
A Cloud-Based Consumer-Centric Architecture
for Energy Data Analytics

Rayman Preet Singh, S. Keshav, and Tim Brecht
{rmmathar, keshav, brecht}@uwaterloo.ca

School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada

ABSTRACT
With the advent of utility-owned smart meters and smart
appliances, the amount of data generated and collected about
consumer energy consumption has rapidly increased. Energy
usage data is of immense practical use for consumers for
audits, analytics, and automation. Currently, utility com-
panies collect, use, share, and discard usage data at their
discretion, with no input from consumers. In many cases,
consumers do not even have access to their own data. More-
over, consumers do not have the ability to extract actionable
intelligence from their usage data using analytic algorithms
of their own choosing: at best they are limited to the analy-
sis chosen for them by their utility. We address these issues
by designing and implementing a cloud-based architecture
that provides consumers with fast access and fine-grained
control over their usage data, as well as the ability to anal-
yse this data with algorithms of their choosing, including
third party applications that analyse that data in a privacy
preserving fashion. We explain why a cloud-based solution
is required, describe our prototype implementation, and re-
port on some example applications we have implemented
that demonstrate personal data ownership, control, and an-
alytics.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Sys-
tem architectures; D.2.11 [Software]: Software Architectures

Keywords
Home energy, data privacy, data analytics, third party ap-
plications, system architecture

1. INTRODUCTION
Utilities around the world are deploying “smart meters”

to record and report energy consumption readings to utility
central offices. This enables different prices to be charged for
electricity based on the time of day and eliminates the cost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
e-Energy’13, May 21–24, 2013, Berkeley, California, USA.
Copyright 2013 ACM 978-1-4503-2052-8/13/05 ...$15.00.

of a monthly visit by a meter reader. The time series of me-
ter readings, originally meant only for customer billing, has
unanticipated uses. On the one hand, customers who have
access to their usage data can get a real-time, fine-grained
view into their electricity consumption patterns. When suit-
ably analysed, this can reveal potential cost savings and cus-
tomized guidance on the benefits from energy conservation
measures, such as installing insulation, solar panels, or pur-
chasing energy-efficient products. On the other hand, this
same data stream can reveal private information about the
customer, for example, when they are home and when they
are not, the appliances they own, and even, in some cases,
which TV channel or movie they are watching [30,39]!

Unlike traditional utility-centric approaches to data man-
agement in the smart grid, we instead take a consumer-
centric approach [37]. We believe that consumers would like
to:

• have control over their own data while outsourc-
ing data storage and persistence to an infrastructure
provider

• get a single view into data collected from multiple
sources

• give access to their data to analytic algorithms of their
choice, but without giving up data privacy

These goals are not achieved by any existing solution. To-
day, many utilities do not even provide consumers with ac-
cess to their own usage data. Even the utilities that give
consumers access to data, such as those participating in the
Green Button initiative [6], or those that provide rudimen-
tary analytics, do not allow consumers to use analytic al-
gorithms of their own choosing. Finally, no current system
gives consumers fine-grained control over who can access the
data, and the granularity and period of time at which it can
be accessed.

Building on the rich infrastructure of modern clouds, we
have designed and implemented cloud-based personal data
and execution containers that persistently store data and of-
fer an environment for the execution of arbitrary analytic al-
gorithms. Consumers can use these containers to grant fine-
grained access to their data to third parties. These contain-
ers also allow secure and private control of home appliances
from any Internet-enabled device.

The key contributions of our work are:

• The design of a system that allows consumers to own
and control access to their energy usage data and have
it analysed using algorithms of their choice



• A proof-of-concept implementation of our architecture
on modern cloud computing platforms

• An evaluation of the system architecture with respect
to data access and control

The remainder of the paper is organized as follows. Sec-
tion 2 describes related research. Section 3 outlines the goals
and requirements of our system and Section 4 explains the
rationale for our architecture. Section 5 presents a detailed
description of the architecture followed by a description of
our prototype implementation in Section 6. We evaluate our
architecture in Section 7, discuss practical implications in
Section 8 and limitations in Section 9. Our conclusions are
presented in Section 10.

2. RELATED WORK
We group related work into the following categories: Per-

sonal Data, Energy Data, Energy Data Privacy and Systems
Architectures.

Personal Data: Researchers have proposed ecosystems
built around an individual’s data, such as health records,
smart meter data, data concerning banking, taxation and
shopping [41]. McAuley et al. [38] introduce the concept of
dataware that defines the processes of obtaining, accessing
and using an individual’s data. Haddadi et al. [31] report
that the ethical and legal consequences of gathering individ-
uals’ data are not yet fully determined, but it is understood
that the individual co-owns any data concerning them. We
focus on applying the concept of privacy-preserving dataware
to an individual’s energy data and investigate the goals, ar-
chitecture, and mechanisms needed to implement such a sys-
tem.

Energy Data: Currently, various utility and software
companies provide consumers with access to their energy
data through web portals. Examples include initiatives like
Green Button [6], analytics providers like Opower [10], util-
ity companies such as Waterloo North Hydro [14], San Diego
Gas and Electric [13], and software projects like Google Pow-
ermeter [5] and Microsoft Hohm [8] (both now defunct).
While these portals allow residential and commercial con-
sumers to download data about their energy consumption
(or energy data), the consumer is responsible for its long
term storage and use. In many cases, the data is only avail-
able for a limited time (e.g., three months [14]) and hence
such portals do not provide consumers with a durable stor-
age solution. Secondly, the data analytics available to con-
sumers is at the utilities’ discretion. As a result they are
deprived of potentially better analytics through third-party
applications. We focus on building a platform to circumvent
these problems.

Energy Data Privacy: Analysing smart meter data in
a privacy-preserving fashion has been the focus of much
research. Most work has focused on applying obfuscation,
aggregation and homomorphic encryption to energy data
[18,29,35,36,47,49]. Other work develops cryptographic pro-
tocols for achieving the same goal [39,44]. Shi et al. [51] pro-
pose a cryptosystem where an aggregator can compute the
sum of multiple energy values from their ciphertexts, with-
out access to the individual energy values because they have
been encrypted under different keys. Rajagopalan et al. [43]
propose a framework to quantify the privacy and usefulness
of energy data and propose a model to control the tradeoff
between them. This motivates us to build a system which

employs this work for privacy-preserving application devel-
opment for energy data.

System architectures: Previous work has focussed on
energy data management for commercial buildings and of-
fice spaces, while aiming to achieve extensibility, scalabil-
ity, and/or performance [11, 19, 25, 48]. Such systems are
designed for users with expertise in the understanding of
energy data (e.g., people specializing in building operations
or energy managers). Residential consumers are unlikely to
possess such levels of expertise, thus necessitating privacy-
preserving third party applications (e.g., energy data analyt-
ics). To our knowledge our consumer-centric approach has
been overlooked by existing work. Secondly, existing systems
do not allow fine-grained access control over data streams,
which is essential for privacy-preserving sharing of data.

