Ajents: Towards an Environment for Parallel, Distributed

and Mobile Java Applications

Matthew Izatt, Patrick Chan
Department of Computer Science
York University, Toronto, Ontario, M3J 1P3
{izatt,y-chan}@cs.yorku.ca

Tim Brecht
Department of Computer Science
University of Waterloo, Waterloo, Ontario, N2L. 3G1
brecht@cs.uwaterloo.ca

Abstract

The rapid proliferation of the World-Wide Web has been
due to the seamless access it provides to information that is
distributed both within organizations and around the world.
In this paper, we describe the design and implementation of
a system, called Ajents, which provides the software infras-
tructure necessary to support a similar level of seamless ac-
cess to organization-wide or world-wide heterogeneous com-
puting resources.

Ajents introduces class libraries which are written en-
tirely in Java and that run on any standard compliant Java
virtual machine. These class libraries implement and com-
bine several important features that are essential to support-
ing distributed and parallel computing using Java. These
features include: the ability to easily create objects on re-
mote hosts, to interact with those objects through either
synchronous or asynchronous remote method invocations,
and to freely migrate objects to heterogeneous hosts. While
some of these features have been implemented in other sys-
tems, Ajents provides support for the combination of all of
these features using techniques that permit them to operate
together in a fashion that is more transparent and/or and
less restrictive than existing systems.

Our experimental results show that in our test environ-
ment: we are able to achieve good speedup on a sample
parallel application; the overheads introduced by our imple-
mentation do not adversely affect remote method invocation
times; and (somewhat surprisingly) the cost of migration
does not greatly impact the execution time of an example
application.

1 Introduction

One of the compelling reasons for implementing distributed
and parallel applications in Java is that compiled Java pro-
grams produce byte code which may be executed or inter-
preted on any machine that implements the Java Virtual
Machine (JVM) [14]. This frees the programmer from be-

ing concerned with problems due to differences in architec-

Appears in: Concurrency Practice and Experience, Vol. 12,

No. 8, pp. 667-685, July, 2000

ture that traditionally plague heterogeneous distributed and
parallel applications. Additionally, the standardized virtual
machine provides for new opportunities to migrate objects
between heterogeneous hosts. Moreover, the Java security
manager provides functions which are especially important
in a distributed system where untrusted user programs are
granted permission to execute on unrelated hosts.

Ajents ! is a collection of Java classes and servers (also
written in standard Java) designed to provide a seamless, in-
tegrated environment for implementing distributed, parallel
and mobile Java applications. No modifications are made to
the Java language and no preprocessors, special compilers,
or special stub compilers are required. Remote instances
of objects can be created without modifying their source
code (e.g., to extend UnicastRemoteObject as is required
for standard RMI use) and without the need to create stubs
and skeltons for these classes (i.e., there is no need to run
rmic). This means that objects for which only byte-codes
(.class files) are available can be instantiated on remote
hosts. If the classes are serializable they can even be mi-
grated. Most importantly, Ajents can be executed on any
standard Java virtual machine.

With Ajents, one can permit users who do not other-
wise have access to outside systems to utilize these systems,
while Java security features are used to protect hosts which
provide access to their resources. This is done by running a
relatively small and simple server (called the Ajents server).
It acts as a point of contact for applications that wish to
utilize or access resources on that system.

The combination of the Ajents server and class libraries
greatly simplifies the task of writing distributed Java ap-
plications by supporting several key features not currently
supported in Java:

1. Remote Object Creation: While Java supports re-
mote method invocation there is no support for an
object on one machine to simply and easily create an
object (e.g., using new) on a remote host. While it is
possible to invoke methods of remote objects that have
been statically created on a remote machine, there is
no way for an object to actually create an object on
a remote machine from a local machine. Ajents pro-
vides facilities for the remote creation and referencing
of standard Java objects.

1The name Ajents was chosen because we believe that this envi-
ronment would make a good tool for building mobile agents using
Java.

2. Remote Classloading: In order to be able to instan-
tiate objects on any remote host, Ajents implements
remote class loading. When creating or migrating ob-
jects, Ajents includes the relevant byte-code, allowing
the remote server to define and load the class dynam-
ically.

3. Asynchronous Remote Method Invocation (Fu-
tures): Although Remote Method Invocation (RMI)
is supported in Java [27], all invocations are performed
synchronously. Ajents supports the ability to overlap
communication with computation by providing asyn-
chronous remote method invocation. The invoking ob-
ject is then free to continue execution until a point at
which a returned value is needed (if any).

4. Object Migration: One of the key components of
Ajents is its ability to migrate objects to multiple het-
erogeneous hosts. In an environment where resources
are being loaned and shared by a number of users, we
believe that it is important to be able to migrate an
object while it is executing. Ajents is able to accom-
plish this without a preprocessor, and without modi-
fying the virtual machine, compiler or stub compiler.
This is implemented using checkpointing, roll back and
restarting mechanisms. Thus, if desired, any serializ-
able object can be migrated while executing by inter-
rupting its execution, moving the most recently check-
pointed state of the object and restarting the currently
executing method. These mechanisms not only permit
an object’s execution to be interrupted but will also
prove useful in the future when we hope to add fault
tolerance and persistence. Because migration relies on
the serialization facilities provided in Java, we are un-
able to migrate objects that are not serializable (e.g.,

threads and AWT objects).

We believe that continued improvement in execution
speeds of Java applications due to just-in-time compiler
technology and the combination of features provided in
Ajents make Ajents an excellent basis for developing power-
ful distributed, parallel and mobile Java applications.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes the ar-
chitecture of Ajents and the mechanisms used to implement
remote object creation, remote class loading, asynchronous
remote method invocation, and object migration. In Sec-
tion 4 we evaluate the performance of several of Ajents key
components and the performance of some applications that
have been implemented using Ajents. Section 5 discusses
some of the issues related to the current design and imple-
mentation and describes possibilities for future work. The
paper is concluded with a summary, in Section 6.

2 Related Work

Much of the impetus for the design of Ajents comes from
experience with ParaWeb [4], a Java based environment
for parallel computing. ParaWeb was designed and imple-
mented before remote method invocation [31] and object
serialization [23] were added to Java. Hence, objects com-
municate through the awkward sockets interface.

Other systems developed since that time also leverage
the Java virtual machine to provide distributed or parallel
computing platforms on heterogeneous computing environ-

ments [7, 3, 1, 6, 20, 32, 25, 24, 16, 19, 29].

