
IP Address Multiplexing for VEEs

Rayman Preet Singh Tim Brecht S. Keshav
University of Waterloo University of Waterloo University of Waterloo

rmmathar@uwaterloo.ca brecht@cs.uwaterloo.ca keshav@uwaterloo.ca

Abstract The number of publicly accessible virtual ex-
ecution environments (VEEs) has been growing steadily in
the past few years. To be accessible by clients, such VEEs
need either a public IPv4 or a public IPv6 address. However,
the pool of available public IPv4 addresses is nearly depleted
and the low rate of adoption of IPv6 precludes its use. There-
fore, what is needed is a way to share precious IPv4 public
addresses among a large pool of VEEs. Our insight is that
if an IP address is assigned at the time of a client DNS re-
quest for the VEE’s name, it is possible to share a single
public IP address amongst a set of VEEs whose workloads
are not network intensive, such as those hosting personal
servers or performing data analytics. We investigate several
approaches to multiplexing a pool of global IP addresses
among a large number of VEEs, and design a system that
overcomes the limitations of current approaches. We perform
a qualitative and quantitative comparison of these solutions.
We find that upon receiving a DNS request from a client,
our solution has a latency as low as 1 ms to allocate a public
IP address to a VEE, while keeping the size of the required
IP address pool close to the minimum possible.

Categories and Subject Descriptors
Networks [Network Protocols]; Networks [Network Ar-
chitectures]: Network design principles—Naming and Ad-
dressing ; Networks [Network Services]: Naming and Ad-
dressing; Networks [Network Services]: Cloud Computing

Keywords
Cloud computing, personal servers, virtual machines, IP ad-
dresses, multiplexing, IPv6, DHCP, DNS

1. INTRODUCTION
The number of public virtual execution environments

(VEEs) is growing rapidly. For example, Amazon EC2 has
maintained a steady 10% growth since 2009, surpassing
150,000 VEEs in April 2013 [1] and Rackspace has attained
similar growth [6]. Each publicly-accessible VEE needs a
public IPv4 or IPv6 address. Unfortunately, the IPv4 pool
is nearly depleted [12] and VEE providers are reluctant to
use IPv6 addresses due to the lack of widespread infrastruc-
ture to support them [2, 21, 22]. What is needed, therefore,
is a way to share a single IPv4 address amongst a set of
VEEs, much in the same way a NAT middlebox shares an
IPv4 address amongst a set of clients.

NATs have not been used for servers in the past be-
cause, unlike clients, they are “always on”. However, many

applications that run on public VEEs are infrequently ac-
cessed. Moreover, clients accessing applications on different
VEEs are often temporally uncorrelated. Examples include
per-user applications [28, 29], cloud-backed mobile applica-
tions [24, 27, 36], decentralized social networks [15, 32], and
participatory-sensing applications [16, 19, 20]. In such cases
where many VEEs have no client requests for extended pe-
riods of time, IP addresses can be reclaimed from inactive
VEEs, and allocated to a VEE that needs to serve a client
request. Specifically, we can allocate an IP address to a VEE
when a client resolves the VEE’s name and reclaim it when
the VEE is not serving any client requests, thus multiplexing
a single IP address amongst a set of VEEs.

We describe several approaches to multiplexing a pool of
IP addresses and find that no current approach is satisfac-
tory. We, therefore, design and implement a simple solution
that meets the design goals. In our testbed, this solution al-
locates IP addresses within 1 ms of a DNS request. It also
keeps the IP address pool usage very close to the minimum
possible.

The key contributions of this work are:

• A qualitative analysis of various approaches to IP ad-
dress pool multiplexing.

• The design and implementation of a mechanism to
multiplex IP addresses across VEEs using an in-VEE
agent.

• A quantitative evaluation of the proposed approach
and a comparison with alternative approaches.

2. BACKGROUND AND RELATED WORK
This section describes the background necessary for our

work. We first discuss the Dynamic Host Configuration Pro-
tocol (DHCP) [11] because it is the standard way to allocate
IP addresses to hosts. We also describe existing work on dy-
namic re-allocation of VEE resources.

