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ABSTRACT
Applications requiring high-speed TCP/IP processing can
easily saturate a modern server. We and others have pre-
viously suggested alleviating this problem in multiproces-
sor environments by dedicating a subset of the processors
to perform network packet processing. The remaining pro-
cessors perform only application computation, thus elimi-
nating contention between these functions for processor re-
sources. Applications interact with packet processing en-
gines (PPEs) using an asynchronous I/O (AIO) program-
ming interface which bypasses the operating system. A key
attraction of this overall approach is that it exploits the ar-
chitectural trend toward greater thread-level parallelism in
future systems based on multi-core processors. In this pa-
per, we conduct a detailed experimental performance anal-
ysis comparing this approach to a best-practice configured
Linux baseline system.

We have built a prototype system implementing this ar-
chitecture, ETA+AIO (Embedded Transport Acceleration
with Asynchronous I/O), and ported a high-performance
web-server to the AIO interface. Although the prototype
uses modern single-core CPUs instead of future multi-core
CPUs, an analysis of its performance can reveal important
properties of this approach. Our experiments show that
the ETA+AIO prototype has a modest advantage over the
baseline Linux system in packet processing efficiency, con-
suming fewer CPU cycles to sustain the same throughput.
This efficiency advantage enables the ETA+AIO prototype
to achieve higher peak throughput than the baseline system,
but only for workloads where the mix of packet processing
and application processing approximately matches the allo-
cation of CPUs in the ETA+AIO system thereby enabling
high utilization of all the CPUs. Detailed analysis shows
that the efficiency advantage of the ETA+AIO prototype,
which uses one PPE CPU, comes from avoiding multipro-
cessing overheads in packet processing, lower overhead of
our AIO interface compared to standard sockets, and re-
duced cache misses due to processor partitioning.
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1. INTRODUCTION
Network protocol processing can saturate servers when run-
ning high-speed TCP/IP-based applications. High overhead
for packet processing can leave few CPU cycles available for
actual application processing. This problem is worsening as
servers deploy higher bandwidth 10 GigE interfaces. One
solution that has been proposed is to offload TCP/IP pro-
cessing from the host CPUs to the network interface to accel-
erate network processing and free host cycles for application
processing. However, prior TCP offload investigations [9, 46,
47, 33, 21] have not demonstrated such improvements and
point to the limited capabilities of the TCP Offload Engine
(TOE) hardware. While future TOE designs will likely show
improvements, the processing elements in TOEs are likely
to always be behind the performance curve of mainstream
processors. Furthermore, memory limitations on TOE de-
vices can force them to rely on host support in high load
scenarios, degrading performance.

Several evolutionary trends in server hardware and network-
ing software stacks have renewed focus on improving the
packet processing efficiency of servers without resorting to
wholesale TCP offload [50, 42, 43, 41, 12]. The higher degree
of parallelism enabled by multi-core, multi-threaded proces-
sors is a good fit for concurrently processing multiple net-
work streams. Increasing cache sizes and shared caches on
multi-core chips provide greater potential to hide memory
latency by transferring data between processors through the
caches (e.g., between the application and the network stack).
Memory bandwidth and I/O bandwidth will scale with the
number of processing elements as server designs transition
to high-bandwidth point-to-point links (from multi-drop
shared buses) for memory and I/O [11]. Furthermore, mem-
ory controller interfaces and network interfaces will be in-
tegrated much closer to processor cores reducing memory
and I/O overheads and bottlenecks. Concurrent with these



hardware developments, the socket/TCP/IP network stack
is evolving [4] to adopt concepts such as OS-bypass and
asynchronous I/O from APIs such as VIA [17] and Infini-
Band [26] to reduce operating system overhead and increase
I/O concurrency. Our research is aimed at leveraging these
trends to support scalable network performance on standard
server platforms.

In this direction, we and others [50, 42, 43, 41] have sug-
gested that network packet processing efficiency can be im-
proved by dedicating a subset of the server’s processors for
network processing and by using asynchronous I/O for com-
munication between the network processing engine and the
application. In our architecture, the Embedded Trans-
port Acceleration (ETA) [42, 50] component (developed

at Intel Labs) dedicates (“sequesters”) one or more pro-
cessors or hardware threads in the server to perform all net-
work processing. These dedicated Packet Processing En-
gines (PPEs) avoid context switches and cache conflicts
with application processes, and they avoid costly interrupts
by polling applications and network interfaces. PPEs can
poll efficiently since they are fully integrated in the sys-
tem’s cache coherence domain. ETA also exposes VIA-
style [17] user-level communication to applications, reducing
data copies and bypassing the operating system for most I/O
operations [26, 3]. The second component of our architec-
ture exposes Asynchronous I/O (AIO) based socket se-
mantics to applications [7, 6, 4, 23]. The APIs support asyn-
chronous versions of traditional socket operations. Applica-
tions issue operations without being blocked and without
first verifying socket descriptor status. Applications receive
asynchronous events that signify the completion of previ-
ously issued I/O operations. The AIO model allows applica-
tions to sustain concurrent I/O operations without the over-
head of multiple software threads. The queues of operations
and events between the application and the packet process-
ing allow these two functions to independently speed up or
slow down with respect to each other, enabling greater con-
currency between them. The combined ETA+AIO architec-
ture enables the development of highly concurrent, low over-
head, event-based networking applications. Event-based ap-
plications are structured as state machines in which a state
transition occurs when the application processes an event
(e.g., when the OS or an I/O device notifies the application
that an outstanding operation has completed) [51].

This paper makes two primary contributions. First, it pro-
vides the first rigorous analysis of this approach based on
processor partitioning and asynchronous I/O, and identi-
fies its strengths, weaknesses, and opportunities. We have
ported an open source web server, userver [14], to a pro-
totype implementation of the ETA+AIO architecture and
compared its performance against performance on a baseline
Linux system configured using best practices. Our experi-
mental results show that processor partitioning combined
with AIO can improve network processing efficiencies over
the best Linux configuration, but these benefits are small
in magnitude for the prototype system. Our analysis shows
that the efficiency advantages of the prototype system re-
sult primarily from instruction path length improvements
through the use of AIO and a polling architecture, and to
a small degree from reduced cache misses. The AIO API
allows the application to interface with the PPE directly

through shared memory, bypassing operating system over-
heads associated with issuing socket operations and receiv-
ing event notifications. ETA’s polling-based dedicated PPE
architecture avoids interrupt related overheads, for exam-
ple by substituting softirq mechanisms with lighter-weight
in-line function calls, and it results in reduced cache misses
by eliminating cache conflicts between the application code
and the network stack.

Our second main contribution is to provide a detailed de-
scription of the changes required and issues that arose when
modifying the event-driven userver to take full advantage of
the asynchronous socket I/O model. Our experience with
extending the userver to use the AIO API illustrates sev-
eral new aspects that should be factored in when developing
AIO-based applications. In particular, the use of an AIO
model necessitates additional steps for registering and de-
registering (and, therefore, managing) buffer memory, sim-
plifies the application by eliminating the need to handle par-
tially completed operations, exposes new considerations in
the sequencing of the application’s socket operations, and
enables applications to process events and issue operations
using application-specific policies to improve resource man-
agement and performance. In addition, given the similarity
of our AIO API to the Sockets Extension API [4] being de-
veloped in the industry, our implementation of AIO over
ETA is potentially useful as an example implementation for
the Sockets Extension API.

The remainder of this paper is organized as follows. We
discuss related work in Section 2. Section 3 provides an
overview of the ETA+AIO architecture, followed by a de-
tailed discussion of the ETA implementation in Section 4
and the AIO API implementation in Section 5. Section 6
describes the architecture of our userver application and its
modification to use the AIO API. Section 7 discusses the
results from our performance evaluation of ETA+AIO. Po-
tential architectural extensions are discussed in Section 8,
and we conclude in Section 9.

