, &buf);
if ('tineline_list_empty()) {
cur_node=get _cur _node(tinmeline_list);
st ore_unacked_seq();
move_wi ndow( cur _node. | owest _seq);

set _lifetime_tnr(cur_node.deadline);

Figure 1. Pseudo code of the actions taken on
the expiry of lifetime timer.

consecutive packets. Further assume that an application has spec-
ified the deadlines for sequence numbers 10 to 19 and 20 to 29,
as d; and d respectively, where d2 > d; (i.e., the deadline for
packets 10 to 19 will expire before the deadline for packets 20 to
29). TLTCP sets the lifetime timer to the deadline d; and com-
mences sending. Now suppose that when deadline d; expires only
packets 10 to 14 have been sent. At this point TLTCP will aban-
don the sending of all the sequences from 10 to 19 and 20 will be
the next packet to send. It will also set the lifetime timer to d-
and continue to keep track of the unacknowledged packets from
the obsolete data. This is done in order to preserve the semantics
of the congestion window mechanism (for a detailed explanation
see Section 5.4).

5.3 The Receiver

Upon expiration of the lifetime timer the sender discards all
data associated with the current deadline that has not yet been sent.
However, if the receiver is not informed of this it would consider
the discarded data to be lost and reject packets from the new sec-
tion because they are beyond its receive window. The receiver
would continue to acknowledge the last received sequence num-
ber, which is now obsolete. On the other hand, since the sender
has already discarded the obsolete data it would continue to send
the current data and a deadlock would result. In order to prevent
this deadlock, when data is discarded the TLTCP sender explicitly
notifies the receiver of the change in its next expected sequence
number. The expected sequence number update notifications also
allow the receiver to keep track of the gaps in the stream. Infor-
mation about where the gaps are located (along with the data) will
eventually be passed to the application when it attempts to read the
data.

Expected sequence number notifications are included with ev-
ery packet by using 32-bits of the available TCP-options. We call
this 32-bit field, seq_updat e. The receiver knows that it needs
to skip sequence numbers whenever it receives a packet contain-
ing a seq_updat e value that is greater than its next expected
sequence number and adjusts its next expected sequence number
to the sequence number contained in the field seq_updat e.

5.4 ACKs for Obsolete Data

The sender needs to keep track of acknowledgments for obso-
lete data, in order to ensure that the send window is correctly sized



and is permitted to advance as ACKSs arrive for the obsolete data.

Reconsider the example described in Section 5.2, when the
deadline d; expires, packets 10 to 14 have already been sent. At
this point TLTCP keepstrack of the fact that it might receive ACKs
for packets 10 to 14 and removes packets 10 to 19 from its buffer.
The sender then continues by sending data associated with the next
deadline d2. Packets 20, 21, 22, 23 and 24 are sent and the send
window is full. Once the window is full, no more data can be sent
until outstanding ACKSs arrive. One way to logically view the cur-
rent situation is to imagine the obsolete data occupying slots in the
current send window. Thus the send window could be thought of
as {10, 11, 12, 13, 14, 20, 21, 22, 23, 24}. When ACKs for ob-
solete data arrive, the sender’s window is moved by the amount of
data that is ACKed, thus allowing new sends. For example, if an
ACK is received for sequence number 12 the window will move
ahead by 3 sequence numbers (since ACKs are cumulative) and
the sender may send three new packets 25, 26, 27. Thus keeping
track of ACKs for obsolete data is necessary because these ACKs
allow the window to move forward. In the example above, the
logical window moves forward upon the receipt of the ACK for
sequence number 12.

In order to recognize ACKSs for obsolete data, TLTCP uses a
vector to store the highest sequence sent and the last ACK received
for each obsolete section that has unacknowledged data. The size
of the vector is bounded by the window size. As the ACKs for ob-
solete data arrive the entries in the vector are freed and as more un-
acknowledged data becomes obsolete, new entries are added. Note
that even though TLTCP keeps track of the sequence numbers of
the unacknowledged data that is obsolete, it sends data from new
sections instead of retransmitting obsolete data.

