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SUMMARY

Babylon is a collection of tools and services that provide a 100% Java-compatible environment for
developing, running and managing parallel, distributed and mobile Java applications. It incorporates
features such as object migration, asynchronous method invocation, and remote class loading, while
providing an easy-to-use interface. Additionally, Babylon enables Java applications to seamlessly create
and interact with remote objects, while protecting those objects from other applications by implementing
access restrictions and separate namespaces. The implementation of Babylon centers around dynamic
proxies, a feature first available in Java 1.3, that allow proxy objects to be created at runtime. Dynamic
proxies play a key role in achieving the goals of Babylon. The potential cluster computing benefits of
the system are demonstrated with experimental results, which show that sequential Java applications can
achieve significant performance benefits from using Babylon to parallelize their work across a cluster of
workstations. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Java language [1] has many features that facilitate distributed systems programming. Java’s
built-in security, threading, and dynamic class loading support can greatly simplify the development
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of distributed applications. Furthermore, Java applications are compiled into a machine-
independent representation called bytecodes, which can be run on any machine that runs the
Java virtual machine (JVM). Java also supports remote method invocation (RMI), which can hide
much of the complexity of communication with objects residing in other JVMs, possibly on other
machines.
Nevertheless, Java and Java RMI do not include support for many important features for dis-

tributed object programming, such as dynamic remote object creation, asynchronous remote method
invocation, remote object migration, and remote object administration facilities.
Babylon version 2.0 (simply ‘Babylon’ for the rest of this paper) overcomes these limitations

by providing programmers with Java classes and interfaces for remote object creation, interaction
and administration [2–4]. Babylon contributes several new features and approaches in the area of
Java-based distributed and parallel systems without the use of special Java language extensions,
preprocessors or compilers.

• Babylon provides a general programming model for distributed objects that can be used to
efficiently implement a wide variety of applications with varying communication and structural
needs.

• Babylon uses dynamic proxy objects in Java to provide transparent access to remote worker
objects. Clients can use these dynamic proxies to invoke methods on worker objects using the
standard Java method invocation syntax.

• Babylon uses a novel asynchronous method invocation technique based on asynchronous
tickets, implemented with dynamic proxies. Method invocations using asynchronous tickets
are syntactically identical to local method invocations, but are executed asynchronously. These
tickets allow both synchronous and asynchronous remote method invocations to co-exist in
an application without requiring special invocation syntax.

• Babylon provides two forms of remote object creation. Clients can create a new remote
object instance based only on a programmer-specified class name, or take an existing lo-
cally created object and turn it into a remote object. Unlike many existing distributed sys-
tems, Babylon also supports nested remote object creation and nested remote object
invocation.

• Babylon supports remote class loading, which means that clients do not need login access
to the machines that host their remote objects. Unlike many existing distributed systems,
Babylon also allows the execution of remote objects from many different clients simultane-
ously. Furthermore, objects and classes are not shared with other clients unless explicitly made
available.

• Babylon supports the migration of idle remote objects between remote hosts. It also provides
a novel form of migration called safe-point migration that can be used to migrate executing
remote objects using a checkpointing and rollback protocol.

• Babylon provides basic programmer-controlled fault tolerance via a client-initiated check-
pointing mechanism that enables clients to write checkpoints of remote objects to disk and
load these checkpoints back onto a different server in the event of a failure.

• A Babylon server interface enables server administrators to view which remote objects are
running on a server and migrate them to a different server if desired. The interface also provides
basic server metrics and server thread information.
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Babylon meets its implementation goals by using dynamic proxies, a new feature introduced
in Java 1.3, that allow proxy objects to be created at runtime. Dynamic proxies can fulfill all of
the same requirements as proxies generated by special stub compilers, such as rmic for Java
RMI, but without the extra compilation tools and steps. These proxies are used to support remote
method invocation and remote object creation. An important benefit of using dynamic proxies is
that they reduce the requirements needed for a class to produce remote objects compared with
standard Java RMI. This makes it possible to create remote objects from classes where source code
is not available, including the Java standard class library, provided the remaining requirements
are met.
Babylon provides all of these features while maintaining 100% Java compatibility, and can be

used on any platform that supports a version of the JVM that is 1.3 or newer. We believe that
the performance results and the combination of features provided in Babylon make it a powerful
system for distributed application developers.
This paper is primarily a summary of [2] and combines and expands upon the two shorter papers

[3,4]. It is organized as follows. Section 2 discusses background and related research. Section
3 describes the overall system architecture of Babylon, and Section 4 describes the important
features of Babylon using a two-dimensional heat diffusion program as a running example. The
performance results for two applications are presented in Section 5. The paper concludes with
Section 6.

2. BACKGROUND AND RELATED WORK

2.1. Related research projects

There are a large number of commercial and academic Java-based distributed computing projects in
various stages of development. The objectives and underlying technologies of each of these projects
vary significantly. Some focus on the emerging grid, while others are designed for very specialized
groups of computational problems.

2.1.1. History of Babylon

Much of the design for the original implementation of Babylon [5], referred to here as Babylon
v1.0, came from experiences with Ajents [6] and ParaWeb [7]. Babylon v1.0 built on these systems
to provide mechanisms for remote object creation, migration, and remote I/O, but lacks a flexible
mechanism to create and interact with remote objects. Babylon v1.0 also suffers from deficiencies
in other key areas such as remote class loading and object migration. However, the most serious
drawback of Babylon v1.0 is its reliance on a non-standard remote method invocation interface
that resembles method invocation with Java reflection. This interface is awkward to use and error
prone because it prevents normal compile-time checks, such as invoking a non-existent method,
passing an incorrect number of arguments to a method, or passing arguments of the wrong type.
Examples of synchronous and asynchronous remote method invocations, using explicit futures [8],
in Babylon v1.0 are shown in Figure 1. The second version of Babylon, described in this paper,
builds on the strengths of Babylon v1.0 and addresses most of the shortcomings described above.
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(a) (b)

Figure 1. Babylon v1.0 remote method invocation, calling obj.ask(question): (a) synchronous remote
method invocation and (b) asynchronous remote method invocation.

2.1.2. Programming model and implementation

There are three aspects to invoking methods in a distributed object system:

• the mechanism for invoking remote methods, whether synchronous or asynchronous;
• the problem of distinguishing synchronous and asynchronous method calls; and
• how to obtain the results of asynchronous calls.

We will examine various approaches to each of these aspects.

Method invocation: There are two basic options for invoking methods in a distributed object
system. The first is a reflective interface, where the user specifies the constituent parts of a method
call and the system invokes the correct remote method. The second is a proxy-based scheme, where
methods are invoked on placeholder objects local to the client. The proxy then invokes the correct
remote method. The proxy-based scheme can be further broken down into two options based on
how the proxy objects are created. Static proxies are generated by a special stub compiler at compile
time, based on information supplied by the developer. Dynamic proxies are constructed on demand
at runtime. As of version 1.3, Java has built-in facilities for creating dynamic proxies, which are
discussed in detail in Section 2.2.
Many distributed object systems, especially those predating dynamic proxies in Java, relied on

either reflective interfaces or static proxies. For reflective interfaces, the most common approach
was to specify the name of the remote method along with an array of arguments [5–7,9–12]. One
exception is Reflective RMI [13], which uses descriptor objects to specify the method signature
and parameters for a method call in a more structured way. A reflective interface has the advantage
of not requiring a stub compiler or remote interfaces, making it simpler to create remote objects.
However, it suffers from the disadvantages noted above for Babylon v1.0.
Other systems use statically generated proxies. Since Java has a remote method invocation facility,

the existing stub compiler (rmic) is normally used. Static proxies require the classes that may create
remote objects to be identified during design since it is not feasible to generate stubs for all classes.
Further, most static proxy systems require that these classes export a remote interface for clients.
Static proxies add an extra step to the compilation process, but in return provide a useful abstraction
for calling remote methods. Remote calls are syntactically identical to local calls since they appear
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as local calls on proxy objects. Furthermore, proxies allow the compiler to verify that such calls
are done correctly.
Some new distributed objects use dynamically generated proxies created at runtime. These proxies

were used in the implementation of Babylon, RMIX [14], and Java ARMI [15]. Before the advent
of dynamic proxies, systems such as ProActive [16,17] implemented their own equivalent facility.
Dynamic proxies are attractive because they can reduce the requirements for creating classes that
produce remote objects compared with normal Java RMI [4]. They also obviate the need for
extra stub compilers and the need to identify classes that can create remote objects at design
time.
Babylon uses the dynamic proxy facility in Java to create proxies for remote objects at runtime.