2. BACKGROUND AND RELATED WORK
A network server application can be implemented using a
multithreading programming model, an event-driven pro-
gramming model, or a combination thereof [39]. The
ETA+AIO architecture is well suited to the more efficient
event-driven model, which is free of the thread scheduling
and context switching overheads inherent to multithreading.
With the event-driven model an application consists of a sin-
gle execution thread per CPU. To avoid pausing the single
thread for extended durations, the thread must use either
non-blocking or asynchronous I/O (AIO) to perform I/O op-
erations. The standard network sockets interface supports
non-blocking I/O operations which execute synchronously
with the application and return prematurely if they can-
not complete without blocking [49]. Applications use an
event notification mechanism, such as Unix select or poll

or Linux epoll [32, 38], to detect changes in socket state that
indicate which non-blocking operations could make progress
if issued.

In contrast to non-blocking I/O, with AIO an application
issues non-blocking calls which post operations that execute
to completion asynchronously to the application. When the



operations eventually complete, the application is notified,
usually through an event queue mechanism. AIO thus elim-
inates the partially completed operations which can burden
applications that use non-blocking I/O. There is a growing
trend toward enabling applications to use AIO in addition
to non-blocking I/O. For example, Lazy AIO has recently
been proposed as a general OS mechanism for automatically
converting any system call that blocks into an asynchronous
call [18]. With Lazy AIO, calls that do not have to block ex-
ecute to completion synchronously to the application (sim-
ilarly to non-blocking I/O), whereas calls that would have
to block are transformed automatically into asynchronous
operations, which require completion event generation. The
more specialized POSIX AIO API supports a set of asyn-
chronous read and write operations and uses POSIX real-
time signals to provide an event queue for notifying applica-
tions of operation completion [7]. Microsoft Windows pro-
vides extensive support for AIO, with notification provided
through OS event queues called completion ports [23]. The
Open Group, which defines Unix standards, has recently ap-
proved the Extended Sockets API, which provides extensive
AIO capabilities for network sockets [4]. Extended Sockets
differs from prior asynchronous sockets mechanisms by pro-
viding OS bypass primitives inspired by previous work such
as VIA [17]. Specifically, primitives for memory registration
and for shared memory work queues and event queues enable
applications to post operations and receive completion noti-
fication without going through the OS kernel. In this paper,
we use an AIO API that provides socket-like primitives and
OS bypass capabilities very similar to Extended Sockets. In
Section 6 we present our experiences with using this API to
implement an open source web server application.

To support applications, the underlying system performs
TCP/IP packet processing. The high cost of this processing
has been a long-standing concern. In 1989, Clark et al [15]
argued that the TCP protocol itself can be implemented
efficiently in software, but operations like buffer manage-
ment, connection structure lookup, and interrupt handling,
which would all be needed with any transport layer pro-
tocol are often expensive and limit performance. Kay and
Pasquale [29] later reported the high cost of data touch-
ing operations (e.g., copies and checksum computations),
and Mogul and Ramakrishnan [34] showed that under high
traffic loads interrupt processing could easily overwhelm a
server. These and related studies [30, 20, 19] have proposed
various techniques to improve packet processing efficiency.

Recent OS kernels provide features that can reduce network
processing overhead. The “zero-copy” sendfile system call
enables data transfer between file descriptors without requir-
ing the data to be copied through user space buffers. Proces-
sor affinity for interrupts reduces device driver contention for
network hardware and kernel data structures [19]. Software-
based interrupt moderation (e.g., NAPI [45]) can help re-
duce the overhead of interrupt processing under high loads.
Many of these features are not useful in the ETA+AIO ar-
chitecture, which bypasses the kernel for most data transfer
operations. However, the ETA+AIO architecture provides
similar benefits, avoiding copies on the transmit path like
sendfile, and eliminating the overhead of network device
interrupts by using a polling interface.

To reduce heavy loads on host CPUs, recent network in-
terface card (NIC) designs provide some degree of offload-
ing, the ability to execute some packet processing operations
that previously had to execute on the CPU. In particular,
modern mainstream NICs (e.g., Intel PRO/1000 gigabit
Ethernet) can perform TCP/IP checksums and segmenta-
tion, and provide programmable timers used for interrupt
moderation [27]. Because offloading changes the software
interface to the NIC, OS device drivers and the protocol
stack software must be designed or modified to take advan-
tage of these capabilities. The ETA architecture can benefit
as much as conventional systems from NIC offloading capa-
bilities since the ETA architecture makes only slight modi-
fications to a standard TCP/IP stack implementation.

Although offloading selected functions has proved successful,
so far there is only limited use of TCP Offload Engine (TOE)
NICs, which offload the entire TCP/IP processing for some
or all packets to the NIC. TOEs typically rely on firmware
and specialized hardware implementations, which are more
difficult to upgrade and customize than host software-based
implementations. TOEs have not yet demonstrated signif-
icant performance benefits [9, 46, 47, 33], possibly because
the current scarcity of NIC hardware resources limits scal-
ability, rendering a TOE better suited for supporting a few
long-lived TCP connections than for workloads with a large
number of short-lived connections (e.g., web server work-
loads) [33]. In recent work, Freimuth et al [21] propose a
TOE design to minimize bus crossings, data copies, cache
misses, and interrupts, which they argue limit the scala-
bility of current systems. Using a purely software-based
emulation environment, they demonstrate that their TOE
design reduces I/O bus utilization (they plan to evaluate
other performance aspects in future work). Hence, they
cannot yet assess the overall performance benefits of this
approach. In this paper, we take a different evaluation ap-
proach. We evaluate a real multiprocessor server implemen-
tation of the ETA+AIO architecture and measure network
throughput and CPU usage. We present a detailed analy-
sis of these results which quantifies the impact of different
elements of the ETA+AIO architecture on microarchitec-
ture performance attributes including instruction execution
rates, cache misses, and interrupt processing overhead.

At the microprocessor level, the growing challenges of power
density and interconnect delay are limiting further increases
in single-core processor performance. Thus, the emerging
design trend is to use increasing transistor density to in-
crease the integration of functions on a chip and to imple-
ment multi-core processors. As multi-core processors de-
crease the relative cost of individual cores and provide mech-
anisms for fast inter-core communication, it becomes more
attractive to dedicate some cores to packet processing, as
in the ETA+AIO architecture. In addition, this approach
is complementary to proposals for placing network inter-
face hardware close to or even integrated onto the processor
chip [12], and techniques for intelligently transferring data
directly between network hardware and CPU caches [12, 25].

Previous studies of an earlier version of our ETA+AIO pro-
totype indicate that it improves performance for simple mi-
crobenchmarks [42, 44]. In contrast, our evaluation vehicle
is a full-fledged event-driven web server application driven



by a SPECweb99-like workload [48]. The web server appli-
cation makes full use of sendfile, non-blocking I/O and
epoll, and an aggressive connection acceptance strategy.

An earlier (1998) approach that also dedicated CPUs to de-
vice processing was the AsyMOS [36] and Piglet [37] project.
The mechanisms proposed in that project appear to provide
more generality than ETA, allowing for example the abil-
ity to download user code to the dedicated device proces-
sors. However, the published evaluations include only device
driver code on the device processors, while TCP is left for
the application CPUs. In addition, only a very preliminary
performance analysis is presented, and of course the analysis
is based on the relatively unsophisticated hardware and OS
features of that time period.

TCP Servers [41], a more recent project similar to ETA,
has examined the impact of sequestering CPUs for dedi-
cated TCP processing. The TCP Servers project provides
an AIO API that supports zero-copy data transfers [40], but
this AIO API is implemented only for transfers between dif-
ferent nodes of a cluster interconnected by a system-area
network. On a multiprocessor platform, the implementa-
tion of TCP Servers provides neither zero-copy transfers
nor AIO for interactions between applications and the ded-
icated packet processing CPUs. In contrast, our prototype
provides these features in a multiprocessor implementation.
The TCP Servers study finds that offloading TCP/IP pro-
cessing can improve server throughput by up to 30%, that
noticeable benefits are obtained by using network interface
polling rather than interrupts, and that substantial com-
puting resources are required for complete offloading. In
addition, the authors note that server performance would
further benefit from a scheme for dynamically adjusting the
allocation of CPUs for application and network processing.