5.5 Handling Lost Packets

If a lost packet is detected prior to the deadline expiry for that
data TLTCP will retransmit the lost packet. Thus, TLTCP attempts
to reliably deliver data prior to the expiry of the deadline associ-
ated with the data. On the other hand, if the lost packet is obsolete,
TLTCP sends the lowest unacknowledged packet that is current.
This is similar to the actions that would be taken by TCP, ex-
cept that TLTCP would transmit current data rather than retransmit
(possibly) obsolete data as in the case of TCP.

To clarify how this works reconsider the above example but
now suppose that the window size is 5. Assume that packets 10
to 14 have been sent and then due to a deadline expiry packets 10
to 19 are deemed obsolete. Now imagine that packet 10 is lost
and this is detected by the sender either because of three duplicate
ACKs or a retransmit timeout. The TLTCP sender would then
send the next unacknowledged packet, in this case 20. This may
result in behavior that is close to but not identical to TCP. In order
to further illustrate this scenario we now compare the actions that
TLTCP would take with those of TCP under the same conditions.
The scenario is depicted in Figure 2. If this is the first time that
packet 20 is sent then TLTCP behaves the same as TCP. When we
say that TLTCP behaves the same as TCP, we mean that it sends
a packet when TCP does. However, the sequence number of the
data being sent may be different in each case. If in the case of
TLTCP, the packet sent and ACK for the sequence number 20 are
not lost and if in the case of TCP, the packet that TCP resends and

its ACK are not lost then TLTCP’s ACK for 20 would arrive at the
same time as TCP’s ACK for 10. These ACKs would clock the
subsequent sends at the same time for both TCP and TLTCP .

Sender TCP Reciever Sender TLTCP Reciever

10 10
X o X

Deadline
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Figure 2. Example of a loss in obsolete data.

However, as shown in Figure 3, if packet 20 has already been
sent (because of a window size greater than 5) and the ACK for it
has not been received, TLTCP sends it again. We refer to this as
a pseudo-retransmission since TLTCP is retransmitting data that
may not require retransmission in order to ensure that a packet is
sent when TCP would send a packet. If the ACK for the orig-
inal send of packet 20 arrives prior to an ACK for the pseudo-
retransmission then that ACK will clock TLTCP’s subsequent send
sooner than it would be clocked with TCP.

Sender TLTCP Reciever

%‘

Sender  TCP Reciever

X

Figure 3.

Example of a
retransmission.

Deviation from the behavior of TCP may also occur because
of pseudo-retransmissions and a seq-_updat e message. The loss
of an obsolete packet, besides triggering a pseudo-retransmission,
could cause subsequent losses of obsolete packets to be ignored
as shown in Figure 4. Suppose in the original example of Sec-
tion 5.2, packet 14 is lost in addition to packet 10. Under this
scenario TCP would retransmit the lost packet and reduce its rate
of sending by halving sst hr esh [26] as a result of three dupli-
cate ACKSs or by reducing its congestion window due to a time-
out. However, TLTCP’s pseudo-retransmission would include a
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Figure 4. Example of a TLTCP missing a
packet loss in the obsolete data.

seq-updat e that would cause the receiver to move its receive
window beyond packets 10 to 19 and request packets 20 and be-
yond, therefore missing the fact that packet 14 is lost. In general, if
before a packet loss is detected a new seq_updat e is received at
the receiver, the receiver will ignore the missing data and request
for data seq_updat e onwards. As a consequence, as shown in
the example, TLTCP would be unable to detect the loss of packets
subsequent to a pseudo-retransmission and would not experience
the second slowdown.

6. Simulations

In this section we evaluate the behavior of TLTCP using sim-
ulations. There are several reasons why simulation experiments
are more suitable than live Internet experiments for our purposes.
In order to quantify TLTCP’s TCP-friendliness we need to mea-
sure the effect of TLTCP traffic on TCP streams, discounting the
impact of all other factors such as background traffic. In a live
Internet scenario these factors are beyond our control and in most
caseswould add significant noise to the experimental results, while
with simulations impact due to the other factors can be eliminated
or factored into the results. Furthermore, for the measurements
obtained in the baseline case (control experiment) to be meaning-
ful the experiments must be run under the same conditions as the
original experiment. Because the conditions of a simulation are
reproducible, the baseline experiments can be run and valid mea-
surements for comparison can be easily obtained. TLTCP is a new
protocol and in order to test it thoroughly we need to vary several
network parameters in a controlled fashion. Using simulations we
are able to study the effect of varying several parameters over a
wide range, one at a time, in order to quantify the effect of each
one of them. In a live Internet experiment most of the network pa-
rameters, such as the number of flows competing at the bottleneck,
are beyond our control while others like link delays and bottleneck
bandwidth are difficult to vary. We have implemented TLTCP in
the ns-2 simulator [29] and have conducted several experiments to
study TLTCP’s time-lined data transport behavior and to quantify
its TCP-friendliness.

