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Abstract— In three-tiered web applications, some form of
admission control is required to ensure that throughput and
response times are not significantly harmed during periods of
heavy load. We propose Q-Cop, a prototype system for improving
admission control decisions that considers a combination of the
load on the system, the number of simultaneous queries being
executed, the actual mix of queries being executed, and the
expected time a user may wait for a reply before they or their
browser give up (i.e., time out). Using TPC-W queries, we show
that the response times of different types of queries can vary
significantly depending not just on the number of queries being
processed but on the mix of other queries that are running
simultaneously. We develop a model of expected query execution
times that accounts for the mix of queries being executed and
integrate this model into a three-tiered system to make admission
control decisions. Our results show that this approach makes
more informed decisions about which queries to reject and as
a result significantly reduces the number of requests that time
out. Across the range of workloads examined an average of 47%
fewer requests are unsuccessful than the next best approach.

I. INTRODUCTION

Web applications are typically structured as three-tier sys-
tems, with a web server, an application server, and a database
system. In these applications, the database tier is typically the
performance bottleneck, so managing the performance of the
database system is important for the overall performance of
the web application.

Managing database system performance is especially impor-
tant under conditions of heavy load. As the system approaches
overload, throughput will decrease and response time will
increase. Since clients have a timeout beyond which they stop
waiting for the server to respond (either due to limits on
human patience or time limits set in browsers), the increase in
response time will result in more timeouts for client requests.
In the limit, response time will increase to the point where
very few requests are served within their timeout period.

Under loads that exceed the capacity of the server, the
system must intelligently decide which requests to process.
That is, it must perform admission control or suffer from
significant performance degradation when compared with its
peak performance. The system should only process a request
it will be able to finish within the timeout period. For
requests that will not finish within that time, the database
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system should produce some type of feedback to higher
tiers, perhaps returning a “system overloaded” error message
to the application server. Without such load regulation, the
database system can spend a large amount of time working
on requests that ultimately time out at the client. This wastes
server resources that could have been better allocated to other
requests. From the perspective of the client, requests will time
out and the sever will appear unresponsive or the server will
drop connections and appear unavailable. A common reaction
in this case is for the client to immediately retry the failed
request, which exacerbates the overload problem at the server.
On the other hand, if the database system returns an overload
error to the application server, the web application can return
a meaningful error or a partial response to the client.

In this paper, we present Q-Cop, a prototype system for
deciding which requests a database system should process and
which it should reject, with the goal of minimizing client
timeouts. Unlike prior work on admission control, Q-Cop
makes its decisions not based on resource utilization or the
number of requests in the system, but instead based on the mix
of queries being executed by the system. The notion of query
mixes is important because admission control decisions require
an estimate of how long each request will take. To accurately
predict how long a request will take, we need to have an
estimate of how busy or loaded the system is, since execution
time is affected by load. However, the notion of load is itself
somewhat difficult to quantify. In a series of experiments, we
found very low correlation between CPU usage, which might
be expected to be a very strong indicator of load, and response
times. Conversely, we found that the number of currently
running queries is correlated to response times. We also found
that the response time of a particular query depends on the
mix of queries that is running concurrently with this query.
It has previously been shown that the specific mix of queries
has a strong effect on system performance [1], [2], [3]. Q-
Cop therefore uses the query mix, how many queries of each
type are currently running in the system, as the basis for
measuring current system load and predicting query response
times. To build the required performance models, Q-Cop
adopts an experiment-driven modeling approach: experiments
are conducted to sample the space of possible query mixes,
and regression models are built based on these samples.

The contributions of this work are as follows:
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• We develop a query mix model (QMM) that considers the
current mix of executing queries to estimate the expected
run time of a newly arriving query.

• We implement a prototype (Q-Cop) that uses the query
mix model and the notion of how long a user will wait
for a response to make more informed admission control
decisions than previously possible.

• An experimental evaluation conducted using TPC-W
demonstrates that Q-Cop is able to make better decisions
about which requests to reject than other methods. This
improvement significantly reduces the number of requests
not being handled by the server under high loads, pre-
cisely the time when it is most important to handle as
many requests as possible before users time out.

II. RELATED WORK

A. Admission Control

Admission control in web servers and database systems is
an established and well-studied research area. Q-Cop distin-
guishes itself from prior work in this area by explicitly taking
query mixes into account when making admission control
decisions. We present some examples of prior work in this
area, which we classify into three categories.

The first category of admission control approaches is based
on controlling the multi-programming limit (MPL), which is
the maximum number of requests that can be served con-
currently. Many admission control approaches are essentially
methods for tuning the MPL. Mönkeberg and Weikum [4]
monitor a data contention metric called the conflict ratio
to dynamically control the MPL. Liu et al. [5] propose
approaches for tuning the MPL of an Apache web server using
numerical optimization, fuzzy control, and heuristics based on
resource utilization. Schroeder et al. [6] determine the lowest
MPL that corresponds to maximum system performance by
using queuing analysis to determine an initial MPL value
and a feedback controller to dynamically adjust this value.
We compare Q-Cop to the best possible MPL (obtained by
extensive search), and we show that MPL approaches are of
marginal effectiveness at reducing timeouts because they are
oblivious to query types and query mixes.

The second category of admission control approaches is
based on average query response time. These approaches build
models of query response time and use these models to reject
queries with the goal of keeping the average query response
time below a desired threshold. These approaches do not dis-
tinguish between the different query types and are oblivious to
query mixes. For example, Yaksha [7] probabilistically rejects
requests to keep the average response time at a desired value.
The probability of rejecting requests is adjusted dynamically
by a proportional integral controller based on the difference
between the observed response times and the desired response
times. Bartolini et al. [8] distinguish between normal load
and overload (or “flash crowds”). A performance model is
learned dynamically and used to determine the probability of
rejecting requests under normal load and overload. SERT [9]
avoids overload by preempting requests if their execution time

exceeds a timeout threshold. The threshold is set dynamically,
but it does not vary by query type. Controlling MPL and
controlling average query response time are two fundamentally
different approaches to admission control. However, for the
purpose of minimizing unsuccessful client requests, these
two approaches are equivalent. The system can concurrently
process a certain number of queries while keeping the average
response time below the required timeout threshold, and it
estimates the average response time with every arriving query.
If the system estimates that a new query would drive the
average response time above the timeout threshold, the system
would reject this query – regardless of its type – to avoid
this overload. Essentially, the system is controlling MPL by
estimating query response times. Note that an approach that
does not distinguishing between query types will reject more
queries than necessary because it cannot be discerning about
which queries to reject.