This allows Babylon to meet its goals of complete Java compatibility without requiring extra
preprocessing; not even the rmic stub compiler is needed. In addition, Babylon reduces the set
of requirements for creating classes that can produce remote objects compared with normal Java
RMI [4]. A class need only implement an interface exporting client methods to produce remote
objects. This interface does not include any references to remote methods or exceptions as needed
in Java RMI; a standard Java interface for the class is all that is needed. In addition, the class must
be serializable if objects are to be migrated or exported. As long as these requirements are met,
Babylon can create remote objects from a class even if the code is not available.

Asynchronous method invocations: The basic implementation of asynchronous remote method
invocation in Java, launching a synchronous Java RMI in a separate thread and synchronizing with
futures, was first described in [18] and has been used extensively since then.
One serious problem that has plagued distributed object systems is allowing both synchronous

and asynchronous remote method invocations to co-exist in the same program. The difficulty is in
identifying which semantics to apply for a given method call. Reflective systems can simply use
a different library method for different calls, as done in Babylon v1.0 (see the Babylon.rmi()
versus Babylon.armi()method calls in Figures 1(a) and (b)).
For systems based on proxies, allowing synchronous and asynchronous remote method invo-

cations to co-exist is more difficult. One strategy is to have both synchronous and asynchronous
interfaces for an object [14]. The asynchronous interface can be identified by requiring its name to
follow a specific convention, and the method name can even encode more information about the de-
sired method invocation semantics (asynchronous, asynchronous with callback or one-way remote
method invocation). It is possible to implement this strategy with dynamic Java proxies, without
extra preprocessing stages, by using Java reflection to determine whether the invoked method exists
in an asynchronous interface for the remote object [14]. The main weakness with this approach is
that the user must be careful to obey the expected naming conventions; errors cannot be caught until
runtime. Unfortunately, method signatures change slightly for different interfaces. For example, an
asynchronous method must return a future object and not the original return type. This property
makes it difficult to get these conventions correct. Other systems use extra keywords or language
constructs [15,19–22], which require an extra preprocessor or a new compiler. Yet others use im-
plicit rules, based on the method return type and the presence of checked exceptions, to decide on
the semantics to use for a method call [16]. Implicit rules add an extra cognitive burden to the
developer, who must now be aware of how these rules will affect the execution of their
application code.
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Babylon uses a novel mechanism called asynchronous tickets to allow both forms of remote
invocations to co-exist. These tickets are a different type of dynamic Java proxy. Now, the choice
of synchronous versus asynchronous method invocation is dictated by the kind of proxy object on
which the client invokes the method, as we will explain later. These tickets use dynamic Java proxies,
which preserve the benefits of proxies but do not require language extensions, preprocessing tools,
or class and interface naming conventions.

Obtaining asynchronous results: Once an asynchronous method is launched, a mechanism is
required to enable the programmer to obtain its results, either the return value or a thrown exception.
The most common approach is to have asynchronous methods return a future [8], an object that

represents the outstanding results of an asynchronous remote method call. This future is returned
immediately, before the remote method executes. When the future is accessed (or resolved), by
calling a method on it, the future checks whether the remote method has returned its results. If not,
the method call is blocked until the result is available.
The use of futures introduces a subtlety in application code. The programmer must separate

asynchronous calls from accesses to the results to achieve parallelism. This is not a natural style of
programming and generally requires that legacy code be modified before it can be used to achieve
good performance. However, it is interesting to note that failing to separate asynchronous calls from
result accesses introduces only a performance problem and not a correctness problem; the program
will run correctly, but with either little speedup or possibly even a slowdown [23].
There are two forms of futures. With explicit futures, similar to those used in Babylon, asyn-

chronous methods return a future object in place of the original return type. This future object
must be explicitly resolved using a method call to obtain method results. Explicit futures make it
difficult to reuse existing code since the return types of methods are changed and require additional
resolution code. With transparent futures, asynchronous methods appear to return their normal type.
However, they instead return a proxy that encapsulates the results. When a method is invoked on
the transparent future, the proxy blocks waiting for results. Transparent futures avoid the need for
explicit resolution but introduce additional subtleties. For example, a method cannot return null
in such a system because a future proxy is always returned; a method must always return a result
object, where instance variables in that object must then contain any return values [24]. Transparent
futures must also respond correctly to identity operators such as == and instanceof [25]. This
is complicated by the fact that a future is a separate object of a different class than the actual return
type; hence, these operators may return unexpected results that violate transparency and expose the
future to the programmer. An analysis and transformation system is presented in [25] that correctly
applies these operators to result objects and not futures, maintaining transparency.
Two other variants of futures are described in [26], called lazy RMI and future-based RMI, which

reduce communication overhead in grid systems. These variants are shown in Figure 2. They create
a remote object for method results on the server and return the remote object reference to the client
rather than the serialized results. Lazy RMI is intended for synchronous remote method invocation
and is illustrated in Figure 2(b). If the method result is simply passed as an argument to a second
remote method (i.e. the client does not use the results), then the server for the second call issues
a remote method invocation request to the first server to access the results. This saves having to
return results to the client only to forward them onto another server. If the two remote servers
are close together, lazy RMI can reduce communication costs assuming the remote reference is
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Figure 2. Timing diagrams for remote method invocation variations, from [26]:
(a) normal RMI; (b) lazy RMI; and (c) future-based RMI.

smaller than the result object. Future-based RMI adds asynchrony to lazy RMI by creating and
returning the remote reference (now to a future) as soon as possible, even before the remote method
completes. The future is resolved by the server of the second remote call (or, more generally, by the
server that invokes a method on the future) rather than by the client. Future-based RMI is shown in
Figure 2(c).
In addition to using futures, listener objects are sometimes used to return the results of remote

method invocations [13,27]. A one-way remote method invocation is made to the server. When the
server completes the method invocation, it makes a one-way remote method invocation back to the
client, invoking a method on a listener object registered for the call. This callback method processes
the results. The drawback of this approach is that the application code must be reorganized so that
the listener object executes any code that requires the results from the remote call, which can make
it difficult to incorporate legacy code into the distributed version of the program.
In Java, it is also possible for a method to throw an exception rather than return a result.