Many other consumer-centric solutions [24,28,40,42,52,57]
target various forms of personal data (e.g., healthcare, en-
ergy, mobile sensors, photos, videos). They provide data con-
solidation and ownership by aggregating data, but require
exposing data to third parties thereby putting privacy at
risk. Other work addresses data transformation before re-
leasing it to third parties [20, 33, 34], consequently gaining
privacy at the cost of inhibiting applications that require ac-
cess to raw data. Càceres et al. [23,50] found that consumers’
interests are best served by hosting their data on virtual in-
dividual servers in the cloud. We extend this approach to
enable the in-depth analysis of consumer data such as time-
series consumption data, by third party applications while
preserving the privacy of the consumer.

3. GOALS AND REQUIREMENTS
Our main goal is to design a system that allows consumers

to aggregate their data from multiple sources, control how
that data is accessed and shared, and to allow them to
quickly and easily access that data from any device, at any-
time, from anywhere. These top-level goals translate into the
following subgoals.

Consolidation: To allow a single view into multiple data
streams and cross-correlation between different time
series, the system should automatically consolidate en-
ergy usage data from multiple sources.

Durability: To allow analysis of usage history, a con-
sumer’s energy data should be always available, irre-
spective of its time of origin.

Portability: To prevent lock-in to a single provider, data
and computation should be portable to different cloud
providers.

Privacy: To preserve privacy, the system should allow a
consumer to determine which other entities can access
the data and at what level of granularity.

Flexibility: The system should allow consumers a free
choice of analytic algorithms.

Integrity: The system should ensure that a consumer’s en-
ergy data has not been tampered with by a third party.

Scalability: The system should scale to large numbers of
consumers and large quantities of time series data.

Extensibility: It should be possible to add more data
sources and analytic algorithms to the system.

Good Performance: Data analysis times and access la-
tencies should be minimized.



Universal Access: Consumers should be able to get real-
time access to their data on their Internet-enabled mo-
bile devices.

4. DESIGN RATIONALE
We now describe the high-level rationale for our design by

considering and eliminating several alternative approaches.
The essential elements of any system that stores and anal-
yses energy usage data are a data store, denoted D, and an
application runtime that is the locus of execution of analytic
algorithms, denoted AR.

The simplest possible system is one where the consumer
stores data in their own home and uses a home-based com-
puter for running data analytics. This case is shown as Case
I in Figure 1. This solution provides portability, privacy, flex-
ibility, and a certain amount of scalability, and extensibility.
However, it requires consumers to be responsible for data
collection and consolidation, and ensuring data durability
(unfortunately very few consumers routinely backup their
data). It also assumes that users’ home computers are pow-
erful enough to run sophisticated analytic algorithms over
large data sets, which may not necessarily be the case, es-
pecially with the increasing proliferation of tablet devices.
Moreover, if the home computer is behind a firewall, the
solution does not provide good performance or universal ac-
cess. For these reasons we do not believe this simple solution
meets our design goals and the desires of consumers.

Case IIICase IICase I

DD

AR
DAR

SaaS

AR

Figure 1: Solutions for energy data management. D:
energy consumption data, AR: application runtime.

Consumers can avoid placing the computational burden
on their home machines while, to some extent, preserving
data privacy by storing data locally and sending data to an-
alytic algorithms running in the cloud. This is shown as Case
II in Figure 1. To preserve data privacy, data may be en-
crypted in a way that allows operations on ciphertext [51], or
randomized values may be added to the data (i.e., dithering)
to obfuscate details of consumer behaviour. This approach,
however, allows a limited types of data computations and
suffers from many of the same problems as the prior solu-
tion: the need for consumers to manage consolidation and
durability, and the potentially poor performance.

Yet another approach would be to place both the data and
the application runtime in the cloud using the“Software as a
Service”(SaaS) approach. This is shown as Case III in Figure
1. Here, the SaaS provider would provide data consolidation
and durability, freeing the consumer from these responsibil-
ities. This approach, typified by the Microsoft Hohm [8] and
Google Powermeter [5] approaches (both defunct), fails to
provide privacy, extensibility, and flexibility, but does pro-
vide good performance and universal access.

Learning from the pros and cons of these three solutions,
our goal is to provide a design that supports privacy, flex-
ibility, and extensibility of data storage in the home com-
bined with the consolidation, durability, good performance
and universal access that can be obtained from a cloud-based
solution. Specifically, we propose that a consumer shall have
access to a “virtual home” or VHome that provides both
data storage and an application runtime. Critically, the data
access policies for data stores in the VHome are controlled
not by the cloud provider, who would only be providing “In-
frastructure as a Service”(IaaS), but by the consumer. As we
demonstrate in Section 7 this solution meets all the design
goals presented in Section 3.

By keeping the data and application runtime resident in
the cloud, our solution allows VHome providers to support
data consolidation and durability. Cloud-based data stor-
age also allows low-latency universal access to the data, and
relieves consumers of data consolidation and warehousing
tasks. However, because consumers own their VHomes, they
do not lose privacy or flexibility. We have engineered our
solution for scalability, extensibility, and portability, as dis-
cussed later in the paper, thus meeting all of the design
goals.

In the remainder of the paper, we present the details of
our design, describe some applications we have implemented
and evaluate whether or not our approach is successful in
meeting our goals.

5. ARCHITECTURE
This section describes the architecture of our system. De-

tails of our prototype implementation can be found in Sec-
tion 6.

Figure 2 shows an overview of our system. It has four
main components, from left to right, (a) the home-resident
gateway (labelled Gateway), (b) the virtual home (labelled
VHome) hosted by an SaaS provider in an IaaS cloud, (c)
cloud-based applications (labelled CBA) also hosted in the
cloud by other SaaS providers, and (d) User interfaces (la-
belled Remote UIs) for access to the gateway and the VHome
from Internet-based devices. We now discuss each compo-
nent.

5.1 Gateway
The gateway is a home-resident and consumer-controlled

architectural element that provides two main services. First,
it collects home energy production and usage data and up-
loads it over a secure connection to the cloud-based vir-
tual home. Second, it provides an interface to allow the
home owner to control devices in the home from Internet-
connected devices.

The gateway interacts with smart appliances and moni-
tors that are already network-capable and also, using add-
on hardware such as Internet-controlled power strips, with
legacy devices. Communication typically uses one or more
types of channels such as USB, Zigbee, Ethernet, WiFi,
RPL [56], or ZWave [17]. Usage data is uploaded from the
home to the virtual home over a secure communication chan-
nel. This assures data durability and relieves the consumer
from the need for data warehousing.

