
TCP Connection Management Mechanisms

for Improving Internet Server Performance

Amol Shukla† and Tim Brecht
David R. Cheriton School of Computer Science, University ofWaterloo

{ashukla, brecht}@cs.uwaterloo.ca

Appears in the Proceedings of HotWeb 2006, November, 2006

Abstract—This paper investigates TCP connection manage-
ment mechanisms in order to understand the behaviour and
improve the performance of Internet servers during overload
conditions such as flash crowds. We study several alternatives
for implementing TCP connection establishment, reviewingap-
proaches taken by existing TCP stacks as well as proposing new
mechanisms to improve server throughput and reduce client re-
sponse times under overload. We implement some of these mech-
anisms in Linux and evaluate their performance. Our evaluation
demonstrates that connection establishment mechanisms that
eliminate the TCP-level retransmission of connection attempts by
clients can increase server throughput by up to 40% and reduce
client response times by two orders of magnitude. Additionally
we evaluate the cost of supporting half-closed connectionsat the
server and assess the impact of an abortive release of connections
by clients on the throughput of an overloaded server. We observe
that mechanisms that do not support half-closed connections
additionally improve server throughput by more than 15%.

I. I NTRODUCTION

The demand for Internet-based services has exploded over
the last decade. The ubiquitous nature of web browsers has
given rise to the occurrence offlash crowdswhere a large
number of users simultaneously access a particular web site.
Flash crowds are characterized by a rapid and dramatic surge
in the volume of requests, prolonged periods of overload, and
are often triggered without advance warning. In the hours
following the September 11th terrorist attacks, many media
sites such as CNN and MSNBC were overwhelmed with
more than an order of magnitude increase in traffic, pushing
their availability to 0% and their response time to over 47
seconds [1], [2]. A previously unpopular web site can see
a huge influx of requests after being mentioned in well-
known news feeds or discussion sites, resulting in saturation
and unavailability – this is popularly known as theSlashdot
effect[3].

In many web systems, once client demand exceeds the
server’s capacity, the server throughput drops sharply andthe
client response time increases significantly. Ironically,it is
precisely during these periods of high demand that a web site’s
quality of service matters the most. Over-provisioning the
capacity in web systems is often inadequate. Server capacity
needs to be increased by at least 4-5 times to deal with
even moderate flash crowds and the added capacity tends to
be more than 82% idle during normal loads [4], most often
making this approach fiscally imprudent. Web servers form a

†Now at RealNetworks, Inc.

critical part of the Internet infrastructure and it is imperative
to ensure that they provide reasonable performance during
overload conditions such as flash crowds.

Past work [5] has reported that the escalation in traffic
during flash crowds occurs largely because of an increase
in the number of clients, resulting in an increase in the
number of TCP connections that a server must handle. TCP
stack developers in various flavours of UNIX and Windows
have taken different approaches toward implementing TCP
connection establishment (i.e., the three-way handshake). We
review several of these approaches, implement them in Linux,
and evaluate their performance. Additionally, we explore alter-
natives to standard TCP connection termination at both end-
points. The main contributions of this paper are:

• We provide a better understanding of Internet server be-
haviour during overload conditions such as flash crowds.

• We demonstrate that the connection establishment mech-
anisms used in many existing TCP stacks result in de-
graded server throughput and increased client response
times during overload.

• We present an alternative server-kernel mechanism that
eliminates the retransmission of connection attempts by
client-side TCP stacks during high loads, thereby improv-
ing server throughput by up to 40% and reducing client
response times by more than two orders of magnitude.
This mechanism does not require any changes to protocol
specifications, client TCP stacks or applications, or server
applications.

• Our performance evaluation indicates that disabling sup-
port for half-closed connections as well as an abortive
release of connections by clients can improve server
throughput by up to 15%.

II. BACKGROUND

A typical HTTP interaction between a client and a server
consists of the client establishing a TCP connection with
the server, sending an HTTP request, receiving the server
response, and terminating the connection. Multiple roundsof
request-response transactions can take place over a singleTCP
connection if both of the end-points use persistent HTTP 1.1
connections. In the following paragraphs, we briefly describe
how connection establishment and termination is typically
implemented in a client-server environment, using the Linux
TCP stack as a representative example.

A. TCP Connection Establishment

TCP connection establishment involves a three-way hand-
shake between the end-points [6]. Figure 1 illustrates the
handshake implementation in Linux. We now briefly discuss
the portions of this process most relevant to our paper.

SYNconnect()

SYNQ

SYNQ or
ListenQ
full?*

NO

SYN_RECV

Add to SYNQ,
send SYN/ACK

Silently
Drop SYN

YES

SYN/ACK
connect()
returns

ACK
ListenQ
full?*

LISTENQ

accept()

Add new socket
to ListenQ,
remove entry
from SYNQ

Silently
Drop ACK

YES

NO

ESTABLISHED

application can
read() or write()

application can
read() or write()

CLIENT SERVER
listen()
LISTEN

ESTABLISHED

SYN_SENT

Fig. 1. TCP connection establishment in Linux

Upon receiving a SYN, the server TCP stack creates an
entry identifying the client’s connection request in the listening
socket’s SYN queue (sometimes called the SYN backlog and
often implemented as a hash table). It then acknowledges the
SYN by sending a SYN/ACK segment. The handshake is com-
plete when the client TCP stack acknowledges the SYN/ACK
with an ACK. We will refer to the ACK sent by the client in
response to a SYN/ACK as SYN/ACK ACK to distinguish it
from other ACK segments used in TCP. Upon receiving the
SYN/ACK ACK, the server TCP stack creates a new socket,
adds it to the listening socket’s listen queue (sometimes called
the accept queue), and removes the associated entry from the
SYN queue. In order to communicate with the client, the
server application has to issue theaccept() system call,
which removes the socket from the listen queue and returns
an associated socket descriptor to the application. Note that in
most socket API implementations, the three-way connection
establishment procedure is completed by the server TCP stack
beforethe application issues anaccept() call.

The server TCP stack might not always be in a position
to accommodate a SYN or a SYN/ACK ACK, this happens
primarily when the SYN or the listen queue is full. The
queues may become full because the rate of incoming client
connection attempts is higher than the rate at which the server
application is able to accept and process new connections1.
A SYN or SYN/ACK ACK segment that cannot be accom-
modated has to be dropped, we refer to this scenario as a
queue drop. The conservative approach of dropping connection

1Increasing queue lengths does not improve the situation when the server
is overloaded because the queues quickly become full.

establishment attempts earlier (at the SYN stage rather than the
ACK stage) when the listen queue is full is also implemented
in other TCP stacks such as FreeBSD. Similarly, in most cases,
a SYN/ACK ACK is dropped when the listen queue is full
upon arrival at the server.

Most TCP stacks implement connection establishment as
described above. In order to try to protect against SYN flood
denial of service attacks, some stacks use techniques such
as SYN cookies [7] or SYN cache [8] to reduce the state
the server is required to store to track incomplete connection
requests. However, implementations differ significantly in how
they react to queue drops. In Linux, SYN segments as well
as SYN/ACK ACK segments are dropped silently when they
trigger a queue drop. That is, no notification is sent to clients
about these dropped segments. Most 4.2 BSD-derived TCP
stacks, such as those in FreeBSD, HP-UX, and Solaris, only
drop SYN segments silently [9]. Whenever a SYN/ACK ACK
is dropped due to listen queue overflow, a TCP reset (RST)
segment is sent to the client notifying it of the server’s inability
to continue with the connection. Some Windows TCP stacks
do not drop either of these connection establishment segments
silently, sending a RST to the client every time there is a queue
drop. Note that in TCP, segments (except RSTs) that are not
acknowledged by the server within a particular amount of time
are retransmitted by the client.