2.1 DHCP
DHCP automates host configuration (e.g., allocation of

an IP address, subnet mask, and default gateway) and can
be used for the dynamic allocation of IP addresses to clients
from a pool of IP addresses. It has four common message
types. When a client first attempts to obtain its configu-
ration, it broadcasts a DHCP-DISCOVER message on the
physical subnet. One or more DHCP servers that are listen-
ing on that subnet then reply with a DHCP-OFFER mes-
sage, which contains the client’s MAC address, an IP ad-
dress, the lease period and other host-specific parameters.
A client accepts one of the offers with a DHCP-REQUEST;

ACM SIGCOMM Computer Communication Review 37 Volume 44, Number 2, April 2014

the selected server acknowledges by sending a DHCP-ACK.
The DHCP server reclaims the client’s IP address when the
lease period expires. A client attempts to renew the lease
by sending a DHCP-REQUEST message to the server be-
fore the lease expires. Leases can then be extended or ter-
minated by the DHCP server by sending a DHCP-ACK or
DHCP-NACK, respectively.

2.2 Dynamic re-allocation of VEE resources:
There has been extensive work on dynamic reallocation

of resources to VEEs. Wood et al. [37] propose an approach
to “peek-inside” a VEE to gather OS-level statistics such
as CPU, network, and memory usage, for VEE migration.
Other work has used similar approaches to detect overloaded
and under-loaded hosts, to perform resource control and pro-
visioning [30], or VEE migration [23]. Inspired by this work,
we propose the use of a VEE-resident daemon that monitors
the VEE’s network I/O and reclaims the VEE’s IP address
when it is no longer needed.

3. DESIGN GOALS
Our main design goal is to share a limited number of pub-

lic IPv4 addresses among a larger set of VEEs. This high-
level goal translates to the following subgoals:

• Multi-protocol compatibility: The solution should
support various commonly-used client-server proto-
cols, such as SMTP, POP, HTTP, SSH, IMAP, and
others. Developing and maintaining separate solutions
for each protocol is both expensive and inelegant.

• Low latency: The solution should not increase the
client request response time significantly.

• Legacy compatibility: The solution should require
no modification to existing client implementations.

• Small IP address pool: For a given number of VEEs,
the size of the required IP address pool should be min-
imized.

4. POSSIBLE SOLUTIONS
We assume that in serving clients via their public IP ad-

dresses, VEEs have uncorrelated and low duty cycles. That
is, at any instant, only a small fraction of VEEs are actively
serving clients, and VEEs are unlikely to have long-standing
dormant network connections. Note that VEE-hosted appli-
cations can always perform network I/O (such as download
or upload data to other hosts) without a public IP address
by using a private IP address on a virtual NIC. We now
describe some possible solutions, (summarized in Table 1).

NAT Application-
level

DNS
+DHCP

DNS
+agent

demux
Multi protocol X X X
Low latency X X X X
Legacy
compatibility

X X X

Small IP
address pool

X X X

Table 1: Comparison of the various existing and al-
ternative approaches for IP address multiplexing.

4.1 NAT
In this approach, all VEEs share a single IP address and

a NAT middlebox uses destination port numbers to route
client requests. This approach is extremely parsimonious in
its use of IP addresses, and supports different protocols, with
possibly low latency. Unfortunately, it is not legacy com-
patible because it requires clients to use non-standard port
numbers to access standard services. Due to this severe lim-
itation we do not pursue this approach.

4.2 Application-level demultiplexing
In this approach, each physical host is allotted one pub-

lic IP, which is shared by all its guest VEEs, and an
application-specific demultiplexing daemon forwards client
requests to VEEs using protocol-specific identifiers. For ex-
ample, a reverse web proxy can use URL suffixes of the form
http://<hostIP>/vee1 to identify the destination VEE.
This solution is plausible, and, in fact, was the first one we
implemented. However, it suffers from three critical prob-
lems. First, it requires developing and maintaining a de-
multiplexing daemon for each protocol, which is onerous.
Second, when VEEs are accessed over a secure, encrypted
link, such as SSH, the demultiplexer needs to play the role
of a man-in-the-middle, relaying data in both directions.
This can increase programming complexity significantly. A
third problem is that, because the demultiplexer must map
application-level users to VEEs, user names across VEEs
must be unique. For example, if the user name in an SSH
request is used to determine the target VEE, two VEEs can-
not have a common user name (for instance, “root”). For
these reasons, we do not advocate the use of this solution.
However we do compare its performance with the other ap-
proaches (in Section 6).