JavaParty [20] introduces the remote class modifier to
the Java language. Adding this new keyword to the class
definition denotes that the class should be used in a dis-
tributed fashion. To accomplish this, JavaParty uses a pre-
processor which converts remote classes into pure Java code
with RMI hooks. The change to the language is designed
to simplify RMI programming, placing the burden of cre-
ating and handling remote proxies upon the preprocessor.
This greatly simplifies the programming task, but results
in increased complexity in the actual Java code produced
by the preprocessor. However, the main drawback of this
approach is that it introduces modifications to the Java lan-
guage and therefore necessitates the use of the preprocessor.
The mechanisms supplied by Ajents permits users to create
remote objects without using a special compiler, stub com-
piler or preprocessor. In fact, Ajents is able to support the
creation of remote objects for which only the byte-code is
available. Such objects can be created remotely and their
methods may be invoked synchronously or asynchronously.
However, in order for them to be eligible for migration the
original objects must be serializable (and if they aren’t it’s
relatively simple for a programmer to extend the original
object so that it is serializable).

Javelin [6] and SuperWeb [1] implement a “global com-
puting infrastructure” which brings together three types of
entities: clients, brokers and hosts. Clients, who seek com-
puting resources, register with a broker and submit their
work in the form of an applet. Hosts, who are willing to
donate resources, contact the broker and run the applets.
This work emphasizes methods for bringing together clients
and hosts, and focuses on ways of bartering for CPU time.
Bayanihan [24] also uses applets to supply a framework for
volunteer computing using Java. Javelin++ [16] extends
the work originated in Javelin by implementing Java ap-
plications and by more closely examining issues related to
scheduling and scalability.

The goal of Charlotte [3, 11] is to support distributed
shared memory on top of the Java virtual machine. It pro-
vides classes which encapsulate the behavior of a distributed
shared memory system. All accesses to shared classes must
be done through the provided interface using function calls
(e.g., myInt.get()). Charlotte provides an abstraction of
DSM, providing fine-grained support for distributed work.

Other work has considered mechanisms for implement-
ing asynchronous remote method invocations, ARMI [21]
and Active-RMI [10]. Both of these use a modified Java
RMI stub compiler (armic) to implement asynchronous re-
mote method invocations. In ARMI if the user chooses to
use armic (instead of the usual rmic), all stub classes cre-
ated will be modified so that (synchronous) RMI calls are
made by a separate thread resulting in asynchronous be-
havior for the calling object. The user is provided with the
option of allowing all RMI calls within a class to be either
synchronous or asynchronous, but not both. Active-RMI
implements asynchronous RMI calls and provides ways to
block the invoking object (in order to essentially synchro-
nize the call) and to also check if the result of an RMI is
available without blocking. The main disadvantage with this
approach is that a separate thread will be created in order
to perform an asynchronous call, even when synchronous
behaviour is desired. In contrast Ajents provides two dis-
tinct interfaces for synchronous and asynchronous method
invocations and it does not require the use of a modified
stub compiler. Active-RMI also differs from other systems
in that remote objects are active objects (i.e., each object
has an independent thread). While earlier versions of Ajents

[5] provided support for active objects, they are not longer
supported because they can not be migrated (since it is not
possible to capture the execution state of a thread in a stan-
dard JVM).

Agent-oriented Java systems, some examples of which
include Mole [25] and Aglets [13], are designed to support
Java-based autonomous software agents. Remote agents
may be created, and are provided with mechanisms for mo-
bility and communication. Generally these agent-oriented
systems concentrate upon the independent movement of ob-
jects, while providing less support for interaction and con-
trol by the object’s creator. In such systems, in order for
agents to behave intelligently, yet independently, their be-
havior must be explicitly programmed. For example, it is
typical for such systems to require a stop method to be
called, before migrating an object. Therefore, each agent
must be programmed to handle a stop method in which it
prepares to migrate, including ensuring that its state does
not change. The agent must also be programmed to handle
a restart method after migration is complete. This type of
intelligent behavior places the burden upon the program-
mer, rather than the system. Ajents, on the other hand
is targeted towards easily building distributed object appli-
cations and as a result emphasizes programming simplicity
and object control. Unlike existing agent-oriented systems,
Ajents’ objects are not expected to exert self-control, or have
knowledge of the system.

ObjectStore has developed Voyager which provides sup-
port for remote object creation, asynchronous remote
method invocation, and migration [19]. Although Voyager
is a substantial product that includes functionality beyond
that provided in Ajents (e.g., multicast and name spaces),
the main advantages of Ajents is that we are able to create
objects remotely without requiring the use of a stub com-
piler and we provide support for immediate migration, de-
layed migration and migration with checkpointing and roll-
back, while Voyager only supports immediate and delayed
migration. In our view Ajents also provide interfaces that
are more seamless to use than those supported by Voyager
(especially those for migration).

Another system, ABC++ [2], which is a library de-
signed for concurrent object-oriented parallel programming
in C++, has influenced the design of Ajents’ interfaces for
remote object creation and asynchronous RMI. ABC++
does not support object migration, nor does it include spe-
cial features for heterogeneous computing.

While sharing many of the same goals as the systems dis-
cussed, we believe Ajents has fewer restrictions upon its use.
Ajents is built entirely upon the existing distribution of Java
tools in the JDK. No modifications to the virtual machine
are necessary, the Java language has not been changed, and
we do not require the use of modified compilers, stub com-
pilers or preprocessors. We believe that Ajents is capable
of supporting most of the features included in other, similar
systems. While not completely transparent to the program-
mer, Ajents does provide these features more transparently
in some cases and in other cases with fewer restrictions than
existing systems.

3 Ajents Architecture

In this section, we describe the design and implementation
of Ajents. We describe those features of the system that a
programmer uses in order to implement a distributed, par-
allel or mobile application. An object must be created (Sec-
tion 3.1), on an Ajents server (Section 3.3), where it will

be instantiated based upon its class file (Section 3.2). From
there, methods of the object can be invoked (Section 3.4),
and the object may be migrated to other servers (Section

3.5).