Unlike both the TCP Servers work and the previous
ETA+AIO investigations, in this paper we explicitly en-
sure that we compare the ETA+AIO prototype against a
best-practice configured standard Linux system with inter-
rupt and application processor affinity, network interface
interrupt moderation, and NIC checksum offloading. Our
findings are significantly different from these previous stud-
ies. We observe smaller benefits from partitioning since we
compare against a strong baseline system that benefits, for
example, from transmit-side copy-avoidance and interrupt
moderation. We characterize the remaining benefits of the
ETA+AIO architecture, which include higher efficiency of
the AIO API compared to sockets and improved caching
behavior.

Finally, Jacobson and Felderman [28] very recently proposed
techniques for speeding up network processing by using lock-
free circular buffers in the network stack instead of tradi-
tional linked lists of socket buffer structures, and also by
performing TCP processing in a user-level library linked
with the application. Since ETA uses the standard TCP
stack, the benefits of changing the stack implementation to
use circular buffers would likely accrue to both ETA and
the standard system. However, running the stack in a user-
level library on the same CPU as the application is con-
trary to ETA’s use of processor partitioning, and further
study is needed to evaluate the tradeoffs between these op-

Figure 1: DUSI/ETA PPE Software Architecture

posing approaches. For example, while partitioning reduces
contention for CPU resources between network processing
and application processing, some functions (e.g., copying
received packet data payloads from kernel memory to user-
level memory) are probably more cache-friendly when per-
formed on the same CPU as the application.

3. ARCHITECTURE OVERVIEW
Our architecture dedicates one or more processors or hard-
ware threads of a server to perform all TCP/IP protocol pro-
cessing. Applications interface to the ETA TCP/IP stack
through an API called the Direct User Sockets Interface
(DUSI). DUSI provides an asynchronous interface similar
to the Sockets Extension API [4]. It presents familiar socket
semantics to applications with asynchronous versions of lis-
ten, accept, send, receive, etc.

Figure 1 depicts the architectural components and partition-
ing between the “sequestered” CPUs and the “host” CPUs.
The Packet Processing Engine (PPE) is a kernel thread run-
ning on the sequestered CPU, and takes no part in user
applications. The Direct User Adaptation Layer Provider
Library (DUSI Library) implements the AIO functions and
is linked with applications executing on the host CPUs. Ap-
plications and the PPE interact through queues created in
cache coherent shared system memory. Queuing and de-
queing operations and events are extremely fast lock-free
operations requiring only a few instructions and no kernel
intervention. Finally, a Kernel Agent (KA) is used for those
operations for which the PPE requires Linux kernel assis-
tance (for example, pinning data buffers in memory).

Applications establish communication with the ETA PPE
by creating a User Adaptation Layer (UAL). The UAL
houses all queuing structures shared between an application
and the PPE. To initiate TCP/IP communication, an ap-
plication creates a Direct Transport Interface (DTI) within
the UAL, analogous to creating a traditional BSD socket. A
DTI contains or references all queuing structures associated
with a TCP socket [50, 44]. The UAL and DTIs are created
using synchronous operations. Subsequently, the applica-
tion can issue socket operations through the DTI queues



and receive completion events asynchronously.

The PPE executes a polling loop that continuously queries
NIC descriptors and ETA queues. Since all NIC descriptors
and ETA queues are accessed through shared cache-coherent
system memory, polling is performed directly from cache
and has no effect on the memory subsystem or front-side
bus. A memory access occurs only when a memory location
has been updated by either a NIC or the DUSI Library [42].
Another benefit of polling is that the PPE avoids incur-
ring interrupts. The PPE uses a modified Ethernet driver
that allows it to perform NIC polling, and it incorporates
a TCP/IP stack that is a slightly modified version of the
mainstream Linux TCP/IP stack.

4. ETA ARCHITECTURE
In the following subsections we describe the queue struc-
tures used in the Embedded Transport Acceleration (ETA)
architecture and the operation of the PPE thread.

4.1 ETA Queues
Each application has one instance of a UAL which contains
(see Figure 1) one Doorbell Queue (DbQ), one or more Event
Queues (EvQs), and, for each DTI, a pair of Transmit and
Receive descriptor queues (TX and RX). Memory for these
queuing structures is pinned and mapped into both the user
and kernel virtual address spaces to permit access by both
the DUSI Library and the PPE. The DUSI Library posts
to the Doorbell Queue to alert the PPE whenever the ap-
plication initiates an operation on any of its DTIs. This
enables the PPE to discover application-initiated operations
by polling only the DbQ instead of polling each of the queues
of several DTIs. The application creates Event Queues in
the UAL for use by the PPE to post events notifying the ap-
plication of the completion of previously issued operations.
To wait for events, applications can either poll the EvQs or
request notification through the OS signal mechanism.

A DTI is associated with each instance of a socket (whether
it is an unbound or listening socket, or the endpoint of a
TCP stream). When an application initiates a send (receive)
operation on a DTI, pointers to the application’s send (read)
buffers are posted by the DUSI Library to the DTI’s TX
(RX) descriptor queue (the DUSI Library also posts to the
DbQ as mentioned above). When an application creates a
DTI, it can bind the TX and RX queues of the DTI to any
EvQ within the UAL. This flexibility allows the application
to combine event notifications for operations associated with
several DTIs into a smaller number of EvQs, reducing the
number of EvQs it must poll.

In addition to the UAL queues, ETA includes the Adminis-
trative Queue (AQ) and the Interrupt Queue (IQ) through
which the Kernel Agent and the PPE communicate. To per-
form synchronous operations, the DUSI library invokes an
ioctl system call to schedule the Kernel Agent, which then
queues a request to the AQ. The PPE reads requests from
the AQ and uses the IQ to notify the Kernel Agent of the
completion of AQ requests and to trigger the Kernel Agent
to deliver signals requested by the application. The PPE
posts an event to the IQ and then generates an Interpro-
cessor Interrupt (IPI) for the host CPU to cause the Kernel
Agent to be scheduled.

PPE Polling Loop

Select NIC: Select a NIC Interface to Service in 
this loop iteration

PollDbQ: Process At Most 1 operation from each 
Doorbell Queue for any new work

Poll TX: Process a TX packet & poll NIC driver to 
reclaim TX descriptor

Poll RX: Poll NIC driver and process at 
mostNRX valid packets

Poll AQ: Process at most 1 operation from the 
Admin. Queue.

PPE Polling Loop

TCP/

IP

1.

2.

3.

4.

5.

Select NIC: Select a NIC to service in

this loop iteration

Poll AQ: Process at most 1 operation

from the Admin Queue

Poll DbQ: Process at most 1 operation

from each Doorbell Queue

Poll RX: Poll NIC driver and process

at most N valid RX packets

Poll TX: Poll NIC driver to reclaim TX

descriptors

Figure 2: PPE Polling Loop

4.2 PPE Polling Loop
The PPE’s goals include ensuring that: NICs do not drop
packets, NICs are never idle when there is data to be trans-
mitted, and latency is minimized for all application opera-
tions. This requires a balance between how aggressively the
PPE takes on new operations posted by applications and
how often it services NICs.

Our prototype PPE uses the algorithm shown in Figure 2.
Within this loop the TCP/IP stack can be invoked in several
places. The PPE contains a Linux 2.4.16 TCP/IP protocol
stack that includes minor modifications for it to interface to
the PPE queuing mechanisms. Whenever the PPE thread
finds that a NIC has received a packet (Step 4), it invokes
the inbound TCP/IP stack to service the packet. When the
PPE dequeues an application’s send operation from the DbQ
(Step 3), it invokes the outbound TCP/IP stack to generate
and send packets to the network. The PPE can also invoke
the outbound TCP/IP stack to resume a blocked transmis-
sion that was initiated in some previous execution of Step 3.
This occurs in Step 4 when an ACK is received that opens
the TCP window, allowing the blocked transmission to re-
sume. A simple scheduling policy that we have found effec-
tive is to poll the NICs in a round-robin fashion, one NIC
per loop iteration, and to dequeue at most one operation
from each DbQ in each iteration.

