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Abstract

Large-scale Non-Uniform Memory Access (NUMA) multiprocessors are gaining
increased attention due to their potential for achieving high performance through the
replication of relatively simple components. Because of the complexity of such systems,
scheduling algorithms for parallel applications are crucial in realizing the performance
potential of these systems. In particular, scheduling methods must consider the scale of
the system, with the increased likelihood of creating bottlenecks, along with the NUMA
characteristics of the system, and the benefits to be gained by placing threads close to
their code and data.

We propose a class of scheduling algorithms based on processor pools. A processor
pool is a software construct for organizing and managing a large number of processors by
dividing them into groups called pools. The parallel threads of a job are run in a single
processor pool, unless there are performance advantages for a job to span multiple pools.
Several jobs may share one pool. Our simulation experiments show that processor pool-
based scheduling may effectively reduce the average job response time. The performance
improvements attained by using processor pools increase with the average parallelism of
the jobs, the load level of the system, the differentials in memory access costs, and the
likelihood of having system bottlenecks. As the system size increases, while maintaining
the workload composition and intensity, we observed that processor pools can be used
to provide significant performance improvements. We therefore conclude that processor
pool-based scheduling may be an effective and efficient technique for scalable systems.
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1 Introduction

In the quest for greater processing power to support increasingly demanding applications,
parallel computer systems have the potential of meeting computing needs by combining
many relatively inexpensive, easy-to-obtain computing components to form a system. An
important class of parallel systems is shared-memory multiprocessors, in which all processors
have hardware access to a single physical address space, although the memory units used to
implement the address space may be distributed throughout the system. The main advantage
of a shared-memory multiprocessor, as opposed to a non-shared-memory multiprocessor such
as a hypercube, is the simple programming model it presents to the application programmer.
Executable programs and data stored in memory are directly shared among the processors,
and communication and synchronization among the processing activities can be realized
through the shared memory.

A number of small-scale shared-memory multiprocessors of up to 30 processors have been
successfully built, such as those developed by Alliant, DEC, Encore, Sequent and SGI. They
are typically based on a shared bus connecting several processors with local caches to global
memory. Such systems have provided us with increased processing power and valuable
experience in the use of parallel systems. However, their performance potential is rather
limited. Large-scale multiprocessors with over 100 processors offer much greater potential in
their capacity for supporting parallel applications, for two main reasons: First, applications
that possess high degrees of parallelism may have their performance potential realized in such
systems. Second, multiple parallel applications can be efficiently executed in such systems
concurrently. The second reason may be as important as the first since not all (or even many)
applications can use 100 processors effectively. A large-scale multiprocessor represents an
important computing facility, as well as a substantial investment. It is therefore desirable
to maintain high system utilization. As in the uniprocessor case, multiprogramming is an
important method for achieving high system utilization in multiprocessors. In addition to
sharing the CPU time of the individual processors among multiple concurrent jobs (time
multiplexing), with multiprocessors we also have the opportunity to divide the processors
among several applications (space multiplexing).

Very few general purpose, large-scale shared-memory multiprocessors have been built to
date (example systems include BBN’s Butterfly [1], IBM’s RP3 [18], Illinois’ Cedar [10],
Myrias’ SPS-2 [2], and Toronto’s Hector [23]). The bus-based, global-memory architecture of
small systems does not scale because the shared bus quickly becomes a system bottleneck as
more and more processors are added. Although the bus can be replaced by a large switch, the
cost of the switch grows rapidly with system size, and such a Uniform Memory Access (UMA)
architecture is likely to make all the memory accesses uniformly slow. From a performance
point of view, Non-Uniform Memory Access (NUMA), by which the physical memory of the
system is distributed and placed closer to the processors, is inevitable for large-scale shared-
memory multiprocessors.

Scheduling parallel applications on shared-memory multiprocessors presents problems not
encountered in traditional sequential systems. Although a substantial amount of research



has been done on scheduling small UMA multiprocessors, very little research has been done
on large-scale, NUMA systems (see Section 5 for a brief survey). Due to the substantial
differences in scale and architecture, desirable scheduling algorithms for large multiprocessors
may be quite different from those for small systems. In particular, the scheduling algorithms
should explore the increased opportunity of sharing the system among several applications,
and because of the NUMA characteristics of such systems, should take advantage of locality
in order to realize the performance potential of such systems.