4.3 DNS triggered DHCP
In this approach (shown in Figure 1), a DNS server and a

DHCP server coordinate to dynamically assign IP addresses
to VEEs. Each VEE is assigned a domain name that clients
use to address their requests. The DNS server on the host
acts as the authoritative server for the VEEs’ domain names
and notifies the DHCP server whenever a request for a cer-
tain VEE is received. The DHCP server chooses a lease pe-
riod based on its expectation of how long it will take to
service the request and reclaims the IP address when this
lease period expires, denying DHCP requests to renew the
lease after this time (unless there was a subsequent DNS re-
quest indicating the arrival of another client request). The
DNS cache TTL is set to be the same as the lease period.
This solution is discussed in more detail in Section 5.

The challenge with this approach is determining an ap-
propriate lease period. A lease period that is too small may
cause IP address reclamation while a VEE has an active
network connection, or worse, even before the first client re-
quest arrives. VEEs may also be hosting UDP servers where
client-server communication is connectionless (this issue is
addressed in more detail in Section 7). On the other hand, a
very large lease period may lead to IP addresses remaining
allocated even when VEEs are not serving clients, thereby
increasing the size of the required IP address pool. Given
workload measurements, a suitable estimate of the lease
period can probably be determined, but this requires ex-
tensive tuning and estimation. Thus this solution achieves
multi-protocol, and legacy client compatibility but does not

ACM SIGCOMM Computer Communication Review 38 Volume 44, Number 2, April 2014

minimize the size of the required IP address pool, which is
entirely dependent on the proper choice of the lease period.

4.4 DNS with in-VEE agent
Similar to the previous approach, VEEs are each assigned

a domain name, which clients use to address their requests.
A DNS server runs on the physical host, configured as the
authoritative server for the VEEs’ domain names (shown
in Figure 2). It coordinates with an agent running within
each VEE to dynamically assign and reclaim the IP ad-
dress. When a DNS request for a VEE is received, the DNS
server allocates an IP address for the VEE and commands
the in-VEE agent to use that address. After the address is
assigned, the agent continuously polls certain characteristics
of the VEE (e.g., the number of TCP connections). It then
uses them to make an informed decision to relinquish its
IP address. To relinquish an address, the agent reclaims it
from the interface, and notifies the DNS server, which adds
it back into the pool of available IP addresses. Note that
after an IP address is assigned, the agent waits for a fixed
amount of time before monitoring the VEE’s characteris-
tics. This ensures that the address is not reclaimed before
the first client request arrives.

This approach of overcomes the limitations of the previ-
ous approaches. It is not dependent on tuning lease periods.
It supports arbitrary client-server protocols, does not limit
the number of VEEs per host, requires no client modifica-
tions, and minimizes the required IP address pool size; thus
achieving all our design goals. However, it relies on setting
the DNS cache TTL to a small value, potentially increasing
network traffic (discussed in Section 7). Note that, one of
our design goals is low latency; we present a comparative
evaluation in Section 6.

5. IMPLEMENTATION
We implement three solutions: application-level request

demultiplexing, DNS triggered DHCP, and DNS with in-
VEE agent approach. We chose Linux Containers (LXCs),
an OS-level virtualization solution for creating VEEs run-
ning Linux v3.2. OS-level virtualization solutions incur a
smaller overhead than other solutions (para-virtualized or
full-virtualization) [17,18,31,33–35]. Other examples of OS-
level virtualization solutions are Linux vServer, OpenVZ,
FreeBSD Jails, and Solaris Zones.

5.1 Application-level demultiplexing
We implement this approach to support VEE-hosted web

applications. Each VEE is assigned a name and hosts an
Apache v2.4.6 web server. Each VEE is also assigned an in-
ternal IP address using the veth network device [14], con-
nected using the Linux software bridge [4] on the host.
The host machine has a single NIC, which has an assigned
public IP address. A proxy server receives web requests
from clients, and uses the URL to determine the target
VEE. Clients prefix the URL with the VEE name, e.g.,
/vee1/index.html. The proxy server forwards the web re-
quests to the respective VEE using its internal IP address,
and relays responses back to the clients.

