]. OBJECT-ORIENTED DISTRIBUTED
AND PARALLEL 1/0 STREAMS !

Andrew Dick and Eshrat Arjomandi

Department of Computer Science
York University, Toronto ON, Canada

{andrewd, eshrat}@cs.yorku.ca

Tim Brecht

Department of Computer Science
University of Waterloo, Waterloo ON, Canada

brecht@cs.uwaterloo.ca

Abstract: Writing programs for parallel and distributed computing environ-
ments can be significantly more complex than writing programs for their se-
quential counterparts. These complexities mainly arise from the additional syn-
chronization and communication requirements imposed by such environments.
These requirements also make debugging and maintaining such programs sig-
nificantly more complicated. The problem of debugging and maintenance is
further exacerbated by the lack of good debuggers and the lack of proper 1/0
support for such environments.

In this paper we describe the design and implementation of an object-
oriented streams library (piostream) which provides convenient and extensi-
ble constructs for input and output in parallel and distributed programming
environments. These environments include multi-threaded applications, multi-
processors, and distributed systems. Qur design is based on the familiar C++
iostream library. Thus simplifying the use of 1/O operations in parallel and
distributed environments. A prototype implementation, which has been in-
tegrated within the ABC++ concurrent object-oriented library for C++, is

TAPPEARS IN THE 13TH ANNUAL INTERNATIONAL SYMPOSIUM ON HIGH
PERFORMANCE COMPUTING SYSTEMS AND APPLICATIONS (HPCS '99),
KINGSTON, ONTARIO, PP. 253-268. JUNE 1999.

Arjomandi and Brecht are supported by the Natural Sciences and Engineering Research
Council of Canada and the IBM Toronto Center for Advanced Studies.



described and used to demonstrate the feasibility of our design and the ease

with which it can be used.
Keywords: Distributed, Parallel, Object-Oriented, 1/O Streams

1.1 INTRODUCTION

Significant research efforts have been expended in recent years to improve the
performance of I/O subsystems by using parallel techniques to transfer por-
tions of data to and from several storage devices simultaneously. These ef-
forts have concentrated almost exclusively on alleviating the I/O performance
bottleneck by using multiple disk devices to perform file I/O (Gotwals et al.,
1995b; Nieuwejaar and Kotz, 1995). Unfortunately, techniques for providing
users with the ability to simply and easily perform input and output operations
on multiple processors or hosts simultaneously for the purpose of debugging, ex-
ecuting and maintaining parallel and distributed programs have received little
attention.

In this paper we address this shortcoming and focus on techniques that en-
able users to easily write parallel and distributed applications that perform I/0.
We discuss the issues involved in designing and implementing the components
for a parallel streams library called piostream. The piostream library is not
intended to solve the I/O bottleneck, but instead is designed to provide simple
and easy to use I/O constructs for the purpose of writing, debugging, executing,
and maintaining distributed and parallel programs. The piostream library is
comprised of postream for parallel output, pistream for parallel input, and
pfstream for parallel file I/O. By using the piostream library, programs can
execute input and output operations from any machine in a networked environ-
ment and the input and output data is transparently obtained from or sent to
the main host (the host on which the program originally executes) by the under-
lying run-time system. Our target environments include multi-processors, net-
works of workstations, and distributed communicating workstations and PCs.

The primary advantages of our library and thus the main contributions of
this paper are:

m Tt is based on the C++ iostream library (Teale, 1993) and as a result
is familiar and straightforward to use as well as easy to extend. Since
piostream constructs are high-level, users are not required to construct,
send and receive elaborate messages. The users can easily input and out-
put predefined and user-defined data types, by overloading operator<<()
or operator>>().

m Tt supports C++ I/O manipulator functions which allow precisely for-
matted output. Extensible user-defined manipulator functions are also
supported.

m [t is built using and is fully compatible with standard C++4, which means
that no special compiler support or language extensions are required.



