Appears in the Proceedings of HotWeb 2006, November, 2(

TCP Connection Management Mechanisms
for Improving Internet Server Performance

Amol Shukld and Tim Brecht
David R. Cheriton School of Computer Science, University\terloo
{ashukl a, brecht }@s. uwat erl 0o. ca

Abstract— This paper investigates TCP connection manage- critical part of the Internet infrastructure and it is imatve
ment mechanisms in order to understand the behaviour and to ensure that they provide reasonable performance during
improve the performance of Internet servers during overloal overload conditions such as flash crowds

conditions such as flash crowds. We study several alternats . . .
for implementing TCP connection establishment, reviewingap- Past work [5] has reported that the escalation in traffic

proaches taken by existing TCP stacks as well as proposingwe during flash crowds occurs largely because of an increase
mechanisms to improve server throughput and reduce cliente- in the number of clients, resulting in an increase in the
sponse times under overload. We implement some of these mech nyumber of TCP connections that a server must handle. TCP
anisms in Linux and evaluate their performance. Our evalualon oo qevelopers in various flavours of UNIX and Windows
demonstrates that connection establishment mechanisms ah . . .
eliminate the TCP-level retransmission of connection attiepts by Nave taken different approaches toward implementing TCP
clients can increase server throughput by up to 40% and redue connection establishment (i.e., the three-way handshave)
client response times by two orders of magnitude. Additiondly review several of these approaches, implement them in Linux
we evaluate the cost of supporting half-closed connectiors the gnd evaluate their performance. Additionally, we expldtera

server and assess the impact of an abortive release of confieas 44y e to standard TCP connection termination at both end-
by clients on the throughput of an overloaded server. We obsee . h . buti f thi .
that mechanisms that do not support half-closed connectign POINts. The main contributions of this paper are:

additionally improve server throughput by more than 15%. « We provide a better understanding of Internet server be-
haviour during overload conditions such as flash crowds.
« We demonstrate that the connection establishment mech-
The demand for Internet-based services has exploded over anisms used in many existing TCP stacks result in de-
the last decade. The ubiquitous nature of web browsers has graded server throughput and increased client response
given rise to the occurrence dfash crowdswhere a large times during overload.
number of users simultaneously access a particular web site, We present an alternative server-kernel mechanism that
Flash crowds are characterized by a rapid and dramatic surge eliminates the retransmission of connection attempts by
in the volume of requests, prolonged periods of overload, an client-side TCP stacks during high loads, thereby improv-
are often triggered without advance warning. In the hours ing server throughput by up to 40% and reducing client
following the September 11th terrorist attacks, many media response times by more than two orders of magnitude.
sites such as CNN and MSNBC were overwhelmed with This mechanism does not require any changes to protocol
more than an order of magnitude increase in traffic, pushing specifications, client TCP stacks or applications, or serve
their availability to 0% and their response time to over 47 applications.
seconds [1], [2]. A previously unpopular web site can see, Our performance evaluation indicates that disabling sup-

I. INTRODUCTION

a huge influx of requests after being mentioned in well- port for half-closed connections as well as an abortive
known news feeds or discussion sites, resulting in saturati release of connections by clients can improve server
and unavailability — this is popularly known as tl#ashdot throughput by up to 15%.
effect[3].

In many web systems, once client demand exceeds the Il. BACKGROUND

server's capacity, the server throughput drops sharplythed . .))

client response time increases significantly. Ironicalyjs A typical HTTP interaction between a client and a server
precisely during these periods of high demand that a wels siteonsists of the client establishing a TCP connection with
quality of service matters the most. Over-provisioning th&e server, sending an HTTP request, receiving the server
capacity in web systems is often inadequate. Server cgpaé@SPonse, and terminating the connection. Multiple roufds
needs to be increased by at least 4-5 times to deal wif¢fluest-response transactions can take place over a siagle
even moderate flash crowds and the added capacity tend§@Bnection if both of the end-points use persistent HTTP 1.1
be more than 82% idle during normal loads [4], most oftegPnnections. In the following paragraphs, we briefly ddxszri

making this approach fiscally imprudent. Web servers form@W connection establishment and termination is typically
implemented in a client-server environment, using the kinu

fNow at RealNetworks, Inc. TCP stack as a representative example.

A. TCP Connection Establishment

TCP connection establishment involves a three-way ha
shake between the end-points [6]. Figure 1 illustrates t

establishment attempts earlier (at the SYN stage ratharttea

r@ng stage) when the listen queue is full is also implemented
Héother TCP stacks such as FreeBSD. Similarly, in most cases

handshake implementation in Linux. We now briefly discuss SYN/ACK ACK is dropped when the listen queue is full

the portions of this process most relevant to our paper.

SYN/ACK

SrvAck

ESTABLISHED

connect()
returns

applicatiof can
read() or write()

CLIENT SERVER
listen()
LISTEN
connect() SYN SYNQ or
—— i
SYN_SENT ListenQ

full?*

NO

YES

Silently

Drop SYN

SYNQ

Add to SYNQ,

send SYN/ACK

SYN_RECV

YES | silently

Drop ACK

to ListenQ,

from SYNQ

Add new socket|

remove entry

LISTENQ

ESTABLISHED

laccept()
application can

read() or write()

o

Fig. 1. TCP connection establishment in Linux

Upon receiving a SYN, the server TCP stack creates an
entry identifying the client’s connection request in thetdining
socket’'s SYN queue (sometimes called the SYN backlog a

upon arrival at the server.

Most TCP stacks implement connection establishment as
described above. In order to try to protect against SYN flood
denial of service attacks, some stacks use techniques such
as SYN cookies [7] or SYN cache [8] to reduce the state
the server is required to store to track incomplete conaecti
requests. However, implementations differ significarmiyrow
they react to queue drops. In Linux, SYN segments as well
as SYN/ACK ACK segments are dropped silently when they
trigger a queue drop. That is, no notification is sent to tfien
about these dropped segments. Most 4.2 BSD-derived TCP
stacks, such as those in FreeBSD, HP-UX, and Solaris, only
drop SYN segments silently [9]. Whenever a SYN/ACK ACK
is dropped due to listen queue overflow, a TCP reset (RST)
segment is sent to the client notifying it of the server'itity
to continue with the connection. Some Windows TCP stacks
do not drop either of these connection establishment segmen
silently, sending a RST to the client every time there is augue
drop. Note that in TCP, segments (except RSTs) that are not
acknowledged by the server within a particular amount o&tim
are retransmitted by the client.

In Section Ill, we critique the different approaches to han-
dling queue drops; we are particularly interested in angger
fhe following question — TCP stack developers in Linux,

often implemented as a hash table). It then acknowledges ysious flavours of UNIX, and Windows have taken different
SYN by sending a SYN/ACK segment. The handshake is copProaches to implementing connection establishmentchVhi

plete when the client TCP stack acknowledges the SYN/ACK

these approaches, if any, result in better performandemun

with an ACK. We will refer to the ACK sent by the client in overload? We also present two novel mechanisms designed to
response to a SYNJACK as SYN/ACK ACK to distinguish ieliminate the retransmission of TCP connection establesttm

from other ACK segments used in TCP. Upon receiving t

megments in order to increase server throughput and reduce

SYN/ACK ACK, the server TCP stack creates a new sockéﬁ's,ient response times.
adds it to the listening socket’s listen queue.(sometiméed:a B. TCP Connection Termination
the accept queue), and removes the associated entry from the

SYN queue. In order to communicate with the client, the .
server application has to issue thecept () system call,

which removes the socket from the listen queue and retu
an associated socket descriptor to the application. Natieirt

r . . L e
h s each end-point transmits a FIN to indicate that it is not

TCP connection is full-duplex and both sides can ter-
minate their end of the connection independently through a
hdN-ACK” handshake after they finish sending data [6]. That

most socket APl implementations, the three-way connectig@ind tosendany more data on a connection. This method of

establishment procedure is completed by the server TCR st

beforethe application issues aaccept () call.