5.2 DNS triggered DHCP
We implement, from scratch, a combined DNS and DHCP

server as shown in Figure 1, which runs on the host. Each

DNS
Reply

Host Machine

DHCP
Server

VEE 1

DHCP Client

DNS
Server

VEE 2
DHCP Client

VEE 3
DHCP Client

VEE n
DHCP Client

DNS
Query

Figure 1: IP address multiplexing using DNS trig-
gered DHCP

DNS
Reply

Host Machine

VEE 1

 VEE 2
Agent

VEE 3

VEE n

DNS
Query

Agent

Agent

Agent

DNS
Server

Figure 2: IP address multiplexing using DNS with
in-VEE agent

VEE runs dhclient [10], a DHCP client implementation bun-
dled in Linux distributions like Ubuntu and Fedora.

Clients use VEEs’ domain names to address their requests,
which causes DNS queries, handled by the authoritative
DNS server running on the host.

Figure 3 illustrates the process of IP address assignment.
The VEE’s DHCP client periodically broadcasts a DHCP-
DISCOVER to which the DHCP server does not respond.
When a DNS query is received, the DNS server allocates an
available IP address to the corresponding VEE. Then the
DHCP server sends a DHCP-OFFER message to the VEE,
as a response to the latest DHCP-DISCOVER message. The
DHCP lease period is set to a predefined value. The DHCP
server confirms the allocation by sending a DHCP-ACK in
response to the subsequent DHCP-REQUEST sent by the
VEE. The server waits until the IP address is assigned, and
sends the DNS reply to the client.

Figure 4 illustrates the process of address reclamation. At
the end of the lease period (or typically 1-2 seconds prior),
a VEE’s DHCP client attempts to renew its IP address by
sending a DHCP-REQUEST. The DHCP server responds
with a DHCP-NACK and the IP address is reclaimed and
added to the available address pool. This prompts the client
to transmit a DHCP-DISCOVER message, which is ignored
by the server, causing re-transmissions by the DHCP client,
with a randomized exponential backoff (which are also ig-
nored, as shown in Figure 3). The DHCP server stores the

ACM SIGCOMM Computer Communication Review 39 Volume 44, Number 2, April 2014

IP assigned

DNS Reply (IP) DHCP-ACK

DHCP-OFFER
DNS Query

DHCP-DISCOVER

DHCP-DISCOVER

DHCP-DISCOVER
DNS + DHCP Server DHCP Client (VEE)

DHCP-REQUEST

Figure 3: IP address assignment in the DNS trig-
gered DHCP solution.

End of lease-period

DHCP-DISCOVER
DHCP-DISCOVERDHCP-DISCOVER

DHCP-NACK

IP reclaimed

DHCP-DISCOVER

DHCP-REQUEST
DNS + DHCP Server DHCP Client (VEE)

Figure 4: IP address reclamation in the DNS trig-
gered DHCP solution.

transaction ID of the latest DHCP-DISCOVER message re-
ceived, which is used while assigning addresses by respond-
ing with a DHCP-REQUEST.

If a DNS query for a VEE which has already been allo-
cated an IP address is received, the lease period for that
VEE is incremented. The DHCP server allows the VEE to
renew its address until this updated lease period expires.
Any DHCP-REQUEST messages that the VEE sends for
renewal are responded to with DHCP-ACKs.

A hash table is used to maintain the mapping between a
VEE’s name and its MAC address, IP address (if assigned)
and lease expiry timestamp. This hash table is updated
whenever an address is assigned, reclaimed, or renewed. A
second hash table maintains the mapping between VEEs’
MAC addresses and latest DHCP-DISCOVER transaction
ID. This ID is used to relate the DHCP-OFFER with the
latest DHCP-DISCOVER at the time of address allocation
(shown in Figure 3).

A proposed DHCP Reconfigure extension [8, 9] has
recently introduced a unicast DHCP-FORCERENEW
message. Using this message a server can force a DHCP
client to renew its network configuration by sending a
DHCP-REQUEST. In our system the DHCP server could
reclaim an IP address by sending a DHCP-FORCERENEW
to a VEE, and responding with a DHCP-NACK to
the subsequent DHCP-REQUEST. Unfortunately, this
proposed extension is absent in existing DHCP client
implementations. It relies on the DHCP Authentication
extension [7], which is also absent in existing DHCP client
implementations. Thus, DHCP-FORCERENEW is not a
viable alternative mechanism.