The third category of admission control approaches is based
on query types. These approaches build models of response
time for different query types and use these models to make
admission control decisions. For example, Gatekeeper [10]
maintains moving averages of the response time of different
request types and uses these averages as predictions of the
response times of future requests of these types. The predicted
response time of a request type is used as a measure of the load
that this request type places on the system, and Gatekeeper
tries to keep the total load below a threshold that is deter-
mined experimentally using off-line execution of the expected
workload. Quorum [11] tracks the average service times of
different request types and uses these times to decide if the
waiting plus service time of a specific request will exceed an
administrator-specified timeout. These approaches distinguish
between query types, so they come close to taking query mixes
into account. However, Quroum builds a model for a specific
workload, and hence a specific set of mixes, while Gatekeeper
determines thresholds for a specific workload. If the workload
and mixes change, the Quroum model has to be re-learned and
Gatekeeper must re-determine the threshold.

Recent work [12] has proposed a way of modeling multiple
workloads by using multiple Bayesian networks, one per
workload. However, this requires specifying in advance the
workloads of potential interest. In contrast, our approach
builds a performance model that works for arbitrary query
mixes, so it can deal with changes in the distribution or
intensity of the workload without any re-learning. Moreover,
we show experimentally that using a model based on query
types without taking query interactions into account is not as
accurate as using query mix models. We show that approaches
based on query types and those based on query mixes may
reject a similar number of queries, but the approaches based on
query types cannot accurately decide which queries to reject,
so they end up resulting in more client timeouts than query
mix approaches.



B. Query Mixes

The interactions between queries running concurrently in a
query mix can have a significant impact on performance. This
has been shown in prior work [3], and mix-aware techniques
for query scheduling [1], [2] and for predicting workload
completion times [13] have been proposed. These papers have
shown that: (1) query mixes have a significant impact on
performance, (2) the interactions within query mixes are com-
plex and difficult to model analytically, and (3) experiment-
driven modeling can effectively capture these interactions and
produce accurate performance models. These three points are
part of our motivation in this paper. However, the problem
we focus on (admission control) is fundamentally different
from those addressed in the previous work (scheduling and
completion time prediction for long running queries), and
required developing completely new techniques.

C. Experiment-Driven Performance Modeling

A key feature of Q-Cop is using an experiment-driven ap-
proach for modeling query interactions, similar to the approach
used in [1], [2], [13]. The experiment-driven approach to
performance modeling is gaining wide acceptance as a way
to build robust performance models for software systems, es-
pecially as these systems are becoming increasingly complex.
Ganapathi et al. [14] use an experiment-driven approach com-
bined with machine learning models to predict performance
metrics for queries. That work demonstrates the feasibility and
effectiveness of the experiment-driven approach for database
performance modeling. The experiment-driven approach has
more recently been used for tuning database configuration
parameters [15], [16]. An infrastructure for running experi-
ments in a data center has also been proposed [17] and Oracle
11g uses an experiment-driven approach to test the recom-
mendations of its SQL Tuning Advisor before implementing
these recommendations [18]. As has been done in this previous
work, we use experiment-driven performance modeling for its
simplicity and robustness.

III. QUERY MIXES

In this section, we motivate the need for modeling response
time based on query mixes when making admission control
decisions. We start by demonstrating the significant effect
of query mixes on response times using experiments with
a TPC-W Browsing Mix (details of our experimental envi-
ronment are given in Section VI). We execute each query
repeatedly within a separate thread on the client machine. We
vary the MPL and mix of queries by controlling the number
of executing threads and the query performed by each thread.
For a particular mix of queries, there is a fixed number of
threads repeatedly performing the same query and recording
the response time. In this case, each thread waits for as long
as required for a response (i.e., there are no timeouts). Each
experiment runs one particular query mix, and we calculate
an average response time for every query type in this mix.
In post processing, we group the data by query type and
MPL in order to compare loads that would appear the same

from an admission control perspective if the query mix is
not considered. For each query type and MPL we identify
the experiment (query mix) with the minimum and maximum
average response times for this query type, and we calculate
the overall average response time for this query type at this
MPL. Figure 1 shows these response times and their 95%
confidence intervals for the TPC-W Best Sellers query type.
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Fig. 1. Variation of average query response times with different query mixes
for the TPC-W Best Sellers query.

As expected, the response time of the queries increases as
the MPL increases because the system becomes more loaded.
The interesting observation in this figure is the difference
between the minimum, maximum, and average response times
at the same MPL. The graphs show that this difference
in response time is large and statistically significant (the
confidence intervals do not overlap), which demonstrates the
considerable effect of query mixes on performance. We have
examined graphs for each of the different query types [19]
and found similar behaviour in each case. Therefore, looking
solely at the MPL is not sufficient to accurately predict the
performance of the system.

Figure 1 also show that the best MPL at any time depends on
the mix of queries being processed at that time. For example,
consider Figure 1 and the average amount of processing that
can be carried out in six seconds. The MPL that can be
supported without having the Best Sellers query time out
depends on the query mix. If the query mix happens to be
the one that causes the maximum response time for the Best
Sellers query, we can only support an MPL of 12 (since the
maximum response time line reaches 6 seconds at MPL 12).
If the query mix is one that causes an average response time,
we can support an MPL of 19 requests. If the query mix
is the one in which we get the minimum response time, we
can support 27 requests. An approach that sets MPL without
considering query mixes would not be able to distinguish
between these cases and would have to be conservative. Such
an approach would therefore perform poorly, as we show in
our experiments.