The gateway authenticates remote users and accepts con-
trol commands from them. These control commands either
configure the gateway, request data uploads, or request that
actions be taken by appliances and devices. A gateway may



Public Internet Cloud

AR = Application Runtime, WS = Web Services 
DB= Database, NA= Native Application 
CBA=Cloud-Based Application 
ACM=Access Control Mechanism 
PPM=Privacy Protection Mechanism
          Secure communication 

Solar 
Panel

EVHome

 Appliances

Energy
Storage

AR

APIsWS
DBPPMs

ACMs

VHome

NA

CBA

Remote 
UIs

Gateway

Smart Meter
Data

Utility-owned 
Server

Figure 2: System Overview.

be a dedicated, networked hardware device, or an integrated
part of other home services’ hardware such as a cable mo-
dem or set-top box, or it may be software deployed on a
household computer.

5.2 VHome
A virtual home or VHome is a virtualized execution envi-

ronment hosted in a cloud-based server that provides three
services: (a) storage for home energy use data, (b) an appli-
cation runtime for executing applications that analyse this
data, and (c) trusted web-based services for interaction with
the gateway, other cloud-based services, and user devices
(described in more detail below). A VHome is owned by the
consumer and hosted by a VHome SaaS provider in an IaaS
cloud 1. We describe the participation incentives for the con-
sumer and these providers in Section 8.

A VHome is built from a virtual execution environment
(VEE) provided by an IaaS provider. This could be a virtual
machine [21] or a virtual container (private server) [53]. In
Figure 2, the virtual execution environment is shown as a
dotted home. Within the VEE, AR denotes the application
runtime (such as a Java Virtual Machine) and DB denotes
data stored in a database.

We envision that data stored in the database can be ac-
cessed by two types of applications. Native applications run
on the VHome AR, and are certified to be “safe” using an
approach described in more detail in Section 5.3. In contrast,
cloud-based applications (denoted as CBA in Figure 2) pull
energy data out of the VHome, which may violate consumer
privacy. Therefore, access by a CBA to private data is me-
diated by privacy protection mechanisms (PPMs) that pre-
process data before it is transferred out of the VHome. PPMs
can implement privacy models such as differential privacy
and k-anonymity [55] by employing mechanism such as ob-
fuscation, noise addition, and homomorphic encryption [29].
An example of a PPM is to add random noise values to
a meter reading, with the amplitude of the noise decreas-

1This separation could be used in many other domains such
as data management in healthcare, or banking.

ing with reading granularity, so that monthly readings may
have little or no added noise, but per-second readings would
have large amounts of added noise. Access Control Mecha-
nisms (ACMs) additionally allow consumers to restrict and
revoke CBA access to the APIs by scope and duration. For
example, an ACM may allow a CBA to access only hourly
meter readings and only from a specified day of the year.
Moreover, this access may expire after 15 minutes.

In addition to the native and cloud-based applications, our
system contains special-purpose trusted applications we call
Web Services (WS). As a trusted component of the VHome
they have free access to the APIs and hence to the energy
data. They perform three tasks. First, they periodically ac-
cept data (typically, but not necessarily, bulk data) uploaded
from the gateway and store it in the database. Second, they
fetch real-time data from the gateway when requested by the
consumer. This allows bulk data to be transferred from the
home to the VHome once a day, yet provide real-time data
access when necessary. Third, they provide a control inter-
face to the consumer for various administrative tasks, such as
downloading and running native VHome applications, con-
figuring ACMs, configuring Privacy Protection Mechanisms
(PPMs), requesting VHome software updates, the migration
or discarding of data, and configuring gateway actions.

5.3 Applications
We now discuss native and cloud-based applications in

more detail. Note that the main difference between native
and cloud-based applications is that native applications exe-
cute in a tightly-controlled runtime environment. Moreover,
their bytecode is available for analysis. This allows the sys-
tem to eliminate the privacy leakage that is possible due to
these applications. In contrast, cloud-based applications can-
not be tightly controlled. Therefore, the only way to preserve
privacy when giving data to these applications is to modify
the data itself, which we accomplish using the PPMs.

We envision that both classes of applications would be
developed by third-party developers, much like those who
participate in Apple’s App Store. Developers would use stan-
dardized APIs, such as those described next, to access con-



sumer data. Consumers would either download native appli-
cations to the VHome to execute within the VHome runtime
or can use ACMs to give cloud-based applications access
to their data (after processing by PPMs). Applications can
have user interfaces (UIs) to enable their invocation from
PCs, smart phones, or other Internet-enabled devices.

Native Applications (NAs): The leakage of private
data from native applications can be restricted using one
of the following approaches. In the first approach, a na-
tive application’s executable is scanned to assure consumers
that the application is incapable of network communication.
Thus, the application cannot leak data out of the container,
which guarantees privacy. In our preliminary implementa-
tion, we restrict native applications to be written in Java
and not invoke native APIs. Our current thinking is that an
application can be certified as safe if its bytecode does not
use the Java.net API. This can be easily checked when a
native application is submitted for inclusion into the appli-
cation store.

The second approach is used for native applications that
need to use the network API to access remote hosts, such as
to scrape consumer energy data from a utility website. To
deal with such applications, network communications from
a native application are restricted to a specific IP address
(or host name). For instance, a native application could be
restricted to communicate only with the host name corre-
sponding to a utility’s web server. Moreover, read or write
access from a native application to a database table can
also be restricted. In the example data scraper application,
it could be restricted to only write to the database, not
read from it. As we show in Section 6, these restrictions on
database access are easy to accomplish in our system. We
can also restrict the set of web services APIs that Native
Applications can access. This further limits their ability to
compromise privacy.

Certified native applications are suitable for data mining,
analytics, visualization, appliance control and home automa-
tion. Native applications can also obtain consumers’ energy
data from utilities and store it in the VHome DB, making
them ideal for data consolidation, (e.g., maintaining copies
of consumers’ smart meter data recorded by their utility
companies).

Cloud-Based Applications (CBAs): Unlike native ap-
plications, cloud-based applications are hosted using third
parties’ hosting services. The main purpose of a cloud-
based application is to allow sharing and comparison of en-
ergy data between different VHomes. ACMs provide fine-
grained access control over data (e.g., time series) which
means VHome owners chose which part(s) of her data are
shared with a CBA, and when is it shared (e.g., periodi-
cally). The challenge here lies in preserving privacy while
allowing meaningful computations and comparisons. While
certified native applications can be given access to raw data,
data given to a CBA must be pre-processed using techniques
that ensure that privacy is preserved. Examples of such pre-
processing include obfuscation, noise addition and homo-
morphic encryption [29]. These actions are implemented by
and configured using the PPMs. Similar to NAs, CBAs can
be published on the application store, and VHome owners
provide CBAs with their VHome URL and explicit autho-
rization to read all or parts of their data.

5.4 User interfaces
The gateway, a VHome’s web services (WS), and cloud-

based applications all allow user interaction. These interac-
tions are mediated using user interfaces implemented on a
user device, such as a web browser, a mobile application, or
other mediums like e-mail or SMS. User interfaces simplify
the management and use of VHomes and applications using
graphical interfaces. Examples of such user interfaces are
those used to download native applications to a VHome, to
configure the permissions granted to a CBA by a consumer,
and to control appliances in the home from a mobile device.