Handling exceptions thrown in asynchronously called methods is difficult because the client
continues to execute. When the exception arrives, the client may no longer have sufficient con-
text to handle it in a meaningful way. With listener objects, a callback method for process-
ing exceptions can be invoked [13]. For futures, there are two general options depending on
whether future resolution is explicit (like Figure 1(b)) or implicit (as done in ProActive). For
explicit resolution, exceptions are normally rethrown at the client when the future is resolved. For
implicit remote method invocation, ProActive uses two strategies. First, methods that throw excep-
tions are not executed asynchronously by default. Second, the programmer can explicitly run such
methods asynchronously, but only within a try-catch block that includes extra ProActive calls
to force the call to be resolved before the try block is exited; hence, the appropriate catch block
can immediately handle any exceptions. These rules are covered in more detail later in this section.
Babylon uses future objects that must be explicitly resolved. Explicit resolution provides the user

with complete control when synchronizing with remote calls, especially for methods that do not
have a return value (i.e. void methods). At resolution time, any exceptions are thrown.
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2.1.3. Other related systems

Other research efforts have focused on supporting more specific distributed system structures
such as:

• master worker (Javelin [28–30], Ninflet [31], Charlotte [32]);
• branch and bound (Javelin, JICOS [33]);
• divide and conquer (Satin [34]);
• SPMD programming for scientific applications (HP Java [35], Spar [36]); and
• a variation on SPMD, based on distributed collections of objects (ADAJ [10], Do! [37]).

Babylon does not limit itself to a particular computational model and provides support for general
remote object interaction using the standard Java method invocation syntax. As a result, distributed
applications that require more complex object interactions, such as a grid-based heat diffusion
computation, can be written using Babylon. In contrast, such an application cannot be easily or
efficiently implemented using the aforementioned systems.
ProActive [16,17] provides services similar to Babylon, using similar techniques that also do not

require JVM changes or external tools. ProActive generates proxies for remote objects at runtime
using bytecode engineering libraries as it predates dynamic proxies in Java. This capability is
used to create new remote objects and export local ones. ProActive can execute remote methods
synchronously or asynchronously. This choice is not made by the programmer, but rather is based
on implicit rules that consider the return type of the method and the presence of checked exceptions.
These rules, which are evaluated at runtime, are as follows:

• If the method does not throw a checked exception and the return type is either a class that can
be subclassed or void, the method is called asynchronously.

• If the method throws a checked exception or the return type is a primitive type or cannot be
subclassed (i.e. is final), the method is called synchronously by default.

• In certain cases, it is possible to override the default to execute a method synchronously.
Specifically, if the method throws a checked exception and the return type is a class that can
be subclassed (or void), the user can introduce some concurrency if the method is called
within a try/catch block. ProActive includes primitives that allow the method to execute
asynchronously, but these primitives force the method to complete before the try block ends
(to ensure any exceptions can be handled). This requires three library calls that must be at
specific locations in the application code, and provides limited parallelism. An example of this
is shown in Figure 3, with the added code at lines 14, 22, and 27. The figure also documents
the requirements on the use of these primitives.

Asynchronous calls in ProActive return a future object, which is a proxy that resolves to a final
value when a method is called on it.
All proxy classes generated by ProActive, for both remote objects and futures, are subclasses of the

originals that override all public methods. Thus, proxy objects can be substituted for original objects.
This provides polymorphism between local and remote objects and between local return values and
futures, and obviates the need for interfaces. It also allows future objects to transparently implement
wait by necessity. However, it limits the classes that can be used to create remote objects or that
can be used as return types in asynchronous remote methods. Final classes and methods, including
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Figure 3. Overriding synchronous method execution for exceptions in ProActive, from examples in [24].

arrays, cannot be used as they cannot be subclassed or overridden. In addition, a remote object can
run only one method at a time, which can make some applications difficult to implement efficiently.
For example, a grid-based heat diffusion application requires a separate remote method invocation
for each iteration to allow edge data to be exchanged, increasing communication costs [3].
In contrast, Babylon uses an explicit approach for selecting synchronous versus asynchronous

method invocation and future resolution, providing more control to the user. The choice is made
on the basis of the type of dynamic proxy that the client uses. If the proxy is an asynchronous
ticket the method call is asynchronous, otherwise it is synchronous. This explicit approach provides
the user with more control over the execution of a Babylon program, more than is possible with
implicit approaches such as ProActive. Users have complete control over the semantics used for
method calls and the timing of future resolution. The downside is that it is more difficult to reuse
existing code in a Babylon application. Proxies and asynchronous tickets must be explicitly created
and used, and asynchronous tickets must be explicitly resolved.
Fully transparent solutions, such as ProActive, are intended to promote the reuse of existing code,

but it has been noted that this is not possible in general [38]. Specifically, even if the asynchronous
nature of method calls is fully hidden, it is still necessary to separate method calls from accesses
to their results in order to achieve parallelism and improved performance. It is not natural to
write sequential programs in this manner; hence, the application code will need to be changed.
Further, exception handling in a fully transparent asynchronous system causes problems since
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the exception can arrive after the caller has exited the try/catch block intended to handle the
problem. ProActive deals with this problem by running such methods synchronously by default,
complicating their rules for method execution. In addition, Babylon uses Java RMI semantics at the
server. Each remote method is run in a separate thread. This allows Babylon to use fewer remote
messages in the grid-based heat diffusion application, but adds thread synchronization to the Babylon
application code [3]. Since concurrency is explicit in the code, the need for thread synchronization
is easier to see. In more transparent systems, it may not be obvious which activities are concurrent
and which are not, making it more difficult for the user to properly implement synchronization.
Since fully transparent solutions are problematic, a semi-transparent approach was proposed in [38]
and is offered by Babylon.

2.1.4. Other features in distributed object middleware

Some of the research systems noted above include other features to support distributed object
programming. While a number of these features can also be found in Babylon some features are
not part of the current version, although future versions would benefit from their addition.
ProActive includes a transparent group communication facility, as do the projects based on

distributed collections (ADAJ and Do!).
Babylon includes three different forms of remote object migration that allow objects to move

at runtime, discussed further in Section 4.5. Migration is also included in ProActive, Ninflet and
JavaSymphony [12], although these projects do not support all of the forms found in Babylon.
Several of the middleware systems are expanding into the grid domain, where fault tolerance

is a key concern. The migration facilities already implemented in Babylon, which also include a
checkpointing facility, are an important part of fault tolerance. However, Babylon does not currently
include facilities for detecting a failed host and automatically restarting its objects. Such facilities are
included in the latest version of Javelin and Charlotte. ProActive now includes a checkpointing and
restart facility [39]. However, this facility relies heavily on the asynchronous sequential processes
model on which ProActive is based. In particular, the facility assumes that an active object has
only one thread associated with it, which serially executes method requests. It is not clear how
well this algorithm would generalize to the thread-per-invocation semantics employed by Java RMI
(and hence employed by Babylon). The group communication mechanism in ProActive may also
be part of a solution to this problem.
Another problem in grid-based systems is describing the architecture of the available computing

resources. In particular, it is difficult to describe the geographical distribution of machines, noting
which resources are co-located or geographically close (and often have reduced communication
costs) versus those that are distant from one another (and often incur increased communication
costs). With the grid, the relative capabilities or availability of resources is also useful information.
This information is important for managing locality and load balancing. JavaSymphony and HiMM
[40] allow users to construct abstract architectural descriptions. These descriptions are then used
to improve the scheduling of objects to servers. The Satin system for divide-and-conquer programs
uses a work-stealing algorithm that distinguishes between local and remote clusters to efficiently
balance the workload in systems with varying communication costs [34].
To date, Babylon has been targeted at applications running on a local cluster and not the wider-area

grid. As a result, it has not included these extra facilities.
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Another important feature of Babylon is the use of separate namespaces on servers for clients.
This is a crucial feature in a multi-user environment where several different clients may be running
remote objects on a single server at the same time. ProActive also supports such namespaces,
following the OSGi platform specifications for distributed Java systems [41]. Many other existing
systems, such as JavaParty and Babylon v1.0, do not provide these separate class namespaces for
clients. Without a namespace, servers must be restarted each time a client changes any class and
no two clients can ever use classes with the same name. Babylon does not assume that users have
login access, much less administrative privileges, on server machines. In addition to supporting
multiple class namespaces, Babylon and ProActive provide access restrictions for remote objects
based on context information transmitted with remote method invocations. Objects and classes can
be shared, but only if the user explicitly requests it.