In Section III, we critique the different approaches to han-
dling queue drops; we are particularly interested in answering
the following question – TCP stack developers in Linux,
various flavours of UNIX, and Windows have taken different
approaches to implementing connection establishment. Which
of these approaches, if any, result in better performance under
overload? We also present two novel mechanisms designed to
eliminate the retransmission of TCP connection establishment
segments in order to increase server throughput and reduce
client response times.

B. TCP Connection Termination

A TCP connection is full-duplex and both sides can ter-
minate their end of the connection independently through a
“FIN-ACK” handshake after they finish sending data [6]. That
is, each end-point transmits a FIN to indicate that it is not
going tosendany more data on a connection. This method of
connection termination is called “graceful close”.

Graceful connection closure is implemented with either
half-closed (also called full-duplex) or half-duplex termination
semantics. The CLOSE operation outlined in RFC 793 allows
for a connection to be “half closed”, allowing an end-point that
sends a FIN toreceivedata from its peer. Some socket APIs
provide theshutdown() system call to provide half-closed
connection semantics, enabling applications to shutdown the
sending side of their connection, while allowing activity on
the receiving side through subsequentread() calls.

Most applications, however, use theclose() system call
to terminate both the sending as well as the receiving direc-
tions of the connection by treating the connection as if it is
half-duplex [10]. RFC 1122 specifies – “A host may implement

a ‘half-duplex’ TCP close sequence, so that an application
that has called CLOSE cannot continue to read data from the
connection. If such a host issues a CLOSE call while received
data is still pending in TCP, or if new data is received after
CLOSE is called, its TCP should send a RST to show that data
was lost.” [11]. Aclose() call typically returns immediately
and destroys the socket descriptor so the application losesits
reference to the TCP connection.

Any client-initiated graceful connection termination, either
with half-closed or half-duplex connection semantics, results
in a FIN being sent to the server. Upon receiving a FIN
segment, most server TCP stacks assume that the client uses
half-closed semantics (i.e., theshutdown() system call).
That is, they support half-closed client connections by default.
However, most web clients do not terminate connections
using half-closed connection semantics, instead they use the
close() system call. In Section IV-A, we demonstrate how
supporting half-closed connections can result in an imprudent
use of resources at the server, especially during overload.We
describe an alternative connection termination mechanismthat
disables support for half-closed connections allowing us to
evaluate the cost of supporting half-closed connections when
the server is overloaded.

Instead of graceful closure, an application can also force a
connection to be terminated through an abortive release, which
causes the TCP stack to send a reset (RST) segment to its
peer. RFC 793 and RFC 2616 [12] strongly discourage the
use of an abortive release to terminate connections as a part
of normal operations. However, some client applications, in
particular, Internet Explorer 5 and 6, which are currently the
most popular web browsers, terminateall of their connections
by forcing the client TCP stack to send a RST [13]. The reason
why Internet Explorer uses an abortive release to terminate
connections is not clear. In this paper, we examine the impact
that abortive release has on server throughput under high loads.
We are aware of the potential problems that can arise from
not supporting half-closed connections or from an abortive
release of connections; our approach toward these mechanisms
is exploratory, not prescriptive.

III. C ONNECTION ESTABLISHMENT ALTERNATIVES

In this section, we outline some problems with existing
implementations of TCP connection establishment using the
Linux stack for illustration. We divide our discussion in
Section III-A into problems arising at the ACK stage when
the listen queue overflows and at the SYN stage when SYN
segments are silently dropped. In Section III-B we review
existing solutions and present novel mechanisms to address
both of these problems.

A. Problems with Existing Mechanisms

1) Listen Queue Overflow:Under overload, we have ob-
served that the server application’s listen queue is nearly
always full because the rate of attempted connections exceeds
the rate at which the application is able to accept them. The
server receives a burst of SYNs and responds to all of them

with SYN/ACKs, as long as there is space for at least one
entry in the listen queue (and the SYN queue is not full).
This invariably results in the server receiving more SYN/ACK
ACKs than there is space for in the listen queue, leading to a
high number of queue drops due to listen queue overflow.

While most TCP stacks are prone to listen queue overflow,
its effect in Linux is particularly problematic. Recall that the
Linux TCP stack silently drops a SYN/ACK ACK upon a
listen queue overflow. It is instructive to study the effect that
a silent SYN/ACK ACK drop by the server has on a client.
Figure 2 providestcpdump [14] output to illustrate the flow
of TCP segments from a client (clnt) whose SYN/ACK ACK
triggers listen queue overflow at the server (srvr). Note that we
only display the time at which TCP segments were received
or transmitted at the server, the end-point identifiers, theTCP
flags field (i.e., SYN (S), PSH (P), or FIN (F)), the ACK field,
the relative sequence and acknowledgment numbers, and the
advertised window sizes.

Upon receiving a SYN/ACK, the client TCP stack
sends a SYN/ACK ACK, transitions the connection to the
ESTABLISHED state, and completes theconnect() call
signifying a successful connection. The client application is
now free to start transmitting data on that connection, and
therefore sends its request to the server (line 4). However,
the client’s SYN/ACK ACK (line 3) results in a listen queue
overflow at the server, and is is silently dropped in Linux.

At this point, from the server’s point of view, the connection
is still in SYN RECV state awaiting a SYN/ACK ACK, and all
subsequent client TCP segments are handled in theSYN RECV
code path. Even subsequent data and FIN segments are treated
as an implied SYN/ACK ACK, and can result in additional
queue drops if the listen queue is full when they arrive
at the server. Hence, there is a disconnect between TCP
connection state at the client (ESTABLISHED) and the server
(SYN RECV). The client keeps retransmitting the first segment
of its request (lines 5, 6). The retransmission timeout usedby
the client for data requests tends to be more aggressive than
the exponential-backoff style retransmission timeout used for
SYN retransmissions because the client has an estimate of the
round-trip time after receiving the SYN/ACK. Eventually, the
client-side application times out and terminates the connection
(line 7).

The Linux TCP stack aggravates the problem by retransmit-
ting a SYN/ACK even when the listen queue is full (lines 10,
13, and 16), thus creating additional load for itself. Moreover,
the incomplete client connection continues to occupy spacein
the SYN queue thereby increasing the probability of additional
SYN drops. If the listen queue is not full when a subsequent
client segment arrives, the server stack creates a socket and
places it on the listen queue. The server application can then
accept, read, process, and respond to the client request (lines
19 and 20). However, the client application might have already
closed its end of the connection, and hence the client TCP
stack sends a reset (RST) in response to every server reply
(lines 21 and 22).

Thus, the implementation of connection establishment in

(0) 11:32:00.926222 clnt.1024 > srvr.8080: S 1427884078:1427884078(0) win 5840
(1) 11:32:03.688005 clnt.1024 > srvr.8080: S 1427884078:1427884078(0) win 5840
(2) 11:32:03.688026 srvr.8080 > clnt.1024: S 956286498:956286498(0)

ack 1427884079 win 5792
(3) 11:32:03.688254 clnt.1024 > srvr.8080: . ack 1 win 5840
(4) 11:32:03.688254 clnt.1024 > srvr.8080: P 1:81(80) ack 1 win 5840
(5) 11:32:03.892148 clnt.1024 > srvr.8080: P 1:81(80) ack 1 win 5840
(6) 11:32:04.312178 clnt.1024 > srvr.8080: P 1:81(80) ack 1 win 5840
(7) 11:32:04.688606 clnt.1024 > srvr.8080: F 81:81(0) ack 1 win 5840
(8) 11:32:05.152238 clnt.1024 > srvr.8080: FP 1:81(80) ack 1 win 5840
(9) 11:32:06.832233 clnt.1024 > srvr.8080: FP 1:81(80) ack 1 win 5840
(10) 11:32:07.686446 srvr.8080 > clnt.1024: S 956286498:956286498(0)