OBJECT-ORIENTED DISTRIBUTED AND PARALLEL I/0 STREAMS 3

m  The library provides mechanisms for identifying the source of the output.
For example, output being printed by tasks executing on several remote
client machines is automatically and transparently collected, collated,
and printed to a screen or file on the main host along with information
identifying the host name, process id, and thread id of the task performing
the output.

m  Input constructs can be used on hosts that are potentially remote. The
piostream library provides the facilities to transparently read input on
remote hosts using shared or independent stream positions using an in-
terface that is similar to the C++ iostream library.

m  Synchronization is an integral part of the library and as a result the
user is not required to synchronize access to input and output streams.
The proposed file I/O constructs transparently provide mutually exclusive
access to /0O streams.

m  The proposed file I/O constructs allow the user to access the main host’s
file system from remote hosts for input and output.

We believe that our clean and simple interface is one of the main contribu-
tions of this paper. Many parallel programs are converted from their original se-
quential versions. As a result, converting a program from a sequential program
to a parallel program can be complicated and time consuming. To illustrate
the ease with which piostream can be used for I/O, Figure 1.1 provides an
example in C++ using the C++4 iostream interface for cout, cerr, cin and
fstream and their piostream counterparts pout, perr, pin, and pfstream.
The C++ iostream interface is illustrated in Figure 1.1A and the piostream
interface is shown in Figure 1.1B.

In this paper much of our discussion of the piostream library will take place
in the context of a parallel system that provides concurrency through an active
object concurrency model (Arjomandi et al., 1995)! such as ABC++ (O’Farrell
et al., 1995; Arjomandi et al., 1996). The proposed design and our library could
easily be implemented using any object-oriented concurrency model.

The remainder of this paper will discuss the design and prototype implemen-
tation of the piostream library. Section 1.2 describes the design and implemen-
tation of the postream construct for output. The pistream construct for input
is explained in Section 1.3 and Section 1.4 describes the proposed file stream
constructs. Related work is presented in Section 1.5 and our conclusions and
contributions are listed in Section 1.6.

L An active object is an object with its own thread of control. It encapsulates thread control,
message queuing, and synchronization.



I/ Counter (A)
int numel ements;
/I Data
int elenent;
I Input file
ifstreamin("input", ios
/I Output file
of stream out ("output", ios::nocreate);
it ((tin) || (fout) ) {

cerr << "Error in input or "

<< "output file." << endl;
exit(0);

riexist);

/I Header buffer
char header[ 256] ;

/I Get number of input elements

cout << "Please input nunber of "
<< "elements:" << flush;

cin >> num el ements;

/I Get header for output file

cout << "Please enter header "

cout << "for output file." << endl;
cin.getline(header, 256);

/I Insert header into output file
out << header;

/I Copy and convert decimal data frominput file

/I to hexadecimal in output file

for (int i =0; i < numelenents; i++) {
in>> ws > elenent;
out << hex << elenent;

}

/I Counter (B)

int numel ements;

/I Data

int elenent;

/' Input file

pifstreamin("input", ios

11 Output file

pof stream out ("out put”, ios

if ((tin) || (fout) ) {
perr << "Error in input or

<< "output file." << endl;

piexist);
rinocreate);

exit(0);
}

/I Header buffer
char header [ 256] ;

/I Get number of input elements

pout << "Please input nunber of "
<< "elements:" << flush;

pin >> num el enents;

/I Get header for output file

pout << "Please enter header "
pout << "for output file." << endl;
pi n. getline(header, 256);

/I Insert header into output file
out << header;

/I Copy and convert decimal data frominput file

/I to hexadecimal in output file

for (int i =0; i < numelenents; i++) {
in>> ws > elenent;
out << hex << elenent;

}

Figure 1.1 This diagram provides a comparison of interfaces between the C++ iostream
library and the piostream library.