Next, we show that CPU utilization is not correlated to
the response time of a given query type. Figure 2 shows a
scatter plot of the CPU utilization observed while running
different query mixes against the response time of the Best



Sellers query in these mixes. The correlation coefficient is
0.025, indicating almost no correlation between CPU utiliza-
tion and the response time of the query. For many mixes with
widely varying response times for the Best Sellers query, CPU
utilization is between 80% and 100%. We also see a wide
range of CPU utilizations (between 20% and 100%) for a wide
range of query response times. Thus, CPU utilization cannot
be used to predict query response time. We cannot monitor
CPU utilization and use it to predict query response times and
instead we directly model query response times using query
mixes. We have seen a similar lack of correlation between
CPU utilization and response time for other query types [19].
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Fig. 2. CPU utilization for different response times of the Best Sellers query,
cropped to 400 seconds. There are some points out to 600 seconds, and a few
as high as 800 seconds.

IV. ADMISSION CONTROL AND IMPLEMENTATION

In this section, we provide some motivation for requiring
admission control, even when clients have limits on how long
they will wait for a response to a request. In addition, we
describe how we have implemented different admission control
techniques that we use as a basis for comparison.

A. The Perils of Uncontrolled Overload

Existing admission control studies include graphs depicting
how in a three-tiered system throughput can plummet and
response time can skyrocket if admission control is not per-
formed [7], [10]. Typically these studies are performed with
a closed-loop workload generator in which clients wait for as
long as needed for a response before issuing their next request.

Figure 3 shows the average throughput (left y-axis) and
response time (right y-axis) of a server which is driven from
manageable load into overload conditions. While the profile
of these curves is similar to those seen in previous work, the
drop in throughput and rise in response times are not as severe
in Figure 3 as seen in previous work. This is because Figure 3
is generated using clients which will not wait arbitrarily long
for a response, but instead will eventually time out (in this
case after 30 seconds), and because responses that time out
are not included when computing the average response time.

Nevertheless, this graph shows that the reply rate falls off
its peak level of nearly 14 replies per second to around 11
replies per second. Perhaps even more concerning from a
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Fig. 3. Mean throughput and response time without admission control.

client perspective is that average response time grows from
less than half a second to nearly eight seconds. It is important
to remember that the average response time shown does not
include requests that timed out after 30 seconds, which at the
highest load level accounts for more than 50% of the requests.

Clearly, a server must be capable of coping with overload
conditions in some way. A popular method for controlling
overload is to allow the server to perform some type of
admission control. That is, to give the server the ability
to reject some requests in order to help it improve some
performance metric of interest (e.g., replies per second, mean
response time, or dollars per minute).

B. Implementation Framework

In order to compare different approaches to admission con-
trol, we have implemented a common framework within which
each of the different schemes can be implemented and studied.
We use this approach to ensure that differences in performance
are due to differences in the admission control scheme rather
than differences in implementation details. Specifically, the
following factors are held constant across all implementations:
• All admission control decisions are performed within the

database system, since that is where most of the work is
being done.

• All approaches use the same method for counting the
current number of running requests.

• All decisions to reject a request are made only when
the request is first received by the database system,
using information available at that time. Requests are not
removed once they have been admitted.

C. MPL-based Approach

One popular and simple technique for performing admission
control is to limit the MPL. Limiting the MPL is commonly
used because implementing it is as simple as setting a web
server or database system configuration parameter. Admission
control techniques that limit MPL use various levels of com-
plexity to determine and adjust the best MPL [4], [5], [6]. A
common drawback of these approaches is that while they may
dynamically adjust their MPL to account for changes in load,
they do not take into account the differences in queries being



considered for rejection nor how those queries might interact
with the mix of currently executing queries.

We did not implement any specific MPL-based approach
because we did not want to choose only one approach to
compare Q-Cop against. Instead, in Section VII we conduct a
series of experiments to determine the best MPL value for our
environment, which is the best that any MPL-based approach
would be able to achieve. We compare Q-Cop against this best
MPL.

D. Query Type Approach

Simple approaches that are based solely on the MPL or on
the mean response time of queries over all requests do not
consider the fact that different query types may have different
response times. For example, recent work [10] clearly shows
that in a TPC-W workload the query type has a big impact on
the query’s response time. That work develops a system which
makes admission control decisions based on the type of query
being considered for admission and the current system load.

We implement a variant of this scheme that we call TYPE.
When making an admission control decision it uses knowledge
of the type of query being considered along with an estimate
of the expected run time of this query. Information about query
run times is obtained from a regression model that is built by
executing the full workload in an off-line learning phase.

In this learning phase, we run the full workload without
admission control and collect the following information for all
queries: the query type, the number of other queries executing
when the query arrives, and the response time of the query.
We then build a linear regression model for each query type,
which can be done using many analysis tools (e.g., Excel).
This model predicts the execution time of this query type given
the number of currently executing queries.

The model for query type i has a coefficient ci representing
the amount of time each query in the system adds to the
execution time of a query of type i. If M is the number
of queries currently executing, we estimate the execution
time of query type i as Esti = ci ∗ M + Ci, where Ci

estimates how long the query would take with no load. A
different linear regression model is derived for each query
type. For example, in our experiments the execution time of
the TPC-W Best Sellers query in milliseconds is estimated by:
EstBestSellers = 302.2 ∗ M + 1893.0. Details for all query
types can be found in [19].

As each query arrives at the database system, the system
computes an expected execution time using the model for this
type of query and the current number of executing queries.
If the expected execution time exceeds the timeout threshold,
the query is rejected and a message is returned to the client
indicating that the server is overloaded. Otherwise, the query
is executed.

V. THE QUERY MIX MODEL AND Q-COP

The experiments in Section III motivate the importance
of considering the mix of queries executing when making
admission control decisions. Q-Cop explicitly takes query

mixes into account, and in this section we describe the details
of the Q-Cop prototype system. We describe how we construct
a query mix model using an experiment-driven approach, and
how this model is utilized within Q-Cop. The process of
constructing the query mix model involves two phases: (1)
conducting experiments to sample the space of possible query
mixes and collect the necessary data, and (2) constructing a
regression model that best fits the collected data. These phases
are performed off-line before deploying the system.