6.1 Time-lined Data Transfer

Using a simulated network as shown in Figure 6, we begin two
simultaneous data transfer sessions between a TCP sender and re-
ceiver and a TLTCP sender and receiver. We keep track of packet
arrivals of both the streams in order to compare their data sending
characteristics. For the sake of clarity in Figure 5, we use constant
sized data sections of 700,000 bytes each associated with constant
deadlines of 1 second to ensure that the whole section cannot be
delivered within the given deadline. The other parameters used in
this simulation are shown in Table 1 and justification for the values
is provided in the next section.
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Figure 5. Data sending characteristics of
TLTCP as compared to TCP.

Shown in Figure 5 is a plot of sequence number verses time
where each sequence number represents a 1,500 byte data packet.
It can be seen that in the case of the TLTCP flow, data is sent se-
quentially for the duration of one second (which is the deadline set
for all sections of the data). At the end of the deadline there is a
visible jump in the sequence number (to the next multiple of 467)
and sequential sending resumes again for another second. Also
note that the slopes of the continuous sections of the TLTCP plot
and the TCP plot are the same. In fact, the lines are almost coinci-
dent if the discontinuities of the TLTCP trace are masked.

The observed discontinuities in the sequence number of the
TLTCP stream stems from the fact that at the expiry of the dead-
lines TLTCP stops sending data from the expired section and starts
sending a new section of data. New sections of data in this ex-
periment begin with sequence numbers that are multiples of 467
([700000 + 15007 = 467), indicating that TLTCP is starting to
send a new section. Throughout our experiments this pattern of
data sending is observed in TLTCP. It can thus be inferred that
TLTCP indeed performs data transfer in a time-lined manner. The
fact that the slopes of the continuous sections of TLTCP’s packet
trace and that of TCP are the same implies that they consume
equal bandwidth. It can be seen from the graphs that each of the
streams consume approximately half of the 1.5 Mbps bandwidth
(900 x 1500 x 8 + 14 = 771428.57, where approximately 900
packets of 1500 bytes are delivered in 14 seconds by each stream).

6.2 TCP-friendliness



In several studies [4] [23] [18] TCP-friendliness has been in-
terpreted and measured by the ability of non-TCP flows to equally
share bandwidth with TCP flows. This is typically measured by
observing the throughput obtained by several flows (both TCP and
non-TCP) simultaneously operating over the same bottleneck link
and determining the bandwidth shares of each flow.

We consider two main metrics for examining the extent to
which the flows share bandwidth equally. The friendliness ra-
tio [23] [18], F, is the ratio of the mean throughput observed by
non-TCP flows (TLTCP flows in our case), Trr.rcp, to the mean
throughput obtained by TCP flows, T'rcp, F = Trrrcp /Trcp.
Since the friendliness ratio does not expose variations in observed
bandwidth in individual flows we also consider the ratio of the
maximum observed bandwidth to the minimum observed band-
width [18]. We call this the separation index, S. We examine
the separation index across all flows in an experiment. In the ex-
periments with both TCP and non-TCP flows we call this mea-
sure Sarrx, whereas in the experiments where only TCP flows
are present we call it Stcp.

In all of our experiments we use a total of N flows (where N is
even) with an equal number of competing TLTCP and TCP flows
(N/2). As a baseline for comparison we also run experiments un-
der the same conditions with all NV flows being TCP flows. In order
to produce a metric similar to 7' when only TCP flows are consid-
ered we compute the ratio of the mean throughput of one half of
the TCP flows to the mean throughput of the other half. The value
of F will vary depending upon which of the N/2 flows are chosen
for each half. Therefore, we compute and consider two extremes
for F, Fuyorst and Fres:. Fuors: COMputes the worst possible
value of F as the ratio of the mean bandwidth of the N/2 highest
bandwidth flows to the mean bandwidth of the /2 lowest band-

width flows, Fiuors: = mazx,, j»(all flows)/min,, ;5 (all flows).