The server TCP stack might not always be in a positi
to accommodate a SYN or a SYN/ACK ACK, this happen
primarily when the SYN or the listen queue is full.
gueues may become full because the rate of incoming cli
connection attempts is higher than the rate at which thesser
application is able to accept and process new conneétio
A SYN or SYN/ACK ACK segment that cannot be accom
modated has to be dropped, we refer to this scenario a
gueue dropThe conservative approach of dropping connection

lincreasing queue lengths does not improve the situatiomwviihve server

is overloaded because the queues quickly become full.

n

8nnection termination is called “graceful close”.
Graceful connection closure is implemented with either

(J?falf—closed (also called full-duplex) or half-duplex tenation

emantics. The CLOSE operation outlined in RFC 793 allows

Thdora connection to be “half closed”, allowing an end-poistt

ds a FIN taeceivedata from its peer. Some socket APIs
grovide theshut down() system call to provide half-closed
onnection semantics, enabling applications to shutddwen t
sending side of their connection, while allowing activity o

éhg receiving side through subsequeetad() calls.

Most applications, however, use thé ose() system call

to terminate both the sending as well as the receiving direc-
tions of the connection by treating the connection as if it is
half-duplex [10]. RFC 1122 specifies — “A host may implement

a ‘half-duplex’ TCP close sequence, so that an applicatiovith SYN/ACKSs, as long as there is space for at least one
that has called CLOSE cannot continue to read data from thetry in the listen queue (and the SYN queue is not full).
connection. If such a host issues a CLOSE call while receivétiis invariably results in the server receiving more SYNKAC
data is still pending in TCP, or if new data is received aftekCKs than there is space for in the listen queue, leading to a
CLOSE is called, its TCP should send a RST to show that ddtigh number of queue drops due to listen queue overflow.
was lost.” [11]. Acl ose() call typically returns immediately ~ While most TCP stacks are prone to listen queue overflow,
and destroys the socket descriptor so the application litsesits effect in Linux is particularly problematic. Recall thie
reference to the TCP connection. Linux TCP stack silently drops a SYN/ACK ACK upon a

Any client-initiated graceful connection terminationthar listen queue overflow. It is instructive to study the effduitt
with half-closed or half-duplex connection semanticsuitss a silent SYN/ACK ACK drop by the server has on a client.
in a FIN being sent to the server. Upon receiving a FIRigure 2 provided cpdunp [14] output to illustrate the flow
segment, most server TCP stacks assume that the client wsfeECP segments from a client (cInt) whose SYN/ACK ACK
half-closed semantics (i.e., trehut down() system call). triggers listen queue overflow at the server (srvr). Noté we
That is, they support half-closed client connections byadkf only display the time at which TCP segments were received
However, most web clients do not terminate connectiolws transmitted at the server, the end-point identifiers, 6@
using half-closed connection semantics, instead they huse flags field (i.e., SYN (S), PSH (P), or FIN (F)), the ACK field,
cl ose() system call. In Section IV-A, we demonstrate howhe relative sequence and acknowledgment numbers, and the
supporting half-closed connections can result in an im@niid advertised window sizes.
use of resources at the server, especially during overidad. Upon receiving a SYN/ACK, the client TCP stack
describe an alternative connection termination mechathsin sends a SYN/ACK ACK, transitions the connection to the
disables support for half-closed connections allowing s ESTABLI SHED state, and completes theonnect () call
evaluate the cost of supporting half-closed connectionsnwhsignifying a successful connection. The client applicati®
the server is overloaded. now free to start transmitting data on that connection, and

Instead of graceful closure, an application can also forcetteerefore sends its request to the server (line 4). However,
connection to be terminated through an abortive releasiehwhthe client's SYN/ACK ACK (line 3) results in a listen queue
causes the TCP stack to send a reset (RST) segment tooiterflow at the server, and is is silently dropped in Linux.
peer. RFC 793 and RFC 2616 [12] strongly discourage theAt this point, from the server’s point of view, the conneatio
use of an abortive release to terminate connections as a f&mtill in SYN.-RECV state awaiting a SYN/ACK ACK, and all
of normal operations. However, some client applications, subsequent client TCP segments are handled iSYNeRECV
particular, Internet Explorer 5 and 6, which are currenklg t code path. Even subsequent data and FIN segments are treated
most popular web browsers, terminaité of their connections as an implied SYN/ACK ACK, and can result in additional
by forcing the client TCP stack to send a RST [13]. The reasgueue drops if the listen queue is full when they arrive
why Internet Explorer uses an abortive release to terminate the server. Hence, there is a disconnect between TCP
connections is not clear. In this paper, we examine the ilnp@aonnection state at the clierE$TABLI SHED) and the server
that abortive release has on server throughput under higislo (SYN.RECV). The client keeps retransmitting the first segment
We are aware of the potential problems that can arise frashits request (lines 5, 6). The retransmission timeout used
not supporting half-closed connections or from an abortitbe client for data requests tends to be more aggressive than
release of connections; our approach toward these mechanithe exponential-backoff style retransmission timeoutduse
is exploratory, not prescriptive. SYN retransmissions because the client has an estimate of th
round-trip time after receiving the SYN/ACK. Eventuallizet
client-side application times out and terminates the cotioe

In this section, we outline some problems with existindine 7).
implementations of TCP connection establishment using theThe Linux TCP stack aggravates the problem by retransmit-
Linux stack for illustration. We divide our discussion inting a SYN/ACK even when the listen queue is full (lines 10,
Section IlI-A into problems arising at the ACK stage whed3, and 16), thus creating additional load for itself. Mareo
the listen queue overflows and at the SYN stage when S¥he incomplete client connection continues to occupy space
segments are silently dropped. In Section 1lI-B we reviethe SYN queue thereby increasing the probability of addélo
existing solutions and present novel mechanisms to addr&éN drops. If the listen queue is not full when a subsequent

IIl. CONNECTION ESTABLISHMENT ALTERNATIVES

both of these problems. client segment arrives, the server stack creates a sockiet an
. o) places it on the listen queue. The server application cam the
A. Problems with Existing Mechanisms accept, read, process, and respond to the client requess (li

1) Listen Queue OverflowtUnder overload, we have ob-19 and 20). However, the client application might have alyea
served that the server application’s listen queue is neadipsed its end of the connection, and hence the client TCP
always full because the rate of attempted connections dscestack sends a reset (RST) in response to every server reply
the rate at which the application is able to accept them. Tfimes 21 and 22).
server receives a burst of SYNs and responds to all of themThus, the implementation of connection establishment in

(0) 11:32:00.926222 clnt. 1024 > srvr.8080: 1427884078: 1427884078(0) wi n 5840
(1) 11:32:03.688005 clnt.1024 > srvr.8080: 1427884078: 1427884078(0) wi n 5840
(2) 11:32:03.688026 srvr.8080 > clnt.1024: 956286498: 956286498(0)

ack 1427884079 win 5792
(3) 11:32:03.688254 clnt.1024

nunn

srvr.8080: . ack 1 win 5840

(4) 11:32:03.688254 clnt. 1024 srvr.8080: P 1:81(80) ack 1 win 5840
(5) 11:32:03.892148 clnt. 1024 srvr.8080: P 1:81(80) ack 1 win 5840
(6) 11:32:04.312178 clnt. 1024 srvr.8080: P 1:81(80) ack 1 win 5840
(7) 11:32:04.688606 clnt. 1024 srvr.8080: F 81:81(0) ack 1 win 5840

(8) 11:32:05.152238 clnt. 1024 srvr.8080: FP 1:81(80) ack 1 wi n 5840

(9) 11:32:06.832233 clnt.1024 srvr.8080: FP 1:81(80) ack 1 win 5840

(10) 11:32:07.686446 srvr.8080 > clnt.1024: S 956286498: 956286498(0)
ack 1427884079 win 5792