A. Sampling the Space of Query Mixes

To gather data about how the execution time of each of
the N different query types is affected by the mix of other
simultaneously executing queries, we need to sample the space
of possible query mixes. The number of different possible
query mixes is exponential, so having an effective sampling
approach is important. We sample the N -dimensional space
(where every query type is a dimension) using a Latin Hyper-
cube Sampling (LHS) protocol [20]. This protocol significantly
reduces the number of experiments necessary while providing
good coverage of the space of possible mixes. The LHS
protocol has been successfully used in other work on database
systems [13], [16].

When collecting samples and making admission control
decisions, we consider only the query types that place a
measurable load on the system. Query types that do not
place a measurable load on the system are excluded from Q-
Cop’s decisions, which means that they are always admitted
to the system and their effect on performance is not modeled.
This approximation enables us to restrict the dimensionality
of the space from which we sample and thereby get good
coverage with the LHS protocol. The loss in accuracy is
minimal because the excluded queries have minimal impact
on performance. For example, the workload we use in our
experiments (described in Section VI) has six types of requests
that a URL can refer to. These requests are listed in Table I. In
these requests, there are several queries that place little or no
load on the database system (executing in 1 ms or less even
under extremely high request rates). These queries are the ones
in the Search Request, Product Detail, and Home Interaction
requests, plus the Subject Search query in the Search Results
request. We exclude these queries from sampling and from
admission control decisions, which leaves six query types
considered by Q-Cop for this workload. These six query types
are shown in the last column of Table I.

The LHS protocol is designed to draw a specified number
of samples from a multi-dimensional space in which the lower
and upper bounds of each dimension are known. The protocol
draws the required number of samples in such a way that
these samples uniformly cover the given space. In Q-Cop, the
query types define the dimensions of the space. The minimum
number of instances of a query type in a sample mix (i.e.,
the lower bound of the dimensions) is 0. However, we need
to specify the maximum number of instances of a query type
in a sample mix (i.e., the upper bound of the dimensions)
in order to fully specify the space to be covered by LHS. We



require an administrator using Q-Cop to specify the maximum
number of concurrently executing queries to be considered in
Q-Cop’s model, Mmax. In our TPC-W experiments, we use
Mmax = 40. A query mix can potentially contain up to Mmax

instances of one query type (if it contains 0 instances of all
other query types). Therefore, we set the upper bound of the
dimensions of the space covered by LHS (which represent the
different query types) to Mmax. We use the LHS protocol to
generate S samples from this multi-dimensional space. Some
of these samples will have a total number of queries greater
than Mmax (for example, the samples from the region of the
space where every query type occurs close to Mmax times).
We remove these samples from our sample set and we are
left with S′ samples, which we use for our experiment-driven
data collection. We try different values of S until we obtain
a sample set whose size is close to the required number of
samples S′. In our TPC-W experiments, we use S′ = 1000.

B. Experiment-Driven Data Collection

We conduct experiments to collect information about the
sample query mixes that are chosen by LHS. We create N
request URLs, each corresponding to one of the query types.
For a sample with M concurrent queries, we use M client
programs, with each client program requesting the URL for
a specific query type. Each client program requests its URL
from the server, reads the reply, logs the response time in
memory, and then re-requests that URL. We use HTTP 1.1,
so connections are not closed between URL requests. This
approach maintains a constant load on the database system
and keeps the query mix constant. Parameters are provided
randomly from a set of valid entries to those URLs that require
them. For example, the TPC-W queries include a Best Sellers
request which takes as a parameter the category of book, and
an Author Search request which takes a string to search for.
The parameters are chosen such that a non-empty result set
will be returned from the server. Each query mix experiment
is run for two minutes, at which point all the clients terminate.
When the experiment is finished, statistics are logged to disk,
and the server is allowed to cool down for 30 seconds to finish
all requests. This experiment is then repeated for each query
mix that is chosen by the LHS protocol.

In our TPC-W experiments, we use 1,000 sample query
mixes, which results in approximately 70,000 query execu-
tions requiring about 143 hours of execution time (about 6
days). Longer queries account for a smaller fraction of those
executions than shorter queries because fewer would run in
the time allotted for each experiment. However, the smallest
number of queries executed for any query type is 395.

Experiment-driven data collection is a one-time off-line
process, so its cost can likely be tolerated by administrators
using Q-Cop. However, it is still useful to try to reduce this
cost as much as possible. Using LHS is one way of reducing
this cost because the LHS protocol makes good use of the
available number of samples so it allows Q-Cop to work with a
smaller number of samples. Further reducing this cost without
compromising quality is an interesting area for future work.

C. Constructing the Query Mix Model

To derive a predictive model from the raw data, we use
the Waikato Environment for Knowledge Analysis (WEKA)
toolkit [21]. We built and tested models using several differ-
ent learning algorithms available in WEKA, including linear
regression, locally-weighted linear regression, Gaussian pro-
cesses, and multilayer perceptron. When compared with the
linear regression model, some of the more advanced algo-
rithms showed improvements in accuracy of approximately
5-10%, as measured by the relative mean squared error.
However, we made a design decision to use a simple linear
regression model, even though we are aware that it probably
over-simplifies the complex nature of query interactions. We
made this design decision because the linear regression model
was sufficient to give us very good results, so there was no
strong justification for including the additional complexity of
the more advanced models. An interesting direction for future
work is to see if improvements in model accuracy improve the
performance of our system.

When the model building process finishes, we have a set
of linear regression coefficients learned from the training
data. For each query type i, we have a set of coefficients
ci1, ci2, . . . ciN , where cij represents the amount of time a
query of type j will add to the execution time of a query
of type i. Additionally, there is an estimate Ci for how long
the query would take given no load. With N different types of
queries, if nj is the number of queries of type j in a mix then
the estimated query time for a query of type i in this mix is
calculated as: Esti = (ci1∗n1)+(ci2∗n2)+. . .+(ciN ∗nN )+
Ci. For example, the model for the Best Sellers query type in
our experiments is: EstBestSellers = (31.5∗n1)+(30.2∗n2)+
(586.5∗n3)+(675.6∗n4)+(102.5∗n5)+(18.5∗n6)+3063.2.
Details for the other query types can be found in [19].