When using a single NIC and running one DUSI applica-
tion on a 2.8GHz Xeon server, an unproductive iteration
through our prototype’s PPE loop – where all queues are
empty and the NIC has no packets – on average takes only
152 clock cycles (∼55ns). We have found that when the
PPE has ample CPU cycles available to handle the load, the
choice of scheduling policy has almost no effect on perfor-
mance; the PPE achieves a fair balance between application
and NIC processing since the queues tend not to have per-
sistent backlogs and the PPE is work-conserving (the cost
of polling an empty DbQ or an empty NIC is minimal).
Only when the PPE starts to saturate the CPU does it
matter how effectively the scheduling policy allocates PPE
CPU cycles for polling the NICs versus polling the applica-
tion DbQs. In this operating region, queues are longer and
should be drained at appropriate rates. Allocating too few



cycles for handling DbQ entries would cause the DbQs to
become unacceptably long, delaying the processing of appli-
cation requests. Conversely, devoting more cycles to han-
dling DbQ entries would leave fewer cycles for processing
network traffic. Thus, it may be beneficial to dynamically
adjust resource allocations to optimize the handling of dif-
ferent workloads.

5. ASYNCHRONOUS I/O (AIO)
Our prototype implements an asynchronous interface, DUSI,
which allows applications to execute unimpeded while net-
working operations are being performed. Before a DUSI
application can send and receive data over TCP/IP, it must
first call the synchronous function Dusi Open Ual to create
a User Adaptation Layer and initialize application-specific
data structures. In creating a UAL, an application must
specify the depth of the Doorbell Queue and the maxi-
mum number of DTIs that will be created. As with all
synchronous DUSI functions, creating a UAL interacts with
the ETA Kernel Agent thread rather than directly with the
PPE. This provides access to kernel functions, such as for
pinning memory and translating user virtual addresses to
kernel virtual addresses, and allows slower operations to be
offloaded from the PPE.

An application is responsible for creating the Event Queues
on which it receives notification of completed operations.
When an application creates a DTI socket, it associates two
EvQs with the DTI: a receive EvQ (RX EvQ) and a trans-
mission EvQ (TX EvQ). The RX EvQ is used by the appli-
cation for receiving notification of when inbound operations
have completed (e.g., receives, accepts). The TX EvQ is as-
sociated with outbound operations (e.g., send, shutdowns,
application initiated connections). DUSI does not put con-
straints on which event queues may be associated with DTIs.
For example, it is permissible for a DTI to use a single EvQ
as both the RX and TX EvQs; and EvQs may be shared
amongst multiple DTIs.

To establish a TCP connection an application must first cre-
ate the DTI socket to be associated with the stream. If the
application is the listener, then the application must also
create the listen DTI socket and bind it to a TCP port ad-
dress. In contrast to BSD sockets, where an accept opera-
tion returns the TCP stream socket descriptor upon comple-
tion, a DUSI application first creates the DTI stream (child)
socket and then passes it, along with the DTI listen socket,
as input parameters to the Dusi Accept function. This per-
mits the application to initiate a receive on the TCP stream
before an accept operation has been posted. The sequence
ensures that an application data buffer will be available to
the PPE for any data immediately following the TCP SYN.

To send data an application calls Dusi Send with a pointer
to the source data and the data’s length. The DUSI library
writes the information to the DTI’s TX Descriptor Queue,
and then notifies the PPE by posting to the DbQ. Similarly,
the application initiates a read by calling Dusi Recv, which
results in an event being queued to an RxQ followed by
the PPE being notified via the DbQ. Vectored sends and
receives, specifying multiple data locations, are supported.
By writing to an asynchronous interface an application can
have multiple send and receive operations outstanding for a

single TCP stream, as well as across multiple TCP streams.
This can lead to higher network bandwidth and less latency
for a single application.

Since an application executes in user space and the PPE
executes as a kernel thread, they do not share virtual ad-
dresses. When an application references a buffer, the ap-
plication’s virtual address needs to be mapped to a virtual
address accessible by the PPE. To perform this mapping we
require an application to register memory prior to referenc-
ing it in send and receive operations. Registering memory
returns a handle to be included in calls to DUSI I/O func-
tions. When memory is registered ETA makes certain that
all user memory, including anonymous memory, is backed by
physical pages. ETA also takes advantage of registration to
pin the pages in memory, preparing the pages to be accessed
by the NIC.

Prior research [22, 31, 16] has shown the benefits of copy
avoidance in network performance. When sending data,
ETA minimizes copies by writing directly from the user
buffer to the NIC. This is easily and efficiently done be-
cause the application buffer is already mapped to a kernel
virtual address and pinned in memory. Since retransmis-
sions may need to occur from that application buffer, ETA
does not generate a send completion event until the remote
TCP has acknowledged all of the packets. An AIO inter-
face lends itself nicely to sending from an application buffer
since the application is never impeded on the send and, in
contrast to BSD sockets, there is never a need to indicate
partial success.

For inbound data, the PPE must copy data from the host
NIC buffers into the application’s buffer. If a receive is
posted at the time that the PPE polls the NIC, then the
PPE is able to immediately copy the data to the applica-
tion’s buffer, which can result in reduced latency for receives.
We allow an application to have multiple receives posted to
a DTI so that packets can be passed to the application as
soon as the PPE detects them.

DUSI provides several mechanisms for applications to de-
termine when an operation has completed. There are very
efficient functions for polling EvQs, dequeuing events, and
determining the EvQ event depth. At times, an applica-
tion may have operations outstanding but can do no further
work until one of the operations is completed. DUSI pro-
vides functions that allow an application to block on a single
queue, but DUSI currently relies on the Linux user signal
mechanism to block on multiple EvQs. A function is pro-
vided for associating a signal with an EvQ (the same signal
can be assigned to multiple EvQs). If the application wants
to sleep until an event arrives, it arms the corresponding
signal(s) and notifies DUSI to raise a signal when any of the
specified EvQs transitions from being empty to not empty.

6. WEB SERVER APPLICATION
To investigate the benefits of using ETA+AIO for network
intensive workloads, we have adapted a web server appli-
cation to use the DUSI AIO API. A web server is a widely
used and representative example of a networking application
that exerts high demands on system resources as a result of
handling large numbers of simultaneous connections.



Nearly all network server applications follow a similar se-
ries of steps to handle each client connection. The server
receives a client request on the connection, processes the
request, and sends a reply. This continues until the server
replies to the final client request and then closes the connec-
tion. Several of these steps can block on interaction with
a remote host, the network, some other subsystem (e.g., a
database), and potentially a disk. Consequently, for high
performance the server must handle up to several thousand
simultaneous connections [10] and quickly multiplex connec-
tions that are ready to be serviced. One approach is to as-
sign each connection to a separate thread of execution which
can block [1, 39]. However, the cost of frequently switching
execution contexts can limit the application’s performance.

An alternative approach which avoids this problem is to use
a Single Process Event Driven (SPED) application architec-
ture (terminology from [39]). A SPED architecture uses a
single process (per CPU) running an infinite event process-
ing loop. In each loop iteration an event notification mech-
anism identifies a connection that is ready for additional
processing, and then the processing for this connection is
performed in a non-blocking fashion [13, 5]. With this ap-
proach, a process can service a large number of connections
concurrently without being blocked on an I/O operation and
without the overheads of multithreading [52]. However, it
may still be necessary to use multiple processes per proces-
sor to mask unavoidable blocking (e.g., for disk I/O on a
page fault [39]).

The userver [14, 24] is an open source web server imple-
mented with the SPED architecture, originally using APIs
provided by standard Linux. We have extended the userver
implementation with the option to use AIO APIs. The
following subsections describe the primary aspects of the
userver implementation for these two environments. We fo-
cus on how the userver handles requests for static content
(file data) as opposed to dynamic content.