(11) 11:32:07.686533 clnt.1024 > srvr.8080: . ack 1 win 5840

(12) 11:32:10.192219 clnt.1024 > srvr.8080: FP 1:81(80) ack 1 win 5840

(13) 11:32:13.685533 srvr.8080 > clnt.1024: S 956286498: 956286498(0)
ack 1427884079 wi n 5792

(14) 11:32:13.685637 clnt.1024 > srvr.8080: . ack 1 win 5840

(15) 11:32:16.912070 clnt.1024 > srvr.8080: FP 1:81(80) ack 1 win 5840

(16) 11:32:25.683711 srvr.8080 > clnt.1024: S 956286498: 956286498(0)
ack 1427884079 win 5792

(17) 11:32:25.683969 clnt. 1024

(18) 11:32:30.352020 clnt.1024

(19) 11:32:30.352122 srvr. 8080

(20) 11:32:30.352142 srvr. 38080

(21) 11:32:30.352394 clnt. 1024

(22) 11:32:30.352396 clnt.1024

VVVVVVYV

srvr.8080: . ack 1 win 5840

srvr.8080: FP 1:81(80) ack 1 win 5840
clnt.1024: P 1:1013(1012) ack 82 wi n 46
clnt.1024: F 1013:1013(0) ack 82 wi n 46
srvr.8080: R 1427884160: 1427884160(0) win O

>
>
>
>
>
> srvr.8080: R 1427884160: 1427884160(0) win O

Fig. 2. t cpdunp output to illustrate the problems with the TCP connectiomatgment implementation in Linux

many TCP stacks can result in listen queue overflow. TI®'N segments from “old” (i.e., client TCP stacks that are
default Linux connection management mechanism, which wetrying) connections, in addition to a steady rate of inogn
will hereby call default , reacts poorly to listen queueSYN requests arising from “new” connections.
overflow, causing a disconnect between the TCP states at th&Ve profiled an overloaded web server using a system-wide
client and the server as well as unnecessary network traffi@rofiler. Our results indicated that TCP processing doreimat
. o CPU utilization compared to other tasks (e.g., driver or IP

2) Silent SYN Drop:As shown in Figure 1, most serverqe| nacket processing) as the load exerted increasesTa5]
TCP stacks, including Linux, also drop SYN segments s¥entyy syate the cost of TCP processing under overload, Téble
if either the SYN or the listen queue is full. Like any otherH C g \y5 the breakdown of TCP connection related statistics at

transmission, the client TCP stack sets up a retransmissio ey server at different request rates. Note that the server
timeout whenever it sends a SYN segment to the server. I 1< saturation after 22.000 requests/sec

the SYN retransmission timeout expires before a SYN/ACK

is received, the client TCP stack retransmits the SYN arsl $etCP Request Rate
up another timeout. This process continues until the se ?at'St'Cd 22000] 28000 34,000
; ; Expected SYN segments 2,640,000| 3,360,000(4,080,000
resppnds with a SYN/ACK, or unpl f[he t_hreshold for thleACtual SYN segments 5’640 011 | 4.156.497| 6.385.607
maximum number of SYN retransmissions is re_ached. Tableaka SYNJACK ACK 2640011 3.323.742| 3.828.060
shows the SYN retransmission timeouts used in popular T|Cfgments
stacks. Connection establishment 5,280,022 | 7,480,239 10,213,667
segments
Operating System | SYN retransmission timeout (sec) Established connections 2,640,011 2,372,030 2,236,980
Linux 2.4/2.6 3, 6, 12, 24, 48 Ratio of established 1.00 0.57 0.35
FreeBSD 5.3 3,32, 32, 32, 32,6.2,12.2, 242 connections to actual SYN
Mac OS X 10.3 3,3,3,3,3,6,12, 24 segments
Windows 9x, NT 3,6, 12 Total segments 15,840,231 16,968,566| 19,161,742
Windows 2000/XP | 3, 6 ABLET
TABLE T TCPCONNECTION STATISTICS AT A WEB SERVER

SYN RETRANSMISSIONS TIMEOUTS INTCP STACKS .
Under high loads, the number of SYN and SYN/ACK

An implicit assumption in silent SYN drops is that theACK segments received and processed at the server increases
connection queues overflowed because of a momentary buegtidly compared to the number of segments destined for
in traffic that will subside in time to allow the retransmidte already established connections. The increase in commecti
SYN segments to be processed. However, under persistestablishment segments is primarily due to retransmitdd S
overload conditions, such as during flash crowds, the sengggments. As the server TCP stack spends more time process-
TCP stack has to handle a large number of connection attemiptp SYN segments, the number of connections that it is able
for an extended period of time. The duration of overload & actually establish and process decreases.
the server is much longer than the client application tinbleou Note that the high cost of handling retransmitted SYN
as well as the maximum SYN retransmission timeout usedgments is not because of a poor implementation of SYN
in most client TCP stacks. Hence, the majority of clientgrocessing in the Linux networking stack. On the contrdrg, t
retransmit their SYNs while the servergsll overloaded. As a SYN-processing implementation in most modern TCP stacks,
result the server TCP stack is forced to process retraresinitincluding Linux, is meant to be efficient to minimize the

damage from SYN flood attacks [8]. Techniques such as SYided with theWSAAccept () system call [16]. Note that
cookies do not alleviate the cost of processing retransthitta lazy accept () can result in poor performance because
connection attempts. Furthermore, dropping SYN segmentdtee applications will tend to block waiting for the three-
an earlier stage in the networking stack does not mitigatey handshake to be completed by the TCP stack. More
the negative performance impact of retransmitted SYN seigaportantly, a lazyaccept () makes the server vulnerable to
ments [15]. SYN flood denial of service attacks, where malicious clients
do not send a SYN/ACK ACK in response to a SYN/ACK.
Another proactive method of ensuring that there is no listen
1) Solutions for Listen Queue OverflowBefore consid- queue overflow, while still allowing the three-way handshak
ering proactive solutions to prevent the listen queue frofs be completed before connections are placed on the listen
overflowing, we first review reactive approaches to avoid thgieue, is to implement listen queue reservations. Wherleger
disconnect between the TCP states at the end-points aris§ggver TCP stack sends a SYN/ACK in response to a SYN,
from listen queue overflow in a Linux server. it reserves room for that connection in the listen queue (in
Instead of silently dropping a SYN/ACK ACK upon a listeraddition to adding an entry to the SYN queue). Room is freed
queue overflow, the server TCP stack can send a reset (R&F) subsequent reservations every time an entry is removed
to a client to notify it of its inability to continue with the from the listen queue through amccept () system call.
connection. A RST ensures that both end-points throw awRpom can also be created in the listen queue whenever an
all information associated with that connection and subsentry is removed from the SYN queue due to an error or a
quently there is no TCP traffic on that connection. The cliefiineout. The server TCP stack sends a SYN/ACK only if there
application is notified of a reset connection on its nexteyst is room for a new reservation in the listen queue. We refer to
call, which will fail with an error such aECONNRESET. The the listen queue reservation mechanisnresery
implicit assumption in aborting a connection on queue dropsTg our knowledge, theeserv mechanism described above
due to listen queue overflow is that the server applicationiis novel. However, we arrived at it at the same time as the
not able to drain the listen queue fast enough to keep up Witfysi _Accept () call implementation described by Turner et
the rate of incoming SYN/ACK ACKs. This approach to listery). for the Direct User Socket Interface within the ETA paeke
queue Overf|OW iS Used by default in TCP StaCkS in FreeBSqucessing architecture [17] This call allows app“caﬂdo
HP-UX 11, Solaris 2.7. Although not enabled by default, thisost asynchronous connection acceptance requests thatees
behaviour is available as a configurable option in Linux. W&om in the listen queue. In contrast to work by Turner et
will refer to this mechanism aabort (an abbreviation of 3|, our listen queue reservation mechanism is designed to
thet cp_abort _on_over f| ow parameter that achieves thisyork with the BSD sockets APl and existing TCP stack
behaviour in Linux). implementations. Thieserv mechanism can be generalized
Whenever a SYN/ACK ACK triggers a listen queue ovelip allow for “overbooking” to account for clients whose
flow, the TCP stack can also temporarily grow the listen quegs/N/ACK ACK is delayed in WAN environments, and can
to accommodate it [9]. However, this mechanism disregarggs combined with a probabilistic SYN drop, SYN cookies,

the listen queue size specified by the application, thereBjd a periodic clean up of reservations to counter SYN flood
overriding any listen queue based admission control msici genial of service attacks.