3.1 Remote Object Creation

One of the more serious limitations with respect to imple-
menting distributed applications using the current definition
of Java (JDK 1.1) is that although support is provided for
remote method invocation there is no support provided for
a local object to easily create an object on a remote host. In
other words, while it is possible to invoke methods of exist-
ing objects that have been statically created and are already
known to exist on a remote machine there is no way to cre-
ate an object on a remote machine. (Figure 1 demonstrates
the ease with which remote objects can be created in Ajents
by using Ajents.new rather than new.)

Java 1.2 introduces Activatable objects. An activatable
object describes an object which is statically registered with
a daemon, but is not actually created until a remote method
is invoked upon the object. Registering with the daemon is
completed by using a “setup” class, which must be executed
on the remote host. Later, upon receiving the first RMI re-
quest to the registered object, the daemon instantiates the
object. While this reduces the need to have remote objects
permanently active (whether they are currently in use or
not), it still does not provide the flexibility of dynamic on-
demand object creation. Activation is mainly intended as
a means of improving resource control rather than for sup-
porting remote object creation. In Ajents, only the Ajents
server must be started on a remote host and once it is run-
ning it provides the facilities necessary to create any user
defined remote object.

In Ajents, remote object creation is supported by client
and server side class libraries. The key mechanisms used for
remote object creation are implemented inside the Ajents
server which is implemented in Java and executes within
a Java virtual machine on the remote host. This enables
any machine which is running the Ajents server to act as
a target for remote object creation. Figure 1 shows an ex-
ample of how a user creates a remote object. The user first
obtains a reference to an Ajents scheduler object by calling
Ajents.register(). The scheduler object is later consulted
in order to obtain an available server (note that the actual
scheduler may reside on a different host). Ajents servers
only contact the scheduler object when they are started and
stopped, because scheduling is currently done in a round-
robin fashion. We are investigating improved scheduling
techniques that involve more frequent communication from
the Ajents server to update load information.

Four parameters are passed to the Ajents.new method.
These represent (1) the fully qualified class name, (2) a user-
specified name for the object, (3) the location of the source
code, and (4) an Ajents server upon which the object will
be created (in this case obtained from the scheduler).

Once a user calls Ajents.new, the method call is trans-
lated into an RMI call to the remote Ajents server. Here,
using Java reflection mechanisms [28], the requested class
can be loaded into a Class object at the remote host and
then instantiated. The Ajents server then adds the new ob-
Ject to its object table, and returns a remote reference to the
user. Further details related to class loading are provided in
Section 3.2.

The object returned to the user (of type Ajents0Obj) is
actually a proxy object. This is done to shield the user from

// Register to get a scheduler object which knows about available servers

AjentsScheduler sched = Ajents.register();

// Create a remote object on an available server
AjentsObj obj = Ajents.new("ajents.tests.NewObj", "NewObj_1",
"/home/ajents/tests/myobjs.jar", sched.AvailServer());

Figure 1: Example of a remote object creation.

the internal complexities of Ajents and Java RMI. As well,
it allows Ajents to maintain control over the actual remote
reference, which is required in order for migration to occur
asynchronously and independently of any user actions (if
desired).

The range of objects that may be submitted to Ajents is
limited only by the restriction that in order to take advan-
tage of Ajents’ migration features, submitted objects must
be serializable. While the mechanisms implemented within
the Ajents class libraries rely upon RMI to execute remote
methods, the submitted objects need have no knowledge of
this. Thus objects that were not originally designed or in-
tended to operate as remote objects can be treated as remote
objects in Ajents. This means that existing objects for which
only byte-code (i.e., no source) is available, can be remotely
created, used and even migrated (provided the migrating
objects are serializable) and that no stubs or skeletons need
to be generated (using rmic).

3.2 Remote Class Loading

The dynamic class loading described in the Java RMI spec-
ification [27] requires that all class files be located either lo-
cally, in the CLASSPATH, or at a pre-defined URL. This was
deemed insufficient for Ajents, where our goal is to allow
objects to be created on arbitrary participating machines.
In order to utilize remote resources, Ajents users are not
required to place their class files on a WWW server nor
are they expected to have accounts on, or physical access
to all participating hosts in order to pre-load a copy of the
byte-code. Therefore, in order to ensure complete portabil-
ity we transfer the Java byte-code to the remote host at the
time of object creation. To accomplish this, Ajents requires
that all necessary byte-codes be placed into a Java archive
file (JAR), which is then transferred along with the remote
object creation request. Multiple class files are archived in
order to reduce the number of messages needed to obtain all
necessary class files (rather than using individual messages
for each class file). During migration a copy of the JAR file
is included with the object so that the target server is able
to also obtain the class files (if necessary). This is done by
extending Java’s default class loader to load class files from
other sources (e.g., the AjentsObj on the host where the
object is being created or the Ajents server on the host from
which a migrating object is being moved). Since the Ajents
class loader is just an extension of the default class loader
the same rules are applied for class loading with packages
being used to ensure that names are distinct.

3.3 Ajents Server

The role of the Ajents server is to provide a point of contact
for creating objects on the host on which the Ajents server
resides. In the same way that a client World-Wide-Web
browser is not able to access information stored on systems
that are not executing an HTTP server, Ajents is not able to

utilize resources of systems that are not running an Ajents
server. The Ajents server is responsible for security, au-
thorization, and authentication. In addition, it implements
policies that control who is permitted to create objects on
the local machine and when.

The Ajents server also keeps track of objects currently
residing on it. This allows the server to track, limit, and
move objects when resources become heavily utilized. It also
permits the server to keep track of the location of migrated
objects (this is explained in detail in Section 3.5).

3.4 Asynchronous RMI

It is commonly known that the performance of many dis-
tributed and parallel applications is hindered by network
latencies. A common technique for improving performance
is to overlap communication with computation. Existing
techniques for remote method invocation [27] cause the
execution of the requesting object to be suspended until
the method has completed. This delay is incurred regard-
less of when or if the invoking object requires the return
value. Ajents provides a means for performing asynchronous
remote method invocations, thus enabling applications to
overlap communication and computation.

In Ajents, when the user performs an asynchronous RMI,
a separate thread is created which performs the RMI (a
possible optimization would be to pre-fork a pool of threads
that would be reused, thus reducing overheads due to thread
creation). As a result, the original object is only blocked
during the creation of the thread, and thereafter continues
execution. Meanwhile, the new thread performs a regular
synchronous RMI.

To support return values, we use the concept of a future.
In essence, our Future object is a temporary receptacle for
the return value. The return value (which may be an object)
is held inside the Future object until a get () request is made
by the program. When a call to get () is made, the result
of the asynchronous RMI is returned to the calling object.
If the result is not yet available, the object will block until
the result is available.