2.1.5. Java RMI improvements

Babylon uses Java RMI in its dynamic proxies. Since all of the details of a remote method call are
encapsulated in these proxies, it would be possible to use an alternative remote method invocation
implementation without any impact on the user. Several alternatives already exist, which address the
weaknesses in the Sun implementation of remote method invocation. One of the largest bottlenecks
in Java RMI is the serialization process that converts objects into a sequence of bytes suitable
for network transmission. The generic implementation of this process relies on expensive Java
reflection, native methods, and data copying. A number of systems devote effort to reducing these
costs.
The Manta compiler translates a Java program into native code [42]. As a result, it includes

a new implementation of remote method invocation that removes many bottlenecks and supports
serialization by generating customized code in each class. Unfortunately, this solution is not suit-
able for grid environments because it uses a non-standard Java runtime. Based on Manta, Ibis
implemented many of the same ideas but in Java, including the use of a bytecode rewriter to insert
customized serialization routines [43]. The Ibis implementation of remote method invocation also
reduces remote method invocation costs by ensuring that class information is sent to each server
only once.
KaRMI is a drop-in replacement for Java RMI [44]. Again, it implements a more streamlined

implementation of the remote method invocation classes. Improved serialization is offered to classes
implementing the uka.transport.Transportable interface. The developer can implement
the serialization methods or can use a special tool to generate them.
The Jaguar project uses Pre-serialized Objects (PSOs) to reduce serialization costs [45]. The

JVM runtime is extended to store PSOs in memory in their serialized format, suitable for trans-
mission without further processing. However, PSOs must be stored in special memory regions
called containers. A PSO can contain a reference to any object in its JVM. However, refer-
ences to objects outside the container for a PSO (either a non-PSO object or a PSO in a dif-
ferent container) will not be serialized and transmitted to remote JVMs, much like the way
static data are not serialized by standard Java serialization. Thus, managing references will take
extra effort to ensure that the complete state for a PSO is stored as PSOs in the same con-
tainer. Finally, not all objects can be stored as PSOs; only subclasses of Jaguar.PSO have that
capability.
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The use of these solutions is counter to the stated goals of Babylon, which is to avoid changing
the JVM, adding extra preprocessing stages, or adding extra compilation steps. However, there is
nothing that should preclude developers from using these solutions in conjunction with Babylon to
improve performance. Babylon could use the serialization optimizations presented in [46]. This work
provides a drop-in replacement for the standard Java serialization classes that exploits homogeneity
in object types to reduce the size of serialized data without the need for any external tools.

2.2. Dynamic proxies in Java

A proxy is an object that stands in for another, acting in place of the original [47]. The proxy
implements the same interface as the original object, which allows the proxy to be used where the
original is expected.
Proxies are used in distributed object systems to fulfill the same roles as client-side stubs in remote

procedure call systems. The proxies marshal arguments before sending the data to the remote server
holding the remote object. In Java RMI, these proxies are generated using the rmic stub compiler,
which generates class files containing client-side and server-side stub code.
Dynamic proxies were introduced into Java in version 1.3. Given a list of interfaces, it is now

possible to construct a proxy at runtime, without the use of extra stub compilers or other tools. This
proxy dispatches any methods to an object acting as the invocation handler, which processes the
method invocations and can add extra functionality if desired.
An example of a dynamic proxy is shown in Figure 4. This proxy simply prints out information

before and after a method is called on the original object. The proxies are created using the
newProxyInstance() method (line 7). The first argument is a class loader, which defines
the namespace in which the proxy will reside. The second argument is an array of interfaces that
the new proxy will implement. The returned proxy can be safely downcast to any of these interface
types. Note that dynamic proxies are constructed for Java interfaces to preserve substitutability
without requiring the proxy to be a subclass of an existing class. The last argument is an invocation
handler. All method calls on the generated proxy are forwarded to the invoke() method on this
handler (line 17), where the invocation is represented as a Method object indicating the called
method and an array of Objects for the arguments.

3. SYSTEM ARCHITECTURE

Figure 5 illustrates the principal components of the Babylon environment and their associations in
a sample scenario. Section 4 contains examples demonstrating some of the features of the system
and their use.
A typical Babylon application consists of a client program and one or more remote objects

running on Babylon servers. A client interacts with a remote object, called a worker object, using a
local proxy object that transparently delegates requests to the worker object and returns the worker
object’s results back to the client.
In Figure 5, each component is running in a separate JVM, possibly on a different machine.

In the figure, two separate worker objects are being accessed by a client program via local proxy
objects. Although the worker objects in the figure are running in separate Babylon servers, they
could also have been running in the same server.
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Figure 4. Example of a dynamic proxy from [48].
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Figure 5. Principal components of the Babylon framework.
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A Babylon server must be running on each machine that is designed to host worker objects. The
server provides a virtual environment for running and managing one or more worker objects and
is the point of contact on the remote machine for clients. Once a server is started, any user can
create objects on it and can invoke methods on those objects. Users do not require login access to
the server machine to use a Babylon server process.
Babylon includes a scheduler component that has two important responsibilities. First, it tracks a

list of available Babylon servers. When a new remote worker object is created, the scheduler locates
a server that can host it. Second, the scheduler also maintains a name registry service that can be
used to look up references to existing worker objects. A Babylon system is bootstrapped using
the rmiregistry service provided by Java, to allow servers and clients to locate the scheduler.
However, this is a basic name service. Babylon provides its own name service to ensure that a client
cannot access classes and objects from other clients without permission.
At startup, a server queries the rmiregistry service on a specified host to obtain a reference

to the scheduler. The server then contacts that scheduler to register itself. The scheduler adds the
server to its list of available servers so that clients can begin using it to host their worker objects.
Unlike Babylon v1.0, Babylon supports the presence of multiple servers on a single machine.

Babylon also supports multiple worker objects within a single server. The ability to run several
workers or servers on a single machine can be used to make more effective use of multiple CPUs
in clustered multiprocessor and multicore environments.
Babylon relies on Java RMI [49,50] for the underlying communication mechanism. Remote

method invocation greatly simplifies the implementation of Babylon by providing built-in support
for distributed garbage collection and a simple mechanism to interface with remote components
without having to use low-level socket communication. However, Babylon uses dynamic Java
proxies [48] rather than the static proxies generated by the rmic stub compiler. These proxies are
generated at runtime and are used to support object creation and method invocation features not
present in Java RMI, as described in later sections.
Babylon facilitates distributed object programming by providing programmers with classes

and interfaces for remote object creation, interaction, and administration. Most of the Babylon-
distributed object programming primitives are accessible via the static methods of the babylon.
core.Babylon utility class.