5.3 DNS with in-VEE agent
In this solution, we implement a stripped-down DNS

server as shown in Figure 2, which runs on the host. An
agent runs in each VEE as a daemon, to assist the host with
the dynamic allocation and reclamation of IP addresses.
Named pipes (one per VEE) are created on the host, and
are mounted to a fixed location in the VEEs’ file system
using Linux bind mounts [5]. The named pipe is accessible
within the VEE, which the agent reads. The DNS server
sends commands to the VEE by writing them to the named
pipe, and the agent reads and acts on them.

When a DNS query for a VEE is received, the DNS server
allocates an available IP address to that VEE. Subsequently,
it sends a “setIP” command (along with the IP address) to
the VEE’s agent, which configures its non-loopback interface
(eth0) with that IP. The DNS server then sets the DNS
cache TTL to zero and sends a DNS reply to the client. The
agent then begins to monitor the VEE’s network connections
using the /proc interface every 100 ms. Note that, the agent
must wait for at least one VEE-client round trip time before
relinquishing the IP address to ensure that the IP address
is not reclaimed before the first client request arrives at the
VEE. A hash table in the DNS server maintains the mapping
between a VEE’s name and its MAC address, IP address (if
assigned) and last DNS query timestamp. The DNS server
uses this hash table to answer DNS queries, and updates it
whenever an address is assigned or reclaimed.

The agent observes the number of established TCP con-
nections (under /proc/net/ip conntrack) every 100 ms 1,
and implements a simple scheme to decide when to relin-
quish the IP address. The address is relinquished when after
n consecutive observations, the number of established TCP
connections is zero. The agent performs a two-phase com-
mit with the DNS server to withdraw the IP, and update the
DNS server’s hash table. This ensures consistent resolution
of DNS queries while the IP address is being reclaimed.

In our current VEE and agent implementations the ad-
dress assignment latency is very small, allowing us to set
n = 1, i.e., addresses get reclaimed as soon as there are no
established TCP connections. Other values of n can make
address reclamation less aggressive.

6. EVALUATION
We now evaluate and compare the three different ap-

proaches described above. VEEs are hosted on a machine
with one AMD Phenom quad core 3.4 GHz processor, with
8 GB RAM. Linux Containers (LXC) [3] are used for cre-
ating the VEEs. A second machine with an Intel Core 2
Duo 2.4 GHz processor and 4 GB of RAM is used to host
the clients. The two machines are connected using a 1 Gbps
switch. Each VEE is assigned a static internal IP address
using the veth [14] network device (bridged with the host’s
Ethernet interface using the Linux software bridge). In addi-
tion, each VEE is assigned a second interface which is used
to assign and reclaim public IP addresses to the VEEs. VEE
processes can perform network I/O even when the public IP
address has been reclaimed, using the private IP addresses.

1This interval can be tuned to balance aggressiveness of
reclamation and measurement overhead.

ACM SIGCOMM Computer Communication Review 40 Volume 44, Number 2, April 2014

6.1 Microbenchmarks
We create 10 VEEs on the host. Ten clients make requests

to their assigned VEEs sequentially and record the latency
observed. There is a delay of 5 seconds between two client
requests, i.e., at t=0, the first client makes a request to
the first VEE, at t=5, the second client makes a request to
the second VEE, and so forth. We use “ping” to measure
round trip times, and httperf to measure the time required
to download a one byte file from a VEE’s web server.

Client latency: Table 2 shows the ping and file-download
latencies for the three solutions. We compare the client la-
tencies against those where each VEE is assigned a static
public IP. We observe that the application-level demultiplex-
ing solution incurs a delay overhead of about one millisecond
for web downloads, whereas DNS-triggered DHCP incurs an
overhead of about one hundred milliseconds (both for ping
and file download). This is because the DHCP based solu-
tion involves two rounds of message exchanges between the
server and client (DHCP-OFFER and DHCP-ACK). In con-
trast, DNS with in-VEE agent, has lower latency than these
approaches, and is comparable to the case where VEEs have
static public IP addresses.