6. IMPLEMENTATION DETAILS
This section presents the details of a prototype implemen-

tation of our system.

6.1 Gateway
We implement a software-based gateway using the Mi-

crosoft HomeOS [26] platform. HomeOS is a .NET based
platform designed to provide centralized control of devices
in the home (such as light switches, thermostats, cameras,
and televisions). It provides developers with homogeneous
abstractions to orchestrate such devices. We use these fea-
tures for monitoring and controlling appliances and to enable
the uploading of data to the VHome.

Figure 3 provides an overview of HomeOS [27]. It is com-
prised of software modules called drivers that communicate
with devices and allows higher level modules (such as ap-
plications) to actuate the devices. Additionally, a platform
module manages and coordinates all other modules. In our
gateway we extend HomeOS by implementing some addi-
tional modules, described next.

Figure 3: Overview of the HomeOS Platform.

Driver Modules
Each driver module monitors and controls an individual ap-
pliance using a sensor. We implement driver modules for the
Aeon appliance sensor [1] and the CC Envi [4] power and
temperature sensor. The Aeon sensor is installed in-series
with an appliance and communicates to the gateway over Z-
Wave [17]. The module is invoked by the coordinator module
(described later) for polling data or controlling the sensor,
and transmits the respective Z-Wave frames to the desired
sensor. The Envi sensor measures the active power from a
home every 6 seconds using a Hall-effect [7] transducer that
is clipped around the split-phase wires at the home’s main
electricity supply. Measurements are transmitted wirelessly
to the Envi console which is connected via a USB cable to



the gateway machine (an inexpensive netbook in our proto-
type). The netbook stores the data on disk and transmits it
periodically (e.g., once per day) to a VHome. Figure 4 shows
the netbook running the gateway software, along with the
Envi console.

 

Figure 4: Gateway and Envi console.

Communication Module
This module provides communication between the VHome
and the gateway. We considered several alternatives for com-
munication including TCP, HTTP, and SSH. In the end, we
decided to use XMPP [54], the protocol underlying the Jab-
ber chat client, as our transport protocol because it uses a
simple RPC mechanism that is secure, extensible, and pro-
vides real-time communication. Most importantly, XMPP
ensures seamless communication from the VHome to the
gateway despite the presence of NAT devices and firewalls
at the home gateway.

Coordinator Module
This module records and processes energy data generated by
the sensors’ driver modules and caches it temporarily on the
gateway. Periodic data uploads are received by the VHome’s
web services and are not sensitive to intermittent losses of
connectivity. As a result, transient losses in network connec-
tivity, lasting less than a few days, are easily tolerated. To
facilitate coordination of sensor data and control between
the gateway and the VHome, each sensor is assigned a class
ID and an object ID. Sensors of the same type are assigned
with the same class ID, but distinct object IDs. This al-
lows the VHome to identify each sensor using the {class ID,
object ID} tuple. The coordinator module uses the commu-
nication module to listen for commands from the VHome to
control sensors. For example, if Aeon sensors have the class
ID 1, and the one interfaced with the electric heater has an
object ID 2, then the VHome issues the following command
using XML to order the gateway to turn it off.

<setStatus classID=1 objectID=2>

<power>0.0</power>

</setStatus>

The gateway performs the action and responds with the sen-
sor’s new status as an acknowledgement. Similarly other ac-
tions (e.g., dimming lights, managing AC temperature set-
points) can be performed using the VHome.

6.2 VHome
Each component of our prototype VHome, (e.g., the APIs,

Web Services (WS), Access Control Mechanisms (ACMs),
Privacy Protection Mechanisms (PPMs), and Native Appli-
cations (NAs)), is implemented as a Java Web Application

(or webapp) using the Java API for RESTful Web Services
(i.e., JAX-RS framework) [22], and can be deployed in a
Java Web Container. We use Apache Tomcat as the web
container, and MySQL as the relational datastore which we
instantiate in a virtual machine using the Amazon EC2 [2]
cloud. Our choice of Java was calculated to ensure VHome
portability across cloud providers (e.g., Windows Azure [15]
and RootBSD [12]) and our implementation is configurable
to use any relational cloud datastore (e.g., SQL Azure [16]
and Amazon RDS [3]).

Similar to the organization used for sensors (described in
Section 6.1), data is organized into classes where each class
describes a unique type of data stream and has a unique
class ID, a class name (e.g., heating), a descriptor (e.g.,
space heaters in the home), and a rating (e.g., 500 W). Data
streams either emanate from the sensors at home or could
be external (e.g., smart meter readings from utility’s web-
site). Particular streams of a class are identified as objects
using a unique object ID within their class, and have an ob-
ject name (e.g., master bedroom heater), a descriptor (e.g.,
installed on 01/01/2011, warranted until 01/01/2020) and
a granularity (e.g., 60, indicating data is produced every 60
seconds).

Privacy Protection Mechanisms (PPMs) are implemented
as webapps and access a data stream or streams via APIs.
They can create new privacy-preserving streams, which can
then be shared with cloud-based applications (CBAs). For
instance, we implement aggregation as an example PPM
where energy consumption time series data (e.g., produced
every second) is aggregated to compute daily or weekly con-
sumption values which are less revealing in nature.

The webapp instantiating the VHome APIs implements
them as a set of TLS-Secure Representational State Transfer
(REST) [45] URIs, which are then used by native and cloud-
based applications to access data or control sensors and thus
appliances. Table 1 provides a brief overview of the APIs’
URIs, which native and cloud-based applications can invoke
using HTTP GET or POST requests. Results are returned
using JavaScript Object Notation (JSON). Applications can
add or modify data streams subject to the Access Control
Mechanisms (ACMs). Applications can potentially compute
a hash of a data stream (e.g., MD5) and sign it (e.g., using
user’s private key) to ensure data integrity to some extent.

The ACM webapp regulates applications’ access to all or a
subset of APIs, configured using the WS. By default all APIs
are regulated and therefore, require a valid access token to
return results. A VHome owner could decide to not regulate
the ListAllClasses API, which in turn could result in a pri-
vacy breach. The ACM webapp implements OAuth 2.0 [32],
a token based authentication and authorization standard
for securing API access. It uses the VHome DB to store
data concerning access controls (e.g., tokens, access lists,
and more) which is only accessible to the ACM webapp.

Figure 5 illustrates this access process for a cloud-based
application (CBA) hosted as a web portal. To access any
API, the CBA is first required to obtain a one time au-
thorization grant from the ACM webapp by providing its
identity (identifier, name, or host-URL) and a list of APIs
that it requires access to and the parameters to the APIs.
For instance, a CBA requiring access to the bedroom space
heater consumption data (e.g., with class ID 1 and object
ID 2) from January–March 2012 would request access to the
data stream API as:



Function (regulated by default) Description
ListAllClasses Returns all attributes of all classes of data in the

VHome DB.
ListClass/param/value
param: class ID, class name or rating.