ack 1427884079 win 5792
(11) 11:32:07.686533 clnt.1024 > srvr.8080: . ack 1 win 5840
(12) 11:32:10.192219 clnt.1024 > srvr.8080: FP 1:81(80) ack 1 win 5840
(13) 11:32:13.685533 srvr.8080 > clnt.1024: S 956286498:956286498(0)

ack 1427884079 win 5792
(14) 11:32:13.685637 clnt.1024 > srvr.8080: . ack 1 win 5840
(15) 11:32:16.912070 clnt.1024 > srvr.8080: FP 1:81(80) ack 1 win 5840
(16) 11:32:25.683711 srvr.8080 > clnt.1024: S 956286498:956286498(0)

ack 1427884079 win 5792
(17) 11:32:25.683969 clnt.1024 > srvr.8080: . ack 1 win 5840
(18) 11:32:30.352020 clnt.1024 > srvr.8080: FP 1:81(80) ack 1 win 5840
(19) 11:32:30.352122 srvr.8080 > clnt.1024: P 1:1013(1012) ack 82 win 46
(20) 11:32:30.352142 srvr.8080 > clnt.1024: F 1013:1013(0) ack 82 win 46
(21) 11:32:30.352394 clnt.1024 > srvr.8080: R 1427884160:1427884160(0) win 0
(22) 11:32:30.352396 clnt.1024 > srvr.8080: R 1427884160:1427884160(0) win 0

Fig. 2. tcpdump output to illustrate the problems with the TCP connection management implementation in Linux

many TCP stacks can result in listen queue overflow. The
default Linux connection management mechanism, which we
will hereby call default , reacts poorly to listen queue
overflow, causing a disconnect between the TCP states at the
client and the server as well as unnecessary network traffic.

2) Silent SYN Drop:As shown in Figure 1, most server
TCP stacks, including Linux, also drop SYN segments silently
if either the SYN or the listen queue is full. Like any other TCP
transmission, the client TCP stack sets up a retransmission
timeout whenever it sends a SYN segment to the server. If
the SYN retransmission timeout expires before a SYN/ACK
is received, the client TCP stack retransmits the SYN and sets
up another timeout. This process continues until the server
responds with a SYN/ACK, or until the threshold for the
maximum number of SYN retransmissions is reached. Table I
shows the SYN retransmission timeouts used in popular TCP
stacks.

Operating System SYN retransmission timeout (sec)
Linux 2.4/2.6 3, 6, 12, 24, 48
FreeBSD 5.3 3, 3.2, 3.2, 3.2, 3.2, 6.2, 12.2, 24.2
Mac OS X 10.3 3, 3, 3, 3, 3, 6, 12, 24
Windows 9x, NT 3, 6, 12
Windows 2000/XP 3, 6

TABLE I

SYN RETRANSMISSIONS TIMEOUTS INTCPSTACKS

An implicit assumption in silent SYN drops is that the
connection queues overflowed because of a momentary burst
in traffic that will subside in time to allow the retransmitted
SYN segments to be processed. However, under persistent
overload conditions, such as during flash crowds, the server
TCP stack has to handle a large number of connection attempts
for an extended period of time. The duration of overload at
the server is much longer than the client application timeout,
as well as the maximum SYN retransmission timeout used
in most client TCP stacks. Hence, the majority of clients
retransmit their SYNs while the server isstill overloaded. As a
result the server TCP stack is forced to process retransmitted

SYN segments from “old” (i.e., client TCP stacks that are
retrying) connections, in addition to a steady rate of incoming
SYN requests arising from “new” connections.

We profiled an overloaded web server using a system-wide
profiler. Our results indicated that TCP processing dominates
CPU utilization compared to other tasks (e.g., driver or IP
level packet processing) as the load exerted increases [15]. To
illustrate the cost of TCP processing under overload, TableII
shows the breakdown of TCP connection related statistics at
a web server at different request rates. Note that the server
reaches saturation after 22,000 requests/sec.

TCP Request Rate
Statistic 22,000 28,000 34,000

Expected SYN segments 2,640,000 3,360,000 4,080,000
Actual SYN segments 2,640,011 4,156,497 6,385,607
Actual SYN/ACK ACK
segments

2,640,011 3,323,742 3,828,060

Connection establishment
segments

5,280,022 7,480,239 10,213,667

Established connections 2,640,011 2,372,030 2,236,980
Ratio of established
connections to actual SYN
segments

1.00 0.57 0.35

Total segments 15,840,231 16,968,566 19,161,742
TABLE II

TCPCONNECTION STATISTICS AT A WEB SERVER

Under high loads, the number of SYN and SYN/ACK
ACK segments received and processed at the server increases
rapidly compared to the number of segments destined for
already established connections. The increase in connection
establishment segments is primarily due to retransmitted SYN
segments. As the server TCP stack spends more time process-
ing SYN segments, the number of connections that it is able
to actually establish and process decreases.

Note that the high cost of handling retransmitted SYN
segments is not because of a poor implementation of SYN
processing in the Linux networking stack. On the contrary, the
SYN-processing implementation in most modern TCP stacks,
including Linux, is meant to be efficient to minimize the

damage from SYN flood attacks [8]. Techniques such as SYN
cookies do not alleviate the cost of processing retransmitted
connection attempts. Furthermore, dropping SYN segments at
an earlier stage in the networking stack does not mitigate
the negative performance impact of retransmitted SYN seg-
ments [15].

B. Alternative Solutions

1) Solutions for Listen Queue Overflow:Before consid-
ering proactive solutions to prevent the listen queue from
overflowing, we first review reactive approaches to avoid the
disconnect between the TCP states at the end-points arising
from listen queue overflow in a Linux server.

Instead of silently dropping a SYN/ACK ACK upon a listen
queue overflow, the server TCP stack can send a reset (RST)
to a client to notify it of its inability to continue with the
connection. A RST ensures that both end-points throw away
all information associated with that connection and subse-
quently there is no TCP traffic on that connection. The client
application is notified of a reset connection on its next system
call, which will fail with an error such asECONNRESET. The
implicit assumption in aborting a connection on queue drops
due to listen queue overflow is that the server application is
not able to drain the listen queue fast enough to keep up with
the rate of incoming SYN/ACK ACKs. This approach to listen
queue overflow is used by default in TCP stacks in FreeBSD,
HP-UX 11, Solaris 2.7. Although not enabled by default, this
behaviour is available as a configurable option in Linux. We
will refer to this mechanism asabort (an abbreviation of
the tcp abort on overflow parameter that achieves this
behaviour in Linux).

Whenever a SYN/ACK ACK triggers a listen queue over-
flow, the TCP stack can also temporarily grow the listen queue
to accommodate it [9]. However, this mechanism disregards
the listen queue size specified by the application, thereby
overriding any listen queue based admission control policies.
The additional connections in the listen queue can also deplete
the available kernel memory. Under overload, the server might
not be able to accept and process these connections before the
client times out, resulting in an inappropriate use of resources.
For these reasons, we do not consider growing the listen queue
in response to an overflow in this paper.

Proactive approaches that avoid queue drops due to lis-
ten queue overflow ensure that the listen queue is never
full when a SYN/ACK ACK arrives. We are aware of one
such approach, namely, lazyaccept() [10]. In a lazy
accept(), the server TCP stack does not send a SYN/ACK
in response to a SYN until the server application issues an
accept() system call. This ensures that the server TCP
stack can always accommodate a subsequent SYN/ACK ACK
in the listen queue. Although the Solaris 2.2 TCP stack
provided a tcp eager listeners parameter to enable
lazy accept(), support for this parameter appears to have
been discontinued in later Solaris versions [10]. The Windows
Sockets API (version 2) provides similar functionality through
the SO CONDITIONAL ACCEPT socket option that can be

used with theWSAAccept() system call [16]. Note that
a lazy accept() can result in poor performance because
the applications will tend to block waiting for the three-
way handshake to be completed by the TCP stack. More
importantly, a lazyaccept() makes the server vulnerable to
SYN flood denial of service attacks, where malicious clients
do not send a SYN/ACK ACK in response to a SYN/ACK.