The decision process used by Q-Cop is very simple: When
a query of type i arrives, it is added to the current query mix
and the regression model for this query type (Esti) is used
to estimate its execution time. If this estimate is less than the
timeout value for the query type, the query is admitted and
allowed to run to completion. Otherwise, an error message is
returned to the client to indicate that the server is overloaded
(e.g., HTTP 503 Service Unavailable).

We investigated the effect of sample size on model accuracy
using WEKA’s built-in accuracy measures and percentage
split functionality. The resulting data shows no indication that
increasing the sample size would yield a more accurate model.

D. Strengths and Weaknesses

Important aspects of Q-Cop’s modeling approach are that it
does not require:
• a priori information about the expected system load,
• a priori information about the expected mix of queries,

or
• a complex mathematical model of how the system works.
As a result, after running the initial set of experiments

determined by the LHS protocol and then constructing the



model, no changes are required for different load intensities
(e.g., higher request rates) or different distributions of the
query types. Since the model is generated from the underlying
query types but not from any specific usage log, it should
perform well across a variety of query distributions. This is
in contrast to models that require the query distribution to be
known in advance to calculate average response time curves.

The experiment-driven model building approach does, how-
ever, require a priori knowledge of the different types of
queries in the workload. This is a reasonable assumption
particularly in web-application environments because queries
are initiated through web interfaces that are implemented and
known by the application designer. Such web-applications gen-
erate a fixed set of query types that can easily be determined by
an administrator, either from the application source code or by
logging queries sent to the database. The administrator would
also need to identify the query types to be excluded from Q-
Cop’s analysis and admission control decisions, which is not a
difficult task since these are query types that do not place any
load on the system under all conditions. For example, these
could be query types that always finish in under 1 ms.

Adding or changing query types or the hardware config-
uration could change the relative impact of queries on each
other and would necessitate re-running the initial sampling
and model-building phases.

VI. EXPERIMENTAL ENVIRONMENT

We now briefly describe the hardware and software used in
our experiments, as well as the workload that we use.

A. Hardware

All of the experiments described in this paper were con-
ducted on an IBM Blade Center with a Model H chassis. We
use one blade for the server processes and one blade for the
client processes. Because nearly all work for our workload
is done in one tier, namely the database tier, we conducted
all experiments with the web server, application server, and
database system running on the same server machine. The
server and client machines both have two 2.0 GHz AMD
dual-core 2212 HE CPUs, 10 GB of RAM, and one 67 GB
10,000 RPM Fujitsu MBB2073RC disk. The two machines
are connected through an internal switch in the Blade Center
chassis with 1 Gbps of bandwidth. This is sufficient bandwidth
to prevent the network from being a bottleneck.

B. Software

The client and server machines run the OpenSUSE Linux
distribution with version 2.6.22.18-0.2 (x64 SMP) of the
kernel. The web server is Apache version 2.2.9. The ap-
plication server is version 4.1.37 of Apache Tomcat. The
database system is version 10.4.2.0 of Derby. We use a 5.2
GB TPC-W data set which fits in memory, so no paging
or I/O are required once the cache has been warmed. The
partially-open loop workload [22] is generated using httperf
[23] by generating session log files that produce a TPC-W-
like workload. The httperf workload generator is used because

it provides mechanisms for placing a time limit on requests
and because it is designed for producing overload conditions.
This is in contrast to closed-loop workload generators which
have been shown to be unable to generate overload conditions
because their rate of requests can be throttled by the speed
of the server [24]. In our TPC-W experiments, the client-side
timeout is set to 30 seconds for all requests. Versions 6.x of
Internet Explorer use a 60 second timeout while versions 7
and 8 use 30 seconds [25]. Internet Explorer versions 7 and 8
are reported to have the highest market share of all browsers,
followed by Firefox [26]. We were unable to find definitive
sources for the timeout limit used in Firefox. We assume that
1 second of the timeout limit is required outside the database
system, for processing in the application server and web server
and for communication with the client. Therefore, we set the
timeout threshold used by Q-Cop to 29 seconds. While the
query type approach and Q-Cop allow for the ability to set
different timeout limits for different query types, we currently
use the same limit for all query types.

In order to obtain detailed and accurate information about
which queries result in timeouts while still being able to use
httperf’s ability to generate high loads, we avoid the use of
persistent connections (sessions) in which multiple requests
are sent via one TCP/IP connection. With httperf, if one
request within a session times out, the entire session times out
and information is not provided about which request within a
session was being processed when the timeout occurred. The
impact of this decision on our results is negligible because this
only results in the web server (which is not the bottleneck)
handling slightly more TCP/IP connection requests than it
would if multiple requests used the same connection.

C. Workload

The series of requests issued by httperf to the web server
is generated to adhere to the Browsing Mix distribution of
requests specified by TPC-W [27]. The precise details of
the distribution are provided in Table I and described below.
Exactly the same logs are used for each experiment to ensure
that the load in all experiments is identical.

Our workload is TPC-W-“like” because it does not include
all request types included in the Browsing Mix distribution.
We use the TPC-W servlets implemented by the University of
Wisconsin [28] and use a subset of the TPC-W servlets in our
workload. The Wisconsin implementation is written for a DB2
DBMS, while we use the Derby DBMS. Using Derby required
modifying the SQL used by each servlet for compatibility.
Instead of modifying all servlets, we decided to remove the
Ordering requests from our workload mix, since these requests
represent a very small part of the Browsing Mix distribution.
Seven of the Ordering requests each issue less than 1% of
the requests and one issues only 2% of the requests. In total,
this accounts for only 5% of the requests. Removing these
requests results in slightly increasing the percentage share of
the remaining requests.