Returns all attributes of class with given parame-
ter values.

ListObject/param1/value1/param2/value2
param1 : class ID, class name or rating.
param2 : object ID, object name or granularity.

Returns all attributes of object with given param-
eter values.

AddClass/className/x/descriptor/y/rating/z Adds class with given class name, descriptor, and
rating.

AddObject/classID/x/objectName/y/descriptor/z/granularity/w Adds object with given class ID, object name, de-
scriptor and granularity.

AddStream/classID/x/objectID/y/ Adds time series data to the given data stream.
GetStream/classID/x/objectID/y/ Returns the complete time series data stream.
GetStream/classID/x/objectID/y/TS/t1/t2 Returns the complete time series (or TS) between

timestamps t1 and t2.
GetStream/classID/x/objectID/y/Val/v1/v2 Returns the complete time series between data

values (or Val) v1 and v2.
GetStatus/classID/x/objectID/y Returns the current power consumption of device

with given class ID and object ID.
SetStatus/classID/x/objectID/y/status/p Sets the power consumption of device with given

class ID and object ID to p.

Table 1: VHome API used by NAs and CBAs to access data.

https://<VHome URL>/GetStream/classID/1/

objectID/2/TS/1325394000/1333252799

where TS indicates time series data, and 1325394000 and
1333252799 are the epoch timestamps at 01-01-2012 00:00:00
and 31-03-2012 23:59:59, respectively.

This allows restricting the scope of data access to certain
data streams and/or certain segments of a stream’s time se-
ries defined using timestamp and/or data values. The ACM
webapp then redirects the user to the Web Services (WS)
webapp so as to authenticate the user as the VHome owner.
After authentication, the scope and nature of the requested
access is described to the user, and her authorization for
the access is requested. The WS implements this as a sim-
ple notification in a web-browser, which can be relayed to
other remote UIs such as email, SMS, or mobile applica-
tion notification. An example of such a notification from an
application named “EXAMPLE” is:

The application named EXAMPLE is requesting
access to bedroom space heater data

for Jan 1 to Mar 31, 2012.
Allow or Deny ?

The CBA then has to exchange the one time authoriza-
tion grant before it expires and obtain an access token and
an (optional) refresh token. By using the access token, a
CBA can use the required APIs until the token expires af-
ter which a new access token may be obtained using the
refresh token. All tokens are valid for periods configured by
the owner of the data. By matching the CBA’s credentials
(e.g., URL) to those registered while issuing the authoriza-
tion grant the ACM validates each API access and prevents
use of stolen access tokens. Further, if at any point the user
decides to revoke (or pause) a CBA’s access to data, she
can simply revoke the access token and possibly the refresh
token for that CBA. Our prototype implements the autho-
rization grant, access token and refresh tokens in the form

of randomized 128-bit MD5 [46] codes, where the webapp
maintains a lookup table for storing their scope and ex-
piry times. Avoiding the encapsulation of scope and dura-
tion within the token circumvents token processing overhead
for each API access. The authorization grant and access to-
ken issuing endpoints are published as GET/POST URIs by
the VHome, and use JSON for token and error-message ex-
changes with CBAs. Our prototype implementation assumes
one user per VHome, thus managing multiple users is not
currently addressed.

CBA ACM WS

Authorization Request Prompt
AllowOne Time Authorization Grant

One Time Authorization Grant
Access Token + Refresh Token 

APIs

Access Token

Access Token
Invalid Token Error

Refresh Token
Access Token + Optional Refresh Token 

API Return Values..

Pr
og

re
ss

Figure 5: API access for a CBA.

The Web Services (WS) webapp is critical to a VHome. It
enables a number of components and allows users to config-
ure them. Firstly it coordinates periodic data uploads from
the gateway over XMPP and transmits control commands
to the gateway’s coordinator module. Secondly it provides
the consumer with a control portal to install native applica-
tions on the VHome. Native Applications, being JAVA web
applications, are then profiled by the WS webapp for use
of the JAVA.net interface and for the VHome APIs they re-
quire. The owner of the data (the consumer) can restrict the
applications’ ability read from and write to the database by
disallowing or restricting the scope of the APIs. Likewise,
consumers can configure ACM settings such as token for-



mats and expiry periods, and chose which APIs it restricts.
Similar to native applications, certified PPMs can be added
to the VHome through this portal which can be run to cre-
ate additional data streams. Lastly, the WS webapp allows
users to purge native applications or data, and revoke access
tokens of any CBA they want.

Our prototype VHome implementation is open source
and can be found at https://vhome.codeplex.com while
the gateway implementation using HomeOS is hosted at
http://homeos.codeplex.com/.

6.3 Applications
We have created a sample application store as a web por-

tal where users browse for native applications. It transfers
the desired native applications’ executables to the VHome’
WS which installs them on the VHome, and can then be
accessed using remote UIs. We now describe a few applica-
tions that we have built using our system which, without
our architecture, cannot be implemented in a data privacy
preserving form.

Data Scraper
This application obtains consumers’ smart meter data from
the utility provider and stores it in the VHome DB. It is
implemented using the JAVA DOM interface as a VHome
native application. Our prototype application is downloaded
from the sample application store, to run on the VHome,
where it scrapes data from the utility company’s web portal
and stores it in the VHome DB. When first using this ap-
plication it obtains, from the consumer, their identification
and password used to access the utility company’s portal.
The utility company in our prototype is Waterloo North
Hydro [14]. The application also allows consumers to set au-
tomated periodic data scraping actions to ensure that data
is obtained before it is discarded by the utility company’s
portal (i.e., after three months) and the consumer is relieved
of manually retrieving the data. The application allows the
data to be retained by the consumer even after it is no longer
available on the utility company’s portal. The data is stored
as a data stream in the Smart Meter class which can then be
accessed by other applications through APIs. Access to more
than a year’s worth of data can provide excellent opportu-
nities for data analytics because in many climates seasonal
changes must be accounted for when examining consump-
tion histories. This application demonstrates how our archi-
tecture allows consumers to take ownership of their data,
thus meeting the goal of data ownership.