1.2 POSTREAM

Our piostream library is designed to solve several problems encountered when
using the iostream library in parallel and distributed environments. The cen-
tral problem is that using standard techniques for creating threads of execution
on remote hosts results in the linking of that thread’s stdin and stdout to what
are essentially incorrect devices for the purposes of performing input and out-
put on the main host. If remote threads are created using an rexec system
call, a socket is created and given to the stdin and stdout of the thread on
the remote host (which is clearly not the correct device). Thus, using cin and
cout would require the programmer to add special code to their program to
coordinate with the main host. Our design of the piostream library alleviates
the programmer from the burden of writing special code for performing I/0
in such environments. In addition, our library also solves the problem of un-
synchronized data interleaving (which can occur when access to the input and
output streams is not properly synchronized) and the data origin identification
problem (which means that the source of the output is not identified). Several
user-level solutions are possible but result in added complexity to the user code
which makes the program harder to port and maintain.

In our library, unique identification tags are prepended to each line of output.
The identification tags consist of three variables: the host name, the process id,



OBJECT-ORIENTED DISTRIBUTED AND PARALLEL I/0 STREAMS 5

and the thread id. The piostream library also transparently synchronizes ac-
cess to the output stream thus greatly simplifying the user code. It is clear that
a library providing such facilities would be invaluable for debugging purposes.
Furthermore such a library contributes to user code simplicity and portability,
hence lowering the cost of code maintenance.

In the remainder of this section we present issues concerning the design of the
postream library. To demonstrate the feasibility of our design, we have built a
prototype implementation of postreamin a library which supports concurrency
in C++. This prototype implementation is discussed in the last part of this
section.

1.2.1 The Architecture of Postream

The postream’s architecture is primarily based on a client-server model. In
this model, the server is a dedicated active object in charge of collecting out-
put from remote hosts and printing the output to a local device. It handles
data origin identification and synchronizes data interleaving. The clients are
active objects which may be executing on remote hosts who may wish to use
the postream construct. The postream construct transparently passes output
from each client to the server. The creation of the dedicated server can be
encapsulated within the startup routines of the parallel system (as is the case
in our prototype).

Similar to the cout object of C++’s ostream, postream provides a parallel
output object called pout. Each client has its own pout object. The client-
server architecture of postream supports the same interface as ostream. It
allows for the chaining of operator<<() functions and the output of user-
defined objects. The data origin identifier is created by the run-time system
the first time an active object uses pout and is used in subsequent uses of pout.
The clients’ requests for output are transparently queued in the message queue
of the active object representing the dedicated server. The server then outputs
the data to the proper output device.

A client object has one of two choices with respect to when to transfer data to
the server. It can either transfer the data after a flush of the output stream, or
after each invocation of the operator<<() function. Transferring the data after
a flush of the output stream requires each object to store its output data until
the flush occurs. On the other hand transferring the data after each invocation
of the operator<<() function localizes the overhead in the server object but
requires more message passing between the client and the server. Because
message passing is usually expensive in a distributed system, our prototype
implementation transfers data to the output server after flushing the output
stream. Ghormley et al. (Ghormley et al., 1998) also used a centralized server
design to implement their distributed operating system and found it was not a
significant bottleneck when used in a network of workstations.

We considered alternative models in the design of the postream library. A
possible alternative is the pass to parent model, which is based on passing the
output data to the parent node and making the parent node responsible for



6

all of its descendant’s output. A second possibility is a shared lock model in
which a lock is used to synchronize each client’s output operations. The pass
to parent model was rejected due to the complications involved in maintaining
a dynamically changing hierarchy of ancestors. The shared lock model was not
used because of its dependence on direct client access to stdout and stderr
on the main host.

1.2.2 Implementation

We have developed a prototype implementation of the postream library in
C++ for the parallel class library, ABC++ (O’Farrell et al., 1995; Arjomandi
et al., 1996). Before discussing the major components of the implementation,
we briefly describe the implementation environment.

ABC++ is a class library for parallel programming in C++. It promotes
code reuse through the abstraction and polymorphism facilities of the Object-
Oriented Programming (OOP) paradigm. ABC++ is written in C++ and
requires no preprocessing, compiler or language extensions. The library is
portable and object-oriented with a concurrency model based on active objects.
It presently runs on SUN workstations, IBM RISC System /6000 workstations
and the IBM SP supercomputers. To allow active objects of a class to be
created, the class must publicly inherit from the class Pabc. Active object
communications are based on synchronous and asynchronous object interac-
tions through a Remote Method Invocation (RMI) on both distributed and
shared memory platforms. ABC++ encapsulates the work required to control
threads and synchronize objects thus allowing the user to concentrate on the
semantics of the program. The ABC++ library does not provide support for
parallel and distributed T/O (O’Farrell et al., 1995).