Ping 1 Byte download
Application-
level

NA 2.05 ± 0.65

DNS+DHCP 109.6 ± 3.12 110.56 ± 2.46
DNS+agent 0.47 ± 0.13 1.26 ± 0.07
Static public
IP addresses

0.27 ± 0.05 0.95 ± 0.12

Table 2: Client latencies (in ms) observed in the
different multiplexing solutions. All values reported
with one standard deviation across 20 repetitions.

Size of required IP address pool: Figure 5 shows the
number of IP addresses used during the course of an ex-
periment, where each client makes one request to one VEE.
Since there is a delay of five seconds between the 10 succes-
sive client requests, the first 45 seconds result in the allo-
cation of 10 IP addresses in the case of the DNS-triggered
DHCP. As time progresses, IP addresses are reclaimed when
the VEEs’ lease period expires, eventually leading to all IP
addresses being reclaimed. We show results for three differ-
ent lease periods of 15, 30 and 60 seconds. Note that, at any
instant in time during the experiment, there is at most one
client request in progress. With the in-VEE agent, IP ad-
dresses get reclaimed soon after the number of established
TCP connections falls to zero. Hence, in this solution there
is at most one IP address in use at any instant during the
experiment, matching the clients’ request pattern.

In a second experiment, we configure the 10 clients to
make simultaneous requests. The time period between suc-
cessive requests of each client is distributed exponentially
with a mean of 15 seconds. Figure 6 compares the number
of IP addresses used during the experiment for the DNS-
triggered DHCP, and DNS with in-VEE agent solutions.
The lease period for the DHCP is set to the mean of the
exponential distribution, i.e., 15 seconds. We observe that
the in-VEE agent solution requires a smaller address pool
than the DNS-triggered DHCP solution for the given num-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 10 20 30 40 50 60 70 80 90 100 110

N
u

m
b

er
 o

f
IP

 a
d

d
re

ss
es

 i
n

 u
se

Time (seconds)

DNS+DHCP 60 sec
DNS+DHCP 30 sec
DNS+DHCP 15 sec

DNS+agent

Figure 5: Number of IP addresses in use for DNS
triggered DHCP, and DNS with agent solutions.

ber of VEEs. No change is observed in client latency when
compared with the previous experiment.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 30 60 90 120 150 180 210

N
u

m
b

er
 o

f
IP

 a
d

d
re

ss
es

 i
n

 u
se

Time (seconds)

DNS+DHCP
DNS+agent

Figure 6: Number of IP addresses in use for expo-
nential client inter-arrival times.

7. DISCUSSION
For all the three approaches that we evaluated, the la-

tency overhead is only incurred by the first request in a client
session. Thus, for all the solutions, the performance of long-
lasting client-server sessions (e.g., those lasting 10 seconds or
longer) is affected by less than 1%. Of the three solutions,
however, only the in-VEE agent based solution minimizes
the size of the required IP address pool, because it can di-
rectly monitor IP addresses that are being used by VEEs. It
allows for a wide variety of address reclamation policies to
be applied. In contrast, a DHCP server must somehow set
the lease period to the anticipated duration for which a VEE
will be serving clients. To alleviate this problem, a hybrid
approach may be used, where the DHCP client coordinates
with the agent, and releases the DHCP lease voluntarily if
there is no network activity.

Our IP address multiplexing approach will never reclaim
an IP address from a VEE as long as it has at least one ac-
tive TCP connection, even if the DNS TTL associated with

ACM SIGCOMM Computer Communication Review 41 Volume 44, Number 2, April 2014

that connection has expired. Some clients may cache the IP
address in a DNS response for use with a subsequent TCP
connection request. If this happens within the TTL of the
DNS response, our solution will work correctly. However, if
a client were to use the cached IP address after the TTL
expiry (which is deprecated), our solution may not work,
because the IP address may have been reclaimed and re-
assigned to another VEE. In this situation, it is up to the
application to reject spurious requests.

The situation is more difficult with UDP packets, in that
our in-VEE agent cannot determine whether future UDP
packets will be sent to this server: unlike TCP, where there
is connection state, UDP has no notion of a ‘connection.’ In
this case, our solution works correctly only if clients obey
DNS TTL values when sending a UDP packet. If a client
were to cache an IP address beyond the DNS TTL (a rare
event, we hope), the UDP packet could be delivered to an
incorrect VEE, and, as with TCP, it is up to the application
to reject spurious requests. This problem is similar to the
problem of using UDP to reach devices behind NAT boxes.