6.1 The userver for standard Linux
To realize the SPED model on standard Linux, the userver
performs socket I/O operations in non-blocking mode as
provided by the traditional BSD sockets interface. The
userver provides an option to transmit web page data us-
ing the sendfile system call. Linux provides a “zero-
copy” sendfile implementation by transmitting data di-
rectly from the shared file system buffer cache in kernel
memory to the NIC, thus eliminating the copy from user
memory to kernel memory incurred with basic socket send
operations. The use of sendfile improves performance in
the baseline system and allows us to investigate the bene-
fits of the ETA architecture aside from its elimination of
memory-to-memory copying on the transmit path. Fig-
ure 3(a) shows a state machine diagram illustrating how the
userver handles a single connection in the baseline system.

6.2 The userver with AIO: Overview
We next describe in some detail our extensions to the userver
to use an AIO API. Our description serves as a case study
illustrating the use of AIO for a real application. To en-
able the possible use of a variety of AIO APIs, we mod-
ified the userver to use an application-specific AIO API.
We then implemented a library that maps the application-
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Figure 3: State machine for handling a single con-
nection

specific API to DUSI. The application-specific API is a rel-
atively straightforward adaptation of standard socket calls
except that they are asynchronous. For example, some of the
calls it supports are aio accept, aio read, aio write, and
aio close. Since this mapping is straightforward we do not
elaborate on it here but instead focus on how the userver,
through the mapping layer, ultimately interacts with the
DUSI API.

6.3 The userver with AIO: Startup
At startup the userver calls DUSI to create the user adap-
tation layer (UAL), EvQs, and multiple child sockets, and
to create and bind listen sockets. The userver also registers
buffer memory for receiving client HTTP requests. Before
entering its event processing loop, the userver posts an ac-
cept operation for each child socket to the listen socket’s DTI
RX descriptor queue in anticipation of client connection at-
tempts. As discussed in Section 5, the userver is able to
post a read operation to the child socket before posting the
accept operation, ensuring immediate delivery of the client’s
initial HTTP request by the PPE∗.

6.4 The userver with AIO: Event Processing
To use AIO with the SPED architecture, the userver ex-
ecutes an infinite event processing loop where each itera-
tion performs the following steps: 1) dequeue completion
events, 2) use the event information provided in the comple-
tion event to determine what processing will be done next
and on which connection, and 3) issue the appropriate AIO
operations on the connection. Figure 3(b) shows a state
machine diagram illustrating how the userver responds to
events for a single connection.

The userver provides runtime options to define the number
of EvQs used and to select the policy for servicing the EvQs.
For our experiments we chose to use three EvQs: one for all
accept completions, one for receive completions across all

∗Our current implementation relies on the simplifying as-
sumption that each HTTP request fits in one packet and
therefore posts only a single receive at a time.



DTIs, and one for send and shutdown completions across
all DTIs. Using this segmentation enables the userver event
processing loop to give highest priority to dequeuing receive
completion events. This is beneficial because, as illustrated
in Figure 3(b), it is primarily the receive completions that
drive the userver’s state machine, and other events can of-
ten be ignored. For example, the first receive completion
dequeued for a DTI can be used as an implicit accept, ren-
dering accept completions superfluous. When the userver
does dequeue an accept completion, it can be discarded.

When the userver dequeues a successful receive completion
event, then (for HTTP 1.1 connections) the userver imme-
diately posts a new receive operation on the connection’s
RX descriptor queue in anticipation of receiving the next re-
quest from the client. The userver parses the current HTTP
request and generates a reply which consists of an HTTP
header and the reply data (in the case of a static request,
the contents of the file). To enable the PPE to transmit
the requested file data directly from memory, the userver
mmaps requested files and registers the mmapped memory re-
gions with DUSI. As part of memory registration, DUSI in-
vokes the kernel agent to pin the memory region into physi-
cal memory until it is later unregistered by the application.
The userver provides a further optimization by maintain-
ing a cache of recently requested mmapped file handles and
addresses, along with a cache of corresponding HTTP re-
sponse headers†. Registering an mmapped file can cause the
application to block because of disk accesses as file data
is brought into memory. To avoid this blocking, we would
need to extend the ETA+AIO implementation by adding
a new, asynchronous version of the DUSI memory registra-
tion operation. To send a reply, the userver posts to the
connection’s TX descriptor queue a send operation that in-
cludes a list of pointers to the HTTP response header and
the requested file data in the registered memory region. The
PPE generates a completion event for this send operation
once all of the data is ACKed by the TCP peer. Similar
to accept completions, send completions (for non-pipelined
HTTP requests) are largely superfluous because subsequent
receive completions on a DTI can double as implicit send
completion events. (However, send completions are useful
for managing the userver file cache use count.)

When using HTTP 1.1, a client sends a FIN on a connec-
tion to indicate it will not send any more requests to the
server. After the server’s PPE receives the FIN, any out-
standing or subsequent userver receives will be successfully
completed with a length of zero. The userver reacts to a
zero-byte receive completion event by posting a shutdown
operation to the connection’s TX descriptor queue. The
PPE processes the shutdown by trying to complete pending
transmits for the connection and then sending a FIN to the
client. When the shutdown is complete, the PPE queues

†The ETA+AIO prototype does not currently coalesce data
in a vectored Dusi Send call. Furthermore the prototype
does not implement getsockopt and setsockopt function-
ality, most notably TCP CORK and TCP UNCORK. As a result
there is currently no mechanism to force the coalescence of
an HTTP header and HTML data into a single network
packet. To avoid this artifact in our analysis, we embed-
ded the HTTP header into the URI files. This has a very
small positive effect on the baseline experiments in that the
header is sent via sendfile rather than from a user buffer.

a shutdown completion event to the userver. The userver
responds by posting an accept to the listening socket’s DTI
RX descriptor queue to allow the server to accept a new con-
nection, thus replacing the connection that was just closed.
As described earlier, the userver also posts a receive opera-
tion to the child DTI. As a result, the sum of the number of
active connections plus the number of new connections that
can be accepted remains constant. This is similar to a listen
queue in the case of standard BSD sockets.

6.5 The userver with AIO: Summary
In adapting the userver to use asynchronous I/O, we iden-
tified several important considerations. One is that some
events can implicitly indicate the completion of other events.
For example, the successful reception of data could be an
indication that an accept or prior send has also completed.
With this in mind, different event types can be assigned
to separate queues, thus permitting the userver to make
application-driven decisions about which events to priori-
tize. Another important factor is having the AIO interface
allow reads to be posted on future connections before they
are accepted. This can be used to avoid race conditions
where the application is notified of a connection being ac-
cepted but is unable to post a read request prior to the data
arriving. This is important because if a read is posted the
PPE can immediately deliver a notification to the applica-
tion, otherwise it must delay delivering the event until the
read is eventually posted. Finally, an asynchronous I/O in-
terface can be very efficient. However, if there are no events
to be processed the application must wait for events, and
kernel assistance is required to block the application and
later unblock it when an event does arrive. As we discuss in
Section 7.3 the overhead of using signals as an event notifi-
cation system can be costly relative to other costs associated
with AIO.

7. PERFORMANCE EVALUATION
In this section, we compare the performance of the userver
application on the ETA+AIO prototype system against its
performance on well-configured standard Linux systems. We
also analyze how various aspects of the ETA+AIO architec-
ture affect its network processing efficiency.

7.1 Experimental Environment
Our experiments study the performance of the userver run-
ning on a multiprocessor server, under a SPECweb99-like
workload generated by a cluster of client machines running
httperf [35]. To stress computational and networking ca-
pabilities on the server, we choose a workload that mini-
mizes disk I/O. Clients issue requests to static files with no
think time. We use a small SPECweb99 fileset (51 MB,
ten directories) that fits entirely in memory and is com-
pletely pre-loaded into memory by the userver at startup.
For ETA+AIO the userver also registers the mapped files
with the PPE, causing them to be pinned in memory. It is
important to note that with this workload choice, our re-
sults for the ETA+AIO system characterize its performance
behavior without factoring in the cost of memory registra-
tion or deregistration operations, which could be significant
sources of overhead for other workloads.