4. BABYLON FEATURES

To demonstrate some of the important features of Babylon, we use portions of code taken from
a heat diffusion application. The heat diffusion application simulates heat transfer across a two-
dimensional surface over time. In this simulation, the surface is discretized into an M × M two-
dimensional array, T , and the Jacobi iterative method [51] is used to compute the final temperature
distribution of the surface. The array is initialized to an even temperature distribution and a constant
heat source is applied to each edge of the array. Each iteration simulates heat diffusion across the
surface over a small period of time. At each iteration, i , the value of every cell in the array is
recomputed to be the average value of its four neighboring cells using data from iteration i − 1.
In our implementation, N worker objects are used to compute the temperature of a surface after

100 iterations. We use a decomposition strategy to partition the original array into N blocks, each
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Figure 6. Babylon grid diffusion example—application structure.

consisting of M/N contiguous rows. Each block is transmitted over the network to a worker object
running on a remote Babylon server. Two block edges must be exchanged between neighboring
worker objects at each iteration. Once these data points have been exchanged, each worker can
compute the updated temperature for all the cells in its block for the current iteration. This structure
is shown in Figure 6.
Selected portions of the heat diffusion code appear in Figures 7 and 8. The code in Figure 7

creates worker objects, initializes them, launches the computation and gathers the results. The code
in Figure 8 is the main execution loop for each worker in the heat diffusion computation. Each
worker repeatedly obtains edge data from adjacent workers and then computes the new temperature
for each element. After a fixed number of iterations, the results are returned to the object that
launched the computation. We will refer to the code in these two figures for the rest of this section.

4.1. Remote object creation

Remote object creation is the process of creating an instance of an object on a remote server and
making this object available to clients. Clients access this new remote object using the returned local
proxy object. Babylon provides two methods for creating remote worker objects that can be used by
clients to perform distributed operations: Babylon.remoteNew()and Babylon.export().
The remoteNew() method is illustrated in line 9 in Figure 7, where it is used to create remote

worker objects of type GridDiffuserImpl, one per processor. The first argument is the class
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Figure 7. Babylon grid diffusion example—starting the computation.

of the worker implementation, followed by the class exporting the client interface used to construct
the dynamic local proxy. The third argument is a user-defined name that is registered with the
Babylon name service so that clients can find remote objects. The last argument is a Java Archive
(JAR) file containing the code and other files needed for the GridDiffuserImpl class since we
do not assume that remote servers share a file system. The archive is sent to the machine on which
the new remote object is created. This process can be optimized by specifying a JAR file as the
second argument to the call to Babylon.initApplication()in line 3. This forwards the JAR
file to Babylon servers at application startup; hence, remoteNew()need not supply the archive.
While Figure 7 includes the JAR file in both initApplication()and remoteNew(), it only
needs to be specified in one place. The JAR file is used as a convenient packaging mechanism;
future versions of Babylon may use the remote class loading capabilities in Java and may optimize
communication by caching class information sent to other Babylon servers so that it need not be
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Figure 8. Babylon grid diffusion example—main worker code.

Figure 9. Babylon grid diffusion example—exporting local objects.

transmitted multiple times [17]. Further, JAR and class files can be cached at the server and be
reused between client applications to further improve performance.
The export() method takes a local object and uses it to create and initialize a new remote

object that is moved to an available server. Figure 9 shows an example of exporting. This is
the object creation code from line 9 in Figure 7, rewritten to export a locally created instance
of GridDiffuserImpl. The export() method uses four parameters: the local object to be
exported, an interface implemented by the class of that object (used to construct a dynamic Java
proxy for the new remote object), a user-defined name registered with the Babylon name service
and the JAR file containing the required class files. Similar to remoteNew(), the JAR file can
instead be specified in the call to Babylon.initApplication() and removed from calls to
export().
Both remoteNew() and export() methods are overloaded to remove arguments that are not

needed for each invocation. For example, the name of the remote object and the JAR file are not
always needed and may be omitted.
Both methods return a dynamic Java proxy that can be used to transparently invoke methods on

the newly created worker object. These proxies provide transparent access to distributed objects
by implementing the same interfaces as their distributed counterparts, in this case the interface
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specified as the second argument to remoteNew() or export(). Providing transparent ac-
cess is a significant enhancement over Babylon v1.0, which used a clumsy method invocation
interface.
Java RMI does not provide remote object creation. Instead, it relies on one of two methods to

create object. The first method is to use factory objects [47]. Object servers are started with a
factory object loaded, where that object exports methods to create new remote objects. The second
method is to use activatable objects that are instantiated when invoked. This requires extra code
above that already needed to create an RMI-compliant class. An activatable object must extend the
class java.rmi.activation.Activatable and a setup program must be written to register
the object implementation with the rmiregistry service. Since both of these methods use Java
RMI, both still require the use of the rmic stub compiler.
The use of dynamic proxies makes it easier to use Java classes to create remote objects by

reducing the requirements on the class compared with Java RMI [4]. In Babylon, a class need
satisfy only one requirement: it must implement one or more interfaces that export methods to
clients. Unlike Java RMI, the interfaces need not extend the java.rmi.Remote interface and
the methods do not have to throw java.rmi.RemoteException. If the object is to be exported
or migrated, the class must also implement the Serializable interface. In addition, there are no
extra compilation or runtime steps needed to create remote objects. If these requirements are met,
then the class can be used to create remote objects even if source code is not available. This could
allow objects created from classes in the Java standard class library to be created as remote Babylon
worker objects. For example, many of the collection classes in Java meet these requirements and
could form remote objects in a Babylon application.
In contrast, Java RMI requires classes to have three characteristics. First, the class must implement

the Serializable interface and an interface that extends the java.rmi.Remote interface
that exports methods to clients. Second, all objects must call the exportObject() method in
the java.rmi.server.UnicastRemoteObject class when created, which may throw the
checked exception RemoteException. This requires all constructors and initialization methods
to indicate that the exception may be thrown. This condition is normally met by making the class a
subclass of java.rmi.server.UnicastRemoteObject. Third, all methods in the interface
and implementation must throw RemoteException. Only after all of these requirements are met
can the rmic stub compiler be used to generate static proxies and the class be used in a program
that uses remote method invocation. If a class was not written with remote method invocation in
mind, then converting the class to create remote objects will require access to the source code,
particularly to satisfy the second requirement.
Worker object lookup functionality is also provided with the help of a worker object reg-

istry implemented in the scheduler. The registry maintains a record of all worker objects in the
Babylon system. Clients can look up references to worker objects based on the instance name
of the worker object and the interface it implements. The static Babylon.lookup(String
instanceName,Class workerInterface)method provides this feature. After locating the
worker object with the specified instance name and interface from the worker object registry,
the Babylon.lookup() method returns a dynamic proxy that can be used to invoke meth-
ods on the given worker object. This feature is not used in our code example. Using the names
registered in the call to remoteNew() (line 9 in Figure 7) or export() (Figure 9), a worker
object could use the code in Figure 10 to find its neighbors. In our example, these remote references
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Figure 10. Babylon grid diffusion example—object lookup.

are initialized using a remote mutator method called by the setAdjacencies()method (line 17
of Figure 7).
Babylon provides each client with a separate namespace for their objects. This namespace allows

different clients to use the same names for their classes and objects without having to worry about
naming clashes. Furthermore, the same client can restart their application using newer versions of
their classes without problems. In systems without namespaces, the object servers would have to
be restarted to prevent a server from reusing older class definitions. The namespace also provides
an opportunity to share objects and classes by placing them into a shared portion of the namespace.
This sharing is completely under user control as they must explicitly share objects and classes.