The additional connections in the listen queue can alscetkepl
the available kernel memory. Under overload, the servehtmig 2) Alternatives to Silent SYN DropVhen under overload,
not be able to accept and process these connections beordrtbtead of silently dropping SYN segments, the server TCP
client times out, resulting in an inappropriate use of reses. stack can explicitly notify clients to stop the further eets-
For these reasons, we do not consider growing the listenequenission of SYNs. One way of achieving this is to send a
in response to an overflow in this paper. RST whenever a SYN is dropped. Usually, a RST is sent in
Proactive approaches that avoid queue drops due to liesponse to a SYN to indicate that there is no listening gocke
ten queue overflow ensure that the listen queue is newrthe specified port on the server. This is also equivalent to
full when a SYN/ACK ACK arrives. We are aware of onean ICMP “Port Unreachable” message [10]. As per RFC 793,
such approach, namely, lazgccept () [10]. In a lazy the client TCP stack should then give up on the connection
accept (), the server TCP stack does not send a SYN/ACKNd indicate failure to the client application. Typicallpan
in response to a SYN until the server application issues agceiving a RST, @onnect () call by the application would
accept () system call. This ensures that the server TCil with an error such aECONNREFUSED. Note that a client
stack can always accommodate a subsequent SYN/ACK AGlgplication is free to continue to retry a connection evearaf
in the listen queue. Although the Solaris 2.2 TCP stadkreceives arECONNREFUSED error from its TCP stack, but
provided at cp_eager i steners parameter to enable most well-written applications would give up attempting th
lazy accept (), support for this parameter appears to havennection. Sending a RST when a SYN is dropped, eliminates
been discontinued in later Solaris versions [10]. The Wimglo TCP-level retransmissions, which are transparent to tieatcl
Sockets API (version 2) provides similar functionalitydhgh application and the user. In order to notify a client when the
the SO.CONDI TI ONAL _ACCEPT socket option that can beserver is overloaded so that it can prevent further conoecti

B. Alternative Solutions

attempts (i.e., avoid SYN retransmissions), we modified tifeCP stack — no exponential backoff mechanism is used.
server TCP stack in Linux to send a RST whenever a SYNTo our knowledge, there are no results that quantify the
is dropped. We refer to this mechanism st - syn. (an effects of the Windows-like clients with server TCP stacks
abbreviation of “RST in response to a SYN on a SYN dropvhich do send a RST to reject a SYN. On the other hand,
Note thatr st - syn only affects client behaviour at thesome past work has cited this behaviour of Windows clients
SYN stage and is typically used in conjunction with ACKas a justification for dropping SYN segments silently [9],
stage mechanisms described in Section 111-B.1. That is,ave d21]. In this paper, we test this hypothesis by evaluatirg th
user st - syn in conjunction with the listen queue reservatiogffectiveness of st - syn with RFC 793-compliant as well
mechanism to send RST to clients whenever a reservat@ah Windows-like TCP stacks. Unfortunately, our workload
is not available, we refer to this mechanism agserv generatorlft t per f) is UNIX-specific and non-trivial to port
r st - syn. Similarly, whenr st - syn is used in conjunction to the Windows API. Hence, we modified the Linux TCP stack
with the reactive aborting of connections on listen quede our clients to mimic the behaviour of Windows clients upon
overflow, we call the resulting mechanisthort rst-syn. receiving a RST in response to a SYN. We will refer to this
After developing st - syn and discovering the high overheademulation in Linux asm n- emu.
of processing retransmitted SYNs, we discovered that someSilently dropping SYN segments results in SYN retrans-
TCP stacks, including those on some Windows operating syBissions in all client TCP stacks. Notifying the client thst
tems, already implement such a mechanism [18]. As indicatg@ould abort SYN retransmissions with a RST is not effective
earlier, most UNIX TCP stacks drop SYN segments silently. i stopping SYN retries with Windows-like TCP stacks. To
this context, the results presented in this paper can beedewvorkaround this problem, we developed a mechanism which
as a comparison of the different connection establishmewoids retransmissions of TCP connection establishmept se
mechanisms implemented in current TCP stacks. ments, albeit in an ungainly fashion. The key idea of this
We should point out the shortcomingsmét - syn. Send- mechanism is to drop no SYN segments, but to instead notify
ing a RST in response to a SYN when there is a Iisteniﬁbe client of a failure to establish a connection at the ACK
socket at the client-specified port implies overloading thH&age upon listen queue overflow. Thus, a SYN/ACK is sent
semantics of a RST [19]. While it can be argued that from tH@ response to every SYN, irrespective of whether there is
server's point-of-view the RST achieves the desired efééct Space available in the SYN queue or the listen queue (SYN
preventing further SYN retransmissions from clients, ardli Cookies are used to simulate an unbounded SYN queue). The
TCP stack which receives a RST from the server is unaf®ort mechanism is later used to reset those connections
to determine whether the RST is because of an incorrectpose SYN/ACK ACKs cannot be accommodated in the listen
specified port, or due to overload at the server. Unfortupatedueue. We refer to this mechanism ae- syn-drop. In
no other alternative seems to be available in current T®®pder to ensure that there are no SYN drops, we eliminate
implementations to allow an overloaded server to notifgrts the check for space availability in the listen queue upon SYN
to stop retransmitting SYN segments. An approach that co@ival, and use SYN cookies [7] to effectively simulate an
provide such functionality is suggested in RFC 1122 — “A RStnbounded SYN queue.
segment could contain ASCII text that encoded and explainedone limitation of no- syn-dr op, shared withabort,
the cause of the RST” [11]. Unfortunately, this approachidouis that we give some clients the false impression that the
require modifications to existing client TCP stacks. server can establish a connection. In reality, under oa€tlo
Another problem withr st - syn is that it relies on client the server might be able to accommodate only a portion
cooperation. Some client TCP stacks, notably those on M the SYN/ACK ACKs received from the clients in its
crosoft Windows, immediately resend a SYN upon gettinlgSten queue, and would have to abort those_ connections that
a RST for a previous SYN Note that this behaviour does'®sult in listen queue overflow. Upon receiving a RST on
not follow the specifications of RFC 793, which explicitly2n established connection, all client TCP stacks that we are
specifies that a client TCP stack should abort connection gvare of (including Microsoft Windows) immediately cease
tempts upon receiving a RST in response to a SYN. In additi#iffther transmissions. AECONNRESET error is reported to
to counteracting st - syn, by retransmitting a SYN upon the app_hcat|or_1 on its next system caII_on that connectionstv
receiving a RST, Windows TCP stacks introduce unnecess¥f§!-written client applications, including all browsetfst we
SYN segments into the network when the client is attemptir@§® aware of, already handle this error. We reiterate tr&t th
to connect to a server at a non-existent port. The number@Hy reason for exploringio- syn- drop is due to a lack
times SYNs are retried in this fashion is a tunable systef an appropriate mechanism in current TCP implementations
parameter, which defaults to 2 retries in Windows 2000/xi® notify clients (particularly, Windows-like clients) abt an
and 3 retries in Windows NT [20]. Note that in contrast to Syngverload at the server in order to stop retransmission gitem
retransmissions wheq no SYN/ACKS are recei_ved from_thelv_ TCP CONNECTION TERMINATION ALTERNATIVES
server, SYNs are retried immediately by the Windows clle%t p . - .
. Problems with Existing Mechanisms