Interactive Monitoring and Control
We have implemented a VHome native application that in-
terfaces with the VHome web services to allow the con-
sumers to use a web-browser to monitor and control home
appliances in real-time. Native applications have no net-
work access and can only be viewed by invoking the trusted
VHome webapp container. We implement an Android smart-
phone application that invokes the VHome native applica-
tion via the VHome webapp container and provides a smart-
phone application interface. This means consumers can use
VHome native applications via web-browsers or with appli-
cations installed on their mobile devices (e.g., smartphones,
or tablets). Figure 6 shows snapshots of different panels in
the Android smartphone application. Screenshot-1 (on the
left) shows the home monitor, which allows consumers to
view current conditions of the home as reported by the CC

Envi console. In addition, the consumption data stored at
the VHome is used to compute and display the day’s and
week’s consumption. Screenshot-2 (in the center) shows the
control panel which allows users to turn on or turn off dif-
ferent appliances connected to Aeon ZWave sensors and dis-
plays their current consumption. Further, it allows users to
share the amount of energy they conserve by turning off ap-
pliances, on social networks such as Facebook and Twitter
and to compete with their friends. This applications permits
consumers to define events for which they wish to receive
notifications. For instance, consumers can set a threshold
for energy consumption and “abnormal consumption” noti-
fications are issued if it is exceeded. Screenshot-3 (on the
right) shows a past trend of aggregate energy consumption
measured using the CC Envi sensor. This trend data can be
used by consumers to better understand abnormal consump-
tion notifications. Our prototype implements SMS, E-Mail
and mobile application notifications. Since the VHome is
cloud resident, energy data can be processed in the cloud and
viewed using any Internet-enabled device, with relatively low
latency.

Energy Data Analytics
In many parts of the world the price of electricity depends
on the time of the consumption. In Ontario, a day is divided
into peak, mid-peak, and off-peak hours, each with different
rates [9]. We implement a VHome native application that
processes a home’s electricity consumption measured using
the CC Envi sensor to determine how much energy is con-
sumed during different hours of the day, its respective costs
under the pricing scheme, and the total cost. It uses smart
meter data obtained and stored by the data scraper applica-
tion to verify a consumer’s utility bill. Such simple analytics
also provides consumers with meaningful insight into their
hourly and daily consumption patterns, warns them of po-
tential errors in their utility bills and can help them to time
shift non time-critical consumption. This shows how our ar-
chitecture meets the goal of data analytics.

Abnormal Energy Consumption Detection
We implement a VHome NA which informs consumers about
abnormalities in their energy consumption. For instance,
consider a scenario where residents forget to turn off their
oven while they are away. Using the VHome APIs the appli-
cation periodically obtains the energy consumption values
from the gateway, measured by the CC Envi sensor. It then
compares the values to a predicted value computed using
an Auto-Regressive Moving Average model. If the measured
value is higher than the predicted value by a threshold (e.g.,
1 kW) then the application sends the consumer a notifica-
tion message via e-mail, SMS, or the Android smartphone
application. The consumer can then either use the Android
application (described above) or reply to the email, SMS to
take appropriate action. We defer the use of more complex
abnormality detection techniques to future work.

7. EVALUATION
In this section, we compare our architecture to the dif-

ferent existing and proposed systems that can be used to
store and analyse energy data. Table 2 compares these solu-
tions by denoting which of the requirements of a consumer-
centric solution they meet (i.e., the goals from Section 3).
Commercial software solutions–Google Powermeter [5] and
Microsoft Hohm [8] being centralized web services are scal-



Figure 6: Three screenshots of the Android smartphone application.

able but provide a fixed set of analytics with no data con-
solidation or privacy. Both services are now defunct leaving
consumers with no data access. Utilities’ web portals act
similarly and share/discard data at their discretion but can
ensure integrity of only smart meter data. Opower [10] pro-
vides consumers with some data analytics on their monthly
utility bills, but they provide no real-time access to data or
choice of analytics. The Greenbutton [6] initiative has stan-
dardized energy data formats, so that consumers can access
their data and analyse it themselves (denoted “Greenbutton
(Self)”). This allows consumers to choose analytics tools,
run integrity checks on data, and provides data privacy, but
it burdens them with data maintenance. Alternatively, con-
sumers can delegate the data retrieval and maintenance to
third parties (denoted “Greenbutton (Third Party)”). Third
parties can manage, analyse and host consumers’ data, but
such unconditional access to raw data provides little data
privacy.

Our architecture meets the requirements for a consumer-
centric, privacy preserving, architecture for energy data
analysis as explained below.

Consolidation: Native applications allow data to be read
from any data source and stored in the VHome
database. This allows consumers to easily consolidate
their data from multiple sources by using one native
application per data source.

Durability: The cloud-based storage of data allows for
data durability. Instead of relying on a single com-
puter in the consumer’s home to store data, and re-
lying on the consumer to remember to back up that
data and to ensure that they have off-site backups,
data is stored in the cloud. The data on cloud-based
storage is replicated, backed-up, and maintained by
professionals, guaranteeing durability.

Portability: Our solution has been designed to be
portable across a variety of cloud-based providers and
databases. This ensures application and data portabil-
ity, as discussed in detail in Section 6.

Privacy: Our system provides data privacy in several ways.
First, data within a VHome is not accessible by en-
tities outside the VHome, eliminating most types of

privacy violations. Privacy leakage from native appli-
cations is prevented by certifying native applications,
by checking Java byte code submitted to the appli-
cation store to ensure that they are either not using
network APIs, or when they need to, are only commu-
nicating with the specified hosts. The details of this
process are described in Section 6.2. Privacy leakage
from cloud-based applications is mitigated, to some ex-
tent, by data encryption or obfuscation by privacy pre-
serving mechanisms. Of course, this protection of data
privacy assumes that Iaas and VHome SaaS providers
are trusted.

Flexibility: Our system allows consumers to download and
install analytic algorithms of their choice. They can
also send data to be processed by any cloud-based ap-
plication by giving them time-limited, scope-limited
access to their data.

Integrity: Native applications allow integrity for data
stored directly in the VHome (e.g., via gateway) but
cannot ensure integrity for data imported from exter-
nal sources (e.g., smart meter data from utility com-
pany servers).

Scalability: Cloud-based servers allow massive scaling of
both data set sizes and computation, unlike the use of
home-based computers.

Extensibility: The native application store allows a con-
sumer to extend their VHome with new analytic al-
gorithms. Consumers can also send their data to any
cloud-based application for analysis.

Good Performance: The use of a cloud to store data min-
imizes data access latencies by avoiding the use of the
typically lower-bandwidth home access link. In addi-
tion it provides access to server systems with more
memory and processing power than may be available
on many consumer’s home machines.

Universal Access: Cloud-resident data allows consumers
to get real-time access to their data on their Internet-
enabled mobile devices.