As mentioned earlier, we use a client-server model in the design of the
postream library. In our prototype implementation, the server is an active
object, in charge of output. Any user active object, namely the client, wishing
to perform output, will transfer its output data to the server object. All actions
performed on behalf of the server and clients as related to I/O are transpar-
ently supported by the library and the underlying run-time system. The user
program simply uses pout in the same fashion that cout is used.

The server component of the postream library is primarily a single class,
postream server. A single object of this class, po_server is instantiated to
act as the output server. The server body continually accepts RMIs from
clients until it receives a terminate RMI from the run-time system. The
postream server class contains a dynamically sized vector of buffers for stor-
ing output data, one per client. If the vector becomes full, it is doubled in
size.

Each client is assigned a buffer when the run-time system first transfers the
client’s data to the output server. Each buffer is also dynamically sized with an
initial size of zero. Each buffer has a size limit which if reached results in the
data in the buffer being flushed to stdout. The buffer is used as a temporary
storage facility in the event of an overflow of the buffer stored locally on the



OBJECT-ORIENTED DISTRIBUTED AND PARALLEL I/0 STREAMS 7

client’s host. The client’s data origin identification information is stored with
the client’s respective buffer on the server. The postream_server supports the
following methods:

®  Request key (Request key()) — this public method allows a client to ob-
tain a unique identification key for communicating with the server. This
method is invoked by the run-time system the first time output data is
transferred to the server. This exchange can not be performed at object
creation time because the active object communication mechanisms may
not have been instantiated at this time. This method takes the client’s
identification information (host name, process id, and thread id) as pa-
rameters.

m  Transfer data (Transfer data()) — this public method is invoked by the
run-time system to transfer data to the server for output to stdout. The
client’s index key and output data are provided as arguments.

The client component of the postream library consists of one class,
postream. At first glance, extending the existing ostream class through in-
heritance seems to be the best approach for the design of the postream class.
However, the extensive use of friend functions for the iostream interface
(operator<<() and operator<<()) creates problems with the inheritance ap-
proach. Using the existing operator<<() functions creates the problem of up-
casting the postream object to its base class, which interferes with the proper
use of the manipulator functions used to encapsulate the transfer of data be-
tween client and server. In order to support a piostream interface that is as
close to the existing iostream interface as possible, our piostream library uses
the flush and endl manipulator functions to encapsulate the transfer of data
between the client and the server. However, the use of these functions prevents
the use of inheritance to extend the iostream classes.

An alternate approach, overloading the operator<<() functions, also does
not work because two identical function prototypes are created (postreamis an
ostream) and they cannot be distinguished by the compiler. Hence inheritance
cannot be used to extend the iostream library and therefore a new postream
class must be implemented. Similarly the pistream and pfstream components
cannot be extended from the existing iostream classes.

The use of the operator<<() and operator>>() interface creates a problem
with supporting manipulator functions with arguments. Operator<<() is a bi-
nary operator and cannot pass the required information (manipulator pointer,
output stream and manipulator argument) as arguments. The technique used
by the iostream library to solve this problem is to construct a temporary class
during the function chain?. This approach cannot be duplicated to create a
second manipulator of the same name due to a class name or function conflict
(depending on the particular iostream implementation). The approach used

2More information on this technique can be found in (Eckel, 1995) (pp. 171-178).



8

to bypass this problem in the prototype implementation of the piostream li-
brary is to re-implement the manipulator library (iomanip.h). The users must
therefore include our piostream version of iomanip.h (called piomanip.h) in
order to use manipulator functions with arguments.