In this paper, we study the desirable characteristics of scheduling algorithms for
multiprogrammed use of general purpose, large-scale NUMA multiprocessors. The study
of large scale shared-memory multiprocessors has received little attention in the literature. In
order to advance the understanding of the problems in this area we first identify the non-goals
of this paper:

1. We are not trying to design and evaluate optimal scheduling algorithms for large
systems. Such algorithms are likely to be highly dependent on the workload, for which
little information is currently available.

2. We are also not trying to study multiprocessor scheduling in general; instead, we choose
to focus on the unique aspects of large NUMA systems.

Our goal is to identify and evaluate the essential properties of scheduling algorithms
that take into consideration the NUMA architecture of large multiprocessors, and to assess
the potential performance gains of such considerations. Previous results obtained for small
systems are used wherever applicable. As an exploratory study, we design a range of simple
scheduling algorithms that explicitly consider, to varying degrees, the scale and NUMA
characteristics of the system. We then simulate the algorithms under parallel workloads to
assess the desirability of their various features. The performance index we use in evaluating
various algorithms is the mean response time (Mean RT) of all jobs executed by the system.

A large shared-memory system is prone to many hardware and software bottlenecks; as
the number of processors increases, shared resources, such as the interconnection network,
the memory, the global run queue, and the software servers, may all become limiting
factors of system performance. We believe that effective scheduling algorithms, like scalable
architectures, are a key to alleviating bottlenecks in a large-scale system. Omne known
architectural technique for large systems is to organize the processors and memory units into
clusters.! If memory sharing and communication occur mainly within the clusters, then the
interconnection network among the clusters is less likely to become a bottleneck. Analogously,
we hypothesize that a key feature of scheduling multiprogrammed parallel applications in large
NUMA systems s the use of processor pools. In contrast to hardware clusters of processors,
processor pools are used as an operating system construct for scheduling applications, and are
applicable even in systems with no apparent processor clusters. The processors in a system are
partitioned into a number of pools, in which threads from several jobs are scheduled to run.

! A large number of such systems have been designed, a few are being built. Examples include Michigan’s

HM?P, MIT’s Alewife, Wisconsin’s Multicube, Illinois’ Cedar, Stanford’s VMP-MC, and Toronto’s Hector [23].



The parallel threads of a job are run in a single processor pool, unless there are performance
advantages for a job to span multiple pools.

Although the concept of a processor pool is based on the large scale and NUMA
characteristics of a system, and is not tied to any particular architecture, in actually
implementing processor pools on a specific system, its NUMA characteristics should be fully
exploited. There are often natural clusters of processors that are good candidates for pools.
For example, in the Wisconsin Multicube architecture [11], processors are interconnected by
vertical and horizontal buses to form a grid. Cache consistency is achieved by snoopy caches
sharing the buses. The rows or columns of processors are therefore natural candidates for
pools. As another example, consider the Toronto Hector system [23], which is organized as
multiple levels of parallel rings connecting stations of a small number of processors sharing a
bus. The stations or the local rings are therefore good candidates for processor pools.

Besides easing system bottlenecks, processor pools, coupled with possible hardware
processor clusters, have two more potential advantages: First, parallel processing within
pools of processors is likely to be more efficient when processor clusters are considered in
forming pools in particular machines. For example, while a shared bus is undesirable for
a large system, it may be used within processor clusters on which pools are based. Cache
consistency may thus be achieved efficiently using snoopy caches. Second, accessing a memory
location associated with the local pool is often faster than accessing a memory location outside
the pool. If the memory management component of the operating system cooperates with
the scheduler to increase the percentage of memory accesses that are local to the pool, then
the processors’ utilization will improve, and the applications will run faster. On the other
hand, partitioning the system into processor pools introduces the problem of load balancing,
which is usually avoided in small systems by simply having a global run queue. Therefore,
the choice between system-wide scheduling and pool-based scheduling may be viewed as a
tradeoff between localization of parallel jobs and load balancing.

Our idea of processor pools can be motivated by Figure 1, in which the average response
times of a simulated parallel workload, running on hypothetical UMA systems with various
numbers of processors, are shown. The workload and system model are described in detail in
Section 2. The jobs have various degrees of parallelism, with averages of 10 and 20 shown in
the figure (an average parallelism of 10 means that on average jobs create 10 parallel threads).
The performance results are derived with an average processor utilization of 60% under the
unrealistic assumption that there is no contention for the interconnection network or memory.
The key observation in Figure 1 is that, for a given level of job parallelism, the performance
improves with the size of the system, as the probability of finding idle processors in the whole
system increases; however, the law of diminishing returns is observed in large systems. For
example, a system with 50 processors yields performance quite close to that of 120 processors.
When the various overheads associated with large NUMA systems are taken into account, the
performance of larger systems is likely to degrade, suggesting that it may be advantageous to
schedule jobs in pools of processors to reduce bottlenecks and improve efficiency.