Table I provides the name of each of the TPC-W servlets,
a database query number (Type Num, which we assign for



easy reference), what percentage of requests each contributes
to the Browsing Mix of the TPC-W workload (Orig Mix), what
percentage each contributes to our workload (Our Mix), and
whether or not it is included in our query mix model (column
“In QMM”). Recall that the query mix model is constructed
for only the “measurable” queries. The Search Results request
actually results in one of three different types of database
queries, two of which are included in the query mix model.

Servlet Type Orig Our In
⇒ Database Queries Num Mix Mix QMM

Home Interaction – 29.00 31.30 No
Product Detail – 21.00 21.83 No
Search Request – 12.00 12.07 No
Search Results 11.00 11.03
⇒ Author Search 1 Yes
⇒ Title Search 2 Yes
⇒ Subject Search – No

Best Sellers 11.00 11.98
⇒ Setup (Part I) 3 Yes
⇒ Main (Part II) 4 Yes

New Products 5 11.00 11.79 Yes
(Multiple Servlets)
⇒ Related Products 6 Yes

Total Browsing 95.00 100.00
Shopping Cart – 2.00 – –
Customer Register – 0.82 – –
Buy Request – 0.75 – –
Buy Confirm – 0.69 – –
Order Inquiry – 0.30 – –
Order Display – 0.25 – –
Admin Request – 0.10 – –
Admin Confirm – 0.09 – –
Total Order 5.00 0.00

TABLE I
LIST OF TPC-W SERVLETS, QUERY TYPES, AND WHERE THEY ARE USED.

Because Derby does not support the LIMIT SQL keyword,
we changed the Best Sellers query to avoid using this keyword.
Instead of computing the 50 best selling books of the most
recent 50,000 books purchased as the TPC-W specification
requires, we loosely approximate this query by asking for
the 50 best selling books of the most recent 20,000 orders.
We use 20,000 orders because the number of books in each
order can be greater than one. The Best Sellers request is now
implemented using two database queries, labeled Setup (Part I)
and Main (Part II) in Table I. When we refer to the Best Sellers
query we are referring to the Main (Part II) query which does
the bulk of the work.

VII. EXPERIMENTAL EVALUATION

We now evaluate how well each of the different methods
we have described performs at minimizing the number of
requests that are not handled. All experiments in this section
are conducted using the TPC-W workload described in Section
VI. However, before we can compare the different approaches
we need to determine the best MPL against which to compare.

A. Finding the Best MPL
As noted previously, a popular technique for performing

admission control is to limit the maximum number of concur-

rent requests (i.e., the MPL). The difficulty with this approach
lies in correctly choosing the best MPL for high loads. If
the chosen MPL is too low, some requests will be denied
that could have actually been processed. If the chosen MPL
is too high, some requests will not be handled before the
client times out. Therefore, we begin by conducting a series
of experiments to determine the best MPL in our environment.
The performance metric used is the percentage of queries
not serviced as the load on the system is increased. This
percentage includes both the queries that are rejected by the
admission control mechanism and the queries that time out
at the client (i.e., the server’s response does not arrive at the
client within 30 seconds of the client sending its request).

We run our TPC-W workload with MPLs in the range
5 – 70, and we vary the request rate at each MPL. Figure
4 shows the percentage of queries not serviced as the number
of requests per second increases. In looking at our data, we see
that MPL = 30 and MPL = 40 have the lowest total number
of unsuccessful requests. We present those results, along
with MPL = 5 and MPL = 70 for comparison. This graph
shows that MPL = 30 and MPL = 40 provide the best overall
performance, with their performance being roughly equal.
MPL = 70 only does well for light loads while MPL = 5
does not do well for any loads. For clarity, we have excluded
MPLs 10, 20, 50, and 60 from the graph, as their not-
serviced percentages are generally worse than MPL = 30 and
MPL = 40.
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Fig. 4. Percentage of queries not serviced for different MPL values.

When examining the raw data, we find that MPL = 40
is slightly less aggressive about rejecting requests than
MPL = 30, resulting in more timeouts. The performance
of these two MPL settings is similar and we break the
tie by observing that across the range of loads examined,
MPL = 40 had a slightly lower total number of unsuccessful
requests and overall average of unsuccessful requests. Since
the total number of unsuccessful requests is comparable for
MPL = 30 and 40, and we found that MPL = 20 and 50 each
have significantly more unsuccessful requests, we do not
further examine other MPL values in the 20 – 50 range.

We have performed a fairly extensive search across a variety
of MPL values in order to find the best-performing MPL,
which in our case turned out to be MPL = 40. While this is



not practical in production environments, it gives us a strong
basis against which other techniques can be compared.

B. Comparing Different Methods

The graph in Figure 5 compares the percentage of queries
not serviced using different admission control techniques.
Table II enumerates these methods, the label used in the
graphs in this section to refer to these methods, and which
section of the paper provides a detailed description of the
method. Figure 5 shows that the performance of Q-Cop is
quite good across the full range of loads examined, and
that it outperforms the other admission control methods. The
figure also shows that performance is extremely bad when no
admission control (NoAC) is used. Under the highest loads
used in this experiment, more than 50% of the requests are not
serviced before the client times out (i.e., within 30 seconds).

Graph Label Admission Control Method Paper Section
NoAC No Admission Control Section IV-A
TYPE Query Type Approach Section IV-D
MPL = 40 Best MPL for this Environment Section IV-C
Q-Cop Query Mix Model Approach Section V

TABLE II
DIFFERENT ADMISSION CONTROL TECHNIQUES BEING COMPARED.
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Fig. 5. Percentage of queries not serviced using different approaches.

Table III shows the average percentage of queries not ser-
viced by each method across the full range of loads examined
(i.e., 10 – 30 requests per second). The second row of this
table shows the percentage by which Q-Cop reduces the total
number of queries not serviced for each of the methods ex-
plored. The table shows that Q-Cop significantly outperforms
both the MPL-based and TYPE approaches in this comparison.
Q-Cop yields an overall advantage of 76.8% fewer unserviced
requests as compared to MPL = 40 and 46.9% as compared
to TYPE.