Figure 2 contains code fragments that show how some-
one programming with Ajents would perform synchronous
and asynchronous remote method invocations. Note that
in order to support both synchronous and asynchronous re-
mote method invocations within the same object and with-
out modifying the Java language, compiler, or the Java RMI
stub compiler, we support synchronous RMI calls using the
Ajents.rmi() method and asynchronous RMI calls using
the Ajents.armi() method. Each of these methods is over-
loaded to support a variable number of arguments, up to
a predefined maximum number of arguments. Qur current
implementation supports up to ten arguments and can eas-
ily be modified to support an arbitrary but fixed number of
arguments.

In order to handle exceptions, we propagate all ex-
ceptions from an asynchronous remote method invocation

through the Future object back to the user program. This
allows the method that is processing the result of the method
invocation to handle whatever exceptions occurred (includ-
ing invalid methods or parameters). Figure 2 also shows how
the user program is notified of and handles exceptions when
getting return values from the asynchronous RMI calls. In
the case of synchronous calls the exception is propagated
back to the point where the Ajents.rmi() method is in-
voked.

3.5 Object Migration

An important function that is not readily available in many
systems designed for implementing distributed applications
is the ability to easily migrate computation, especially in
heterogeneous environments.

Migrating processes causes serious problems in a net-
work of workstations environment where multiple individual
workstations are shared among a number of users. The main
problem in such environments occurs when the owner of the
workstation desires sole usage of their workstation, only to
find that its resources are being utilized by someone else.
Current approaches to this problem include suspending the
intruding job until the user is no longer using the machine or
in rare instances migrating the process to another machine
of the same architecture.

Ajents provides a simple and relatively effective means
for migrating Java objects between different operating sys-
tems and even different architectures. Objects are permitted
to migrate themselves or to have other objects initiate their
migration. Some of the mechanisms required in order to
migrate Java objects are partially provided in current Java
implementations in the form of object serialization [26], class
loaders and the standardization of the Java virtual machine.

Ajents supports three forms of object migration: the im-
mediate migration of idle objects, the delayed migration of
executing objects, and the immediate migration of executing
objects using checkpointing and roll back.

The migration of idle objects is fairly simple since we
do not need to concern ourselves with the possibility that
they will be modified during or after migration. This can
be accomplished by using the JDK’s readObject() and
writeObject () serialization methods in combination with
socket connections. The more technically challenging aspect
of implementing migration involves ensuring that remote
method invocations, both synchronous and asynchronous,
continue to operate correctly before, during and after migra-
tion (this is discussed in more detail later in this section).

Ajents supports delayed migration, where a migration
request gets completed only once the object is idle. To ac-
complish this, anytime a method of an object is executed, a
flag is set. When a migrate call is made, it checks the flag,
and calls wait () if the flag is set. Upon completion of the
method invocation the object is idle so the flag is cleared,
and notify() wakes up the thread that invoked migrate.
Once the object is idle, we follow the same procedure as in
the case of an idle object.

Delayed migration is supported because Java does not
provide for the ability to save and restore the state of an
executing object (e.g., there is no access to the program
counter or stack). Therefore, it is not possible to fully
support the migration of actively executing objects without
modifying the implementation of the virtual machine (i.e.,
the interpreter) [22] or without preprocessing [8] the Java
source code. As a result, Ajents supports the immediate
migration of objects which are currently executing meth-

ods by using checkpointing and roll back. Ajents is able to
accomplish this by checkpointing the object before begin-
ning each remote method invocation, interrupting the exe-
cuting method when migration is requested, migrating the
checkpointed version of the object and then re-executing the
method call using the checkpointed object state. Check-
pointing involves storing the state of the object prior to a
method invocation (this is done by serializing the object and
storing it in memory), keeping track of the method being in-
voked, the parameters being passed to that method, and the
thread in which the object is executing. If a migration re-
quest is later received during the execution of a method,
the server is able to suspend execution of the thread, and
move the saved state of the object to the new host. Then
using the saved method name and parameters, the Ajents
server on the remote host continues execution of the object
by re-invoking the method that was called immediately after
checkpointing. (Issues related to checkpoint consistency are
discussed in Section 5.)

Control over whether checkpointing occurs lies in the
hands of the user program which has remotely created
the object and wishes to call its methods. The user may
choose to enable Ajents.setCheckPoint (object,true) or
disable Ajents.setCheckPoint (object,false) checkpoint-
ing for each object. Or they may wish to override the current
setting prior to individual method invocations. By default,
checkpointing is not initially activated. This flexibility al-
lows for the object to be checkpointed only at key function
calls, or for checkpointing to be avoided when consecutive
read-only functions are being executed. Since the overhead
involved in creating a duplicate copy of larger objects can
be significant, the user control over checkpointing is vital to
Ajents’ efficiency. As part of our future work we plan to in-
vestigate methods for providing the programmer with more
and finer-grained control over when checkpointing occurs
(see Section 5). Furthermore, the overhead of checkpoint-
ing is only needed (and justified) for long-running jobs. For
these cases, checkpointing occurs relatively infrequently, and
substantial roll backs can be incurred without significantly
impacting overall execution time.

We now outline each of the steps involved in migration
using checkpoint and roll back in more detail:

1. Checkpointing (making a copy of the state of an ob-
ject), is done using Java serialization techniques. This
creates a deep copy of the object, meaning all mem-
ber variables are themselves copied, rather than just
their references. Ajents does this by intercepting each
remote method invocation (at the server side) in order
to checkpoint the object before allowing the method to
execute. In addition, using reflection, Ajents is able to
store a copy of the method name and its parameters in
case the method is interrupted by a migration request
and the method invocation needs to be restarted after
a migration. Finally, Ajents stores a reference to the
thread which will be executing the method (in order
to interrupt the thread if necessary).

2. Upon receiving a migration request the Ajents server
interrupts the currently executing thread. This in-
terrupt causes an exception, which is then caught by
Ajents instead of being returned to the user. Ajents
is thus able to gain control of the execution of the
thread (i.e., suspend execution) and can then proceed
with object migration.