We study the merits of employing processor pools using simulation. The factors that may
affect the performance of processor pool-based scheduling, such as the average parallelism of
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Figure 1: Performance of hypothetical UMA systems.

the jobs, the load level of the system, the scale of the system, the differentials in memory access
costs, and the likelihood of having system bottlenecks are identified and studied. The rest of
this paper is organized as follows. In Section 2, we present our models for the system and
the workload. The algorithms we study are described in Section 3, along with our overhead
assumptions. We present a sequence of simulation experiments in Section 4 in order to assess
the desirability of the various features of the proposed scheduling algorithms. Related work
is briefly discussed in Section 5, followed by concluding remarks in Section 6.

2 System and Workload Models

Our model of the system is simple and general. The system consists of P homogeneous
processors, where P is in the range of several tens to several hundreds. All of the memory
forms a physical address space accessible in hardware from any of the processors. Memory
is distributed such that some memory locations are accessed more quickly than others. We
model the differentials in memory access costs at a high level, without modeling the memory
architecture of a particular system (see Section 3.3).

The CPU service demand and response time of a job, as well as some of the overhead
costs considered in this paper, are measured in an abstract tzme unit, which, with current
processor and network speeds, may be considered to be in the range of 20-100 milliseconds. A
job comnsists of three consecutive phases, as shown in Figure 2. The INIT and FINAL phases
have fixed CPU service demand of 10 time units. The PARA phase has a desired parallelism,
d (i.e., given an unlimited number of idle processors, d threads would be created). Each of
the threads has a CPU service demand (in the absence of any overhead) following a uniform
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Figure 2: Structure of a parallel job.

distribution U(90,110). A scheduling algorithm may decide to create a number of threads, a,
less than or equal to d.

The corresponding parallelism is called the actual parallelism. To make the workload
comparable across all scheduling algorithms, however, the total CPU demand of the PARA
phase is considered a characteristic of the job, and is independent of the value of a.
Moreover, the CPU demand of each of the a (actual) threads has a uniform distribution
of U(100d/a — 10,100d/a + 10). Such a job model assumes some form of user-level scheduling
that interacts with the system scheduler at the start of the PARA phase to decide how
many threads to create, and distributes the work roughly evenly among the parallel threads.
Typically, the application programmer specifies the logical tasks in the job that can be
executed in parallel, and a library package keeps track of them and assigns them to the
system threads for execution. If the granularities of the tasks are relatively small, then the
unchanged spread in the thread execution time distribution is reasonable. Task switching does
not involve the operating system, and incurs much lower overhead than for switching system
threads. Recent work on UMA scheduling indicates that such application participation in
scheduling is both feasible and desirable [22, 12, 21].

The fork-join job model described above is quite typical of many parallel applications.
However, it does not model any synchronization and task dependency relationships among the
threads except for the barrier synchronization at the end of the PARA phase. While we could
generalize the model to include multiple phases, or more complex dependency structures, we
do not expect such changes to affect our results concerning pool-based scheduling significantly
(see Section 4.6).

The job model described above is of the correlated type in that the CPU demand of a job
is positively correlated with its degree of parallelism [14]. In addition to this workload model,
we also briefly consider a comparable workload in which the total service demand of a job is
not correlated with the number of desired threads (see Section 4.6).

Our workload model is based on the assumption that there exists a broad mixture of
parallel jobs, as well as some sequential jobs. The desired parallelism of a job, d, follows a
bounded-geometric distribution with mean D and upper bound P. A geometric distribution



with a mean somewhat greater than D is used to generate a value for d; if a value greater
than P is obtained, another random value is generated until the value obtained is less than
or equal to P. The resulting distribution has a true mean of D. Thus, the parallelism of
the jobs is characterized by a single parameter, the average desired parallelism, D.? No more
than P threads will be requested by a job, since, in the presence of user-level scheduling,
there is no point in requesting more threads than the number of processors in the system.
The bounded-geometric distribution of parallelism results in a wide range of parallel jobs.
There is only a small percentage of sequential or very small parallel jobs (e.g., for a system
with P = 60 processors and a workload with D = 20, only 15.7% of the jobs have parallelism
< 4), which seems to be desirable, as we are primarily concerned with parallel job scheduling.
A greater number of sequential and small parallel jobs will improve application performance,
as indicated by our results in Section 4.1. Similarly, the bounded-geometric distribution
generates a small percentage of jobs with parallelism much larger than the mean (e.g., for
P =60 and D = 20, 6% of the jobs have parallelism between 50 and 60). Such jobs may
do well in a system with light loads; however, with multiprogrammed use of the system
and the moderate to heavy loads we are interested in, the average job response time would
rise sharply if individual jobs were allowed to use most of the processors, while other jobs
used the remaining processors. Therefore, the relatively small number of very large parallel
jobs generated with the bounded-geometric distribution seems to be realistic. The actual
parallelism of a job, a, is determined by the particular scheduling algorithm, to be discussed
in the next section.