Approach NoAC MPL = 40 TYPE Q-Cop
Avg % Not Serviced 31.9 19.6 8.6 4.6

Q-Cop Reduction (%) 85.8 76.8 46.9 –

TABLE III
AVERAGE PERCENTAGE OF QUERIES NOT SERVICED ACROSS ALL LOADS.

Using MPL = 40 for admission control results in substan-
tially more queries not serviced than TYPE and Q-Cop. A
key problem with an MPL-based approach is that it does not
distinguish admissions by the type of query. It will just as
likely reject a small request that may actually finish before
the timeout as a large request that might not. Under higher
loads, TYPE has significantly fewer unsuccessful requests than
MPL = 40 because it considers the type of request when mak-
ing admission decisions and rejects only Best Sellers requests,
which are the largest requests in our TPC-W workload.

Figure 6 provides a more detailed view of the two best
techniques, TYPE and Q-Cop. It plots the total number of
queries not serviced as a function of the number of requests
per second. With low request rates (12 requests per second
or less), the system is sufficiently provisioned to be able to
handle all queries. As the request rate increases, the system is
unable to service all of the queries. Some queries get rejected
by the admission control method and some queries time out.
The difference between the total and rejected lines in Figure
6 shows the number of queries that time out.

Figure 6 shows that the TYPE and Q-Cop approaches reject
about the same number of queries for the different request
rates. However, Q-Cop has significantly fewer queries not
serviced because it avoids significantly more timeouts than
TYPE. Q-Cop avoids these timeouts by using information
about the query mix to make better decisions than TYPE about
when to admit the large Best Sellers requests and when to
reject them. Q-Cop rejects about the same number of queries
as TYPE, and they both reject only Best Sellers queries.
However, Q-Cop rejects queries at different, more appropriate
times than TYPE. Q-Cop’s better-informed decisions help the
server to process more requests and as a result the clients
experience much fewer timeouts.

 0

 200

 400

 600

 800

 1000

 1200

 10  12  14  16  18  20  22  24  26  28  30

Q
u

er
ie

s 
N

o
t 

S
er

v
ic

ed

Requests/sec

TYPE (total)
TYPE (rejected)
Q-Cop (total)
Q-Cop (rejected)

Fig. 6. Number of rejected and unsuccessful queries for TYPE and Q-Cop.

C. Average Response Times

To examine the effect that the different admission control
methods have on the average response time, Figure 7 plots
the average response time as measured by the clients versus
the request rate. This graph must be carefully interpreted
because response times for rejected queries are included (and
are typically very low) and queries that time out are not



included. More importantly, the goal of the techniques we
have implemented is not to minimize average response time,
but instead to minimize the number of requests that cannot
be serviced. However, the graph does show that the average
response time is now more controlled when compared with
the average response times observed without admission control
(Figure 3). These low response times are also obtained while
processing significantly more requests. The key is that Q-Cop
judiciously rejects requests that will combine with existing
requests in bad ways and would in any case be unlikely to be
completed before the timeout limit.

Figure 7 also shows that, as expected, the approach that
uses information about the type of query but not the query mix
(TYPE) has the lowest average response time. This is because
it is servicing significantly fewer requests and in particular
fewer of the large Best Sellers requests than the other two
approaches.
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Fig. 7. Average response times using different admission control methods.

D. Probabilistic Approaches

Q-Cop also provides significant advantages when compared
with probabilistic approaches to admission control, which are
utilized in systems like Self-* [8] and Yaksha [7]. These
approaches reject requests with some probability, and tune
the probability of rejecting requests to achieve the desired
performance objective. If probabilistic admission control is
used in a database system without considering query types, it
will suffer from the same problem as MPL-based approaches,
namely rejecting many small queries that may have completed
before the client timed out (see Table III). If probabilistic
admission control does consider query types and only rejects
large queries, it will suffer from the same problem as the TYPE
approach, namely not knowing which large queries to reject
and therefore rejecting too many queries or causing too many
timeouts (see Figure 6). A probabilistic approach may be able
to determine the correct percentage of large queries to reject,
perhaps using control-theoretic techniques, but it will not be
able to make informed decision about which large queries to
reject and when to reject them.

To demonstrate the advantage of Q-Cop over probabilistic
approaches, we conduct a simple experiment in which we
compute the percentage of Best Sellers queries rejected by
Q-Cop at a certain load. For this experiment, we consider
a load of 28 requests per second, and observe that Q-Cop

rejects 545 queries in total at this load. The rejected queries
are all Best Sellers queries, and they represent 59.0% of
the Best Sellers queries. Of the admitted queries, 95 queries
timed out, all of them Best Sellers queries. This represents
10.3% of the total number of Best Sellers queries and 1.1%
of the total number of queries. We implement a simple
probabilistic approach and configure it to reject the same
percentage of Best Sellers queries as were rejected by Q-Cop.
We reject only Best Sellers queries since Q-Cop only rejected
Best Sellers queries. This approach results in a comparable
number of Best Sellers queries being rejected – 565 (61.1% of
the Best Sellers queries). However, the probabilistic approach
results in 156 timeouts, 1.6 times as many timeouts as Q-
Cop. Note that the probabilistic approach actually rejected
more queries than Q-Cop, which should give it an advantage in
reducing timeouts. However, since Q-Cop bases its decisions
on execution time estimates that include the mix of queries
being executed, it rejects different queries from those rejected
by the probabilistic approach. These rejections result in fewer
timeouts because queries are rejected only if they are projected
to interact poorly with the currently-executing mix of queries.

E. Why Does Q-Cop Have Any Timeouts?

Figure 6 shows that when Q-Cop is used for admission
control, clients still experience some timeouts. So although
considering the query mix significantly reduces the number
of timeouts, it does not completely eliminate them. This may
be due to the inaccuracy of the model learned from the LHS
experiments, the simplicity of the decision process used to
decide whether or not to admit a request, or because of
variations in execution times of the same query type due to
different parameters used for a particular query.

Despite these inaccuracies, Q-Cop performs quite well when
compared with the alternatives. We discuss the accuracy of our
query estimation algorithm in the next section and possible
improvements and future work in Section IX.