Fres: ON the other hand, computes the best possible F.
This is done by sorting the flows by bandwidth and divid-
ing the flows into two groups, odd ranked (oddflows) and
even ranked flows (evenflows). Then we compute the ra-
tio of the maximum of the mean of the odd and even flows
maz(oddflows, even flows), to the minimum of the mean of
the odd and even flows min(oddflows, even flows). Fyesy =
maz(oddflows, even flows)/min(oddflows, even flows)
Since the TCP flows themselves do not share bandwidth equally
if their round-trip times are not equal [13] [7], we consider N
sources configured symmetrically (as shown in Figure 6) such
that the end-to-end delays of all the streams are equal. In all of
our experiments each sender is continuously sending data to the
corresponding receiver. \We choose our initial set of simulation
parameters, shown in Table 1, to be representative of Internet
traffic. Later experiments consider the impact that changes to
some of these parameters have on the TCP-friendliness of TLTCP.

The bottleneck link has a bandwidth of 1.5 Mbps, which is rep-
resentative of a T1 link. We use a 1,500 byte packet size, which
is a common size of packets seen in the Internet [5]. A maxi-
mum receiver window of 10 packets (15,000 bytes) is used which
is near the higher end of the default values used for typical TCP
implementations [27]. We assume that all the data transfers are
unidirectional and therefore set the ACK size to 40 bytes, which

is the size of a TCP ACK with no payload. The source and des-
tination hosts connect to the bottleneck link with a 10 Mbps link
which represents a local area network. Previous simulation results
[16] suggest that for TCP to share bandwidth evenly among a large
number of flows a bottleneck router queue needsto be provisioned
to hold 10 times as many packets as the number of flows. There-
fore, in order to ensure that TCP shares bandwidth equally we pro-
vision the queue at the bottleneck router to hold 400 packets. All
the experiments are run for a simulated time of 500 seconds and
data collection begins after the first 50 seconds to avoid the tran-
sient effects of startup. The TLTCP flows are given sections of
700,000 bytes each and the deadlines for these sections are set at 5
seconds. This corresponds to a maximum data rate of 1.12 Mbps.
This is intentionally chosen to be high in order to thoroughly ex-
ercise the time-line specific mechanisms of TLTCP.

| Parameter | Value |
Packet size 1,500 bytes
ACK size 40 bytes
Bottleneck link BW 1.5 Mbps
Bottleneck link delay 20 ms
Router buffer size 400 pkts
Source/Dest link BW 10 Mbps

Source/Dest link delay 2ms

Receiver max window size 10 pkts
Simulated time 500 sec
Size of TLTCP sections 700,000 bytes
Deadlines for TLTCP sections 5sec
Total number of flows 30

Table 1. Default simulation parameters.

Senders Receivers

Figure 6. Topology used for simulations.

6.2.1 Varyingthe Number of Flows

In our first set of experiments we increase contention at the bot-
tleneck by increasing the number of competing flows in order to
study the resource sharing behavior of the TLTCP flows. As seen
in Figures 7 and 8 across the range of flows used in the experiments
TLTCP obtains good friendliness ratios and separation indices ex-
cept when a total of 50 flows is reached. While TLTCP does not
share bandwidth fairly at this point, it is important to notice that
in the baseline case, 50 TCP flows competing amongst themselves
under the same conditions do not share bandwidth fairly. This can
be seen in Fiyors¢ in Figure 7 and Srcp in Figure 8, where the
values are not close to 1.

The situation where a number of TCP streams compete over
a single bottleneck router has been studied previously by Morris
[16]. He has observed that if there are a large number of compet-
ing flows, TCP’s congestion control mechanisms fail to ensure fair
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sharing of the bottleneck bandwidth. As a result of the high packet
loss rates that occur in this situation and subsequent timeouts, the
bandwidth obtained by competing flows is highly variable. Mor-
ris suggests that when the number of flows exceeds 10 times the
queue size of the bottleneck router TCP does not share bandwidth
equally. In our experiments, with a bottleneck buffer queue of
size 400, the fairness ratios and separation indices are close to the
ideal value of 1 for up to 40 TCP and TLTCP flows (400/10).
However, with a total of 50 flows the queue size is less than 10
packets per flow (50 > 400/10) and thus the flows (TLTCP and
TCP) do not share the bandwidth equitably. For still larger num-
ber of flows TCP’s fairness detoriates further and thus the notion of
TCP-friendliness looses its meaning. We therefore do not consider
larger number of flows.