3. Once execution of the thread has been halted, the ob-
ject is in a static state, however, there is no way to

try {

// Make synchronous RMI call to the method setName

// Parameters:
Ajents.rmi(obj, "setName", "NewObj");
} catch (Exceptionex) { ... }

object reference, method name, and (optional) method parameter(s)

// Make asynchronous RMI calls to the method getName

Future future = Ajents.armi(obj, "getName");

// Use futures to get the results, armi exceptions are caught here.

try {
String name = (String) future.get();
} catch (Exceptionex) { ... }

Figure 2: Examples of Synchronous and Asynchronous Remote Method Invocations

determine where the thread is executing or the state
of the stack. As a result, we migrate the state of the
object as it was at the time of the last checkpoint.

4. Following migration, we re-execute the interrupted
method. This is done without user intervention,
since Ajents already has all the information needed
to restart the method invocation.

As mentioned previously, the Ajents server keeps track
of the objects currently residing on it as well as maintaining
a reference to the new home of any object that has been
migrated. The reference to the new home of the object is
maintained so that migration can be implemented in a way
that is transparent to any object that has a reference to a
remote object that has been migrated. This is in contrast to
other approaches (e.g., [25]) where the user program receives
an exception and must update any references to the remote
object that has been migrated.

Figure 3 shows the steps taken by Ajents to update ob-
ject references and ensure transparency after an object has
been migrated twice without the client’s knowledge (e.g., by
the server or another object). These steps are followed to
restart an interrupted remote method invocation, as well as
for the first remote method invoked after a third party mi-
gration. In this figure, (1) the Ajents0Obj uses its remote
reference to Obj1l on Host A to remotely invoke a method
of Obj1 that previously resided on Host B. O0bj1 had been
previously migrated twice, first to Host C and then to Host
D, where it now resides. (2) Since the reference is outdated,
the Ajents server on Host B throws a MovedException, which
returns to the originating host a new reference to what it
believes to be the new object location (Host C). (3) The
AjentsObj updates its internal remote reference and re-
invokes the remote method, using the new reference to the
object on Host C as the target. (4) Again, the reference
is outdated, and a new reference is returned, this time to
the object on Host D. Finally, the correct reference has been
found. (5) The AjentsObj updates its internal remote ref-
erence, and re-invokes the remote method of 0bj1 using the
new reference which correctly points to the new location,
Host D. Ajents does all of this internally and it is therefore
completely transparent to the user, who’s contact with the
remote object is entirely through the Ajents0Obj (i.e., refer-
ences to remote objects that have been migrated continue
to work).

Updating remote references in this fashion is a form of
lazy updating, since the references are not updated until
they are used. An eager update approach would involve up-

HostD .~

(4) new
!/ reference

(2) new

@ RMI o reference G RMI

. (3)RMI

v

Host A

Figure 3: Remote Method Invocation After Third Party Mi-

gration

dating all references to a remote object immediately upon
migration. This is not a reasonable choice for Ajents for two
reasons. First, it would require remote objects to keep track
of all objects containing references to themselves (the remote
objects). This would be difficult to maintain, in addition to
causing cycles which might degrade the effectiveness of the
garbage collection system. Second, eager updating may up-
date references that are no longer being used, thus wasting
effort.

Object migration is accessible to the user using the syn-
tax shown in Figure 4. In this example, checkpointing is
enabled for the object in order to support migration during
execution. The object is migrated, an asynchronous method
is invoked and the object is migrated a second time. The
return value is obtained from the future and a final RMI is
performed on the migrated object. This example demon-
strates that migration occurs transparently to the program-
mer. They may still use the same Ajents0bj after migration
and are unaware of whether the second migration occurred
before or after completing the asynchronous remote method
invocation.

Due to our reliance on the object serialization primitives
in Java, there are some limitations on the type of objects
which may be checkpointed and/or migrated by Ajents. Any
object which is not serializable falls into this category, and
may not be migrated by Ajents. This includes core Java API
features such as threads and the AWT. We feel this limita-
tion is reasonable since the serialization (and migration) of
threads is impossible in the current JDK, and we can find

AjentsObj obj = Ajents.new(...);

// Parameters: object, new host
Ajents.migrate(obj, sched.AvailServer());

// Turn checkpointing on
Ajents.setCheckPoint (obj, true);

// obj is checkpointed and method is invoked
Future future = Ajents.armi(obj, "methodi");

// Migrate obj, possibly before armi completes
Ajents.migrate(obj, sched.AvailServer());

resultl = future.get();

// rmi on migrated obj
result2 = Ajents.rmi(obj, "method2");

Figure 4: Example of code performing object migration.

little reason to want to migrate any part of the AWT.

4 Performance Results

In order to demonstrate the practical relevance of Ajents
we have evaluated the performance of Ajents using sev-
eral micro-benchmarks and two versions of a simple (non-
blocked) parallel application, matrix multiplication. Our
findings demonstrate that the overheads introduced in us-
ing Ajents are not prohibitive. All experiments were con-
ducted using a cluster of 8 SUN Ultra-1 workstations with
143 MHz UltraSparc CPU’s acting as Ajents servers while
another SUN Ultra was used as a client. All machines are
connected with a 10 Mbps Ethernet network. However, the
client does not share a file system with the Ajents servers
requiring class files to be remotely loaded at the time of
remote object creation or migration. All experiments were
conducted using SUN’s JDK, Version 1.1.6, which includes
a just-in-time compiler.

Table 1 shows the results of experiments conducted using
a simple (non-blocked) matrix multiplication benchmark.
While this is clearly not the most efficient implementation
of matrix multiplication, the same implementation is used
in all cases in order to fairly compare the different environ-
ments. The first two rows of this table show the sequen-
tial execution times of versions of this program written in
C and in Java (the columns show the results for different
matrix sizes in integers). We note that across all matrix
sizes the execution times of the Java version compare rea-
sonably well with results obtained using C. The Java version
is slower, by roughly a factor of 2. These results are quite
interesting when compared with previous experiments [4] in
which the difference between the C and Java versions was
much larger. This provides some evidence that, as would
be expected, moving to a just-in-time compilation environ-
ment significantly improves execution times. It is also possi-
ble that hot-spot compilation techniques will further reduce
the gap in execution times. Although the Java version is
slower, we believe that for a number of programmers and
coarse-grained applications the benefits obtained from the
ease with which Ajents programs can be implemented and
executed across a wide variety of platforms will outweigh the
costs of decreased execution times (relative to applications
implemented in C).