Each client active object contains an object of the postream class named
pout. This is implemented in the prototype by adding a data member, pout,
to the root class in ABC++. Since all user active object classes inherit from
ABC++’s root class, Pabc, every client contains a pout object as a data mem-
ber. This object, pout, then acts as an interface between each active object
and the postream _server object.

Data members of the postream class include the index key provided by the
postream server object, the handle of the postream server object, and a
storage buffer. The handle of the server is used to access the processor id,
and the machine name or Internet address of the output server. The postream
class supports both the output of user defined objects (through overloading)
and manipulator functions.

The interface and behaviour of the postream methods are similar to their
ostream counterparts. The postream class supports the following methods:

m  Set address of po_server (Set_POS_server()) — this private method is
invoked by the run-time system to set the postream_server handle which
consists of the server run-time host and memory address.

m  Qutput operator for predefined types (operator<< {predefined type})
— this public method allows the client to insert all predefined data types
(except character strings) into the local buffer. Character strings are
handled separately because of their arbitrary size.

m  Qutput operator for character strings (operator<< {character
string}) — this public method is used to insert character strings into
the buffer. If the character string is too large to fit into the client buffer,
it is divided and transmitted to the postream server by remotely
invoking the postream _server method Transfer data() on the server.

m  Qutput operator for manipulator functions (operator<< {manipulator
function}) — this public method is used to invoke manipulator functions
including end1 and £1lush in a chained fashion. The manipulator function
parameter is invoked with the postream object as an argument.

®  Manipulator functions (flush, endl, hex, etc.) — these manipulator
functions implement the parallel variants of the standard iostream ma-
nipulator functions. The parallel manipulator functions invoke their stan-
dard iostream counterparts which set the appropriate format fields on
the underlying postream client buffer. These manipulator functions are
invoked in a similar manner to their iostream counterparts.

m  Show / Hide data origin identification (Show_id/Hide_id) — these manip-
ulator functions allow the client to suppress the data origin identification
that is prepended to each client’s output data.



OBJECT-ORIENTED DISTRIBUTED AND PARALLEL I/0 STREAMS 9

The postream library follows the design of the ostream library of C++ and
the run-time system provides all the support for transparently performing data
transfer, buffering, data origin identification and synchronized interleaving. At
the user level, active objects simply use pout for transferring data to stan-
dard output on the main host. The piostream library also provides a second
postream object, perr, for parallel and distributed output to stderr on the
main host by remotely executing active objects.

1.3 PISTREAM

Like sequential programs, many parallel and distributed programs also require
input to operate. In a distributed environment however, the use of cin by
active objects residing on remote machines is often not meaningful because
they are frequently not associated with stdin on the main host. The parallel
input stream, pistream, is a component of the parallel streams library designed
for performing input operations in a parallel or distributed environment. The
pistream construct supports distributed input for remotely executing objects.
We support the distribution of input to client objects using two different modes:
broadcast and striped. The broadcast mode transmits each token of information
to all active objects that perform input (i.e., that call pin). The striped mode
transmits each token of information to a different active object, in a first-come
first-serve fashion. The different approaches are not compatible, hence one
distribution mode is specified on the command line for each program execution.

Traditionally, the user had to control this data distribution, and must also
provide extra methods to marshal and transfer the information. Few existing
systems are capable of supporting access to stdin on the main host for remote
objects3. In most existing systems delivering input from a user or file to threads
executing on several different hosts is simply not possible. Instead the user
must first read and buffer the input data on the main host. The user must
then co-ordinate the sending and receiving hosts, and somehow transmit the
data to the desired hosts. Clearly this approach is not easy to use and makes
porting and maintaining the user program more difficult. The pistream input
construct provides an encapsulated, easy to use method of distributing input
data to remote user objects. It allows remote objects to read data through the
natural and familiar istream interface in either a striped or broadcast fashion.

1.3.1 The Architecture of Pistream

The pistream architecture is based on a client-server model similar to
postream. It encapsulates the complexities of input data distribution. The
server object reads input from stdin, buffers and serves client active object
requests for data in either a broadcast or striped fashion. The server maintains

3Condor (Litzkow et al., 1988) for instance supports access through Remote Procedure
Calls (Litzkow, 1987). However, the current implementation of Condor only supports batch
executions and has no support for interprocess communication.