TLTCP’s congestion control mechanisms are based on TCP. It
is thus expected that the sharing behavior of TLTCP would be no
better than that of TCP. It can be seen from Figures 7 and 8 that
in the experiments with a mix of TCP and TLTCP flows, higher
values for the friendliness ratio and separation index are observed
as compared to the baseline experiment with just TCP flows. This
is because in the experiments above TLTCP flows do not reduce
their data rates as much as the competing TCP flows during con-
gestion. As described in Section 5.5, TLTCP performs a pseudo-
retransmission in response to a loss of obsolete data and cannot
keep track of subsequent losses in the obsolete data. In the case
of 50 competing flows, due to heavy contention at the bottleneck,
the packet loss rates are high and the data rates are low As a result,
there is a greater likelihood of multiple losses for obsolete data in
some TLTCP flows. Since these TLTCP flows are unable to detect
some of these losses they do not reduce their sending rates during

congestion as much as the competing TCP flows, thereby obtain-
ing a larger share of the bandwidth. By examining the individual
flows we observe that during the simulation run there are fewer
retransmissions for most of the TLTCP flows than the competing
TCP flows, confirming that the TLTCP flows indeed miss some of
the packet losses and as a consequence do not reduce their data rate
as often as the competing TCP streams. Unless otherwise stated
we use a total of 30 flows for our remaining experiments. This
ensures that the bottleneck router has sufficient buffer space and
therefore decreases the likelihood that TCP flows will not share
bandwidth equally.

6.2.2 Varying the Maximum Wndow Sze

In this section, we consider the impact of increasing the maxi-
mum receiver window sizes on the TCP-friendliness of TLTCP.
As noted in Section 5.5, the scenarios that cause the behavior of
TLTCP to deviate from that of TCP occur when there are multiple
packet losses in the obsolete data. There is a greater likelihood of
this occurring with larger window sizes, since there is a possibility
of more unacknowledged obsolete data in this case. Moreover in
both TCP and TLTCP large receiver windows increase the possi-
bility of greater variations in send window sizes among competing
flows.

In the Figures 9 and 10 we show the friendliness ratios and
separation indices respectively for window sizes of 7,500, 15,000,
30,000, 60,000 and 120,000 bytes respectively. The sizes 7,500
and 15,000 were chosen to loosely correspond to default window
sizes commonly used in TCP implementations [27]. The remain-
ing values were chosen to significantly exceed these commonly
used sizes. The results of these experiments demonstrate that un-
der the conditions used for these simulations TLTCP and TCP
share bandwidth fairly when the receiver window size is within
the ranges typically used as defaults in current TCP implementa-
tions.
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However when the maximum window size is 20 packets, there
is unequal sharing of the bandwidth. In the experiment with only
TCP flows and a window size of 20, the friendliness ratio is seen
to be close to 1 but the separation index is close to 2. This is
an instance where the separation index is a valuable metric in un-
covering unfriendliness. It can also seen from Figure 9 that the
friendliness ratios in both of these cases (i.e., with just TCP flows
and the with a mix of TLTCP and TCP flows) improve consider-
ably when the receiver’s window size is further increased to 40.
Again, even though the friendliness ratios for the TCP only cases
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(with maximum window sizes of 40 and 80) are close to 1 the sep-
aration indices indicate that there are disparities in the throughput
of the individual streams. It is also observed that the results for the
window size of 80 are fairly similar to those for 40.

It is unclear to us why the flows are less fair with a window size
of 20 than with larger window size of 40 and 80. We speculate
that the increase in unfriendliness when the window size is 20 is
because a larger window size may cause the bandwidth sharing to
be unequal. The sender’s congestion window in all the flows varies
from a minimum of 1 segment to a maximum of the receiver’s ad-
vertised window. Ideally when all the flows are in equilibrium they
would have equal window sizes and would thus achieve the same
throughput. But this equilibrium is not reached because the con-
gestion control mechanisms of both TCP and TLTCP keep chang-
ing the size of the congestion window by additively incrementing
it when there are no losses and multiplicatively decrementing it
when a loss is inferred. Additionally, since packets are forwarded
in routers using a FIFO discipline (instead of per flow forwarding)
some flows may experience bursty losses while others may expe-
rience no losses at all. The flows that experience the losses reduce
their congestion window while others keep incrementing it, thus
resulting in the disparity in observed throughput. A large receiver
window (such the ones used in these experiments) increases the
disparity among the flows as it allows the flows without losses to
increase their window size to a larger extent (up to the large re-
ceiver window limit).