Thus, our system meets all of our design criteria, while
our prototype implementation demonstrates the feasibility



``````````̀Goals
Solutions

Hohm [8], Pow-
ermeter [5]

Utility web
portals [13,14]

Opower [10] Greenbutton [6]
(Self)

Greenbutton [6]
(Third Party)

VHome

Consolidation X X X
Durability X
Portability X X X
Privacy X X
Flexibility X X X
Integrity * X *
Scalability X X X X X
Extensibility X X X
Performance X X X X
Universal access X X X X

Table 2: Comparative analysis with existing solutions, * denotes a partial solution.

of such a system using existing hardware, software and cloud
infrastructure.

8. DISCUSSION
In some sense, ensuring that meter data remains private

is moot, because utility companies already collect this data
and share it with whomever they choose (e.g., Google Pow-
erMeter and Microsoft Hohm) without seeking customers’
permission. This situation, however, is likely to change in
two ways in the future.

First, we anticipate that many jurisdictions, following the
lead set by the province of Ontario (in Canada), will place
severe restrictions on the sharing of meter data, thereby
freezing innovation in data analytics and customized recom-
mendations. Although this is being countered by proposals
such as the Green Button initiative [6], which release usage
data back to consumers, we believe that consumers are just
not capable of doing their own data analytics, and are loath
to share this data with third parties due to privacy con-
cerns. Second, besides meter data, we anticipate that future
consumers will generate many other equally private data
streams including health-monitoring data. Our architecture
balances privacy and innovation for applications that anal-
yse these other data streams.

The entities that participate in our system are the util-
ity companyies that collect smart meter data, consumers,
IaaS providers, VHome SaaS providers, and application de-
velopers. We believe that each entity has an incentive to
participate in the system.

Utilities: Utilities are under great pressure from legisla-
tures to release usage data, as evidenced by the Green
Button initiative. They also benefit from energy con-
servation measures, in that these reduce their need for
costly generation capacity upgrades.

Consumers: Consumers are increasingly aware of the costs
of the world’s rampant energy consumption. In some
cases consumers will be motivated to better under-
stand and reduce their consumption by trying to im-
prove the health of the planet and in other cases they
will be motivated by trying to reduce their utility bills.
They currently lack the infrastructure and tools to un-
derstand how to achieve reductions without giving up
their privacy.

IaaS providers: IaaS providers are paid for their services,
so they have a monetary incentive for participation.

VHome SaaS providers: We believe that VHome SaaS
providers can be compensated for their efforts in two
ways. First, some consumers may wish to pay for their
own VHomes, so that they can maintain an archive of
past usage and get recommendations for intelligent en-
ergy use. This is similar to those consumers who pay
a monthly fee for services such as DropBox. Second,
vendors of “green” energy-efficient products could sub-
sidize the cost of VHomes, because recommendations
for the use of their products, such as energy-efficient air
conditioners, washing machines and LED lights, trans-
late to increased sales.

Application developers: Application developers have the
same incentives in our architecture as with the Apple
App store: a mass audience for their work, so that a
well-developed application can make its developer a
lot of money. Certain applications may also be com-
missioned by equipment vendors, as discussed above.

In hindsight, our approach may appear to be obvious,
merging the cloud with sensor data streams, an approach
already implemented by systems such as Pachube [11]. How-
ever, there are three aspects of our work that are not obvi-
ous. First, we show how to use virtualized execution envi-
ronments, in conjunction with an object-level framework,
to provide practical solutions for the seemingly conflicting
requirements of ensuring data privacy while fostering appli-
cation development. Second, our approach enables the de-
velopment of an ecosystem of energy management applica-
tions in much the same way as Apple’s App Store provides
an ecosystem for the development of iPhone and iPad ap-
plications. Third, our approach is diametrically opposed to
the utility-centric view that is widely prevalent in the Smart
Grid community. Instead of designing an architecture that
caters to the needs of utilities, our approach places control
firmly in the hands of consumers.

9. LIMITATIONS
Our prototype implementation demonstrates that it is

possible to provide an infrastructure that enables the anal-
ysis of consumer energy consumption data while perserv-
ing their privacy but it suffers from certain limitations. Our
current implementation is limited to dealing with time se-
ries and does not support other potential forms of energy
data. Because it provides consumers with much greater con-
trol over their data, the consumer is faced with many de-
cisions. Such cognitive overload may be eased by learning



users’ perceptions from user studies to help make decision-
making simple and intuitive. Although fully realizable in our
architecture, our current prototype implementation does not
include mechanisms for ensuring integrity of data streams
(e.g., by maintaing signed hashes). Our architecture also re-
quires a trusted certification mechanism to certify applica-
tions and requires VHome SaaS and IaaS cloud providers
to be non mallicious. Lastly, to gain data privacy, the con-
sumer may have to bear the cost of hosting the VHome in
the cloud and purchasing analytic applications.

10. CONCLUSIONS
We describe how cloud hosting services can be leveraged

to ensure that consumers retain ownership and fine-grained
control over their energy consumption data while enabling
third party applications to analyse that data in a privacy
preserving fashion. In addition, our cloud-based architecture
provides applications with low-latency data access, long-
term, durable storage, and access to the significant com-
putational and storage resources needed to process growing
volumes of energy data being collected. We believe our ar-
chitecture is essential for the development, management and
automation of applications that provide intelligent, privacy-
preserving, energy data analytics. We defer the study of the
scalability and performance of our prototype implementa-
tion for future work.

11. ACKNOWLEDGMENTS
The authors wish to thank the European Institute of Net-

work Sciences (EINS), Natural Sciences and Engineering Re-
search Council of Canada (NSERC), and MITACS for their
financial support, and Ratul Mahajan from Microsoft Re-
search for sharing HomeOS with us.

12. REFERENCES
[1] Aeon Labs Smart Energy Switch. www.aeon-labs.com.

[2] Amazon Elastic Compute Cloud (EC2).
www.aws.amazon.com/ec2.

[3] Amazon Relational Database Service (RDS).