2Microsoft client TCP stacks ignore “ICMP port unreachahiegssages in Supporting half-closed connections can result in an im-
a similar fashion, retrying a SYN instead [9]. prudent use of resources at an overloaded server. Many

browsers and web crawlers terminate connections, inojudido not have piggy-backed data are assumed to indicate that
those connections that timeout or are aborted by the user,thg client is interested in no further read or write activity
issuing acl ose() system call. That is, they do not use halfen that connection, and the server TCP stack takes steps to
closed connection semantics. However, because most semanediately stop work on that connection. To achieve this, i
TCP stacks, including Linux, support half-closed conrmdi treats a FIN from the client as if it were a RST, and throws
they continue to make queued data available to the serasvay all information associated with that connection. The
application throughr ead() calls even after receiving a FIN server TCP stack then transmits a RST to the client. Note
from a client. Only when the data queue is completely draindigiat the transmission of RST in response to a FIN is done
will read() returnECF notifying the server application thatdirectly by the server's TCP stack without any intervention
the client has terminated the connection. Any prie@ad() from the server application. The application gets notifoat
call is processed by the application and can result in suttkthe terminated connection througleGONNRESET error on
sequent writes. The effort spent generating and writing dad subsequent system call on that socket. The handling of RST
at the server is wasteful because upon receiving the data #ttiehe client is completely transparent to the applicatfche
client TCP stack responds with a RST when the half-closedcket descriptor has been destroyed usingthese() call.
connection semantics are not used for connection termimatiSending a RST in response to a FIN (instead of immediately
sending a FIN/ACK) allows clients which are using half-éds
connection semantics to be notified of an abnormal connectio
1) Disabling Support for Half-Closed Connection$¥e termination, instead of getting d80F marker indicating that
describe a mechanism that can help mitigate the impactth& server has no more data to send. In this way-fin
supporting half-closed connections on server throughpdét can reduce the amount of time the server spends processing
overload. In particular, we are interested in answering tflE&CP segments on connections that clients do not care about.
following question — If the server TCP stack were to disable
support for half-closed connections and treat all FINs as an2) Connection Termination with Abortive ReleasBome
indication that the client application is no longer intéees browsers such as Internet Explorer 5 and 6 terminate con-
in either sending or receiving data on a connection, can wections through an abortive release [13]. An abortiveasae
improve server throughput? implies that the application notifies its TCP stack to absupt
Note that we are aware of the potential problems that ngminate a connection by sending a RST instead of using
supporting half-closed connections can cause. Howevegrst the two-way FIN/ACK handshake. Applications typically use
have pointed out that assuming that most clients will not ué® abortive release in response to abnormal events (e.g.,
half-closed connection semantics is not unreasonablegi] when a thread associated with the connection crashes). We
although we are not aware of any modern web browsers th@ve observed that Internet Explorer uses an abortiveselea
use these semantics, disabling support for all half-clesed to terminate all of its connections, whether they represent
nections at the server breaks clients that do rely on haed abnormal behaviour or a routine event. Note that using an
semantics. Unfortunately, in current TCP implementationgbortive release as part of the normal connection ternainati
clients do not provide any indication of whether they aregsi process is against the recommendations of RFC 793 and RFC
half-closed semantics in their FIN segments, hence, theeser2616. RFC 2616, which describes HTTP 1.1, states, — “When
TCP stack cannot selectively disable half-closed conaesti @ client or server wishes to timeoutshouldissue a graceful
from some clients. In this paper, we disable support for alose on the transport connection” [12].
half-closed connections in order to assess if the througbppu The reasons why Internet Explorer terminates all connec-
an overloaded server can be improved by avoiding the impitiens in an abortive fashion are not entirely clear, esplydie-
dent use of resources on connections that clients do not ceaeise there are usually enough ephemeral ports at the tdient
about. We do not suggest that server TCP stacks should stigmsition connections into thel ME_\WAI T state. A RST sent
supporting half-closed connections entirely. Howeveppsut by the client does bypass thet OSE WAI T and LAST_ACK
for half-closed connections could be disabled at the sesmer TCP states allowing the server TCP stack to transition tyrec
a per-application basis. For example, a server-side pnogréo the CLOSED state. Moreover, it also ensures that the server
could issue @aet sockopt () system call to notify the TCP application does not work on connections that have beemgive
stack that it should not support half-closed connections ap on by the clients. Since Internet Explorer is currently
any of its sockets. Alternatively, TCP could be enhanced the most popular web browser (used by more than 75% of
allow an end-point to notify its peer that it is not using halfclients according to some estimates [13]), we try to ansher t
closed semantics while terminating a connection (e.gouitn following question — Does an abortive connection termorati
a special set of flags). We perform an experimental evalnatiby client applications improve server throughput? We use th
in this paper to determine whether such approaches are wd® Ll NGER socket option withht t perf to emulate the
pursuing. abortive release behaviour of Internet Explorer. We believ
We refer to our connection termination policy that does néthat ours is the first (public) attempt to study the impact of
support half-closed connectionsiast - f i n (an abbreviation abortive release on server throughput. We refer to the iabort
of “RST to FIN"). In this mechanism all FIN segments thatelease of a connection by a client applicatiochgse- r st

B. Alternative Mechanisms

(an abbreviation of “client connection close with RST”). modified to implement the different connection management
Itis important to note that bothst - f i n andcl ose-rst mechanisms, and to collect and report fine-grained stisti
can result in lost data if data segments arrive (out of ordatyiring connection establishment and termination. Noté¢ tha
on a connection after a FIN or RST, or if there is datthe TCP connection management code that we are concerned
pending in the socket buffer that has not been read (or wjittewith has not changed between the 2.4.22 kernel and the