We also believe the reason that the results for the window sizes
of 40 and 80 are similar and indicate increased friendliness is that
the trend towards unfairness is likely to be self-limiting. That is,
after a point increasing the receiver window size is not likely to
result in an appreciable difference in the friendliness metrics ob-
served for both TCP and TLTCP. The reason for this is that in most
cases a flow will be able to increase its window to a limited size
before experiencing a packet loss and consequently reducing it.
As a result, most flows would not be able to significantly increase
their sending windows to sizes much larger than the average as
they would experience packet losses before reaching the limit. By
examining the traces from our experiments we find out that in spite
of doubling the maximum possible window size in each step, the
average acquired window sizes across the flows in each of the ex-
periments are indeed similar.

In the experiments with a mix of TLTCP and TCP flows, by ex-
amining the traces we observe that the TLTCP flows are the ones

that obtain greater bandwidths. This is because of the fact that
TLTCP cannot infer multiple packet losses in obsolete data. If a
TLTCP flow has a large window size as in this experiment, it is
likely to have more obsolete data in the sending window. This
in turn means that there is a larger likelihood of multiple packet
losses in obsolete data. Thus, with a larger receiver window such
a TLTCP stream is likely to increment its window more than a TCP
stream and would continue to do so until a loss is detected. There-
fore on an average TLTCP streams obtain greater throughput with
large maximum receiver window sizes. But note that the extent
of the disparities in the throughput is not expected to get much
worse for still larger windows because of self-limiting nature of
the unfairness described above.

6.2.3 \Varying the Propagation Delay

It is known that flows between different pairs of hosts in the In-
ternet would encounter a wide variety of round-trip delays. It is
thus important that a transport protocol be able to function prop-
erly across a wide range of round-trip delays. Dealing with a large
range of round-trip delays has been reported as a problem with
existing rate-based streaming media protocols. In their work on
TFRCP, a rate-based protocol, Pahdye et al. [18] report that with
small round-trip delays TFRCP behaves aggressively as compared
to TCP, therefore obtaining a larger share of the bottleneck band-
width than the competing TCP flows. They also point out that with
large round-trip delays and comparatively small rate recomputa-
tion intervals, TFRCP is unable to accurately estimate loss rates
and as a result its performance is highly variable.

An advantage of TLTCP when compared with rate-based pro-
tocols is that it is ACK-clocked and it uses the ACK-based round-
trip timing mechanisms of TCP. Therefore, we expect that TLTCP
will be able to react more quickly to traffic fluctuations and pro-
vide stable behavior over a wider range of operating conditions
than rate-based protocols. In the next set of experiments we study
TLTCP’s behavior over a large range of bottleneck delays.
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It can be seen from the figures that the friendliness ratios and
separation indices obtained for TLTCP are very close to 1, as are
those obtained for TCP. The observation that TLTCP and TCP
flows are able to share the bandwidth equitably over a wide range
of bottleneck delays indicates that the lifetime timer expiry events
in the TLTCP flows do not significantly affect the accuracy of
round-trip timing mechanisms. In addition, by examining the
traces of our experiments we saw that, on average, the round-trip
estimates of the TLTCP flows are close to that of the TCP flows.
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6.24 Varyingthe Deadlines

In the same way that large window sizes increase the likelihood
that the behavior of TLTCP deviates from that of TCP the time-line
chosen can also impact TLTCP. Clearly with large enough dead-
lines it will be possible to send all the packets of a section prior to
its deadline and TLTCP will operate in a manner that is identical
to TCP. However, as deadlines become smaller the likelihood of
having to deal with losses in obsolete data increases, Therefore, in
the next set of experiments we examine the impact of a range of
deadlines on the friendliness of TLTCP.