www.aws.amazon.com/rds.

[4] Current Cost Envi CC-128. www.currentcost.com.

[5] Google Powermeter. www.google.com/powermeter.

[6] Green Button Initiative. www.greenbuttondata.org.

[7] Hall effect.
http://en.wikipedia.org/wiki/Hall_effect.

[8] Microsoft Hohm. www.microsoft-hohm.com.

[9] Ontario time-of-use pricing. www.ontario-hydro.com.

[10] OPower Inc. www.opower.com.

[11] Pachube-Cosm Ltd. www.cosm.com.

[12] RootBSD Cloud Provider. www.rootbsd.net.

[13] San Diego Gas and Electric. www.sdge.com.

[14] Waterloo North Hydro Corp.
www.wnhwebpresentment.com/app/.

[15] Windows Azure. www.windowsazure.com/.

[16] Windows SQL Azure. www.windowsazure.com/en-us/
home/features/data-management/.

[17] Z-Wave Alliance. www.z-wavealliance.org.

[18] G. Ács and C. Castelluccia. I have a DREAM!:
differentially private smart metering. In Proc. of IH,
2011.

[19] Y. Agarwal, R. Gupta, D. Komaki, and T. Weng.
Buildingdepot: an extensible and distributed
architecture for building data storage, access and
sharing. In Proc. of the Fourth ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in
Buildings, BuildSys, 2012.

[20] P. Arjunan, N. Batra, H. Choi, A. Singh, P. Singh,
and M. B. Srivastava. SensorAct: a privacy and
security aware federated middleware for building
management. In Proceedings of the Fourth ACM
Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings, BuildSys ’12, pages
80–87, New York, NY, USA, 2012. ACM.

[21] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review, 2003.

[22] B. Burke. RESTful Java with Jax-RS. O’Reilly Media,
2009.

[23] R. Cáceres, L. Cox, H. Lim, A. Shakimov, and
A. Varshavsky. Virtual individual servers as
privacy-preserving proxies for mobile devices. In Proc.
of ACM MobiHeld, 2009.

[24] H. Choi, S. Chakraborty, Z. M. Charbiwala, and M. B.
Srivastava. Sensorsafe: a framework for
privacy-preserving management of personal sensory
information. In Proceedings of the 8th VLDB
international conference on Secure data management,
SDM’11, pages 85–100, Berlin, Heidelberg, 2011.
Springer-Verlag.

[25] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and
D. Culler. sMAP: a simple measurement and
actuation profile for physical information. In Proc. of
ACM SenSys, 2010.

[26] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee,
S. Saroiu, and V. Bahl. An operating system for the
home. Proc. NSDI, 2012.

[27] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush,
B. Lee, S. Saroiu, and V. Bahl. The home needs an
operating system (and an app store). In Proc. of
HOTNETS, 2010.

[28] C. Elsmore, A. Madhavapeddy, I. Leslie, and
A. Chaudhry. Confidential carbon commuting:
exploring a privacy-sensitive architecture for
incentivising ‘greener’ commuting. In Proceedings of
the First Workshop on Measurement, Privacy, and
Mobility, 2012.

[29] F. D. Garcia and B. Jacobs. Privacy-friendly
energy-metering via homomorphic encryption. In
Proc. of the 6th International Conference on Security
and Trust Management, 2010.

[30] U. Greveler, B. Justus, and D. Loehr. Multimedia
Content Identification Through Smart Meter Power
Usage Profiles. In Proc. of CPDP, 2012.

[31] H. Haddadi, R. Mortier, S. Hand, I. Brown, E. Yoneki,
J. Crowcroft, and D. McAuley. Privacy analytics.
SIGCOMM Comput. Commun. Rev., Apr. 2012.

[32] E. Hammer-Lahav, D. Recordon, and D. Hardt. The
OAuth 2.0 authorization protocol.
draft-ietf-oauth-v2-18, 8, 2011.

[33] J. Kannan, P. Maniatis, and B.-G. Chun. A Data
Capsule Framework For Web Services: Providing
Flexible Data Access Control To Users. CoRR, 2010.



[34] J. Kannan, P. Maniatis, and B.-G. Chun. Secure data
preservers forweb services. In Proceedings of the 2nd
USENIX conference on Web application development,
WebApps’11, pages 3–3, Berkeley, CA, USA, 2011.
USENIX Association.

[35] Y. Kim, E.-H. Ngai, and M. Srivastava. Cooperative
state estimation for preserving privacy of user
behaviors in smart grid. In Proc. of SmartGridComm,
2011.

[36] F. Li, B. Luo, and P. Liu. Secure Information
Aggregation for Smart Grids Using Homomorphic
Encryption. In Proc. of SmartGridComm, 2010.

[37] W. Liu, K. Liu, and D. Pearson. Consumer-centric
smart grid. In Innovative Smart Grid Technologies
(ISGT), 2011 IEEE PES, pages 1–6. IEEE, 2011.

[38] D. McAuley, R. Mortier, and J. Goulding. The
Dataware manifesto. In Proc. of COMSNETS, 2011.

[39] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet,
and D. Irwin. Private memoirs of a smart meter. In
Proc. of ACM BuildSys, 2010.

[40] R. Mortier, C. Greenhalgh, D. McAuley, A. Spence,
A. Madhavapeddy, J. Crowcroft, and S. Hand. The
personal container, or your life in bits. Digital Futures,
2010.

[41] R. Mortier, C. Greenhalgh, D. McAuley, A. Spence,
A. Madhavapeddy, J. Crowcroft, and S. Hand. The
Personal Container, or Your Life in Bits. Digital
Futures, 2010.

[42] M. Mun, S. Hao, N. Mishra, K. Shilton, J. Burke,
D. Estrin, M. Hansen, and R. Govindan. Personal
data vaults: a locus of control for personal data
streams. In Proc. of ACM CoNext, 2010.

[43] S. R. Rajagopalan, L. Sankar, S. Mohajer, and H. V.
Poor. Smart Meter Privacy: A Utility-Privacy
Framework. CoRR, 2011.

[44] A. Rial and G. Danezis. Privacy-preserving smart
metering. In Proc. of ACM WPES, 2011.

[45] L. Richardson and S. Ruby. RESTful web services.
O’Reilly Media, Incorporated, 2007.

[46] R. Rivest. The md5 message-digest algorithm. 1992.

[47] C. Rottondi, G. Vertical, and A. Capone. A security
framework for smart metering with multiple data
consumers. In Proc. of IEEE INFOCOM 2012
Workshop: Green Networking and Smart Grid, 2012.

[48] A. Rowe, M. E. Bergeés, G. Bhatia, E. Goldman,
R. Rajkumar, J. H. Garrett, J. M. F. Moura, and
L. Soibelman. Sensor andrew: large-scale campus-wide
sensing and actuation. IBM J. Res. Dev., Jan. 2011.

[49] S. Ruj, A. Nayak, and I. Stojmenovic. A Security
Architecture for Data Aggregation and Access Control
in Smart Grids. CoRR, 2011.

[50] A. Shakimov, H. Lim, R. Caceres, L. Cox, K. Li,
D. Liu, and A. Varshavsky. Vis-a-Vis:
Privacy-preserving online social networking via Virtual
Individual Servers. In Proc. of COMSNETS, 2011.

[51] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and
D. Song. Privacy-Preserving Aggregation of
Time-Series Data. In NDSS, 2011.

[52] K. Shilton, J. Burke, D. Estrin, R. Govindan,
M. Hansen, J. Kang, and M. Mun. Designing the
personal data stream: Enabling participatory privacy
in mobile personal sensing. TPRC, 2009.

[53] S. Soltesz, H. Pötzl, M. Fiuczynski, A. Bavier, and
L. Peterson. Container-based operating system
virtualization: a scalable, high-performance alternative
to hypervisors. In Proc. of EuroSys, 2007.

[54] P. St-Andre. Extensible Messaging and Presence
Protocol (XMPP). IETF Network Working Group,
RFC3920, 2004.

[55] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 2002.

[56] T. Winter and P. Thubert et al. RPL: Ipv6 Routing
Protocol for Low power and Lossy Networks. Internet
Draft, IETF, 2010.

[57] R. Wishart, D. Corapi, A. Madhavapeddy, and
M. Sloman. Privacy butler: A personal privacy rights
manager for online presence. In Proc. of Workshop of
Smart Environments, 8th IEEE PerCom, 2010.