by the application when a FIN or a RST is received olatest 2.6 kernel, and the results of the different conoacti
a connection. Both of these mechanisms treat a connectinanagement mechanisms on the newer kernel are qualiativel
termination notification from the client as an indicatioratth similar to those presented in this paper (see [15] for dgtall
the client does not care about the connection, including thiée do not modify the default values for networking-related
potential loss of TCP-acknowledged data that might not hakernel parameters, including the size of the SYN (1024)
been delivered to the server application. Such an appraactand listen (128) queues, because a large number of existing
acceptable given the semantics of HTTP GET requests, whigtoduction systems operate with default values. We re#era
are the primary cause of overload in web servers. It might nibiat increasing queue lengths under persistent overloadtis
be appropriate in other application-level protocols ontpeol effective because any finite-sized queues will tend to gét fu
primitives. We reiterate that we take an exploratory apginoa We use the open-looft t perf [22] workload gener-
toward studying the impact of TCP connection terminatioator to create sustained overload at the server. By using
mechanisms on server throughput, not a prescriptive one. an application-level client timeoutht t per f ensures that
the server receives a continuous rate of requests which is
independenpf its reply rate. The timeout is similar to the
In this paper, we present results obtained with a usdsehaviour of some web users (or even browsers) who give
space userver on a single representative workload. Thes® on a connection after waiting for some period of time.
results were qualitatively similar to those obtained withey We use a 10 second timeout in all of our experiments as
servers and workloads we examined [15]. The results of the approximation of how long a user might be willing to
connection management mechanisms studied in this paper aait, but more importantly it allows our clients to mimic the
also apply to other TCP-based, connection-oriented Ietertehaviour of TCP stacks in Windows 2000 and XP (the TCP
servers which can get overloaded. implementation used by the majority of web clients today)13
Our workload is motivated by a real-world flash crowdy allowing at most two SYN retransmissions.
event [1], [2]. Sites such as CNN.com and MSNBC were In each of our experiments we evaluate server performance
subjected to crippling overload immediately after the 8apt with a particular connection establishment and/or tertiona
ber 11th terrorist attacks. The staff at CNN.com responded mechanism. An experiment consists of a series of data points
replacing their main page with a text-only page sized fit intwhere each data point corresponds to a particular request ra
a single unfragmented IP packet. We devised our one-packet each data point, we rurt t per f for two minutes during
workload to mimic the resulting workload. Each client thusvhich it generates requests on a steady basis at the specified
requests a single file using an HTTP 1.1 connection. rate. Two minutes proved to be sufficient to allow steadyestat
All experiments are conducted in an environment consistimyaluation of the server.
of 8 client machines and 1 server machine. We use a 32-bitWe evaluate server performance using two metrics, server
2-way 2.4 GHz Intel Xeon (x86) server, which contains 1 Glhroughput and client response time. Server throughpuattep
of RAM and two Intel PRO/1000 gigabit Ethernet cards. Thihe mean number of replies per second delivered by the server
client machines are identical to the server, and are coad¢ot and measured at the clients. Client response time repats th
it through full-duplex, gigabit Ethernet switches. We jfavh mean response time measured at the clients for successful
the clients into 2 different subnets to communicate with thennections. It includes the connection establishmerg s
server on different network cards. In this paper, we focus avell as the data transfer time. For both of these statisties,
evaluating server performance under the assumption tleat tompute and graph the 95% confidence intervals (which in
server’s network bandwidth is not a bottleneck during ax@dll most cases are small enough that they cannot be seen).
and have configured our experimental setup accordinglyleVhi
we perform our evaluation in a LAN, we expect our results
to hold in a WAN environment. Techniques such as SYN Table Ill provides a brief summary of the TCP connection
cookies obviate the large number of incomplete connectioestablishment and termination mechanisms evaluated & thi
in the SYN queue, and WAN-induced delays and packet dropaction. Recall thateser v, no- syn- drop, andrst-fin
only serve to increase the probability of connection quewaee novel mechanisms not yet implemented in production TCP
overflows in stacks that do not use SYN cookies. Moreovestacks. We evaluate connection establishment altersatiita
the server-side overhead of processing retransmittedegigm two different types of clients. Clients which follow RFC 793
and continuing work on connections that have been terminatend abort a connection attempt upon receiving a RST in
by clients persists in a WAN setting. response to a SYN (as in Linux and most UNIX stacks), we
Our server runs a Linux 2.4.22 kernel in uni-processaall theser egul ar clients. Clients which retransmit a SYN
mode. This kernel is a vanilla 2.4.22 kernel with its TCP ktaaipon receiving a RST in response to a SYN (as in Windows

V. EXPERIMENTAL METHODOLOGY

VI. EVALUATION

Type Name Description Implemented in

abort Send RST when listen queue overflows upon SYN/ACK ACK arrivalFreeBSD, Solaris, HP-UX, Linux (opt)
Establishment| " €S€rv Proactive rese_rvation to avoid Iist_en queue Qverflqws N(_)ne

abort rst-syn Send RST while dropping SYNSs in conjunction wilfbor t Windows

reserv rst-syn | Send RST while dropping SYNs in conjunction witeser v None

no- syn-dr op Do not drop valid SYNs, usabort upon listen queue overflow for| None

explicit connection rejection

Termination rst-fin Di_sable support for haIf-cI'osed cqnnections at server None

cl ose-rst Client terminates connections using abortive release Internet Explorer 5/6
Both def aul t Default connection management mechanism Linux

TABLE TN
SUMMARY OF TCP CONNECTION MANAGEMENT MECHANISMS EVALUATED
systems), we call thesai n- enu clients because we have 20000 -

modified a Linux stack to emulate the Windows behaviour.
15000

A. Connection Establishment Mechanisms

Replies/s

10000 |-

1) Regular clients:Figure 3 shows the results of connection defaukt —©—
establishment mechanisms witlegul ar clients. Figure 3(a) 3000 reserv 0
indicates that neitheabor t norr eser v are able to provide , rosery by, — g ‘ |
significant improvements in throughput oveef aul t . The 12000 16000 20000 24000 28000 32000 36000
peak throughput is the same with all three mechanisms. Requests/s

. (a) Throughput
After the peak,abort andreserv provide less than 10% 10000 ; ‘

improvement in throughput ovetef aul t . It is also evident
from Figure 3(b) that the response times obtained atibr t
andr eser v are fairly close to those obtained wittef aul t .
Note that we use a log scale for all the response time results
in this paper. The sharp spike in response times after 19,000
requests/sec corresponds to the server’s peak (satupatiot).
After the peak (e.g., at 20,000 requests/sec), many clieavs
to retransmit a SYN using an exponential backoff before they O 000 16000 20000 24000 28000 32000 36000
get a response from the server. Hence, the average cormectio Requests/s
establishment time and consequently the response time rise (b) Response Time
sharply. Similarly, the lack of improvement in throughptittw Fig. 3. Connection establishment mechanisms wiglgul ar clients
abort andreserv is due to the overhead of processing
retransmitted SYN segments at the server.
As shown in Figure 3(a)abort rst-syn andreserv attempted connections receive a SYN/ACK for their first SYN
r st - syn increase the peak throughput by 11% compared tgtransmission. Most connection attempts require thestran
abort andreserv respectively, and offer around 20-24%mission of multiple SYNs before they receive a SYN/ACK
improvement after the peak, which increases as the recatest r time out [15]. On the other hand, withst - syn, a client
is increased. When compareddef aul t , mechanisms using connection attempt fails on the first SYN transmission. itfe
r st - syn result in more than 30% improvement in throughputhich do get a response for a SYN, receive it without having
after the peak. Throughput improves witht - syn because it to resort to SYN retransmissions. As a result, the average
eliminates the cost of processing retransmitted SYN segnergonnection establishment time, and hence the average clien
which allows more time to be devoted to completing work ofesponse time tends to be very shoit - syn yields higher
established connections. The gains obtained frah- syn throughput as well as lower response time because the server
can be explained by the general principle of dropping ig under persistent overload during flash crowds. While it
connection as early as possible under overload [23]. rejects some clients immediately, the server always has a
Moreover, as seen in Figure 3(a), the response time Sigstained rate of new clients to handle, so its throughpes do
reduced by two orders of magnitude witlst - syn. Recall not decrease. We believe that under high load, it is better to
that response time refers to the average response time m¥gvide good service to some clients along with an immediate
sured at clients for successful connections, and it reptssenotification of failure to the rest of the clients, ratherrtha
the sum of connection establishment time and data transgéing poor service to all the clients.
time. When the server is overloaded, a substantial amounfNote that the improvements in response times are not
of time is spent establishing connections. SYNs might habecause the server handles fewer clients. In fact, abtr t
to be retransmitted multiple times before a SYN/ACK igst-syn andreserv rst-syn actuallyreducethe num-
received and theonnect () call returns on the client. We ber of clients which do not receive a server response cordpare
have observed that under high loads, less than half of &l def aul t [15]. Thus, while abort and reserv by

1000 -

default —6—
) abort ——A-—
reserv =

Response Time (msec)

abort rst-syn —-<-—
reserv rst-syn — - —

themselves fail to significantly improve server performanc
under overload, when used in conjunction witlst - syn, 20000 -
they are effective in improving server throughput by up to
40% and reducing client response times by more than two
orders of magnitude onegul ar clients.

15000 |-

Replies/s

10000 -

default —6—
2) Windows-like clients:In this section, we compare the 5000 | qeSefault rst-fin —A-—
results of abort rst-syn and no-syn-drop against gbort st-syn rst-fin -~
N . . abort rst-syn close-rst — v —
abort on wi n-enu clients. We chosabort because it 0 ; ; ; ; ;
. . . . 12000 16000 20000 24000 28000 32000 36000
is available in most UNIX TCP stacks, noting thaef aul t Reguests/s
has slightly lower throughput thaabort . Recall that our Fig. 5. Evaluation of connection termination mechanisms

wi n- enu clients emulate the behaviour of the Windows client

TCP stack in Linux, and retransmit a SYN immediately after. . .
receiving a RST for a previous SYN. We also include th%NI n- emu. The throughput and response time resulting from

. ﬁo—syn— dr op is comparable to that provided bgbort
results ofabort rst-syn onregul ar clients (denoted rst-synonregul ar clients.