The server hardware platform is an HP Proliant DL580
with two 2.8 GHz Xeon processors (512 KB L2, 2 MB
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Figure 4: Processing Efficiency and Capacity

L3, hyperthreading disabled), 32 GB RAM, and four

Intel PRO/1000 gigabit network interfaces (NICs). Eight
HP Integrity rx2600 machines act as clients. A switch in-
terconnects all the machines, and the network is configured
to support two clients on each server NIC’s subnet. Each
of these machines is also connected to a control machine on
a distinct control network, which is used to control experi-
ments and collect results.

Our ETA+AIO experiments dedicate one CPU to the PPE
and the second (host) CPU runs one instance of the userver.
For our experiments with the standard Linux stack (base-
line), we use best-practice configurations to maximize base-
line system performance. Specifically, the baseline configu-
rations bind a userver process and the interrupts from the
interfaces it listens on to the same CPU [8]. For our two-
CPU server, each CPU runs a single userver process which
listens on the IP addresses of two of the four network inter-
faces. We use epoll in the baseline, which we found to be
more efficient than poll or select. We configure each NIC
to use checksum offloading, and for baseline configurations
we also enable the dynamic interrupt throttling capability
of each NIC to minimize interrupt overhead. We do not use
TCP segmentation offload (TSO) because it is not supported
by ETA+AIO’s 2.4.16-based networking stack. We would
expect TSO to provide comparable benefits for ETA+AIO
and the baseline.

7.2 Overall Network Processing Performance
To obtain a high-level characterization of the performance
benefits of ETA+AIO, we evaluate the ETA+AIO proto-
type and baseline configurations in terms of two key per-
formance attributes: network processing efficiency, which
we define as the fraction of CPU cycles that are available
for additional application processing, and peak throughput.
For any fixed level of delivered throughput, configurations
with lower CPU utilization have higher network processing
efficiency, since they leave a larger fraction of CPU cycles
available for additional application processing.

Figure 4 plots the CPU utilization (aggregate of the
two CPUs, measured with vmstat) required to achieve

each level of throughput for ETA+AIO and two baseline
configurations, using the userver and the SPECweb99-like
workload. For each configuration, the rightmost data point
corresponds to the peak throughput achieved with that
configuration. This value represents the actual system
capacity, free of artifacts like AIO error cases, which never
occur in these experiments. We compare ETA+AIO against
baseline configurations that use the Linux 2.4.18 kernel
with a processor affinity patch, since the 2.4.18 kernel is
the basis for the ETA+AIO prototype‡. In one baseline
configuration the userver application uses the write system
call to transmit data as is commonly the case when sending
dynamic content instead of static content. The write

system call incurs the overhead of a memory-to-memory
copy from the user data buffer to kernel socket buffers. In
the other baseline configuration, the userver application
uses the “zero-copy” sendfile system call to transmit data
without memory-to-memory copies.

Figure 4 shows that, as expected, network processing ef-
ficiency and peak throughput in the baseline substantially
improve with the use of sendfile. The baseline without
sendfile achieves a peak throughput of 1916 Mbps, while
the baseline with sendfile achieves 2832 Mbps. These re-
sults reflect the performance capabilities of the kernel and
network stack implementations since the peak throughput
is limited by the saturated CPU rather than bottlenecks in
the memory or I/O subsystems.

The results for ETA+AIO in Figure 4 show that its aggre-
gate CPU utilization is always at least 50%, because in our
server one of the two CPUs runs the continuously polling
PPE. Thus, at low network throughputs when the PPE
CPU is not well-utilized, the network processing efficiency of
the ETA+AIO system is considerably worse than the base-
line configurations. In contrast, at high network loads the
PPE CPU is effectively utilized enabling ETA+AIO to have
higher network processing efficiency than the baseline con-
figurations. In addition, for future systems with a larger
number of processor cores, a single PPE will comprise a
lower percentage of total CPU cycles than 50%, likely nar-
rowing the region of light load levels where ETA+AIO has
worse network processing efficiency.

Compared to the baseline without sendfile, ETA+AIO
achieves higher network processing efficiency over a wide
range of throughput (higher than 1300 Mbps) and also
supports a higher peak throughput (2266 Mbps versus
1917 Mbps). These improvements can be largely attributed
to the elimination of transmit-side copies in ETA+AIO. This
result suggests that applications that are not able to use
copy-avoidance primitives such as sendfile can see signifi-
cant performance benefits with ETA+AIO.

ETA+AIO also achieves higher network processing effi-
ciency than the baseline with sendfile, but over a nar-
rower range of high throughput starting at 2000 Mbps.
For example, at 2266 Mbps throughput, ETA+AIO has
9% more cycles available for application processing than
the baseline with sendfile (62% versus 71% utilization at
the same throughput). The efficiency improvement shows

‡We compared a 2.6 kernel’s networking to the 2.4.18 kernel
and saw only a small performance increase.
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Figure 5: Peak Throughput and CPU Utilization
with an Application Workload

that additional architectural aspects of ETA+AIO besides
transmit copy elimination benefit network processing. De-
spite these improvements, the ETA+AIO prototype achieves
lower peak throughput than the baseline with sendfile

(2266 Mbps versus 2832 Mbps). Although the ETA+AIO
system has a substantial fraction of idle CPU cycles at its
peak throughput, the PPE CPU is saturated, preventing ad-
ditional network processing. However, these cycles can be
utilized for other application processing, potentially allowing
ETA+AIO to support higher throughputs for an application
with a larger component of application computation (e.g., a
webserver generating dynamic content).

To study this effect, we next evaluate performance on a
workload that includes the encryption of a subset of the files.
We extend the userver to encrypt a configurable percentage
of the files that are at most 7500 bytes in size. In these ex-
periments, to maximize efficiency the baseline system uses
sendfile to transmit all data, including the dynamically
encrypted files.

Figure 5 shows the peak throughput and CPU utilization
for various levels of encryption. Since our ETA+AIO proto-
type statically allocates the application and PPE CPUs, it
does not compare favorably to the baseline when the CPU
demand is biased toward either networking or the userver
application. However, the ETA+AIO prototype achieves
higher throughput than the baseline for encryption percent-
ages in the range between 25% and 55%. Furthermore,
within this range the ETA+AIO prototype often has lower
CPU utilization than the baseline.

7.3 Detailed Performance Analysis
Section 7.2 identified workload regions in which the
ETA+AIO prototype has a modest advantage over the best
baseline configuration in throughput and efficiency. We next
present a detailed analysis to identify and quantify the rea-
sons for the observed efficiency advantages.

Whereas our prototype assigns a single CPU for use by the
networking stack (PPE), with the 2-CPU baseline system
there may be an instance of TCP/IP executing on each pro-
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cessor. Due to cache conflicts and semaphore contention,
TCP/IP tends to scale less than linearly on baseline systems
with multiple CPUs. Therefore, it is important to determine
what portion of the ETA+AIO prototype’s benefit is a result
of running only a single instance of the networking stack. We
conduct experiments to understand this effect, and so that
we may factor it out when comparing the baseline to the
ETA+AIO architecture.

To evaluate the benefits of performing packet processing on
only one CPU, we measure a baseline configuration execut-
ing with only one CPU enabled. For this configuration, we
use only two NICs rather than four and execute at half the
HTTP request rate of the 2-CPU systems. We normalize
the 1-CPU results to the ETA+AIO and 2-CPU results by
doubling the 1-CPU system’s observed throughput. This
normalized 1-CPU baseline provides a best-case representa-
tion of an idealized 2-CPU baseline which would be free of
the effects of multi-processor networking stack contention.

In Figure 6 we compare the normalized 1-CPU baseline
(utilizing sendfile) against the real 2-CPU baselines and
the ETA+AIO prototype. At the peak throughput for
ETA+AIO, CPU utilization roughly matches the 1-CPU
baseline. Hence it appears that much of the benefit of our
prototype versus the 2-CPU baseline does come from avoid-
ing multiprocessing overheads for packet processing.