The third row of Table 1 shows the execution time of
the parallel version of the matrix multiplication program
when executing using one remote server. By comparing the
second and third rows of the table we see that the overheads
incurred by Ajents, in switching from a simple sequential
matrix multiply to a single-server Ajents version, is low.

The last two rows of Table 1 show the execution times
for each matrix size when using all eight servers, and the
corresponding speedups. The speedups obtained in these
experiments are quite typical of those obtained in similar
loosely coupled environments. While speedup is acceptable
for smaller problem sizes, it continues to improve as the
problem size grows, with a speedup of 7.6 obtained using 8
machines and a matrix size of 1024 x 1024 integers.

N [200 500 640 800 1024

Sequential C 4.0 67 139 280 601
Sequential Java | 7.5 131 286 574 1272

1 Server 7.7 134 292 580 1305
8 Servers 1.5 20 40 78 172
Speedup 51 6.7 73 74 76

Table 1: Sequential C, sequential Java, parallel Java execu-
tion times for 1 and 8 servers, and speedups obtained. Times
are in seconds using a simple (non-blocked) multiplication
of two NxN matrices of integers. Speedup is the time on 8
servers versus sequential Java time.

We expect that Ajents will be commonly used to dis-
tribute long-lived objects among available machines, with re-
mote execution requests occurring far more frequently than
object creation or migration requests. Thus, it is vital that
Ajents is able to perform RMI requests efficiently. Table 2
shows the results of our RMI request benchmark. A remote
method was invoked repeatedly, passing an integer array of a
specified size as a parameter. The results show the average
time to complete a single remote method invocation (and
thus differences may not be statistically significant). These
results demonstrate that while there is overhead involved in
making remote method invocations using Ajents, it is not
significantly greater than that incurred when performing a

regular Java RMI call.

Object Size (ints) [1 Tk 10k 100k

RMI - Ajents (ms) [9 11 46 400
RMI-JDK RMI (ms) |5 8 44 400

Table 2: Time to invoke an empty remote method using
the base JDK RMI and Ajents. Object size denotes the
number of integers contained in the array that is the only
data member of the object that is passed as a parameter to
the remote method.

A major feature of Ajents is the ability to migrate remote
objects. Table 3 shows the times to migrate remote objects
of various sizes. In conducting this experiment, we migrated
an object which is composed of a single integer array. The
object was migrated 64 times using 8 different machines (the
8 machines were used repeatedly in the same order). These
results were then averaged to produce the results given in
the table. We can see from these results that there is a sig-
nificant increase in cost for object migration when compared
with a remote method invocation. This can be accounted
for by a number of factors. Migrating an object requires
that an object be serialized, transfered to the target host

and then deserialized. References to the object then need
to be updated, including those needed by the Ajents server,
the client, and the garbage collector. Additionally, when
the object is migrated to a new host, class loading may be
required.

Object Size

Migration time

(nts) [1 1k 10k 100k
(ms) | 334 334 397 769

Table 3: Average remote object migration times (in millisec-
onds) to migrate on object 64 times across 8 hosts. Object
size denotes the number of integers contained in the array
that is the only data member of the object being migrated.

A key feature of Ajents is that we seamlessly integrate ob-
ject migration and the execution of remote methods. Ajents
was built to support objects which may be long-lived and
as a result might be migrated many times during their life-
times. While our previous experiments show the cost of re-
mote method invocation and object migration in isolation,
it 1s also important to consider the overheads incurred by
real applications that utilize these facilities. Therefore, we
conducted experiments in which a sequential matrix multi-
plication is run and after completing a portion of its com-
putation (in this case one eighth), all three matrices and
the computation are migrated to a new machine. This is
repeated eight times. Matrix multiplication was chosen as a
benchmark application because it is both data and computa-
tionally intensive. That is, it runs for a reasonable amount
of time but also needs a significant amount of data to be
migrated.

The results of these experiments, shown in Table 4, com-
pare the execution times of the sequential matrix multipli-
cation (done on a single server) with a sequential matrix
multiplication forced to migrate to eight different machines.
The first two rows of the table show the execution times for
different problem sizes, while the last row shows the inflation
factors for the different problem sizes (i.e., the ratio of the
execution time including the migrations over the execution
time without the migrations). The results show that even
for matrices of moderate size the overheads associated with
migrating the matrix objects a number of times does not sig-
nificantly increase the total execution time. We found these
results to be surprisingly good, especially because the com-
putations involving a 1024 x 1024 matrix of integers must
serialize, transfer and deserialize at least 12 MB of data
during each migration (4 MB for each of the three matrices,
assuming four bytes for each integer). Admittedly, these
objects are not very complex and may be faster to serialize
and deserialize than more complex objects. However, even
with an increase in object migration times the advantages
of migration will still outweigh the disadvantages for some
applications.

We consider these results to be encouraging, consid-
ering that an additional job added to the same machine
would result in an inflation factor of 2 (assuming round-
robin scheduling with no overhead).

As previously described the use of checkpointing in
Ajents enables the use of the checkpointing and roll back
form of migration. However, the checkpointing of objects
preceding a remote method invocation has an obvious neg-
ative impact on performance. Table 5 displays the results
of a simple checkpointing benchmark designed to provide a
rough idea of the costs involved in checkpointing. For this
benchmark, an empty remote method was invoked repeat-
edly on an object whose sole member variable is an array

N [200 500 640 800 1024
1 Server 7.7 134 292 580 1305
8 Servers | 20.3 165 344 666 1402
Inflation 264 1.23 1.18 1.15 1.07

Table 4: Serial matrix multiplication times (in seconds) for
NxN matrices without migration overheads on 1 server and
with migration overheads across 8 servers. Inflation is the
ratio of the time on 8 servers to the time on 1 server.

of integers (the size of this array is changed for each exper-
iment). The first two rows show the average time to com-
plete a single remote method invocation with checkpointing
enabled and without checkpointing enabled. The last row
in the table shows the time difference between these two ex-
periments. It represents the overhead added to an RMI call
when checkpointing is enabled.

Object Size (ints) [1 Tk 10k 100k
No-Checkpointing: (ms) [6 6 6 6

Checkpointing: (ms) |8 9 19 115
Checkpointing Cost (ms) [2 3 13 109

Table 5: Times (in milliseconds) to invoke an empty re-
mote method without checkpointing and with checkpoint-
ing. Object size denotes the number of integers contained
in the array that is the only data member of the object being
checkpointed. Checkpointing cost is the difference between
the checkpointing and no-checkpointing cases.