“abort rst-syn”) for comparison. Figure 4 summarizes To summarize these results in the context of current oper-
these results. ating system implementations we find that:
o o The server-side connection establishment approaches
.- \Agl&\@*‘é:_%:%__é used in Linux, Solaris, FreeBSD, and most UNIX systems
; e (i.e., abort and defaul t) do not work well under
persistent overload.
« Although the approach used in Windows serversdr t

20000

15000 |-

10000

Replies/s

s000 | sbort win-emu. —O— r st - syn) provides better response time and throughput
- abort rst-syn — - . . .
abort st-syn win-omu 3 with r egul ar clients (e.g., those on Linux and most

no-syn-drop win-emu --&--

0 . .
12000 16000 20000 24000 28000 32000 36000

UNIX systems), it fails to improve server throughput with
Reauests/s Windows-basedwi n- eru) clients.

(a) Throughput e Our no-syn-dr op mechanism can be used by over-
‘ ‘ loaded servers to work around Windows clients, thereby
providing higher throughput and low response times.

10000

1000 -

§ 100 | B. Connection Termination Mechanisms
& Disabling support for half-closed connections only affect
é or ' server throughput. The response time, which is determiged b
& Lh S) abort fecayh fé: how long it takes to establish a connection and for the sub-
o ‘ ‘ ho-syn-drop win-emu — - sequent data trans_fers is not aff(_acted. Hence, we onIyFchIu
12000 16000 20000 24000 28000 32000 36000 throughput results in our evaluation of connection terriama
Requests/s mechanisms. Figure 5 shows the impactraft - fin and

(b) Response Time

. . : . . _ cl ose-rst when used in conjunction witdef aul t. To
Fig. 4. Connection establishment mechanisms witim- erru clients

study if there is a relationship between connection tertiona
Figure 4(a) shows that, as expected, the throughput wihd establishment mechanisms — in particular, to check if

abort rst-syn w n-enu is lower than that wittabort one of the connection termination mechanisms can obviate

rst-syn because of the overhead of processing clienthe need for better connection establishment mechanisms (o

initiated SYN retries. However, as shown in Figure 4(bkice-versa) — we also present the resultsrsft - fi n and

the client response time is reduced by two orders of magtose-r st when used witabort rst-syn.

nitude withabort rst-syn compared tambort, even on Figure 5 demonstrates that when comparedied aul t ,

w n- emu clients. Windows TCP stacks resend another SYdlef aul t rst-fin results in a 17% improvement in the

immediately upon receiving a RST for a previous SYN. Apeak throughput. Using st - fi n prevents resources from

immediate retransmission ensures that the connectioth-estgeing spent on processing connections that have been timed

lishment times, and hence, the response times, remain low éat by the client at the server. It also allows the TCP

clients that receive responses from the server on substqumnection state to transition directly froESTABLI SHED

SYN transmissions. to CLOSED. This frees the server from having to process ad-
By avoiding the retransmission of any connection estalitional ACK segments (in response to FINSs), including thos

lishment segmentsyo- syn- dr op allows more time to be on connections that were serviced successfully. For thesam

spent completing work on established connections. As dtresveasonsgef aul t cl ose-r st provides an improvementin

its throughput, at and after the peak, is more than 158roughput ovedef aul t, which is comparable, at and after

higher than that chbort w n- enu andabort rst-syn the peak, to that obtained withef aul t rst-fin.

Connection termination mechanisms also complement catelaying the acknowledgment of a remote peer’'s FIN. These
nection establishment mechanisms. The throughput yiddgledoptimizations do not alleviate server load resulting frdme t
bothr st - fi nandcl ose- r st increases when they are coutetransmission of TCP connection establishment segments o
pled withabort rst-syn. When compared taef aul t preclude server support for half-closed connections aed ar
rst-fin,abort rst-syn rst-finprovides morethan complementary to the mechanisms studied in this paper.
20% higher throughput (after peak), anttort rst-syn Following work by Mogul [31], the HTTP 1.1 specifica-
cl ose-r st provides close to 30% higher throughput. tion [12] advocated the use of persistent connections & all

In addition to these results, we have evaluated TCP conne@te server load and reduce network congestion arising fro
tion management mechanisms discussed in this paper undéreause of a separate TCP connection for every request. Unfor
variety of different environments, including SPECweb98][2 tunately, current web clients open multiple simultaneoG®T
static-content workloads, in-kernel web servers, andsteamt, connections in parallel with a server in order to improverthe
bursty load [15]. Given current browser implementationsyverall throughput, and reduce the client response timg [32
which issue only a few requests over a single TCP connd®]. The average number of requests per connection ranges
tion [9], we have observed that mechanisms that eliminatetween 1.2 to 2.7 in popular browsers [9], hence, servess ha
the retransmission of connection establishment attempis f to handle significantly more TCP connection establishment
clients yield a significant reduction in response times amd and termination attempts than envisioned when HTTP 1.1 was
increase in server throughput during flash crowds, even omroduced. TCP for Transactions (T/TCP) [33] is a backward
workloads with large transfer sizes. Moreover, even a highempatible extension of TCP for efficient transaction (esju
performance kernel-space web server can benefit signiffcamesponse) oriented service. T/TCP allows protocols such as
from using better connection establishment and terminati®iTTP to connect to an end-point, send data and close the
mechanisms. Finally, even under short-lived bursts ofitraf connection using a single TCP segment. The introduction of
the overall degradation in throughput due to premature rgersistent connections in HTTP 1.1 as well as its vulneitgbil
jection of client connection attempts by mechanisms such tas SYN flood denial of service attacks has inhibited the
rst-syn andno-syn-drop is negligible. These mecha-widespread use of T/TCP.
nisms provide at least an order of magnitude reductionentli As an alternative to application-level admission control
response times under both bursty load and persistent aerlomechanisms, which typically entail at least connection-
observed during flash crowds, thereby making a strong cassablishment overhead, Voigt et al. [21] describe a kernel
for deployment in production TCP stacks. level mechanism called TCP SYN policing, which uses a token
bucket shaper to drop SYN segments silently under overload.
The authors rule out the possibility of sending a RST when

Internet servers have to handle thousands of simultareeSYN is dropped because of its extra overhead, especially
ous connections. Researchers have proposed novel sewithn Windows clients. In this paper, we examine this assarti
architectures [25] for efficiently handling this high level and describe a new connection establishment mechanism that
concurrency. Other researchers have suggested modifisatiprevents the retransmission of connection attempts, ewén w
in operating system interfaces and mechanisms for effigientindows clients. Tha@o- syn- dr op mechanism can be used
delivering information about the state of socket and file dée enhance the effectiveness of a SYN-policing type approac
scriptors to user-space Internet servers [26], reduciagiita ~ Jamjoom and Shin [9] describe a mechanism called persis-
copied between the kernel and user-space applications [2€ht dropping designed to reduce the client-perceivedresp
and reducing the number of kernel boundary crossings [28me during a flash crowd by systematically dropping SYNs
The connection management mechanisms studied in this pafecluding retransmissions) from randomly chosen cliefris
operate at a lower level and are thus complementary to théisis paper, we examine alternatives to persistent dropping
application and operating system interface improvements. which allow the server to eliminate client-side retransicis

Researchers have also sought to improve networking staxfkconnection establishment segments, without requirimg a
implementations [29], [23] and many of the proposed optserver-side state or forgoing fairness. Jamjoom et al. [34]
mizations have found their way into the mainstream opegatimdicate that explicitly rejecting client SYNs can improve
systems. While research and commercial efforts to offloat palient-perceived delays and describe a predictive meshani
or all of the functionality in a TCP stack on a specializefbr deciding when to drop packets and reject SYNs. Their work
network card are underway, as indicated by Mogul [30&ssumes the availability of a connection rejection medmani
connection management costs are either unsolved or watseard their evaluation is based on simulation. We review imple
by TCP offloading. Furthermore, the mechanisms discussecientation choices for connection establishment at both SYN
this paper can be implemented in any specialized TCP staakd SYN/ACK ACK processing stages, describe a rejection
Protocol-level modifications to improve server perform@mnanechanism that requires modifications only to the send-si
has also been an area of active research. Nahum et al. [ZBP stack, and present results of its Linux implementation
describe optimizations to reduce the per-TCP-connectien-o that demonstrate that explicit connection rejection cabh no
head in small HTTP exchanges, including modifications tnly reduce the client response time but also improve the
allow the piggybacking of a FIN on the last data segment, atittoughput of an overloaded server.