Though for this workload the ETA+AIO prototype is no
more efficient than the 2-CPU baseline after discounting the
multiprocessing overhead, we wish to determine if the two
architectures are exhibiting equivalent behavior. For exam-
ple, features of the ETA+AIO architecture may be providing
efficiency benefits that are offset elsewhere. To understand
how CPU cycles are distributed in the ETA+AIO architec-
ture versus the baseline architecture, we collect data from
the hardware performance counters using oprofile [2]. We
choose a target rate of 18800 requests per second, which re-
sults in a throughput of 2218 Mbps. This is slightly less than
the peak ETA+AIO throughput because peak throughput
is slightly degraded when oprofile sampling is enabled. We
group the oprofile results into the following bins:



Table 1: ETA+AIO vs Baseline CPU Utilization
Baseline Baseline

Bin ETA+AIO 2-CPUs 1-CPU
Idle 39.24% 29.30% 40.08%

Userver 6.89% 5.48% 5.32%
TCP/IP 25.02% 29.51% 25.54%
Ethernet 15.01% 19.19% 16.82%

Kernel other 8.31% 16.40% 12.09%
PPE other 5.43%

Userver Includes the userver code plus time spent in li-
braries called by the userver, including libc, the DUSI
library, and the AIO mapping layer.

TCP/IP Contains functions we are able to attribute to
TCP/IP processing. In order to ensure that the
ETA+AIO and baseline TCP/IP bins include only
similar functionality, the baseline TCP/IP bin ex-
cludes socket system calls.

Ethernet Contains the NIC device driver and general de-
vice processing that we directly attribute to the NICs
(or is dominated by the NICs such that other devices
are insignificant). For the baseline, this includes the
cost of NIC interrupts; for ETA+AIO, it includes the
cost of NIC polling.

Kernel other A catchall bin for kernel processing that
does not fall into the other bins. This includes func-
tions that cannot be attributed to the other bins (e.g.,
memory allocation, where we cannot reliably deter-
mine which calls are a result of TCP/IP, the Ethernet
driver or elsewhere). Socket and file-related functions
are included in this bin.

PPE other Consists of oprofile samples consumed by the
PPE that are not directly attributable to TCP/IP or
Ethernet processing. This bin includes the polling of
the application queues.

Table 1 shows the measured distribution of CPU cycles for
the workload without encryption. These results show that
the ETA+AIO system has a nearly identical percentage of
idle cycles compared to the idealized and normalized 1-CPU
system (39.24% versus 40.08%), and a significantly greater
percentage of idle cycles than the actual 2-CPU baseline
system (29.30%). The ETA+AIO idle cycles are all on the
host CPU since the PPE CPU is continuously polling. In
addition to the polling of NICs attributed in the Ethernet
bin, the PPE is also continuously polling the application’s
DbQ and the Administrative Queue (Figure 2). The cost
of the application polling manifests itself in the PPE other
bin. Our examination of the oprofile details indicates that
approximately half of the PPE other cycles in Table 1 are
consumed by unproductive polling.

The results for the TCP/IP bin in Table 1 show that
the ETA+AIO prototype executes TCP/IP more efficiently
than the 2-CPU baseline with sendfile. However, the
ETA+AIO prototype and the normalized 1-CPU system
have very similar TCP/IP performance. As discussed ear-
lier, the ETA+AIO prototype’s TCP/IP stack benefits from

executing on just a single processor. It is not surprising that
the ETA+AIO TCP/IP bin is not noticeably more efficient
than that of the 1-CPU system when there is no encryption
workload. Since we have not changed the TCP/IP stack, the
only expected improvement would be due to better cache be-
havior. On our measurements of encryption workloads we
do observe small but consistent improvements in ETA+AIO
TCP/IP efficiency over a 1-CPU system. For example, when
we sampled a 15400 request per second workload encrypting
40% of files not greater than 7500 bytes, the ETA+AIO sys-
tem spent 20.05% of its time in TCP/IP, while the 1-CPU
system consumed 21.63% of the CPU cycles.

Table 1 also shows that the baseline spends more time in
the kernel (16.40% for the 2-CPU system and 12.09% for
the 1-CPU system) than the ETA+AIO system (8.31%).
An analysis of the detailed oprofile data shows that most of
the baseline’s kernel overhead is attributed to sockets and
epoll. In addition, this analysis shows that signals and syn-
chronous DUSI events (e.g., creating and destroying DTIs)
are a substantial part of the ETA+AIO architecture’s kernel
overhead. Recall that the application uses signals only when
it must wait for a new event to arrive to empty event queues.
This requires the userver to make several signal-related sys-
tem calls. In addition, any DUSI synchronous calls invoke
an ioctl system call to schedule the ETA Kernel Agent.
When the PPE raises a signal or completes a synchronous
event, the Kernel Agent is scheduled via an Interprocessor
Interrupt (IPI). Though the AIO interface provides signifi-
cant benefits over sockets and epoll, the gains are partially
mitigated by the overhead of signals waiting for events. Our
analysis of the oprofile data shows the combined cost of
signal-specific kernel functions, the ETA kernel agent, IPIs
and system calls to be 2.70% of the system’s CPU cycles, or
approximately a third of the ETA+AIO kernel overhead. In
Figure 4 we note that as ETA+AIO begins to reach its peak
throughput it becomes more efficient. This is because at
high loads the userver is more likely to find an event on its
queues, and thus less likely to incur the overhead of signals.

Table 1 shows that the ETA+AIO Ethernet component con-
sumes less CPU cycles (15.01%) than both the 2-CPU and
1-CPU baseline Ethernet components (19.19% and 16.82%,
respectively). This is despite the PPE’s continuous polling
of NICs, which consumes CPU cycles even when no pack-
ets are available. A more detailed analysis of the oprofile
data reveals that the ETA+AIO architecture benefits from
not having to incur the overhead of hardware interrupts,
and from not having to go through the Linux SoftIRQ path.
However, these operations are quite efficient on the base-
line system, accounting for only slightly more than 2% of
the overall system overhead. The low cost of interrupts on
the baseline system is likely due to the effective use of NIC
interrupt moderation timers.

Since ETA+AIO partitions the networking stack from the
application with a goal of reducing resource contention, we
use oprofile to evaluate the impact of partitioning on cache
behavior. We note that the unified caches of the Xeon
processor preclude measurement of separate cache behav-
ior for instructions and data. Table 2 shows the relative
number of all Level-3 (L3) and Level-2 (L2) cache misses
for ETA+AIO, a 2-CPU baseline system and a normalized



Table 2: ETA+AIO vs Baseline Cache Misses (No
Encryption). Equal normalized throughputs

Baseline Baseline
Cache ETA+AIO 2-CPUs 1-CPU

L3 Misses 1.43 1.34 1.00
L2 Misses 1.01 1.16 1.00

Table 3: ETA+AIO vs Baseline Cache Misses (With
Encryption). Equal normalized throughputs

Baseline Baseline
Cache ETA+AIO 2-CPUs 1-CPU

L3 Misses 1.00 1.38 1.00
L2 Misses 0.71 1.13 1.00

(half-rate) 1-CPU baseline system when the userver applica-
tion has no additional computation to perform (i.e., execut-
ing without encryption enabled). The values are reported
relative to the normalized 1-CPU baseline cache miss counts.
For example, in Table 2 the 2-CPU baseline has 34% more
L3 cache misses per CPU than the 1-CPU baseline. Table 3
presents the relative L3 and L2 cache misses for a workload
where the userver does have additional computation to per-
form (i.e., encrypting 40% of the files not greater than 7500
bytes).