10

each participating client object’s read position in the buffered input stream to
support input broadcasting. To allow striped input, the server maintains a
single shared stream position.

Similar to C++’s istream, pistream provides a parallel input object called
pin. Each client will have its own pin object. The client-server architec-
ture of pistream supports the same interface as in istream. It supports the
chaining of operator>>(), user defined objects, manipulator functions and all
istream methods. The run-time operations of the pistream library are fully
encapsulated allowing the user to input data without additional distribution
complexities. The run-time system encapsulates both the request for data at
the client side and the distribution of data by the server. The server object
encapsulates the distribution of data to requesting active object clients.

1.3.2 Implementation

In our prototype implementation, the server is an active object, in charge of
input. Any user active object, namely a client, wishing to input data, will
request input data from the server object. Below we describe an overview of
the major components of the server and the clients.

The server side of the pistream library is primarily a single class,
pistream server. A single object of this class, pi_server is instantiated to
act as a server. The data members of this class include a buffer containing the
input data for the program. In striped mode, a single position is maintained for
reading the buffer. In broadcast mode, a dynamically sized vector of positions,
one per client, is maintained. Upon a data request the appropriate position
is set, and the corresponding data is read. The server object supports the
following methods which are similar to their postream_server counterparts:

®  Request key (Request key()), same as postream

®  Request data (Request._data()) — this public method is invoked by the
client run-time system to request data. The client’s index key and a
delimiting character are provided as arguments. The server provides a
string of data, delimited by the specified character — with the default
being the newline character. The conversion of data from a byte sequence
to the appropriate C++ data type is handled on the client side of the
pistream client-server model.

m  Fnd of file (eof()) — this public method is invoked by the run-time
system and performs the same function as the eof() istream method.
The method returns the condition of the EOF bit for the client’s stream
position in the server’s data buffer.

m  Poll for data on stdin (Poll_available data()) — this private method
is invoked by the server to determine if data is available to be read from
stdin. The technique used can detect input from either the console or a
redirected file.



OBJECT-ORIENTED DISTRIBUTED AND PARALLEL I/O STREAMS 11

The client portion of the pistream library consists of one main class, the
pistream class. Each client owns an object of the pistream class, pin. This
is implemented similarly to postream, by adding pin as a data member of the
root class in ABC++. Data members of the pistream class are the index key
provided by the input server and the handle of the server object. The pistream
class supports both the input of user defined objects (through overloading) and
the use of manipulator functions.

The methods outlined below are supported by the pistream, the duties of
these methods are the same as their postream and istream counterparts.

m  Set address of pistream server (Set_PIS server()),
m  Input operator for predefined types (operator>> {predefined type}),

m  Input operator for manipulator functions (operator>> {manipulator
function}),

m  Input character(s) (get()),

m  Input next line (get_line()),

m  FEramine next character (peek()),

®  Manipulator functions (ws, hex, etc.),

m  Fnd of file (eof ().

1.4 PFSTREAM

The proposed file stream component of the piostream library provides support
for file I/O for remotely executing objects that may not have access to the main
host file system. The Network File System (NFS) (Sandberg, 1985) provides
support for the sharing of different machine’s file systems. It is possible however
that file systems cannot be mounted for security or administrative reasons.
Another potential difficulty with NFS is the coordination required to support
active object file I/O with a single shared file pointer. The statelessness of the
NFS server requires any coordination to be performed explicitly by the user.
For these reasons NFS is not a suitable solution for high-level distributed file
I/0.

The pfstream component of the piostream library is composed of three
distinct classes, pofstream, pifstream, and pfstream, which are based on
their fstream counterparts. The pfstream constructs use the same client-
server model as the postream and pistream constructs previously discussed.
In addition to sharing many design issues with postream and pistream, issues
relevant exclusively to the design of the pfstream include:

m  The handling of conflicting modes when multiple active objects access
the same file simultaneously. By simultaneously we mean that at least



12

two client objects overlap the open() and close() file operations. The
pfstream library supports independent and shared file stream positions.

m  The tracking and representation of open files required to support shared
access to the same file by multiple clients.

m  The simultaneous use of different access modes on the same file by differ-
ent active objects.

m  The opening of the same file multiple times by the same active object.