VIII. ESTIMATION ACCURACY

Because the Best Sellers queries execute for significantly
longer than the other query types in the TPC-W workload,
they are the only queries that are rejected or time out when
using Q-Cop. As a result, this is the most critical query type
and we now examine this query type more closely. If Q-Cop
was completely accurate, it would admit a query if, and only if,
the query would complete before timing out. While we are not
able to determine if any rejected queries would have completed
had they not been rejected (false negatives), we can examine
those admitted Best Sellers queries that were accepted but did
time out (false positives).

We start by studying the accuracy of the execution time
estimates for the Best Sellers queries. Figure 8 shows a scatter
plot of the estimated versus actual execution time of all
Best Sellers queries. This data was obtained while using Q-
Cop, so there are no data points for which estimates were



above 29 (all such queries were rejected).1
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The diagonal line joining the points (0,0) and (30,30) shows
where estimates that are perfectly accurate should lie. The
actual timeout value of 30 is also shown. Any data points to
the right of this vertical line indicate requests that have timed
out. This graph shows that there is a fairly good correlation
between the estimated and actual query execution times. The
correlation coefficient is 0.82 (strongly correlated), which
shows that Q-Cop’s estimates are quite accurate. However, we
can see from the number of points to the right of the timeout
line that there may be room for improving accuracy. These
points are the false positive cases, where Q-Cop has estimated
they would complete before timing out but they did not. These
points are especially important because the database expends
significant resources computing a result when in the end the
client is no longer there or no longer interested in receiving
the result. Having sufficient accuracy to avoid accepting these
queries would improve the effectiveness of Q-Cop.

Next, we examine model accuracy more closely for these
points. Figure 9 shows several views of these false positive
decisions. The bottom line in the graph (% of all requests)
shows the percentage of all requests that timed out. The second
line from the bottom (% of all requests not rejected) shows the
percentage of all admitted requests that timed out. These two
lines show that across all query types and loads, Q-Cop was
quite accurate in admitting requests that would not time out.
Across the different loads, a maximum of 2.0% or less of all
requests timed out and 2.2% or less of all admitted requests
timed out. However, since the execution time of most of the
query types is actually quite small relative to the Best Sellers
queries, it is not difficult to make a correct decision for
the small requests. The second line from the top (% of all
Best Sellers queries), shows the percentage of all queries of
type Best Sellers that timed out. This includes all queries of
type Best Sellers, even those that have been rejected. Finally
the top line (% of Best Sellers not rejected) shows the
percentage of all admitted queries of type Best Sellers that

1We could have conducted an experiment without admission control and
examined the accuracy of those estimates but our model was constructed with
admission control in mind (i.e., assuming that we would not encounter the
large numbers of big queries that accumulate without admission control).

timed out. This top line shows that of those queries of type
Best Sellers that Q-Cop decided to run, a significant number
of them timed out (20 – 40% for request rates above 24).

We expect that we could have easily reduced this number
by tweaking Q-Cop to add some sort of adjustment (i.e., hack)
to artificially lower the rate of false positives by setting a
lower timeout threshold for rejecting queries. This could, of
course, introduce more false negatives. Instead, we point out
that even with the potential for improvement in the accuracy
of our query mix model and Q-Cop, they make significantly
better admission control decisions than the approaches that do
not consider the mix of executing queries.
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In the next section we describe the several possible sources
of inaccuracy in our estimates and decision process and discuss
possibilities for future work in these areas.

IX. DISCUSSION AND FUTURE WORK

There are several potential sources for the inaccurate de-
cisions made in our prototype implementation of Q-Cop. In
future work, we plan to further investigate these issues.

A. Query Type Assumption

We assume, as previous work has shown [10], that the
query type has a much larger impact on the execution time
of queries than the actual parameters to the query. Our model
is constructed and our decisions are made based on the
assumption that all queries of the same type will exhibit
similar performance under the same system load. It would
be interesting to see if the parameters to the queries have any
impact on the accuracy of our decisions. The LHS experiments
used to construct our model include a variety of parameters
chosen randomly from a set of valid parameters for each
query type. However, TPC-W data is uniform, obviating any
potential differences arising from data skew that would cause
parameter values to have more impact.

B. Model Inaccuracy

A simple linear regression model makes strong simpli-
fying assumptions about the interactions between different
query types, and likely does not accurately capture the full
complexity of these interactions. Nevertheless, we chose to



use this simple model over other more complex but slightly
more accurate models available in WEKA such as Gaussian
processes because we obtained good results with the simple
linear regression model. It would be interesting to see if using
the more complex models would improve performance.

Currently, our model does not account for the variation that
is seen during the experimental data collection phase of the
model building process. We expect that having some estimate
of the possible variation or the confidence of the estimates
may help to reduce the number of queries that are admitted
by Q-Cop, only to have the client time out.

C. Decision Process

Our approach to deciding whether or not to admit a
query is intentionally simple. This is done to demonstrate
the importance of using information about the mix of queries
being executed when making admission control decisions. We
currently look only at the impact of the query mix on a
newly arriving query to decide whether or not to admit it.
We do not consider the impact the new query has on the
already executing queries. While this simple approach provides
significant improvements over existing approaches, it would
be interesting to see if further improvements to this decision
would yield further benefits.

X. CONCLUSIONS

We propose Q-Cop, a system for performing admission con-
trol with the goal of minimizing unserviced requests. A unique
and defining feature of Q-Cop is that it makes its admission
control decisions based on the mix of queries currently running
in the system. To model the performance of different query
mixes, Q-Cop uses an off-line, experiment-driven approach
that samples the space of possible query mixes and learns
statistical models that can be used to predict the performance
of any query mix observed in the workload. Q-Cop then uses
these models in its on-line operation to decide which queries
to reject. Using queries from the TPC-W benchmark, we
experimentally demonstrate that the mix of queries can indeed
have a significant impact on query performance. We also
demonstrate that Q-Cop outperforms mix-oblivious techniques
for admission control, reducing the number of queries not
serviced by up to 47%.
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