Another proactive method of ensuring that there is no listen
queue overflow, while still allowing the three-way handshake
to be completed before connections are placed on the listen
queue, is to implement listen queue reservations. Wheneverthe
server TCP stack sends a SYN/ACK in response to a SYN,
it reserves room for that connection in the listen queue (in
addition to adding an entry to the SYN queue). Room is freed
for subsequent reservations every time an entry is removed
from the listen queue through anaccept() system call.
Room can also be created in the listen queue whenever an
entry is removed from the SYN queue due to an error or a
timeout. The server TCP stack sends a SYN/ACK only if there
is room for a new reservation in the listen queue. We refer to
the listen queue reservation mechanism asreserv .

To our knowledge, thereserv mechanism described above
is novel. However, we arrived at it at the same time as the
Dusi Accept() call implementation described by Turner et
al. for the Direct User Socket Interface within the ETA packet-
processing architecture [17]. This call allows applications to
post asynchronous connection acceptance requests that reserve
room in the listen queue. In contrast to work by Turner et
al., our listen queue reservation mechanism is designed to
work with the BSD sockets API and existing TCP stack
implementations. Thisreserv mechanism can be generalized
to allow for “overbooking” to account for clients whose
SYN/ACK ACK is delayed in WAN environments, and can
be combined with a probabilistic SYN drop, SYN cookies,
and a periodic clean up of reservations to counter SYN flood
denial of service attacks.

2) Alternatives to Silent SYN Drop:When under overload,
instead of silently dropping SYN segments, the server TCP
stack can explicitly notify clients to stop the further retrans-
mission of SYNs. One way of achieving this is to send a
RST whenever a SYN is dropped. Usually, a RST is sent in
response to a SYN to indicate that there is no listening socket
at the specified port on the server. This is also equivalent to
an ICMP “Port Unreachable” message [10]. As per RFC 793,
the client TCP stack should then give up on the connection
and indicate failure to the client application. Typically upon
receiving a RST, aconnect() call by the application would
fail with an error such asECONNREFUSED. Note that a client
application is free to continue to retry a connection even after
it receives anECONNREFUSED error from its TCP stack, but
most well-written applications would give up attempting the
connection. Sending a RST when a SYN is dropped, eliminates
TCP-level retransmissions, which are transparent to the client
application and the user. In order to notify a client when the
server is overloaded so that it can prevent further connection

attempts (i.e., avoid SYN retransmissions), we modified the
server TCP stack in Linux to send a RST whenever a SYN
is dropped. We refer to this mechanism asrst-syn. (an
abbreviation of “RST in response to a SYN on a SYN drop”)

Note thatrst-syn only affects client behaviour at the
SYN stage and is typically used in conjunction with ACK
stage mechanisms described in Section III-B.1. That is, we can
userst-syn in conjunction with the listen queue reservation
mechanism to send RST to clients whenever a reservation
is not available, we refer to this mechanism asreserv
rst-syn. Similarly, whenrst-syn is used in conjunction
with the reactive aborting of connections on listen queue
overflow, we call the resulting mechanismabort rst-syn.
After developingrst-syn and discovering the high overhead
of processing retransmitted SYNs, we discovered that some
TCP stacks, including those on some Windows operating sys-
tems, already implement such a mechanism [18]. As indicated
earlier, most UNIX TCP stacks drop SYN segments silently. In
this context, the results presented in this paper can be viewed
as a comparison of the different connection establishment
mechanisms implemented in current TCP stacks.

We should point out the shortcomings ofrst-syn. Send-
ing a RST in response to a SYN when there is a listening
socket at the client-specified port implies overloading the
semantics of a RST [19]. While it can be argued that from the
server’s point-of-view the RST achieves the desired effectof
preventing further SYN retransmissions from clients, a client
TCP stack which receives a RST from the server is unable
to determine whether the RST is because of an incorrectly
specified port, or due to overload at the server. Unfortunately,
no other alternative seems to be available in current TCP
implementations to allow an overloaded server to notify clients
to stop retransmitting SYN segments. An approach that could
provide such functionality is suggested in RFC 1122 – “A RST
segment could contain ASCII text that encoded and explained
the cause of the RST” [11]. Unfortunately, this approach would
require modifications to existing client TCP stacks.

Another problem withrst-syn is that it relies on client
cooperation. Some client TCP stacks, notably those on Mi-
crosoft Windows, immediately resend a SYN upon getting
a RST for a previous SYN2. Note that this behaviour does
not follow the specifications of RFC 793, which explicitly
specifies that a client TCP stack should abort connection at-
tempts upon receiving a RST in response to a SYN. In addition
to counteractingrst-syn, by retransmitting a SYN upon
receiving a RST, Windows TCP stacks introduce unnecessary
SYN segments into the network when the client is attempting
to connect to a server at a non-existent port. The number of
times SYNs are retried in this fashion is a tunable system
parameter, which defaults to 2 retries in Windows 2000/XP
and 3 retries in Windows NT [20]. Note that in contrast to SYN
retransmissions when no SYN/ACKs are received from the
server, SYNs are retried immediately by the Windows client

2Microsoft client TCP stacks ignore “ICMP port unreachable”messages in
a similar fashion, retrying a SYN instead [9].

TCP stack – no exponential backoff mechanism is used.
To our knowledge, there are no results that quantify the

effects of the Windows-like clients with server TCP stacks
which do send a RST to reject a SYN. On the other hand,
some past work has cited this behaviour of Windows clients
as a justification for dropping SYN segments silently [9],
[21]. In this paper, we test this hypothesis by evaluating the
effectiveness ofrst-syn with RFC 793-compliant as well
as Windows-like TCP stacks. Unfortunately, our workload
generator (httperf) is UNIX-specific and non-trivial to port
to the Windows API. Hence, we modified the Linux TCP stack
in our clients to mimic the behaviour of Windows clients upon
receiving a RST in response to a SYN. We will refer to this
emulation in Linux aswin-emu.

Silently dropping SYN segments results in SYN retrans-
missions in all client TCP stacks. Notifying the client thatis
should abort SYN retransmissions with a RST is not effective
in stopping SYN retries with Windows-like TCP stacks. To
workaround this problem, we developed a mechanism which
avoids retransmissions of TCP connection establishment seg-
ments, albeit in an ungainly fashion. The key idea of this
mechanism is to drop no SYN segments, but to instead notify
the client of a failure to establish a connection at the ACK
stage upon listen queue overflow. Thus, a SYN/ACK is sent
in response to every SYN, irrespective of whether there is
space available in the SYN queue or the listen queue (SYN
cookies are used to simulate an unbounded SYN queue). The
abort mechanism is later used to reset those connections
whose SYN/ACK ACKs cannot be accommodated in the listen
queue. We refer to this mechanism asno-syn-drop. In
order to ensure that there are no SYN drops, we eliminate
the check for space availability in the listen queue upon SYN
arrival, and use SYN cookies [7] to effectively simulate an
unbounded SYN queue.

One limitation of no-syn-drop, shared withabort,
is that we give some clients the false impression that the
server can establish a connection. In reality, under overload,
the server might be able to accommodate only a portion
of the SYN/ACK ACKs received from the clients in its
listen queue, and would have to abort those connections that
result in listen queue overflow. Upon receiving a RST on
an established connection, all client TCP stacks that we are
aware of (including Microsoft Windows) immediately cease
further transmissions. AnECONNRESET error is reported to
the application on its next system call on that connection. Most
well-written client applications, including all browsersthat we
are aware of, already handle this error. We reiterate that the
only reason for exploringno-syn-drop is due to a lack
of an appropriate mechanism in current TCP implementations
to notify clients (particularly, Windows-like clients) about an
overload at the server in order to stop retransmission attempts.