Together these facilities will make the pfstream constructs an important
component of the piostreamlibrary. The high-level tools will encapsulate com-
plicated sequencing of multiple remotely executing active object interactions
with files on the main host file system. We have completed the preliminary
design of the pfstream library and in the future hope to develop a prototype
implementation using the ABC++4 environment.

1.5 RELATED WORK

Parallel TI/O that addresses the problems of debugging and maintenance has
received little attention in the literature and even less research has been con-
ducted on object-oriented solutions to this problem. In this section we first
examine how I/0 is supported by the popular PVM (Parallel Virtual Machine)
system and the MPI (Message Passing Interface) standard and then describe
existing object-oriented solutions for parallel 1/O.

PVM (Geist et al., 1994), which is a widely used library for parallel pro-
gramming, provides no access to stdin for remote tasks. Each task in PVM
is provided with a stdout sink, a construct that inherits from its parent task.
PVM supports data origin identification by tagging output from each task. Syn-
chronized data interleaving is provided around each output statement. Support
for user-defined objects and formatting manipulator functions is not provided
because PVM is implemented in C. The main drawback of the approach used
in PVM is that output must first be marshaled into a character array by the
user before being output. The added complexity makes the user program more
difficult to port and maintain.

MPT (Snir et al., 1996) is a standard message passing interface for parallel
programming. The current specification of MPI does not fully address the
support of T/O for all tasks (Snir et al., 1996) (pp. 287-289). The MPI-2
standards document (MPT Forum, 1997) has addressed this problem with a
chapter on I/O supporting only C and Fortran77 interfaces. The problem with
the support provided for output in PVM and MPI is that neither provides
an easy to use and extensible interface that transparently supports 1/O on
arbitrary objects and manipulator functions.

Gotwals et al. (Gotwals et al., 1995a), explore the problem by implementing
the d/stream construct in the parallel language pC++ (Gotwals et al., 1995a).
The d/stream construct is a language-independent abstraction that supports
a number of simple primitives which allow I/O to be performed on distributed



OBJECT-ORIENTED DISTRIBUTED AND PARALLEL I/O STREAMS 13

arrays with arbitrary object elements. Conceptually, a d/stream is a buffer
that is used as an intermediate storage step between the user and a file. Using
a d/stream, a user is able to insert data into the buffer, then write it to a
file at a later time; or conversely read data from the file into the buffer, from
which it can be extracted into a distributed array. They accomplish this by
using a compiler dependent feature called collections. A collection is defined
as a distributed array of objects with additional underlying infrastructure that
provides support for arbitrary data structures such as trees.

Gotwals et al. duplicate portions of the C++4 iostream interface by sup-
porting the use of the operator<<() and operator>>() methods which can be
extended to support user defined objects. pC++/streams, the implementation
of d/streams in the language pC++, is described for file I/O only, although
extending it to implement support for standard 1/O descriptors would likely
be possible. A major limitation of d/streams which prevents it from being
widely and easily used is that pC++/streams is based on the compiler depen-
dent construct, collections. Moreover the pC++/stream construct requires the
use of a parallel file system for data buffering and transmission in a distributed
environment. The pC++/streams interface also lacks support for chaining I/0O
method invocations (the use of several input or output operations in the same
C++ statement) and manipulator functions. As a result of these limitations
pC++/streams deviates significantly from C++4 iostream interface.

The piostream library presented in this paper is based on the interface of
iostream which means that chained I/O and manipulator functions are both
supported. The piostream library does not rely on any language extensions
and therefore, depends only on the use of a standard C++ compiler. Lastly the
piostream library file constructs allow remote objects to perform I/O on the
main host file system without dependence on the use of a parallel file system
unlike pC++/streams.