Figure 13 shows fairness ratios and separation indices for a va-
riety of deadline intervals, from 0.5 seconds (which corresponds
to the resolution of timers in common implementations of TCP)
to 62.5 seconds. Since there is no notion of time-lines in TCP, we
compare the results of an experiment with 15 TLTCP flows and 15
TCP flows to another experiment where all the 30 flows are TCP.
The results show that TLTCP operates fairly over a large range of
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deadlines. However, for very short deadlines TLTCP is not able
to share bandwidth equitably. In this case the deadline interval
is 0.5 seconds. This corresponds to a data rate of 11.2 Mbps per
stream (with 30 such streams) over a 1.5 Mbps link as the size
of the section remains 700,000 bytes. It is interesting to note that
in this instance TLTCP streams obtain lower throughput than the
competing TCP streams, unlike the other experiments where the
TLTCP streams obtain higher throughput.

The reason for this is the twofold impact of short deadlines on
TLTCP’s data sends. First, very few packets are sent in sequence
before the deadline expires and data from the next section needs to

be sent. Second, seq_updat e messages are sent frequently be-
cause the deadlines expire frequently. Note that the seq_updat e
messages are a part of the new data packets that are sent. With
small deadlines of 0.5 seconds we observe that in these experi-
ments a TLTCP sender is able to send very few packets before the
next jump in data sequence is indicated by a seq_updat e mes-
sage. Since there are just a few packets being sent in each section,
if a loss occurs, there is a high likelihood that before three subse-
quent packets are received at the receiver aseq_updat e message
will reach the receiver. If less than three packets reach the receiver
after a loss and before a seq_updat e, the fast-recovery mecha-
nisms will not be triggered. Therefore, due to the small number
of packets in each section that reach the receiver TLTCP streams
are not able to reduce their sending rate by using fast recovery.
This is confirmed by examining the trace files where we found
that far fewer instances of fast-retransmit and fast-recovery are
observed in the experiment with the deadlines of 0.5 seconds than
with deadlines of 2.5 seconds. So instead of reducing their conges-
tion window by half using fast recovery, the TLTCP flows expe-
rience timeouts that abruptly reduce their sending window to one
segment. This is why with very small deadlines TLTCP streams
obtain a smaller portion of the available bandwidth.

Note that in the scenario described above (with a deadline of
0.5 seconds) only a small number of packets are actually sent while
most of the packets are discarded at the sender because of the ex-
piry of the corresponding deadline. This is clearly undesirable for
a real application and indicates that the deadlines are not set prop-
erly. An application using TLTCP would attempt to maximize the
amount of data that reaches the receiver and reduce the dropping
of packets. In a situation where there is a lot of data being dropped
the application is expected to set larger deadlines or reduce the
size of the section. Therefore, the unfairness observed in the ex-
periment with the deadlines of 0.5 seconds (Figure 13) is unlikely
to occur when TLTCP is being used by a real application.

We conclude this section by noting that TLTCP not only trans-
ports data in a time-lined fashion but does so in a TCP-friendly
manner over a wide range of window sizes, deadlines, round-trip
times and competing traffic. Furthermore, most of the conditions
under which TLTCP flows appear to be unfair to TCP flows are the
conditions under which TCP itself is unable to share bandwidth
equitably.

7. Conclusonsand Futurework

The paper proposes a new protocol time-lined TCP , for the
delivery of time-sensitive data over the Internet. Remaining
within the confines of TCPs window based congestion control (de-
signed for reliable data transfer), TLTCP attempts to deliver non-
contiguous, time-sensitive data and is thus, suitable for continuous
media players and other applications that send time-sensitive data.
It is designed to compete fairly with the existing traffic in the In-
ternet. Augmentations to the present socket calls are proposed to
allow TLTCP to accept data with deadlines from the sending ap-
plication, as well as, deliver the data received and indicate gaps
to the receiving application. Finally we present the results of our
simulations that show that TLTCP is likely to compete fairly with
the existing traffic in the Internet.



In future we intend to integrate TLTCP into the kernel, and
test it in the Internet. In order to facilitate deployment we intend
to modify a TLTCP sender, such that a TLTCP sender can inter-
operate with TCP acting as the receiver. This will allow us to
leverage the installed base of TCP for streaming media servers
that use TLTCP . We also intend to further explore the possibility
of backing-off on the strict friendliness requirements in order to
provide better performance to the applications.
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