IV. TCP CONNECTION TERMINATION ALTERNATIVES

A. Problems with Existing Mechanisms

Supporting half-closed connections can result in an im-
prudent use of resources at an overloaded server. Many

browsers and web crawlers terminate connections, including
those connections that timeout or are aborted by the user, by
issuing aclose() system call. That is, they do not use half-
closed connection semantics. However, because most server
TCP stacks, including Linux, support half-closed connections,
they continue to make queued data available to the server
application throughread() calls even after receiving a FIN
from a client. Only when the data queue is completely drained
will read() returnEOF notifying the server application that
the client has terminated the connection. Any priorread()
call is processed by the application and can result in sub-
sequent writes. The effort spent generating and writing data
at the server is wasteful because upon receiving the data the
client TCP stack responds with a RST when the half-closed
connection semantics are not used for connection termination.

B. Alternative Mechanisms

1) Disabling Support for Half-Closed Connections:We
describe a mechanism that can help mitigate the impact of
supporting half-closed connections on server throughput under
overload. In particular, we are interested in answering the
following question – If the server TCP stack were to disable
support for half-closed connections and treat all FINs as an
indication that the client application is no longer interested
in either sending or receiving data on a connection, can we
improve server throughput?

Note that we are aware of the potential problems that not
supporting half-closed connections can cause. However, others
have pointed out that assuming that most clients will not use
half-closed connection semantics is not unreasonable [10]and
although we are not aware of any modern web browsers that
use these semantics, disabling support for all half-closedcon-
nections at the server breaks clients that do rely on half-closed
semantics. Unfortunately, in current TCP implementations,
clients do not provide any indication of whether they are using
half-closed semantics in their FIN segments, hence, the server
TCP stack cannot selectively disable half-closed connections
from some clients. In this paper, we disable support for all
half-closed connections in order to assess if the throughput of
an overloaded server can be improved by avoiding the impru-
dent use of resources on connections that clients do not care
about. We do not suggest that server TCP stacks should stop
supporting half-closed connections entirely. However, support
for half-closed connections could be disabled at the serveron
a per-application basis. For example, a server-side program
could issue asetsockopt() system call to notify the TCP
stack that it should not support half-closed connections on
any of its sockets. Alternatively, TCP could be enhanced to
allow an end-point to notify its peer that it is not using half-
closed semantics while terminating a connection (e.g., through
a special set of flags). We perform an experimental evaluation
in this paper to determine whether such approaches are worth
pursuing.

We refer to our connection termination policy that does not
support half-closed connections asrst-fin (an abbreviation
of “RST to FIN”). In this mechanism all FIN segments that

do not have piggy-backed data are assumed to indicate that
the client is interested in no further read or write activity
on that connection, and the server TCP stack takes steps to
immediately stop work on that connection. To achieve this, it
treats a FIN from the client as if it were a RST, and throws
away all information associated with that connection. The
server TCP stack then transmits a RST to the client. Note
that the transmission of RST in response to a FIN is done
directly by the server’s TCP stack without any intervention
from the server application. The application gets notification
of the terminated connection through aECONNRESET error on
a subsequent system call on that socket. The handling of RST
at the client is completely transparent to the application if the
socket descriptor has been destroyed using theclose() call.
Sending a RST in response to a FIN (instead of immediately
sending a FIN/ACK) allows clients which are using half-closed
connection semantics to be notified of an abnormal connection
termination, instead of getting anEOF marker indicating that
the server has no more data to send. In this wayrst-fin
can reduce the amount of time the server spends processing
TCP segments on connections that clients do not care about.

2) Connection Termination with Abortive Release:Some
browsers such as Internet Explorer 5 and 6 terminate con-
nections through an abortive release [13]. An abortive release
implies that the application notifies its TCP stack to abruptly
terminate a connection by sending a RST instead of using
the two-way FIN/ACK handshake. Applications typically use
an abortive release in response to abnormal events (e.g.,
when a thread associated with the connection crashes). We
have observed that Internet Explorer uses an abortive release
to terminate all of its connections, whether they represent
abnormal behaviour or a routine event. Note that using an
abortive release as part of the normal connection termination
process is against the recommendations of RFC 793 and RFC
2616. RFC 2616, which describes HTTP 1.1, states, – “When
a client or server wishes to timeout itshouldissue a graceful
close on the transport connection” [12].

The reasons why Internet Explorer terminates all connec-
tions in an abortive fashion are not entirely clear, especially be-
cause there are usually enough ephemeral ports at the clientto
transition connections into theTIME WAIT state. A RST sent
by the client does bypass theCLOSE WAIT andLAST ACK
TCP states allowing the server TCP stack to transition directly
to theCLOSED state. Moreover, it also ensures that the server
application does not work on connections that have been given
up on by the clients. Since Internet Explorer is currently
the most popular web browser (used by more than 75% of
clients according to some estimates [13]), we try to answer the
following question – Does an abortive connection termination
by client applications improve server throughput? We use the
SO LINGER socket option withhttperf to emulate the
abortive release behaviour of Internet Explorer. We believe
that ours is the first (public) attempt to study the impact of
abortive release on server throughput. We refer to the abortive
release of a connection by a client application asclose-rst

(an abbreviation of “client connection close with RST”).
It is important to note that bothrst-fin andclose-rst

can result in lost data if data segments arrive (out of order)
on a connection after a FIN or RST, or if there is data
pending in the socket buffer that has not been read (or written)
by the application when a FIN or a RST is received on
a connection. Both of these mechanisms treat a connection
termination notification from the client as an indication that
the client does not care about the connection, including the
potential loss of TCP-acknowledged data that might not have
been delivered to the server application. Such an approach is
acceptable given the semantics of HTTP GET requests, which
are the primary cause of overload in web servers. It might not
be appropriate in other application-level protocols or protocol
primitives. We reiterate that we take an exploratory approach
toward studying the impact of TCP connection termination
mechanisms on server throughput, not a prescriptive one.

V. EXPERIMENTAL METHODOLOGY

In this paper, we present results obtained with a user-
spaceµserver on a single representative workload. These
results were qualitatively similar to those obtained with other
servers and workloads we examined [15]. The results of the
connection management mechanisms studied in this paper can
also apply to other TCP-based, connection-oriented Internet
servers which can get overloaded.

Our workload is motivated by a real-world flash crowd
event [1], [2]. Sites such as CNN.com and MSNBC were
subjected to crippling overload immediately after the Septem-
ber 11th terrorist attacks. The staff at CNN.com responded by
replacing their main page with a text-only page sized fit into
a single unfragmented IP packet. We devised our one-packet
workload to mimic the resulting workload. Each client thus
requests a single file using an HTTP 1.1 connection.

All experiments are conducted in an environment consisting
of 8 client machines and 1 server machine. We use a 32-bit,
2-way 2.4 GHz Intel Xeon (x86) server, which contains 1 GB
of RAM and two Intel PRO/1000 gigabit Ethernet cards. The
client machines are identical to the server, and are connected to
it through full-duplex, gigabit Ethernet switches. We partition
the clients into 2 different subnets to communicate with the
server on different network cards. In this paper, we focus on
evaluating server performance under the assumption that the
server’s network bandwidth is not a bottleneck during overload
and have configured our experimental setup accordingly. While
we perform our evaluation in a LAN, we expect our results
to hold in a WAN environment. Techniques such as SYN
cookies obviate the large number of incomplete connections
in the SYN queue, and WAN-induced delays and packet drops
only serve to increase the probability of connection queue
overflows in stacks that do not use SYN cookies. Moreover,
the server-side overhead of processing retransmitted segments
and continuing work on connections that have been terminated
by clients persists in a WAN setting.