The system workload consists of a Poisson stream of jobs arrivals. The load level, L, of the
system is defined as the average utilization of the processors in the absence of any overhead.
Thus, for a 60-processor system serving jobs with an average desired parallelism of 20, a default
load level of 60% corresponds to a job arrival rate of 60 x 60% / (104 100 x 20+ 10) = 0.0178
jobs/unit time. When the various overheads to be discussed in Section 3.3 are considered,
the actual utilization of the processors, U, will be higher.

3 Scheduling Algorithms and Overheads

3.1 General Description

The system is partitioned into a number of processor pools for the purpose of job scheduling.
Each processor in the system belongs to one and only one pool. In this paper, we assume
that all of the pools have an equal number of processors, p. Each pool has a single run queue
shared by all the processors in the pool. When a job arrives, a master thread is created and
assigned to a pool with the minimum load, and the INIT phase is started. The current load
index for a pool is its number of active threads (if there are large variations in thread service
demands other load indices could be used). An active thread is a thread either running or

ZNote that our notion of average parallelism is different from that proposed by Eager, Lazowska and
Zahorjan [8]; theirs represents the average parallelism that a job exhibits during its execution, whereas ours
refers to the average of the desired parallelism in the PARA phase of all the jobs in a workload.



waiting in a ready queue.® The processor pool used for the master thread is called the home
pool for the job. When the INIT phase completes, a threads are created for the PARA phase,
and are assigned to one or more pools. The particular pool(s) used for these threads and the
value of a are determined by the algorithms to be described in Section 3.2. When all of the
parallel threads of a job complete, the corresponding master thread is placed back into the
ready queue of the home pool for the FINAL execution phase.

Threads executing in a pool are scheduled using a round-robin policy. All processors use
the same time slice, 7. When a time slice expires, the local pool’s run queue is inspected. If
it is empty, then the thread continues without a context switch, thus avoiding the associated
overhead. Otherwise, the running thread is added to the tail of the queue, and the first thread
in the queue is executed.

3.2 Alternatives for the Algorithms

There are two areas in which the algorithms we consider may differ:

Assigning threads to pools. In this paper, we will only consider the static assignment of
threads to pools (i.e., once a thread is assigned to a pool, it executes within that pool until
completion). The parallel threads of a job are considered for placement as a group. We always
consider the job’s home pool first, and then other candidate pools in increasing order of their
load, until either all of the d threads have been assigned to idle processors (indirectly through
their run queues), or until we have used as many pools as a particular algorithm will allow.
For simplicity, we assume that all pools are equal, so the only factor in choosing pools is their
current load. This may not be true in some architectures, where more intelligent decisions
may be made to further improve locality (among the pools used). The processor pools that
a job can use are called its candidate pools. There is a range of possibilities for the number
of candidate pools a job considers:

1. No-spanning: All of the parallel threads of the job are assigned to the job’s home
pool. This method ensures maximum localization of the application, but may limit the
number of processors an application can use, and hence its speedup.

2. Unlimated-spanning: The parallel threads can be assigned to any pool.

3. Limaited-spanning: This is an intermediate choice between the above two extremes. Let

z =round(F x d / p)

where F is a control parameter for the possible number of pools to span. The number
of candidate pools is then determined by the following function:

1 ifz<1

fldy=1 =z if1<z<Plp
P/p ifz>P/p

3In particular, After the INIT phase, the master thread is put to sleep until all the parallel threads have
completed, so it is not counted in the pool load during the PARA phase.



The above functions are used to restrict the number of pools that a job can use based
on its desired parallelism. For example, suppose d = 20, p = 10, and F = 0.8, then the
job can only consider z = 2 pools in a 60-processor system. By varying the value of
F, we can control the degree of pool spanning and study its desirability. When F = 0,
f(d) = 1 and we get the no-spanning case. When F is very large, f(d) = P/p and we
get the unlimited-spanning case.