VII. RELATED WORK

In this paper, we provide a better understanding of the

VIIl. CONCLUSION

[9] H. Jamjoom and K. Shin, “Persistent dropping: An effitieontrol of

traffic aggregates,” irProceedings of ACM SIGCOMM 2003ugust
2003.

behaviour of an overloaded server. In particular, we dbscri[10] W. StevensTCP/IP lllustrated, Volume .1 Addison Wesley, 1994.

some of the reasons why server throughput drops and cli
response times increase as the load at the server increages

After studying several different connection managemeratme

anisms, we demonstrate that implementation choices for T
connection establishment and termination can have a sig
icant impact on server throughput and client response times
during overload conditions such as flash crowds.
We show that mechanisms implemented at the server TGE)
stack, which eliminate the TCP-level retransmission of-con
nection attempts by clients during overload, can impro
server throughput by up to 40% and reduce client respo
times by two orders of magnitude. We also describe a
new mechanism that prevents the TCP-level retransmissiéfl
of connection attempts from clients without requiring any
modifications to client-side TCP stacks and applications, o
server-side applications. (18
Additionally, we demonstrate that supporting half-closed
TCP connections can lead to an imprudent use of resour¢es

at an overloaded server when most client applications t

minate connections using the half-duplex semantics (liferi
by the cl ose() system call. We also examine whether
client applications that terminate connections using antaie

release (such as Internet Explorer) affect server throuighp

Our results indicate that both an abortive release and ymecl[22]
ing support for half-closed TCP connections improve server
throughput by more than 15%.

We gratefully acknowledge Hewlett-Packard (through tHé*
Gelato Federation), the Ontario Research and Developmgsi
Challenge Fund, and the National Sciences and Engineering

IX. ACKNOWLEDGMENTS

Research Council of Canada for financial support for postio

of this project. This work has benefited substantially from

discussions with David Pariag, Martin Karsten and Sriravas

Keshav. (27

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

REFERENCES

Computer Science and Telecommunications Bodrde Internet Un-
der Crisis Conditions: Learning from September. 11 The National
Academies Press, 2003.

V. Padmanabhan and K. Sripanidkulchai, “The case forpeoative
networking,” in First International Workshop on Peer-to-Peer Systems
2002.

S. Adler, The Slashdot Effect, An Analysis of Three Internet32]
[32]

Publications http://ssadl er. phy. bnl . gov/ adl er/ -
adl er/ SAArticles. htm .

I. Ari, B. Hong, E. Miller, S. Brandt, and D. Long, “Modelg, analysis
and simulation of flash crowds on the Internet, Tech. Rep. CCRL-
03-15, 2004.

J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flashveds and denial

of service attacks: Characterization and implicationsGBiNs and web (34]

sites,” in Proceedings of the International World Wide Web Conference
May 2002.

J. Postel, “RFC 793: Transmission Control Protocol,pb@&enber 1981.

D. Bernstein, TCP SYN cookies http://cr.yp.to/-
syncooki es. htm .

J. Lemon, “Resisting SYN flood DoS attacks with a SYN catlhe
BSDCON20022002.

i

[14]

hicy

[21]

[23]

[28]
[29]

[30]

(33]

& R. Braden, "RFC 1122: Requirements for Internet host®mmunica-

tion layers,” 1994.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masint®. Leach, and
T. Berners-Lee, “RFC 2616: Hypertext Trasfer Protocol — #TI1,”
June 1999.

M. Arlitt and C. Williamson, “An analysis of TCP Reset limeviour on
the Internet,” SIGCOMM Computer Communication Revjevol. 35,
no. 1, 2005.

V. Jacobson, C. Leres, and S. McCantepdump manualavailable at
http://ww. t cpdunp. org/tcpdunpman. ht ni .

A. Shukla, “TCP connection management mechanisms rfgoraving
internet server performance,” Master’s thesis, DepartroéiComputer
Science, University of Waterloo, July 2005.

Microsoft, Windows Sockets 2 APl - WSAAccept
http://msdn. m crosoft.com library/en-us/-

wi nsock/w nsock/ wsaaccept 2. asp.

Y. Turner, T. Brecht, G. Regnier, V. Saletore, G. Jarskian, and
B. Lynn, “Scalable networking for next-generation compgtiplat-
forms,” in Third Annual Workshop on System Area Networks (SAN-3)
February 2004.

Microsoft, Knowledge Base Article 113576 — Winsock App’s Reject
Connection Requests with Reset Fran®803,ht t p: / / support. -

m crosoft.conl kb/ 113576/ EN- US.

S. Floyd, “RFC 3360: Inappropriate TCP Resets consididrarmful,”
2002.

Microsoft, Knowledge Base Atrticle 175523 — Winsock TCP Connection
Performance to Unused Port2003, htt p://support.m cro-
sof t. com kb/ 175523/ EN- US.

T. Voigt, R. Tewari, D. Freimuth, and A. Mehra, “Kernelethanisms
for service differentiation in overloaded web servers,Pimceedings of
the USENIX Annual Technical Conferendeine 2001.

D. Mosberger and T. Jin, “httperf: A tool for measuringehv server
performance,” inFirst Workshop on Internet Server Performandene
1998.

J. Mogul and K. Ramakrishnan, “Eliminating receivevelock in an
interrupt-driven kernel,” irProceedings of the USENIX Annual Technical
Conference 1996.

S. P. E. Corporation,SPECweb99 Benchmarkhtt p:// ww. -
specbench. or g/ web99.

V. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An effitiand portable
web server,” inProceedings of the USENIX 1999 Annual Technical
Conference 1999.

funcgtion

] G. Banga, J. Mogul, and P. Druschel, “A scalable and ieitpkvent

delivery mechanism for UNIX,” inProceedings of the 1999 USENIX
Annual Technical Conferencdune 1999.

V. Pai, P. Druschel, and W. Zwaenepoel, “IO-Lite: A uedi I/O
buffering and caching systemACM Transactions on Computer Systems
vol. 18, 2000.

E. Nahum, T. Barzilai, and D. Kandlur, “Performanceuiss in WWW
servers,"lEEE/ACM Transactions on Networkingol. 10, Febuary 2002.
D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An gsialof TCP
processing overheadlEEE Communications Magazinéune 1989.

J. Mogul, “TCP offload is a dumb idea whose time has conie,”
Proceedings of HotOS'03: 9th Workshop on Hot Topics in Ofiega
SystemsMay 2003.

J. Mogul, “The case for persistent-connection HTTBIGCOMM
Computer Communication Revigwol. 25, no. 4, 1995.

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Steamd
R. H. Katz, “TCP behavior of a busy Internet server: Analyaied
improvements,” innNFOCOM, 1998.

R. Braden, “RFC 1644 - T/TCP — TCP extensions for Tratigas,
functional specification,” 1989.

H. Jamjoom, P. Pillai, and K. Shin, “Resynchronizatiamd controllabil-
ity of bursty service requestslEEE/ACM Transactions on Networking
vol. 12, no. 4, 2004.