Our server runs a Linux 2.4.22 kernel in uni-processor
mode. This kernel is a vanilla 2.4.22 kernel with its TCP stack

modified to implement the different connection management
mechanisms, and to collect and report fine-grained statistics
during connection establishment and termination. Note that
the TCP connection management code that we are concerned
with has not changed between the 2.4.22 kernel and the
latest 2.6 kernel, and the results of the different connection
management mechanisms on the newer kernel are qualitatively
similar to those presented in this paper (see [15] for details).
We do not modify the default values for networking-related
kernel parameters, including the size of the SYN (1024)
and listen (128) queues, because a large number of existing
production systems operate with default values. We reiterate
that increasing queue lengths under persistent overload isnot
effective because any finite-sized queues will tend to get full.

We use the open-loophttperf [22] workload gener-
ator to create sustained overload at the server. By using
an application-level client timeout,httperf ensures that
the server receives a continuous rate of requests which is
independentof its reply rate. The timeout is similar to the
behaviour of some web users (or even browsers) who give
up on a connection after waiting for some period of time.
We use a 10 second timeout in all of our experiments as
an approximation of how long a user might be willing to
wait, but more importantly it allows our clients to mimic the
behaviour of TCP stacks in Windows 2000 and XP (the TCP
implementation used by the majority of web clients today [13])
by allowing at most two SYN retransmissions.

In each of our experiments we evaluate server performance
with a particular connection establishment and/or termination
mechanism. An experiment consists of a series of data points,
where each data point corresponds to a particular request rate.
For each data point, we runhttperf for two minutes during
which it generates requests on a steady basis at the specified
rate. Two minutes proved to be sufficient to allow steady state
evaluation of the server.

We evaluate server performance using two metrics, server
throughput and client response time. Server throughput reports
the mean number of replies per second delivered by the server
and measured at the clients. Client response time reports the
mean response time measured at the clients for successful
connections. It includes the connection establishment time as
well as the data transfer time. For both of these statistics,we
compute and graph the 95% confidence intervals (which in
most cases are small enough that they cannot be seen).

VI. EVALUATION

Table III provides a brief summary of the TCP connection
establishment and termination mechanisms evaluated in this
section. Recall thatreserv, no-syn-drop, andrst-fin
are novel mechanisms not yet implemented in production TCP
stacks. We evaluate connection establishment alternatives with
two different types of clients. Clients which follow RFC 793
and abort a connection attempt upon receiving a RST in
response to a SYN (as in Linux and most UNIX stacks), we
call theseregular clients. Clients which retransmit a SYN
upon receiving a RST in response to a SYN (as in Windows

Type Name Description Implemented in

Establishment

abort Send RST when listen queue overflows upon SYN/ACK ACK arrivalFreeBSD, Solaris, HP-UX, Linux (opt)
reserv Proactive reservation to avoid listen queue overflows None
abort rst-syn Send RST while dropping SYNs in conjunction withabort Windows
reserv rst-syn Send RST while dropping SYNs in conjunction withreserv None
no-syn-drop Do not drop valid SYNs, useabort upon listen queue overflow for

explicit connection rejection
None

Termination
rst-fin Disable support for half-closed connections at server None
close-rst Client terminates connections using abortive release Internet Explorer 5/6

Both default Default connection management mechanism Linux
TABLE III

SUMMARY OF TCPCONNECTION MANAGEMENT MECHANISMS EVALUATED

systems), we call thesewin-emu clients because we have
modified a Linux stack to emulate the Windows behaviour.

A. Connection Establishment Mechanisms

1) Regular clients:Figure 3 shows the results of connection
establishment mechanisms withregular clients. Figure 3(a)
indicates that neitherabort nor reserv are able to provide
significant improvements in throughput overdefault. The
peak throughput is the same with all three mechanisms.
After the peak,abort andreserv provide less than 10%
improvement in throughput overdefault. It is also evident
from Figure 3(b) that the response times obtained withabort
andreserv are fairly close to those obtained withdefault.
Note that we use a log scale for all the response time results
in this paper. The sharp spike in response times after 19,000
requests/sec corresponds to the server’s peak (saturationpoint).
After the peak (e.g., at 20,000 requests/sec), many clientshave
to retransmit a SYN using an exponential backoff before they
get a response from the server. Hence, the average connection
establishment time and consequently the response time rises
sharply. Similarly, the lack of improvement in throughput with
abort and reserv is due to the overhead of processing
retransmitted SYN segments at the server.

As shown in Figure 3(a),abort rst-syn andreserv
rst-syn increase the peak throughput by 11% compared to
abort andreserv respectively, and offer around 20-24%
improvement after the peak, which increases as the request rate
is increased. When compared todefault, mechanisms using
rst-syn result in more than 30% improvement in throughput
after the peak. Throughput improves withrst-syn because it
eliminates the cost of processing retransmitted SYN segments,
which allows more time to be devoted to completing work on
established connections. The gains obtained fromrst-syn
can be explained by the general principle of dropping a
connection as early as possible under overload [23].

Moreover, as seen in Figure 3(a), the response time is
reduced by two orders of magnitude withrst-syn. Recall
that response time refers to the average response time mea-
sured at clients for successful connections, and it represents
the sum of connection establishment time and data transfer
time. When the server is overloaded, a substantial amount
of time is spent establishing connections. SYNs might have
to be retransmitted multiple times before a SYN/ACK is
received and theconnect() call returns on the client. We
have observed that under high loads, less than half of all

 0

 5000

 10000

 15000

 20000

 12000 16000 20000 24000 28000 32000 36000

R
ep

li
es

/s

Requests/s

default
abort

reserv
abort rst-syn

reserv rst-syn

(a) Throughput

 0.1

 1

 10

 100

 1000

 10000

 12000 16000 20000 24000 28000 32000 36000

R
es

p
o

n
se

 T
im

e
(m

se
c)

Requests/s

default
abort

reserv
abort rst-syn

reserv rst-syn

(b) Response Time

Fig. 3. Connection establishment mechanisms withregular clients

attempted connections receive a SYN/ACK for their first SYN
retransmission. Most connection attempts require the trans-
mission of multiple SYNs before they receive a SYN/ACK
or time out [15]. On the other hand, withrst-syn, a client
connection attempt fails on the first SYN transmission. Clients
which do get a response for a SYN, receive it without having
to resort to SYN retransmissions. As a result, the average
connection establishment time, and hence the average client
response time tends to be very short.rst-syn yields higher
throughput as well as lower response time because the server
is under persistent overload during flash crowds. While it
rejects some clients immediately, the server always has a
sustained rate of new clients to handle, so its throughput does
not decrease. We believe that under high load, it is better to
provide good service to some clients along with an immediate
notification of failure to the rest of the clients, rather than
giving poor service to all the clients.

Note that the improvements in response times are not
because the server handles fewer clients. In fact, bothabort
rst-syn andreserv rst-syn actuallyreducethe num-
ber of clients which do not receive a server response compared
to default [15]. Thus, while abort and reserv by

themselves fail to significantly improve server performance
under overload, when used in conjunction withrst-syn,
they are effective in improving server throughput by up to
40% and reducing client response times by more than two
orders of magnitude onregular clients.

2) Windows-like clients:In this section, we compare the
results of abort rst-syn and no-syn-drop against
abort on win-emu clients. We choseabort because it
is available in most UNIX TCP stacks, noting thatdefault
has slightly lower throughput thanabort. Recall that our
win-emu clients emulate the behaviour of the Windows client
TCP stack in Linux, and retransmit a SYN immediately after
receiving a RST for a previous SYN. We also include the
results ofabort rst-syn on regular clients (denoted
“abort rst-syn”) for comparison. Figure 4 summarizes
these results.