We have assumed that the VEEs’ clients generate work-
loads such that only a relatively small subset of VEEs per
machine are simultaneously serving clients. If this assump-
tion is violated, it may be alleviated by load balancing re-
quests across multiple hosts, diverting requests to the least-
loaded physical server, and migrating the target VEE to that
server. Existing work has demonstrated fast live-VEE mi-
gration and cloning [25,37]. Process migration solutions [13]
promise the same for OS-virtualized solutions. Such work
complements our approach and makes load balancing and
address multiplexing possible. If the IP address pool is ex-
hausted, it is easily detected by the DNS server. It could then
delay its response in the hope that an IP address becomes
available within a reasonable amount of time. Additionally,
it could notify a system administrator.

Our approach results in a small increase in DNS traffic be-
cause we need to ensure that DNS responses are not cached
indefinitely. It is possible to trade-off the IP address pool
size for higher DNS cache TTL.

An in-VEE agent provides other possibilities. For in-
stance, in-addition to IP address reclamation, idling VEEs
can be turned off or “frozen” [26] to reclaim system re-
sources, leading to higher level of VEE consolidation. We
plan to investigate theses directions in future work.

We expect that address multiplexing will not be required
once IPv6 reaches mass adoption. However, it is difficult to
predict when that will occur and in the meantime this is a
viable solution to the problem of addressing large numbers
of VEEs that are not all simultaneously active.

8. CONCLUSIONS
We address the problem of multiplexing a pool of IPv4

addresses among a comparatively large number of low duty-
cycle VEEs (used for hosting many applications). We evalu-
ate possible approaches and find existing solutions to be in-
adequate. We design and implement an in-VEE agent based
solution, which meets the design goals of incurring a low
latency overhead, being legacy-compatible, and minimizing
the required IP address pool size. We demonstrate the small
latency overhead of our in-VEE agent-based solution, while
using an off-the-shelf implementation for OS-level virtual-
ization, and we believe that our approach is extensible to
other virtualization solutions.

9. REFERENCES
[1] Amazon Web Services growth unrelenting.

http://news.netcraft.com/archives/2013/05/20/
amazon-web-services-growth-unrelenting.html.

[2] IPv6 adoption statistics.
http://www.google.com/ipv6/statistics.html.

[3] Linux Containers. http://lxc.sourceforge.net/.

[4] Linux Ethernet Bridge.
http://http://www.linuxfoundation.org/collaborate/
workgroups/networking/bridge.

[5] Mount option–MS BIND.
http://man7.org/linux/man-pages/man2/mount.2.html.

[6] Rackspace Adding 50 physical servers per day.
http://www.datacenterknowledge.com/archives/2013/08/
12/rackspace-adding-servers-per-day/.

[7] RFC 3118: Authentication for DHCP Messages.
http://tools.ietf.org/html/rfc3118.

[8] RFC 3203: DHCP reconfigure extension.
http://http://tools.ietf.org/html/rfc3203/.

[9] RFC 6704: Forcerenew Nonce Authentication.
http://http://tools.ietf.org/html/rfc6704/.

[10] The Internet Systems Consortium DHCP Client.
http://linux.die.net/man/8/dhclient/.

[11] Dynamic Host Configuration Protocol.
http://www.ietf.org/rfc/rfc2131.txt, 1997.

[12] Free Pool of IPv4 Address Space Depleted.
http://www.nro.net/news/ipv4-free-pool-depleted,
2011.

[13] Checkpoint/Restore In Userspace.
http://criu.org/Main_Page, 2013.

[14] S. Bhattiprolu, E. W. Biederman, S. Hallyn, and
D. Lezcano. Virtual servers and checkpoint/restart in
mainstream Linux. SIGOPS Operating Systems Review,
2008.

[15] R. Cáceres, L. Cox, H. Lim, A. Shakimov, and
A. Varshavsky. Virtual individual servers as
privacy-preserving proxies for mobile devices. In Proc. of
ACM MobiHeld, 2009.