1.6 CONCLUSIONS

In this paper we describe the design and prototype implementation of a C++
streams library called piostream designed for use in parallel and distributed
environments. Our design is based on the familiar C4++4 iostream library and
as a result it is easy to learn, use and extend. The piostream library provides
high-level constructs pin, pout, perr, and pfstream so that users are not
required to construct, send and receive elaborate messages in order to perform
I/0 with active objects that may be executing on remote hosts. We support the
chaining of I/O method invocations, manipulator functions and the overloading
of operators to support user-defined data types. Unlike many existing systems,
our prototype implementation is built using and is fully compatible with C++,
which means that no special compiler support or preprocessing is required.
Synchronization is an integral part of the piostream library and therefore, the
user is not required to synchronize access between multiple objects and I/0
streams or files on the main host.



14

The piostream library demonstrates that parallel and distributed I/O can
be supported using a standard and familiar interface. Moreover, parallel and
distributed I/O can be supported without the use of compiler and language
extensions. The piostream library provides intuitive and powerful high-level
object-oriented constructs that can offer significant benefits to programmers
when writing, debugging, executing and maintaining parallel and distributed
programs.

1.7 ACKNOWLEDGEMENTS

We thank Dr. William O’Farrell of IBM Canada and Dr. Gregory Wilson of
Software Carpentry for their many helpful discussions related to this work.

References

Arjomandi, E., O’Farrell, W., Kalas, 1., Koblents, G., Eigler, F., and Gao,
G. (1995). ABC++: Concurrency and inheritance in C++4. IBM Systems
Journal, 34(1):120-136.

Arjomandi, E., O’Farrell, W., and Wilson, G. (1996). Smart messages: An
object—oriented communication mechanism. In 2nd Conference on Object-
Oriented Technologies and Systems (COOTS), pages 233-240, Toronto,
Canada.

Eckel, B. (1995). Thinking in C++. Prentice Hall, New Jersey.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam,
V. (1994). PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for
Networked Parallel Computing. The MIT Press, Cambridge Massachusetts.

Ghormley, D. P., Petrou, D., Rodrigues, S. H., Vahdat, A. M., and Anderson,
T. E. (1998). GLUnix: a global layer Unix for a network of workstations. In
Software, Practice and Ezxperience.

Gotwals, J., Srinivas, S., and Gannon, D. (1995a). pC++/streams: a library for
I/0 on complex distributed data structures. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 11-19, Santa Barbara.

Gotwals, J., Srinivas, S., and Yang, S. (1995b). Parallel I/O from the user’s
perspective. In Proceedings of the Fifth Symposium on the Frontiers of Mas-
sively Parallel Computation, pages 129-137.

Litzkow, M. (1987). Remote Unix — turning idle workstations into cycle servers.
In Proceedings of Useniz Summer Conference, pages 381-384.

Litzkow, M., Livny, M., and Mutka, M. W. (1988). Condor — a hunter of idle
workstations. In Proceedings of the 8th International Conference of Dis-
tributed Computing Systems, pages 104-111.

MPI Forum (1997). MPI-2: Extensions to the message—passing interface.
Technical report, (http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.html).



OBJECT-ORIENTED DISTRIBUTED AND PARALLEL I/O STREAMS 15

Nieuwejaar, N. and Kotz, D. (1995). Low-level interfaces for high—level parallel
1/0. In Proceedings of the IPPS 95 Workshop on Input/Qutput in Parallel
and Distributed Systems, pages 47-62.

O’Farrell, W., Eigler, F., Kalas, 1., and Wilson, G. (1995). An Introduction to
the IBM Parallel Class Library for C++. ABC++ Version 1, Release 1, IBM
Canada.

Sandberg, R. (1985). The design and implementation of the Sun network file
system. In USENIX Association Conference Proceedings, pages 119-130.
Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. (1996).

MPI: The Complete Reference. The MIT Press, Cambridge Massachusetts.

Teale, S. (1993). C++ IOStreams Handbook. Addison Wesley Publishing Com-

pany, Inc., Reading, Massachusetts.