4.2. Synchronous remote method invocation

Babylon supports synchronous remote method invocation using the dynamic proxies returned by the
remote object creationmethods described in Section 4.1 (that is, those proxies returned by the calls to
remoteNew() and export()). These dynamic proxies fulfill the same responsibilities as the
static proxies generated by rmic in Java RMI. They stand in for the remote objects, allowing
programmers to call methods using the normal method invocation syntax. They also permit prim-
itive types to be used as arguments and return types, and allow the method call to be checked
at compile time, unlike the syntax used by Babylon v1.0 and Reflective RMI. Similar to their
static counterparts, dynamic proxies can be passed as method arguments or returned as method
results.
The dynamic proxies in Babylon use Java RMI in their implementation of method invocation. As

a result, they inherit the same argument-passing semantics. Remote objects are passed by reference,
whereas local objects are passed by value. Also, each method call is run in a separate thread at
the receiving server by default, which provides intra-object parallelism within a Babylon server.
Programmers need to be mindful of this fact and must take steps to ensure that methods are
thread safe.
Dynamic proxies are similar to Java RMI stubs in that they make remote objects available via the

Java interfaces they implement, but differ from Java RMI stubs in two important ways. First, dynamic
proxies are generated dynamically at runtime instead of using a special stub compiler. Second, the
interfaces used by Babylon for worker objects neither need to extend the java.rmi.Remote
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Figure 11. Babylon grid diffusion example—setting adjacencies.

interface, nor do they need to throw java.rmi.RemoteException. However, it is important
to remember that similar to Java RMI, Babylon worker objects need to implement a client-defined
interface and these objects will be accessible to clients only via the methods defined in this interface.
As an example of synchronous method invocation, Figure 11 provides the implementation of the

setAdjacencies() method used in line 17 in Figure 7. This method calls the remote mutator
method setAdjacentWorkers() on each worker to provide remote references to neighboring
worker objects, which are used during the boundary exchange. These calls, in lines 7, 8 and 11,
mirror local method invocations. The proxy objects (instances of GridDiffuser) were created
using remoteNew() (line 9 in Figure 7), so the remote invocations run synchronously.
Synchronous methods can be used to implement the synchronization needed for an application.

This synchronization may also exploit the fact that each remote method call is run in a separate
thread can use the existing Java thread synchronization methods (noting the subtleties of using thread
synchronization within a Java RMI program detailed in [52]). An example of this is the boundary
exchange implemented by the worker objects in Figure 8. One difficulty with the exchange of edges
stems from the use of Jacobi iteration in the computation. The values used to compute the diffusion
in iteration i are those obtained from iteration i − 1. A worker requesting remote edges from an
adjacent worker must wait until that worker completes its current iteration. This synchronization is
accomplished using the thread synchronization facilities in Java. The worker calls a remote accessor
method on a neighbor to retrieve the edge values. This accessor blocks the calling thread until the
edges are updated. Since the method call is synchronous, the remote client is also blocked. Once
the current iteration is complete, these blocked threads are woken (in line 22 of Figure 8) and return
the edge data, allowing adjacent workers to proceed with their next iteration.
Another Babylon feature is stateful remote method invocations. Each remote method invocation

in Babylon includes context information that identifies the calling client. This context information is
used by servers to authenticate the caller and to restrict invocation access to private worker objects.
This is crucial in an environment where clients can obtain references to worker objects belonging
to other clients. In some cases, clients may not want others to invoke methods on their worker
objects. Stateful remote method invocation is used to ensure that when a client creates a private
remote object, it is only the client who can invoke methods on that object.
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4.3. Asynchronous remote method invocation

Network latency in a distributed application environment can incur significant overhead and re-
duce overall application performance. One way of reducing the impact of network latency is to
overlap communication and computation [53]. Asynchronous remote method invocations allow an
application to continue working while a remote method invocation completes. Overlapping compu-
tation and communication in this way can improve application response time and increase overall
performance.
Babylon uses a novel technique based on proxy objects called asynchronous tickets to support

asynchronous remote method invocation. An asynchronous ticket is created using an existing syn-
chronous proxy object. The ticket is a different type of dynamic proxy that can be used to make
the next method invocation on a worker object asynchronous. The method is invoked on the ticket
using standard Java invocation syntax, but the invocation completes asynchronously. Applications
can continue running normally while the invocation executes.
When a client invokes a method on an asynchronous ticket, a service thread is started on

the client, which handles the remainder of the invocation. The client thread returns immedi-
ately while the service thread performs a normal synchronous remote method invocation for
the requested method. Parameters and return values passed to the worker object using asyn-
chronous remote method invocation follow standard remote method invocation parameter-passing
semantics. The return value of the method can be requested from the ticket at a later
time.
Babylon asynchronous remote method invocation resolves on the return value of the target

method. Resolving on the return value ensures that any other side effects have completed. This
approach is 100% Java compatible and uses Java’s standard method invocation syntax, which can
be checked at compile time. Any exceptions that were thrown during the execution of the asyn-
chronous method are thrown when the return value is resolved.
The workers in our heat diffusion application are started with asynchronous tickets to allow

all of them to work in parallel. Asynchronous tickets for the workers are created in line 26
in Figure 7. These proxies, not those created with remoteNew(), are then used to call the
diffuse() method in line 27. After the loop exits, all of the worker objects are executing and the
startHeatDiffusion() method continues execution. To obtain results from asynchronous
tickets, the AsynchTicket.getResult() method is used, with the ticket as a parameter
(line 34). Calls to the getResult() method must be enclosed in a try-catch block that
handles any exceptions that may be thrown by the method invoked on the ticket.
Previous work has considered mechanisms for implementing asynchronous remote method invo-

cations [15,19,22]. These approaches either introduce new keywords and then utilize a preprocessor
or require the use of a modified stub compiler. In contrast, our asynchronous tickets are completely
compatible with standard Java, compilers and runtime systems, and do not require any preprocessing
or a modified stub compiler. Dynamic Java proxies provide a way for both synchronous and asyn-
chronous remote method invocations to co-exist in the same application without such modifications.
Furthermore, both synchronous and asynchronous remote method invocations are indistinguishable
from local method calls; the only difference is the type of object on which the method is called
(local object, synchronous proxy, asynchronous ticket). Otherwise, the syntax mirrors local method
invocations.
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Babylon explicitly distinguishes between synchronous and asynchronous method calls using
asynchronous tickets. This feature provides the user with control over how methods are invoked,
rather than requiring users to program to implicit runtime rules as with ProActive. Furthermore,
asynchronous tickets provide control over synchronization with asynchronous methods. Specifically,
ProActive asynchronously executes methods with a return type of void (unless they throw a
checked exception), but these methods produce no future and so synchronization is not possible.
For methods with side effects on the state of a remote object, these semantics may not be desired.
Although additional code is needed, Babylon fully supports this synchronization.

4.4. Remote class loading

Unlike most programming languages, Java provides a very flexible class loading mechanism that
finds and loads classes at runtime only when they are actually needed [54,55]. Normally, the virtual
machine looks for class data as class files that reside in the file system. However, developers can
customize how the virtual machine finds and loads classes by implementing their own custom class
loaders.
Babylon uses custom class loaders to load worker object classes over the network. The class files

for a worker object must be placed in a JAR file whose location is specified either when the client
creates the worker object or when a Babylon program is initialized. The JAR file is transmitted to
the target server along with the remote object creation request. As a result, Babylon servers do not
need local file system access to the class files of the worker object and clients can run their worker
objects on remote servers without requiring login access to the server machine. The JAR file is a
convenient package for this transmission; individual classes or files could also be transmitted.
JAR files are used for class file transmission in order to reduce the number of messages required

to obtain the class data for the worker object from the client. All the required classes are downloaded
with a single message, as opposed to a separate message for each required class. For worker objects
that use many classes, this approach can greatly reduce the transmission overhead. Furthermore,
JAR files are compressed, reducing the size of the data transmitted between client and server.
To support multiple clients without requiring server restarts between successive client connec-

tions, Babylon servers create a new instance of a custom class loader for each client. Each class
loader manages its own namespace. Providing separate namespaces for each client solves many of
the class-loading issues experienced by systems such as ProActive, JavaParty and Babylon v1.0.
Some of the advantages of Babylon class loading are the following:

• Different clients can safely use identical names for their classes without causing naming
conflicts.