[16] S. Chakraborty, Z. Charbiwala, H. Choi, K. R. Raghavan,
and M. B. Srivastava. Fast track article: Balancing
behavioral privacy and information utility in sensory data
flows. Pervasive and Mobile Computing, 2012.

[17] V. Chaudhary, M. Cha, J. Walters, S. Guercio, and
S. Gallo. A comparison of virtualization technologies for
hpc. In Advanced Information Networking and
Applications (AINA), 2008.

[18] J. Che, C. Shi, Y. Yu, and W. Lin. A Synthetical
Performance Evaluation of OpenVZ, Xen and KVM. In
Proc. of IEEE APSCC 2010.

[19] H. Choi, S. Chakraborty, Z. M. Charbiwala, and M. B.
Srivastava. Sensorsafe: a framework for privacy-preserving
management of personal sensory information. In Proc. of
VLDB, 2011.

[20] D. Christin, A. Reinhardt, S. S. Kanhere, and M. Hollick.
A survey on privacy in mobile participatory sensing
applications. Journal of Systems and Software, 2011.

[21] L. Colitti, S. H. Gunderson, E. Kline, and T. Refice.
Evaluating IPv6 adoption in the Internet. In PAM, 2010.

[22] Czyz, Jakub and Allman, Mark and Zhang, Jing and
Iekel-Johnson, Scott and Osterweil, Eric and Bailey,
Michael. Measuring IPv6 Adoption. Technical report,
TR-13-004, ICSI, 2013.

[23] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper.
Resource pool management: Reactive versus proactive or
let’s be friends. Computer Networks, 2009.

[24] S. Goyal and J. Carter. A lightweight secure cyber foraging
infrastructure for resource-constrained devices. In Proc. of
WMCSA, 2004.

[25] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. Snowflock: rapid virtual machine

ACM SIGCOMM Computer Communication Review 42 Volume 44, Number 2, April 2014

cloning for cloud computing. In Proc. of EuroSys, 2009.

[26] P. B. Menage. Adding Generic Process Containers to the
Linux Kernel. In Linux Symposium. Google Inc., June 2007.

[27] E. Miluzzo, R. Cáceres, and Y.-F. Chen. Vision:
mclouds-computing on clouds of mobile devices. In Proc. of
the third ACM workshop on Mobile cloud computing and
services, 2012.

[28] R. Mortier, C. Greenhalgh, D. McAuley, A. Spence,
A. Madhavapeddy, J. Crowcroft, and S. Hand. The Personal
Container, or Your Life in Bits. Digital Futures, 2010.

[29] M. Mun, S. Hao, N. Mishra, K. Shilton, J. Burke,
D. Estrin, M. Hansen, and R. Govindan. Personal data
vaults: a locus of control for personal data streams. In
Proc. of ACM CoNext, 2010.

[30] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal,
Z. Wang, S. Singhal, and A. Merchant. Automated control
of multiple virtualized resources. In Proc. of Eurosys ’09.

[31] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin.
Performance evaluation of virtualization technologies for
server consolidation. Technical report, HP, 2007.

[32] A. Shakimov, H. Lim, R. Caceres, L. Cox, K. Li, D. Liu,

and A. Varshavsky. Vis-a-vis: Privacy-preserving online
social networking via virtual individual servers. In Proc. of
COMSNETS, 2011.

[33] S. Soltesz, M. Fiuczynski, L. Peterson, M. McCabe, and
J. Matthews. Virtual doppelgänger: On the performance,
isolation, and scalability of para-and paene-virtualized
systems, 2006.

[34] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and
L. Peterson. Container-based operating system
virtualization: a scalable, high-performance alternative to
hypervisors. In Proc. of Eurosys, 2007.

[35] S. Sukaridhoto, N. Funabiki, T. Nakanishi, and
D. Pramadihanto. A comparative study of open source
softwares for virtualization with streaming server
applications. In IEEE ISCE, 2009.

[36] A. Wolbach, J. Harkes, S. Chellappa, and M. Satyanarayan.
Transient customization of mobile computing
infrastructure. In Proceedings of MobiVirt, 2008.

[37] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif.
Black-box and gray-box strategies for virtual machine
migration. In Proc. of NSDI 2007.

ACM SIGCOMM Computer Communication Review 43 Volume 44, Number 2, April 2014