 0

 5000

 10000

 15000

 20000

 12000 16000 20000 24000 28000 32000 36000

R
ep

li
es

/s

Requests/s

abort win-emu
abort rst-syn

abort rst-syn win-emu
no-syn-drop win-emu

(a) Throughput

 0.1

 1

 10

 100

 1000

 10000

 12000 16000 20000 24000 28000 32000 36000

R
es

p
o

n
se

 T
im

e
(m

se
c)

Requests/s

abort win-emu
abort rst-syn

abort rst-syn win-emu
no-syn-drop win-emu

(b) Response Time

Fig. 4. Connection establishment mechanisms withwin-emu clients

Figure 4(a) shows that, as expected, the throughput with
abort rst-syn win-emu is lower than that withabort
rst-syn because of the overhead of processing client-
initiated SYN retries. However, as shown in Figure 4(b),
the client response time is reduced by two orders of mag-
nitude withabort rst-syn compared toabort, even on
win-emu clients. Windows TCP stacks resend another SYN
immediately upon receiving a RST for a previous SYN. An
immediate retransmission ensures that the connection estab-
lishment times, and hence, the response times, remain low for
clients that receive responses from the server on subsequent
SYN transmissions.

By avoiding the retransmission of any connection estab-
lishment segments,no-syn-drop allows more time to be
spent completing work on established connections. As a result,
its throughput, at and after the peak, is more than 15%
higher than that ofabort win-emu andabort rst-syn

 0

 5000

 10000

 15000

 20000

 12000 16000 20000 24000 28000 32000 36000

R
ep

li
es

/s

Requests/s

default
default rst-fin

default close-rst
abort rst-syn rst-fin

abort rst-syn close-rst

Fig. 5. Evaluation of connection termination mechanisms

win-emu. The throughput and response time resulting from
no-syn-drop is comparable to that provided byabort
rst-syn on regular clients.

To summarize these results in the context of current oper-
ating system implementations we find that:

• The server-side connection establishment approaches
used in Linux, Solaris, FreeBSD, and most UNIX systems
(i.e., abort and default) do not work well under
persistent overload.

• Although the approach used in Windows servers (abort
rst-syn) provides better response time and throughput
with regular clients (e.g., those on Linux and most
UNIX systems), it fails to improve server throughput with
Windows-based (win-emu) clients.

• Our no-syn-drop mechanism can be used by over-
loaded servers to work around Windows clients, thereby
providing higher throughput and low response times.

B. Connection Termination Mechanisms

Disabling support for half-closed connections only affects
server throughput. The response time, which is determined by
how long it takes to establish a connection and for the sub-
sequent data transfers is not affected. Hence, we only include
throughput results in our evaluation of connection termination
mechanisms. Figure 5 shows the impact ofrst-fin and
close-rst when used in conjunction withdefault. To
study if there is a relationship between connection termination
and establishment mechanisms – in particular, to check if
one of the connection termination mechanisms can obviate
the need for better connection establishment mechanisms (or
vice-versa) – we also present the results ofrst-fin and
close-rst when used withabort rst-syn.

Figure 5 demonstrates that when compared todefault,
default rst-fin results in a 17% improvement in the
peak throughput. Usingrst-fin prevents resources from
being spent on processing connections that have been timed
out by the client at the server. It also allows the TCP
connection state to transition directly fromESTABLISHED
to CLOSED. This frees the server from having to process ad-
ditional ACK segments (in response to FINs), including those
on connections that were serviced successfully. For the same
reasons,default close-rst provides an improvement in
throughput overdefault, which is comparable, at and after
the peak, to that obtained withdefault rst-fin.

Connection termination mechanisms also complement con-
nection establishment mechanisms. The throughput yieldedby
bothrst-fin andclose-rst increases when they are cou-
pled with abort rst-syn. When compared todefault
rst-fin, abort rst-syn rst-fin provides more than
20% higher throughput (after peak), andabort rst-syn
close-rst provides close to 30% higher throughput.

In addition to these results, we have evaluated TCP connec-
tion management mechanisms discussed in this paper under a
variety of different environments, including SPECweb99 [24]
static-content workloads, in-kernel web servers, and transient,
bursty load [15]. Given current browser implementations,
which issue only a few requests over a single TCP connec-
tion [9], we have observed that mechanisms that eliminate
the retransmission of connection establishment attempts from
clients yield a significant reduction in response times and an
increase in server throughput during flash crowds, even on
workloads with large transfer sizes. Moreover, even a high-
performance kernel-space web server can benefit significantly
from using better connection establishment and termination
mechanisms. Finally, even under short-lived bursts of traffic,
the overall degradation in throughput due to premature re-
jection of client connection attempts by mechanisms such as
rst-syn and no-syn-drop is negligible. These mecha-
nisms provide at least an order of magnitude reduction in client
response times under both bursty load and persistent overload
observed during flash crowds, thereby making a strong case
for deployment in production TCP stacks.

VII. R ELATED WORK

Internet servers have to handle thousands of simultane-
ous connections. Researchers have proposed novel server
architectures [25] for efficiently handling this high levelof
concurrency. Other researchers have suggested modifications
in operating system interfaces and mechanisms for efficiently
delivering information about the state of socket and file de-
scriptors to user-space Internet servers [26], reducing the data
copied between the kernel and user-space applications [27],
and reducing the number of kernel boundary crossings [28].
The connection management mechanisms studied in this paper
operate at a lower level and are thus complementary to these
application and operating system interface improvements.

Researchers have also sought to improve networking stack
implementations [29], [23] and many of the proposed opti-
mizations have found their way into the mainstream operating
systems. While research and commercial efforts to offload part
or all of the functionality in a TCP stack on a specialized
network card are underway, as indicated by Mogul [30],
connection management costs are either unsolved or worsened
by TCP offloading. Furthermore, the mechanisms discussed in
this paper can be implemented in any specialized TCP stack.
Protocol-level modifications to improve server performance
has also been an area of active research. Nahum et al. [28]
describe optimizations to reduce the per-TCP-connection over-
head in small HTTP exchanges, including modifications to
allow the piggybacking of a FIN on the last data segment, and

delaying the acknowledgment of a remote peer’s FIN. These
optimizations do not alleviate server load resulting from the
retransmission of TCP connection establishment segments or
preclude server support for half-closed connections and are
complementary to the mechanisms studied in this paper.

Following work by Mogul [31], the HTTP 1.1 specifica-
tion [12] advocated the use of persistent connections to alle-
viate server load and reduce network congestion arising from
the use of a separate TCP connection for every request. Unfor-
tunately, current web clients open multiple simultaneous TCP
connections in parallel with a server in order to improve their
overall throughput, and reduce the client response time [32],
[9]. The average number of requests per connection ranges
between 1.2 to 2.7 in popular browsers [9], hence, servers have
to handle significantly more TCP connection establishment
and termination attempts than envisioned when HTTP 1.1 was
introduced. TCP for Transactions (T/TCP) [33] is a backward-
compatible extension of TCP for efficient transaction (request-
response) oriented service. T/TCP allows protocols such as
HTTP to connect to an end-point, send data and close the
connection using a single TCP segment. The introduction of
persistent connections in HTTP 1.1 as well as its vulnerability
to SYN flood denial of service attacks has inhibited the
widespread use of T/TCP.

As an alternative to application-level admission control
mechanisms, which typically entail at least connection-
establishment overhead, Voigt et al. [21] describe a kernel-
level mechanism called TCP SYN policing, which uses a token
bucket shaper to drop SYN segments silently under overload.
The authors rule out the possibility of sending a RST when
a SYN is dropped because of its extra overhead, especially
with Windows clients. In this paper, we examine this assertion
and describe a new connection establishment mechanism that
prevents the retransmission of connection attempts, even with
Windows clients. Theno-syn-dropmechanism can be used
to enhance the effectiveness of a SYN-policing type approach.