The results presented in Table 5 show that Ajents’ check-
pointing function performs in a reasonably efficient manner
and as expected the overhead increases with the size of the
object being checkpointed. While the cost of checkpointing
is a multiple of the base cost of a remote method call, we
believe that it is still within a reasonable range. Since the
costs are considerably lower than migration costs (as shown
in Table 3), the same relatively coarse grained applications
whose execution times are not significantly impacted by mi-
gration would also not be significantly impacted by check-
pointing. Qur target applications are those whose method
invocations made through Ajents will have a running time
measured in seconds and minutes (as in the matrix multiply
case), and thus the overheads due to checkpointing will not
be significant for these cases. However, checkpointing will
have a considerable impact when there are a large number
of invocations on methods with relatively short execution
times.

A potentially more prohibitive cost of checkpointing is
memory usage. Since checkpointing creates a complete copy
of an object, memory usage for the checkpointed object ef-
fectively doubles. This can be an issue when dealing with
large objects, such as matrices where object size is measured
in megabytes.

While all of our performance testing was done in a ho-
mogeneous environment, Ajents does successfully run on a
variety of platforms.

5 Discussion

We now outline some of the issues related to the current
design and implementation of Ajents.

Although the mechanisms and functionality provided by
Ajents are sufficient to support several types of parallel, dis-

tributed, and mobile applications, the system has and will
continue to evolve. The current design and implementa-
tion has been greatly influenced by our overriding goals to
produce a system that is as transparent as possible while
ensuring that we do not modify the language or use pre-
processors. In addition we want to ensure that Ajents and
applications that use Ajents are compatible with existing
Java compilers, stub compilers, and Java virtual machines.
These decisions and the choice of Java have influenced the
design, implementation and performance of our system.

Ajents’ Java compatibility is achieved by making the syn-
chronous and asynchronous RMI interface less transparent
than approaches used by SUN’s RMI [31] or JavaParty [20].
The mechanisms provided by Ajents.new(), Ajents.rmi()
and Ajents.armi() calls imply that the interface for creat-
ing and interacting with remote objects is different from the
local objects. This requires the application programmer to
keep track of which objects are local and which are remote
and to ensure that the proper interface is used for remote
objects. This may not be a large disadvantage since it may
be helpful for programmers to remember which method in-
vocations are remote when performance is an issue.

An additional disadvantage of the Ajents RMI interface
is that the method and parameters passed as parameters to
the RMI call can not be checked at compile time, nor can
the types of the parameters that are to be passed to the
specified method. As a result it is not possible to detect er-
rors that might otherwise be detected at compile time, such
as invoking a non-existent method of an object, or invoking
a method with incorrect arguments types, or an incorrect
number of arguments. Unfortunately, in Ajents such prob-
lems can only be detected at run-time (Ajents throws an
exception appropriate for the error). However, we believe
that these tradeoffs are warranted in order to maintain 100%
Java compatibility.

An alternate approach? which we plan to explore would
be to deploy a modified stub compiler that would au-
tomatically generate an additional asynchronous version
of each method within a remote object. For example,
getName async could be generated and used for asyn-
chronous calls while getName could be used for synchronous
calls. Although this would require the use of a modified stub
compiler and would require source for the classes, it would
enable signature and parameter type checking at compile
time and permit the use of ref.getName() to invoke both
local and remote methods.

As can be seen by examining the overheads incurred
when invoking remote methods (Table 2) and perform-
ing object migration (Table 3), the current implementa-
tion of Ajents is primarily useful for fairly coarse-grained
applications. Recent research [29] that makes use of
high-performance techniques for RMI and serialization has
demonstrated that significant speedups can be obtained us-
ing a number of Java applications over a cluster of wide-area
systems. The performance of Ajents will be significantly
improved by advances made in Java virtual machine im-
plementations, especially more efficient object serialization
and RMIs [12, 15, 17, 29] and improved hot-spot compila-
tion and garbage collection techniques. By deploying im-
proved serialization and RMI techniques and by tuning the
existing implementation of migration we believe that Java
(and Ajents) may some day be able to compete with MPI
implementations (provided JVM performance continues to
improve).

2This approach was suggested to us by Bill Pugh.

A potentially serious problem arises in Ajents and
in other systems which implement checkpointing for dis-
tributed and parallel applications. The problem arises when
a remote object A, invokes a method, M, of object B which
modifies that object’s state. If object A is checkpointed, then
it invokes method M of object B and it is later migrated and
restarted on a different server; A’s execution will be rolled
back to the checkpoint and continued from that point. Thus
method M of object B will be called twice (rather than once).
This is called the checkpointing consistency problem and is
a well known problem [18, 30]. One intractable approach
to ensuring checkpoint consistency would be to checkpoint
all objects that object A could possibly interact with each
time object A is checkpointed. Unfortunately, it is not possi-
ble to keep track of and checkpoint all such objects because
some objects may not be known by or controlled by Ajents
(e.g., local objects, objects that are communicated with us-
ing standard SUN RMI or using a socket).

At this point our system can be used to implement rel-
atively simple applications. In order to fully support more
serious distributed, parallel and mobile applications we are
continuing to investigate techniques for adding features and
examining issues such as: performance in wide area net-
works; finer control over checkpointing (e.g., setting check-
pointing per method); fault tolerance; remote 1/0; and im-
proved scheduling (currently scheduling is done in a round-
robin fashion). In particular, remote I/O for interactive in-
put, files and sockets is being examined by Izatt [9].

6 Summary

Ajents is a system designed to make the implementation of
parallel, distributed and mobile Java applications capable
of seamlessly utilizing heterogeneous computing resources
across an Intranet or throughout the Internet. Our imple-
mentation of Ajents currently provides simple and efficient
mechanisms for the creation of remote objects, synchronous
and asynchronous remote method invocations, as well as
support for object migration.

Our experimental results show that we are able to achieve
quite good speedup using a relatively simple implementa-
tion of a parallel matrix multiplication application. QOur
micro-benchmarks show that the overheads introduced by
our implementation do not adversely affect remote method
invocation times. In addition, we demonstrate that Ajents
is capable of migrating relatively large objects several times
without significantly impacting the execution time of objects
that are performing a non-trivial amount of computation.