• To load and use the new class definitions, clients can change their classes and simply restart
their application. Without namespaces, the Babylon server processes would need to be restarted
each time the application is run. This is important since we do not assume users have login
access to servers, much less administrative privileges. We envision the provisioning of server
clusters that can be readily used by anyone with an application written using Babylon.

• When a client application has completed, the class loader and the classes loaded by the client
can be garbage collected. This allows servers to run for long periods of time as unneeded
classes will not consume memory.
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• Clients no longer share a single class namespace and, consequently, no longer have access to
classes created by other users by default. Classes must be explicitly made available to other
users if desired.

4.5. Object migration

A key feature of Babylon is the ability to freely move remote objects from one Babylon server to
another. Object mobility can be used to support dynamic load balancing (i.e. move a remote object
from a heavily loaded server to a lightly loaded server), fault tolerance (i.e. move a remote object
from a faulty server to a stable server) or to exploit server locality (i.e. move a remote object to a
closer server with lower communication latency). Migration may be done manually. For example,
a system administrator could migrate objects off a machine, upgrade the software or hardware,
and move the object back onto the machine. It could also be done automatically by the Babylon
scheduler by noticing that faster machines have become available and migrating long-running jobs
from slower machines to faster machines. Defining and comparing scheduling policies for making
decisions about automatic migration are the subject of ongoing work.
Worker object migration is performed by taking a snapshot of a worker object’s data state,

known as a checkpoint, and transmitting this checkpoint to a new Babylon server. Consequently,
only objects that are serializable [56] can be migrated.
Babylon stores the most current worker object location information in a worker object registry

in the Babylon scheduler. In addition, location forwarding is used [57]. Forwarding information
for a mobile object is stored at each of the object’s former locations, creating a chain leading
from the original location of the object to its current location. Stale worker references are updated
transparently using this information. The combination of these two mechanisms ensures that calls
to a migrated object cannot be lost.
Babylon supports three types of migration: idle migration, delayed migration, and safe-point

migration. Idle migration takes an idle worker object (one that is not executing any method) and
moves it to a new server immediately. If a worker object is actively executing one or more methods
at the time migration is requested, then delayed or safe-point migration can be used. Delayed
migration prevents new method invocations from starting while allowing in-progress methods to
complete. Once the in-progress methods complete and the object becomes idle, it is migrated along
with the queue of delayed method invocations.
Safe-point migration uses a checkpointing and rollback protocol to perform migration at

programmer-specified safe migration points. Safe-point migration is supported only for worker
objects running in safe mode. First, safe mode enforces single threaded execution for a worker
object and forces concurrent method invocation requests to be executed sequentially in the order
of their arrival. Second, a checkpoint of the worker object state is created prior to the start of each
method invocation. This ensures that the worker object always has a recent checkpoint which can
be used if safe-point migration is requested.
Worker objects that require the ability to be immediately migrated using safe-point migration must

include calls to Babylon.setMigrationPoint() in their worker object code at points where
safe-point migration can safely be performed. Normally, Babylon.setMigrationPoint()
does nothing and simply returns. However, if safe-point migration is pending, this method will
throw a babylon.core.BabylonThreadDeath object as an exception. Unless caught by
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the worker object code, this exception will propagate up to the server. When the server catches
the exception, it knows that the worker thread has been stopped and that the worker object can
safely be migrated. A worker object can also catch the BabylonThreadDeath exception if it
needs to perform any cleanup tasks before migration occurs, provided the exception is rethrown
when cleanup tasks are completed. Another approach would be to provide a listener object in
the call to setMigrationPoint(), which could provide a method to perform the required
cleanup if migration is pending. This would eliminate the possibility of incorrectly handling the
BabylonThreadDeath exception.
The above approach provides a 100% Java-compatible and thread-safe mechanism for stopping

worker threads and, if required, gives worker objects the opportunity to perform cleanup tasks or
other recovery tasks to defend against the checkpoint consistency problem [58] before migration
occurs. For instance, a worker object could catch a BabylonThreadDeath exception after setting
a safe migration point and use this opportunity to close open I/O connections or undo an operation
that affects an external component. However, the drawback of this approach is that the source code
of the worker object must be available so that calls to Babylon.setMigrationPoint() can
be added at safe migration points.

4.6. Remote I/O

Babylon includes a mechanism for performing I/O operations with worker objects using server-side
callbacks. This technique works by creating an I/O server inside the client which can be remotely
referenced and used by a worker object using remote method invocation. Babylon provides wrapper
classes for many standard Java I/O classes. These wrapper classes are essentially remote method
invocation servers with interfaces that more or less match their standard Java I/O counterparts. A
worker object that needs to perform console, file or socket I/O can obtain a remote reference to
the appropriate wrapper object and use it instead of the normal Java I/O class.
For instance, a worker object that wants to write log information to a file on the client host can do

so by obtaining a remote reference to a babylon.io.RemotePrintWriter instance residing
in the client application.RemotePrintWriter is a wrapper class forjava.io.PrintWriter
and can be used by the worker object to write the log entries using equivalent wrapper methods.
Babylon provides the static Babylon.getIO() method, which can be called from any worker
object to obtain a remote reference to the client’s I/O server.

5. SYSTEM EVALUATION

In this section, we examine the performance of a simple remote method invocation micro-benchmark
and two parallel application benchmarks, matrix multiply and heat diffusion. The experiments were
conducted using 16 Intel Xeon-based servers. Seven of these machines contain 2.8GHz Xeon
processors, whereas the remaining nine contain 2.4GHz Xeon processors. All hosts contain 512KB
of L2 cache, 1GB of memory, Intel e1000 gigabit Ethernet cards, and are connected with a 24 port
HP Procurve 2824 gigabit switch. All experiments were conducted using version 1.5.1 of the Java
Runtime Environment, and all systems were running Linux. Babylon requires only JVM support
for dynamic proxies, which is standard starting from version 1.3.
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Table I. Remote method invocation performance (ms).

Argument size (integers)

Application 1 1k 10k 100k 1M 10M 100M

Babylon RMI (ms) 0.59 0.64 1.42 7.02 58.91 590.41 5786.02
JDK RMI (ms) 0.40 0.44 1.22 6.67 58.45 575.44 5672.25

5.1. Remote method invocation

During the implementation of Babylon, a significant rewrite of Babylon v1.0 RMI was required
in order to add support for primitive-type remote method parameters and worker object access
restrictions. Nevertheless, speed and efficiency remained a key requirement and an effort was made
to minimize the overall remote method invocation overhead and to optimize the transmission of
invocation context information.
Table I presents performance measurements obtained using Babylon remote method invocation

and the standard remote method invocation facilities provided by the JDK. In each experiment, we
perform several (from 10 to 100 000 depending on the size of the argument object) remote method
invocations on a worker object and compute the average amount of time it takes to perform a single
method invocation. The only argument to the invoked method is an object containing an integer
array of a specified size (a size of ‘1’ represents an array containing one int, ‘1k’ represents an
array containing 1000 ints, ‘10k’ represents an array containing 10 000 ints, etc.) and the return
value is an integer indicating the size of the array. All timings were conducted between 2.8GHz
machines and are reported in milliseconds. It should be noted that remote method arguments must
be serializable because Babylon uses Java serialization to transmit the arguments to worker objects.
The results in Table I compare the average time of a single remote method invocation using

Babylon with that of standard Java remote method invocation. The results show that while the
additional layers of indirection present in the Babylon framework do introduce a small overhead,
the difference in performance becomes insignificant relative to the total invocation time as the size
of the argument grows. In a realistic coarse-grained Babylon application (which is what Babylon
is designed to support), this performance difference will have little, if any, impact on the overall
application performance.