Table 2 shows that without additional application compu-
tation (no encryption) the ETA+AIO system has a higher
L3 cache miss rate than both baseline configurations. This
can be attributed to the cache-to-cache transfers between
the host CPU and the PPE for the DTI interactions. How-
ever, Table 3 shows that with an encryption workload the
rate of L3 cache misses between ETA+AIO and the 1-CPU
baseline system is comparable, and much better than the
2-CPU baseline. An analysis of the oprofile data indicates
that without encryption ETA+AIO incurs approximately
1273 L3 cache misses per megabit of data served, while the
1-CPU baseline incurs roughly 890 L3 misses per megabit.
For the encryption workload, the ETA+AIO L3 cache miss
rate increases slightly to about 1310 L3 misses per megabit,
while the 1-CPU baseline system’s L3 cache miss rate in-
creases over 45% to approximately 1310 misses per megabit.
The additional encryption workload increases the cache con-
tention between the application and the network stack on
baseline systems. When a file is encrypted, the userver ap-
plication reads the original file and writes encrypted data to
an encryption buffer, potentially causing evictions from the
L3 cache. For a 1-CPU baseline system with an encryption
workload, encrypting the data accounts for almost 17% of
the L3 cache misses. For the ETA+AIO system an evic-
tion in the application processor’s L3 cache does not affect
PPE packet processing, and thus processor partitioning re-
duces the impact of the additional application computation
on the L3 cache miss rate. In contrast to the 1-CPU base-
line, ETA+AIO encryption accounts for roughly only 10%
of the total L3 cache misses.

Table 2 shows that ETA+AIO’s L2 cache behavior is similar

to the 1-CPU baseline when there is no encryption workload.
However, as we add the encryption application workload
(Table 3) the ETA+AIO system L2 cache behavior becomes
substantially better than the baseline. We attribute this to
the network stack and application partitioning, as we expect
the ETA+AIO architecture to have better locality and a
smaller per-CPU instruction working set compared to the
baseline.

7.4 Summary of Results
Using a web server workload with a configurable compu-
tational component (encryption), our performance evalua-
tion has characterized workload conditions where either the
ETA+AIO prototype or the baseline provides superior per-
formance or efficiency. Our detailed performance analysis
provides insight into the reasons for this behavior. Our
results show that the transmit-side copy avoidance in the
prototype results in significantly better processing efficiency
and higher peak throughput than a baseline system that uses
the standard write system call to transmit replies to web
clients. After factoring out the impact of copy avoidance by
using a baseline system that uses the sendfile system call,
the prototype retains a (smaller) efficiency advantage over
the baseline. This efficiency advantage only partially off-
sets the fact that for packet processing, the baseline system
uses two CPUs whereas the prototype uses only one (the
PPE CPU). Hence, for workloads with lightweight applica-
tion processing requirements, the prototype achieves a lower
peak throughput than the sendfile baseline. For workloads
in which application processing and packet processing bet-
ter match the CPU allocation, the prototype can achieve
marginally higher peak throughput than the baseline.

By comparing a one-CPU version of the sendfile baseline
to the prototype, we show that most of the efficiency ben-
efits of the prototype come from avoiding the overheads of
multiprocessing for packet processing (since the prototype
uses only a single PPE CPU). The detailed breakdown of
CPU execution time shows that additional efficiency bene-
fits come from the use of the AIO interface, which has lower
overhead than the standard sockets interface. For memory-
intensive application workloads, processor partitioning elim-
inates contention between the application and TCP process-
ing for a shared processor cache, and hence reduces cache
misses compared to baseline systems. Finally, the signal
mechanism used by the application to wait for events when
all the event queues are empty can introduce significant over-
head and should be replaced by some lighterweight mecha-
nism. However, this problem occurs only for intermediate
traffic loads, since at low loads the CPU usage is negligible,
and at high loads event queues are empty less often.

8. ARCHITECTURAL EXTENSIONS
Our analysis points to many interesting directions to extend
the implementation and investigation of the ETA+AIO ar-
chitecture. To support higher throughputs, the ETA proto-
type should be extended to scale to multiple PPE CPUs. An
important question to answer is how PPE scaling affects the
performance benefits of processor partitioning. For example,
in our study the bottleneck was the CPU cycles available in
the PPE (or the host CPU). By adding PPEs, the bottleneck
resource can shift from CPU cycles to memory bandwidth,
at which point the cache benefits of partitioning will likely



become more important than we have observed in our inves-
tigation. With multiple PPEs, additional issues arise such as
finding the best assignment of responsibility for the NICs in
a system to the various PPEs. In order to keep up with the
link speed of a single high-speed (e.g., 10 GigE) NIC, it may
be necessary for multiple PPEs to share a single NIC, per-
haps by spreading TCP connections for the NIC across the
PPEs as proposed by Microsoft’s receive-side scaling (RSS).
For implementations that support multiple PPEs, the num-
ber of PPEs should be dynamically varied in proportion to
the workload.

Scheduling issues are also interesting to investigate. AIO
enables applications to present large numbers of concurrent
operations to the PPE. In our prototype, some scheduling
parameters in the PPE loop are chosen through trial-and-
error, such as the number of entries to dequeue from a NIC
in each loop iteration. Different choices may be optimal for
different workloads, and a method for dynamically tuning
the scheduling of PPE operations may yield higher through-
put. In addition, application performance may depend on
the order in which the application processes events.

The benefits of processor partitioning may be greater for
emerging multi-core processor architectures than in our pro-
totype, for example due to on-chip mechanisms for fast com-
munication between processor cores. In addition, network
interface logic may become integrated onto the same chip
as the processor cores, avoiding the costs of traversing off-
chip I/O links such as PCI. It is important to understand
how this integration would affect the performance behavior
of the ETA+AIO and baseline architectures.

9. CONCLUSIONS
The high cost of TCP/IP packet processing and the emer-
gence of high-speed network links such as 10 gigabit Eth-
ernet pose an important challenge for next-generation sys-
tems. In this paper we presented the design and evalua-
tion of a prototype implementation of the ETA+AIO archi-
tecture which addresses this problem by dedicating proces-
sors to packet processing and by exposing asynchronous I/O
(AIO) semantics to applications. We also presented a case
study showing how the use of asynchronous network socket
primitives affects the design of a real server application.

Compared to previous work, the evaluation presented in this
paper provides a more accurate and comprehensive assess-
ment of the potential benefits of approaches that dedicate
CPU cores to networking, particularly in light of recent ad-
vances in OS and TCP stack implementations. Prior inves-
tigations of ETA and a similar architecture (TCP Servers)
have the disadvantage that they only compared their ap-
proaches against baseline systems that did not use best-
practice configurations and did not use OS features that
have recently become available to improve performance. In
contrast, our evaluation makes full use of current best-
practice techniques including use of the sendfile system
call, processor affinity for both processes and interrupts, and
NIC hardware support for interrupt moderation and TCP
checksumming. In our experience, use of these features for
the baseline system significantly improves performance, as
reported in recent literature (e.g., [19]). Therefore, the re-
sults of our study differ substantially from previous results,

showing more nuanced benefits for processor partitioning
than have prior investigations which have claimed improve-
ments in peak throughput on the order of 30% [42, 44, 41].

Our results (summarized in Section 7.4) show that the
ETA+AIO prototype provides marginally greater process-
ing efficiency than standard systems by avoiding multipro-
cessing overheads for packet processing and by using the
lower overhead AIO API instead of sockets. Also, proces-
sor partitioning reduces cache misses for memory-intensive
applications. For workloads in which application processing
and packet processing approximately match the CPU allo-
cations, the ETA+AIO prototype effectively utilizes both
the host and PPE CPUs, leading to higher peak throughput
using fewer CPU cycles.

In addition to presenting the performance evaluation, we
also described in detail the issues involved in using asyn-
chronous socket I/O to implement an event-driven web
server application. We described the construction of the
finite-state machine which handles each connection. We de-
termined that only a subset of the event types is needed
to drive the state machine operation, while other event
types can be ignored. We also discussed the challenges of
managing memory registration and de-registration, and the
scheduling opportunities provided by the ability to use mul-
tiple event queues. The userver implementation using the
AIO API is open source software.

Although our prototype demonstrated only modest perfor-
mance advantages over the well-configured baseline system,
our investigation motivates a number of additional investi-
gations as outlined in Section 8 which may lead to greater
performance improvements in the future. These investiga-
tions include scaling to multiple PPEs, changing PPE and
application scheduling policies, and exploiting features of
multi-core processors like fast inter-processor communica-
tion which may improve the benefits of partitioning.
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