Jamjoom and Shin [9] describe a mechanism called persis-
tent dropping designed to reduce the client-perceived response
time during a flash crowd by systematically dropping SYNs
(including retransmissions) from randomly chosen clients. In
this paper, we examine alternatives to persistent dropping,
which allow the server to eliminate client-side retransmission
of connection establishment segments, without requiring any
server-side state or forgoing fairness. Jamjoom et al. [34]
indicate that explicitly rejecting client SYNs can improve
client-perceived delays and describe a predictive mechanism
for deciding when to drop packets and reject SYNs. Their work
assumes the availability of a connection rejection mechanism
and their evaluation is based on simulation. We review imple-
mentation choices for connection establishment at both SYN
and SYN/ACK ACK processing stages, describe a rejection
mechanism that requires modifications only to the server-side
TCP stack, and present results of its Linux implementation
that demonstrate that explicit connection rejection can not
only reduce the client response time but also improve the
throughput of an overloaded server.

VIII. C ONCLUSION

In this paper, we provide a better understanding of the
behaviour of an overloaded server. In particular, we describe
some of the reasons why server throughput drops and client
response times increase as the load at the server increases.
After studying several different connection management mech-
anisms, we demonstrate that implementation choices for TCP
connection establishment and termination can have a signif-
icant impact on server throughput and client response times
during overload conditions such as flash crowds.

We show that mechanisms implemented at the server TCP
stack, which eliminate the TCP-level retransmission of con-
nection attempts by clients during overload, can improve
server throughput by up to 40% and reduce client response
times by two orders of magnitude. We also describe a
new mechanism that prevents the TCP-level retransmission
of connection attempts from clients without requiring any
modifications to client-side TCP stacks and applications, or
server-side applications.

Additionally, we demonstrate that supporting half-closed
TCP connections can lead to an imprudent use of resources
at an overloaded server when most client applications ter-
minate connections using the half-duplex semantics offered
by the close() system call. We also examine whether
client applications that terminate connections using an abortive
release (such as Internet Explorer) affect server throughput.
Our results indicate that both an abortive release and preclud-
ing support for half-closed TCP connections improve server
throughput by more than 15%.

IX. A CKNOWLEDGMENTS

We gratefully acknowledge Hewlett-Packard (through the
Gelato Federation), the Ontario Research and Development
Challenge Fund, and the National Sciences and Engineering
Research Council of Canada for financial support for portions
of this project. This work has benefited substantially from
discussions with David Pariag, Martin Karsten and Srinivasan
Keshav.

REFERENCES

[1] Computer Science and Telecommunications Board,The Internet Un-
der Crisis Conditions: Learning from September 11. The National
Academies Press, 2003.

[2] V. Padmanabhan and K. Sripanidkulchai, “The case for cooperative
networking,” in First International Workshop on Peer-to-Peer Systems,
2002.

[3] S. Adler, The Slashdot Effect, An Analysis of Three Internet
Publications, http://ssadler.phy.bnl.gov/adler/-
adler/SAArticles.html.

[4] I. Ari, B. Hong, E. Miller, S. Brandt, and D. Long, “Modeling, analysis
and simulation of flash crowds on the Internet, Tech. Rep. UCSC-CRL-
03-15, 2004.

[5] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial
of service attacks: Characterization and implications forCDNs and web
sites,” inProceedings of the International World Wide Web Conference,
May 2002.

[6] J. Postel, “RFC 793: Transmission Control Protocol,” September 1981.
[7] D. Bernstein, TCP SYN cookies, http://cr.yp.to/-

syncookies.html.
[8] J. Lemon, “Resisting SYN flood DoS attacks with a SYN cache,” in

BSDCON2002, 2002.

[9] H. Jamjoom and K. Shin, “Persistent dropping: An efficient control of
traffic aggregates,” inProceedings of ACM SIGCOMM 2003, August
2003.

[10] W. Stevens,TCP/IP Illustrated, Volume 1. Addison Wesley, 1994.
[11] R. Braden, “RFC 1122: Requirements for Internet hosts –communica-

tion layers,” 1994.
[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “RFC 2616: Hypertext Trasfer Protocol – HTTP/1.1,”
June 1999.

[13] M. Arlitt and C. Williamson, “An analysis of TCP Reset behaviour on
the Internet,” SIGCOMM Computer Communication Review, vol. 35,
no. 1, 2005.

[14] V. Jacobson, C. Leres, and S. McCanne,tcpdump manual, available at
http://www.tcpdump.org/tcpdump man.html.

[15] A. Shukla, “TCP connection management mechanisms for improving
internet server performance,” Master’s thesis, Department of Computer
Science, University of Waterloo, July 2005.

[16] Microsoft, Windows Sockets 2 API – WSAAccept function,
http://msdn.microsoft.com/library/en-us/-
winsock/winsock/wsaaccept 2.asp.

[17] Y. Turner, T. Brecht, G. Regnier, V. Saletore, G. Janakiraman, and
B. Lynn, “Scalable networking for next-generation computing plat-
forms,” in Third Annual Workshop on System Area Networks (SAN-3),
February 2004.

[18] Microsoft, Knowledge Base Article 113576 – Winsock App’s Reject
Connection Requests with Reset Frames, 2003,http://support.-
microsoft.com/kb/113576/EN-US.

[19] S. Floyd, “RFC 3360: Inappropriate TCP Resets considered harmful,”
2002.

[20] Microsoft, Knowledge Base Article 175523 – Winsock TCP Connection
Performance to Unused Ports, 2003, http://support.micro-
soft.com/kb/175523/EN-US.

[21] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra, “Kernel mechanisms
for service differentiation in overloaded web servers,” inProceedings of
the USENIX Annual Technical Conference, June 2001.

[22] D. Mosberger and T. Jin, “httperf: A tool for measuring web server
performance,” inFirst Workshop on Internet Server Performance, June
1998.

[23] J. Mogul and K. Ramakrishnan, “Eliminating receiver livelock in an
interrupt-driven kernel,” inProceedings of the USENIX Annual Technical
Conference, 1996.

[24] S. P. E. Corporation,SPECweb99 Benchmark, http://www.-
specbench.org/web99.

[25] V. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An efficient and portable
web server,” inProceedings of the USENIX 1999 Annual Technical
Conference, 1999.

[26] G. Banga, J. Mogul, and P. Druschel, “A scalable and explicit event
delivery mechanism for UNIX,” inProceedings of the 1999 USENIX
Annual Technical Conference, June 1999.

[27] V. Pai, P. Druschel, and W. Zwaenepoel, “IO-Lite: A unified I/O
buffering and caching system,”ACM Transactions on Computer Systems,
vol. 18, 2000.

[28] E. Nahum, T. Barzilai, and D. Kandlur, “Performance issues in WWW
servers,”IEEE/ACM Transactions on Networking, vol. 10, Febuary 2002.

[29] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis of TCP
processing overhead,”IEEE Communications Magazine, June 1989.

[30] J. Mogul, “TCP offload is a dumb idea whose time has come,”in
Proceedings of HotOS’03: 9th Workshop on Hot Topics in Operating
Systems, May 2003.

[31] J. Mogul, “The case for persistent-connection HTTP,”SIGCOMM
Computer Communication Review, vol. 25, no. 4, 1995.

[32] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and
R. H. Katz, “TCP behavior of a busy Internet server: Analysisand
improvements,” inINFOCOM, 1998.

[33] R. Braden, “RFC 1644 - T/TCP – TCP extensions for Transactions,
functional specification,” 1989.

[34] H. Jamjoom, P. Pillai, and K. Shin, “Resynchronizationand controllabil-
ity of bursty service requests,”IEEE/ACM Transactions on Networking,
vol. 12, no. 4, 2004.