Ajents is implemented as a collection of Java classes and
can be executed on any standard Java virtual machine. Ab-
solutely no modifications to the Java language are made and
no preprocessors, special compilers, or special stub compil-
ers are required. We believe that the use of standard Java
and the combination of features that Ajents supports, makes
it an effective tool for programmers writing parallel, dis-
tributed or mobile Java applications.

7 Acknowledgements

We thank the anonymous referees for their helpful comments
which have helped to improve this paper. Brecht and Izatt
wish to thank the the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada for a grant and scholar-
ship (respectively) that partially supported this research.

References

(1]

[10]

[11]

[12]

[13]

[14]

A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman.
SuperWeb: Towards a global Web-based parallel com-
puting infrastructure. In 11th International Parallel
Processing Symposium, April 1997.

E. Arjomandi, W. O’Farrell, 1. Kalas, G. Koblents, F.C.
Eigler, and G. Gao. ABC++: Concurrency and inher-
itance in C++. IBM Systems Journal, 34(1):120-136,
1995.

A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff.
Charlotte: Metacomputing on the web. In Proceedings
of the 9th Conference on Parallel and Distributed Com-
puting Systems, 1996.

T. Brecht, H. Sandhu, J. Talbot, and M. Shan.
ParaWeb: Towards world-wide supercomputing. In Fu-
ropean Symposium on Operating System Principles, Oc-

tober 1996.

P. Chan. Ajents: A parallel and distributed Java sys-
tem. Master’s thesis, York University, 1998. (in prepa-
ration).

B. Christiansen, P. Cappello, M.F. lonescu, M.O.
Neary, K. Schauser, and D. Wu. Javelin: Internet-
based parallel computing using Java. In ACM 1997
Workshop on Java for Science and Engineering Com-
putation, June 1997.

G.C. Fox and W. Furmanski. Towards Web/Java based
high performance distributed computing — an evolving
virtual machine. In Fifth IEEFE International Sym-
posium on High Performance Distributed Computing
(HPDC5), Syracuse, NY, August 1996.

S. Finfrocken. Transparent migration of Java-based
mobile agents (capturing and reestablishing the state of
Java programs). In Proceedings of Second International

Workshop on Mobile Agents (MA’98), September 1998.

M. Izatt. Babylon: A Java-based distributed object en-
vironment. Master’s thesis, York University. (in prepa-
ration).

M. Karaorman and J. Bruno. Active-rmi: Active re-
mote method invocation system for distributed com-
puting using active java objects. In TOOLS USA 1998,
August 1998.

H. Karl. Bridging the gap between distributed shared
memory and message passing. In ACM 1998 Work-
shop on Java for Science and Engineering Computa-
tion, February 1998.

V. Krishnaswamy, D. Walther, S. Bhola, E. Bomma-
iah, G. Riley, B. Topol, and M. Ahamad. Efficient im-
plementations of Java RMI. In Proceedings of the 4th
USENIX Conference on Object-Oriented Technologies
and Systems (COOTS’98), April 1998.

D.B. Lange and M. Oshima. Programming and Deploy-
ing Java Mobile Agents with Aglets. Addison Wesley,
1998.

T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison Wesley Developers Press, Sun-
soft Java Series, 1996.

10

[15]

[17]

[18]

[20]

[21]

J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal,
and A. Plaat. An efficient implementation of Java’s re-
mote method invocation. In Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP’99), May 1999.

M.O. Neary, S.P. Brydon, P. Kmiec, S. Rollins, and
P. Cappello. Javelin4++: Scalability issues in global
computing. In ACM 1999 Java Grande Conference,

pages 171-180, June 1999.

C. Nester, M. Phillippsen, and B. Haumacher. A more
efficient rmi for java. In ACM 1999 Java Grande Con-
ference, pages 152-159, June 1999.

R.H.B. Netzer and J. Xu. Neccessary and sufficient con-
ditions for consistent global snapshots. IEFE Transac-
tions on Parallel and Distributed Systems, 6(2), Febru-
ary 1995.

ObjectSpace. Voyager Core Technical 2.0 User Guide,
1998.

M. Phillippsen and M. Zenger. JavaParty - transparent
remote objects in Java. In ACM 1997 Workshop on
Java for Science and Engineering Computation, June

1997.
R. Raje, J. I. William, and M. Boyles. An asyn-

chronous remote method invocation (ARMI) mecha-
nism for Java. In ACM 1997 Workshop on Java for

Science and Engineering Computation, June 1997.

M. Ranganathan, A. Acharya, S. Sharma, and J. Saltz.
Network-aware mobile programs. In Proceedings of

USENIX’97, 1997.

R. Riggs, J. Waldo, and A. Wollrath. Pickling state in
Java. In 2nd Conference on Object-Oriented Technolo-
gies and Systems (COOTS), pages 241-250, Toronto,
Ontario, June 1996.

L.F.G. Sarmenta, S. Hirano, and S.A. Ward. Towards
bayanihan: Building an extensible framework for vol-
unteer computing using java. Concurrency: Practice

and Ezperience, 10(11-13):1015-1019, 1998.

M. Strafler, J. Baumann, and F. Hohl. Mole - A Java
based mobile agent system. In FCOOP ’96 Workshop
on Mobile Object Systems, 1996.

Sun Microsystems, Palo Alto, CA. Java Object Serial-
ization Specification, 1997.

Sun Microsystems, Palo Alto, CA. Java Remote Method
Invocation Specification, 1997.

Sun Microsystems, Palo Alto, CA. Java Plaiform 1.1
Core API Specification, 1998. http://java.sun.com /-
products/jdk/1.1/docs/api/packages.html.

R. van Nieuwpoort, J. Maassen, H.E. Bal, T. Kielmann,
and R. Veldema. Wide-area parallel computing in java.
In ACM 1999 Java Grande Conference, pages 814,
June 1999.

Y-M. Wang. Consistent global checkpoints that contain
a given set of local checkpoints. IEFE Transactions on

Computers, 46(4), April 1997.

[31] A. Wollrath, R. Riggs, and J. Waldo. A distributed

object model for Java. In 2nd Conference on Object-
Oriented Technologies and Systems (COOTS), pages
219-231, Toronto, Ontario, June 1996.

W.M. Yu and A.L. Cox. Java/DSM: a platform for
heterogeneous computing. In ACM 1997 Workshop on
Java for Science and Engineering Computation, June

1997.

11