5.2. Parallel application benchmarks

Matrix multiplication is often used as a test application for distributed systems because it can
be implemented using the master–worker design pattern. In other words, a matrix multiplication
problem can be divided into subproblems that can be solved independently by worker objects.
The participating workers do not need to communicate with each other to synchronize or share
data. A distributed implementation of the matrix multiplication benchmark is used to evaluate
the performance of a typical master–worker computation using Babylon. The sequential baseline
implementation is a simple, standalone matrix multiplication application (without remote method
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invocation or domain partitioning) that uses the same core matrix multiplication algorithm as the
distributed implementation.
The heat diffusion benchmark was used to evaluate the performance of a communication-intensive

Babylon application that could not have been efficiently realized using the master–worker compu-
tation model. As a result, it could not have been easily written or executed using many existing
distributed systems (e.g., Babylon v1.0, Javelin, Ninflet and Charlotte) since they do not support
the more general programming model required to implement this type of application. Javelin im-
plements an efficient parallel branch-and-bound structure based on the master–worker structure
with work stealing, which does not match the structure of the heat diffusion program. Charlotte
is based on a fork/join style of parallelism with distributed shared memory provided between
spawned processes. However, updates to the shared memory regions are visible only to the main
process on a join operation; hence, every iteration of heat diffusion would require a new set of
processes to be forked, which may be expensive. Ninflet, also based on the master–worker struc-
ture, does not appear to have a mechanism that allows workers to communicate with each other.
The boundary exchange between workers would have to be implemented with intermediary ob-
jects, which would also have to implement the necessary synchronization, to avoid making each
iteration a separate remote method call. A ProActive version of the heat diffusion application
would suffer from the limitation that only one method can be running in a remote object at a
given time. This means the edges cannot be exchanged as shown in Figure 8, since the remote
accessor method cannot execute as long as the diffuse()method runs. Instead, each iteration
of the diffusion must be a separate remote method call, making the code awkward and increas-
ing communication costs. In contrast, more general systems like Babylon and even Java RMI
can take advantage of thread synchronization facilities to help synchronize the processes involved
in heat diffusion, as explained in Section 4.2. The sequential baseline implementation is a sim-
ple, standalone diffusion application (without remote method invocation or domain partitioning)
that uses the Jacobi iterative algorithm to compute the final temperature distribution across the
surface.
The speedup results for the matrix multiplication and heat diffusion benchmarks are summarized

in Figure 12. Eachmachine runs a single Babylon server; each server contains a single worker object;
and all objects run in parallel. Speedups are computed by comparing against the sequential version
of each application while executing on the 2.8GHz machine. The straight dotted line represents
perfect speedup.
The speedups obtained for the 2048× 2048 matrix multiplication experiments are quite good.

With a 2048× 2048 matrix, the granularity of the computation can be kept large enough and the
network is fast enough to provide good speedup (14.8 on 16 processors).
To validate our speedup results, we conducted a detailed analysis of data distribution costs incurred

by the multiplication of two 2048× 2048 matrices and compare our speedup with an upper bound
computed using Amdahl’s Law. The communication costs of distributing the matrix data to the
worker objects increase proportionally with N . This is primarily because the entire matrix B must
be transmitted to each worker object participating in the computation. For example, if 16 workers
are participating in the computation, the master program will need to send all of matrix B and a
portion of matrix A a total of 16 times at the start of the computation so that each worker has
the required data. For large matrices, there can be a significant amount of data which may have a
considerable impact on the resulting speedup.
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Figure 12. System evaluation results.

The total amount of network traffic generated with N worker objects for a b byte matrix
(b= 16.0MB for a 2048× 2048 matrix) is (A+B+C) × N , where A= b/N , B = b and C = b/N .
In the case of 16 worker objects 288MB of data is transmitted. The process of distributing this
large amount of data from the master to the worker objects causes the algorithm efficiency to drop
slightly for configurations using 16 workers.
To explore the impact of data distribution on matrix multiplication performance more explicitly,

we measured the raw matrix data transmission time by calling a dummy matrix multiplication
routine on each worker object, which simply returned the matrix to be multiplied. Using 16 worker
objects we measure the transmission time to be 2537ms.
The total time to actually perform the matrix multiplication (including transmission overheads

and computation time) is 56 476ms. The total sequential execution time was 838 998ms. Using the
time to perform only the communication and the total sequential execution time, we can obtain the
fraction of the sequential computation that is not executed in parallel ( f = 0.003030).
The data transmission time enables us to compute an estimate of the fraction of our compu-

tation that is executed sequentially. This fraction ( f = 0.003030) is computed by dividing the
matrix transmission time 2537ms by the total sequential computation time 838 998ms. On the
basis of f , we compute an upper bound on the possible speedup using Amdahl’s Law [59]. In
this case an upper bound on the speedup is 15.3, which is quite close to the actual speedup
of 14.8.
Although the speedup values obtained in the heat diffusion benchmark are smaller than those

obtained in the matrix multiplication benchmark, the results are still promising and indicate that
speedup can be achieved despite the communication-intensive nature of the problem. In fact, similar
experiments in [46,60,61] yield speedups in the range of 2.5–4.9 on eight processors and 3.5–6.5 on
16 processors. Speedups obtained using Babylon are 4.3 using eight worker objects and 5.7 using
16 worker objects. This suggests that Babylon can be just as effective at running communication-
intensive applications as other conventional systems.
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6. CONCLUSIONS

Babylon incorporates features such as remote object creation and migration, remote object ac-
cess restrictions, separate namespaces for clients, and dynamic class loading while providing an
easy-to-use interface that works seamlessly with existing Java code. Worker objects created us-
ing Babylon can be accessed transparently using dynamic proxy objects. Babylon also introduces
a novel asynchronous method invocation technique based on proxy objects called asynchronous
tickets. The overall result is a unique and powerful system that gives developers the necessary tools
and services for building powerful cluster computing applications.
Babylon provides all of its features without requiring special preprocessors or extensions to either

the JVM or the Java language. Although the system uses Java RMI, it does not require even the
rmic stub compiler. Instead, it relies on the dynamic proxy facility that is now standard in Java.
Another result of using dynamic proxies is a reduction in the requirements for a class to create
remote objects. Babylon only requires the class to be serializable and implement some interface
that exports methods for clients. If these conditions are met, a class can create remote objects even
if the developer does not have the source code.
The performance evaluation results are promising and indicate that applications can

use Babylon to distribute objects across multiple hosts in order to execute quite efficiently in
parallel. Experiments show that reasonable speedups can be obtained both for simple master–
worker applications (e.g., matrix multiplication) and for more complicated and communication-
intensive applications (e.g., heat diffusion). The experiments demonstrate that Babylon can be used
effectively to build and run clustered computing applications.
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