The above choices represent a range of tradeoffs between the localization of a job within
one or few pools, thus achieving efficient execution, and load balancing among the pools.

Limiting the degree of parallelism. If there are few idle processors in the candidate
pools when a job starts its PARA phase, it may be desirable to limit its number of parallel
threads, through user-level scheduling, so that it does not claim too large a share of the
processing resources. By limiting the number of PARA threads, contention for the processors
may also be reduced, so less context switching overhead is incurred. Again, there is a range
of choices:

1. Unrestricted-parallelism: a = d.

2. Restricted-parallelism: a = min(d, maz(pidie, G X d,1)).
where p;gie is the total number of idle processors in the candidate pools, and the
parameter G (0 < G < 1) controls the minimum level of actual parallelism. If the
number of idle processors in the candidate pools exceeds the desirable parallelism, then
we simply create d parallel threads; otherwise, we ensure that at least one or G x d
threads are created, whichever is greater. Notice that this minimum actual parallelism
is directly proportional to the desired parallelism.

Once the actual parallelism of a job has been determined, the total CPU demand of the
PARA phase is roughly evenly distributed among the a threads, as described at the beginning
of Section 2. If @ > p;gi. then the threads without idle processors are distributed among the
candidate pools to balance their resulting load.

Continuing the example we used for determining the number of pools to span, suppose
F = 0.5, and there are only 2 and 6 idle processors in the two 10-processor candidate pools,
respectively, then 20 x 0.5 = 10 threads will be created, with 3 and 7 of them allocated to
each of the two pools. As a result the number of threads in each of the two pools is 11 and
the load is balanced.

With restricted-parallelism, if G = 1, then we get unrestricted-parallelism as an extreme
case. If G = 0, then no more threads will be assigned than the total number of idle processors
in the candidate pools, with a minimum of one. With such a policy, contention for the
processors among the threads will be minimized; however, a large parallel job may be squeezed
into a small number of parallel threads, drastically inflating its response time, as well as the
average job response time. This problem is particularly severe in our simplified version of user-
level scheduling, since the number of parallel threads a job may have cannot be dynamically



adjusted. As a result of limiting the jobs’ parallelism (a < d), the average actual parallelism,
A, is usually somewhat less than the average desired parallelism, D.

Although pool-based scheduling weakens system-wide load balancing, a certain degree of
load balancing is achieved in the above algorithms in two ways: First, the pools with the
lowest loads are selected for the jobs. Second, the loads of the candidate pools are balanced
at parallel thread placement time.

3.3 Overhead Assumptions

We consider four types of overhead in our simulation experiments.

In-pool overhead. As pointed out in the introduction, the execution of a parallel job is
likely to be more efficient if its threads run on processors close to their shared data and to
each other. As the number of processors in a pool increases, the threads of a parallel job
spread over a wider range of processors, incurring greater overhead. We model this by the
in-pool overhead, which represents the penalty for ignoring the NUMA characteristics of the
system. Four sources of in-pool overhead may be identified as the pool size increases:

1. The percentage of remote memory or shared cache accesses may increase, causing longer
delays.

2. As aresult of increased remote memory traffic, the shared interconnection network and
memory or shared caches may become congested, causing additional delays.

3. The overhead in keeping the processors’ caches consistent may increase, as software
or directory-based methods may have to be employed [5]. Alternatively, if no cache
consistency is maintained, cache misses increase, so local and remote memory traffic
increases.

4. Software servers shared by the threads (such as a thread scheduler and memory
manager) may become congested.

Clearly, the impact of some of these overheads depends on the particular architecture
concerned. One possible classification of large-scale shared memory multiprocessor
architectures is the following:

e hierarchy: processors are connected by multiple levels of buses and/or parallel rings or
switching networks. Examples include Hector [23] and Cedar [10].

e hierarchy of shared caches: Another type of hierarchical architecture, though not strictly
NUMA, consists of processors connected by multiple levels of buses with shared caches,
and global memory at the bottom level. An example is VMP-MC [6].

e multi-grid of buses: processors are connected by buses running in two or more
dimensions which are used to maintain cache consistency. An example is Multicube [11].

e general network: Each processor has a limited number of links through which processors
are connected, either directly or indirectly through routing switches, to form a network.
Remote memory requests may have to be routed through intermediate processors and /or
small routing switches. For example, CMU’s PLUS [3].

10



o switching-network: A global switching network interconnects all of the processors; hence,
all processors are equidistant from each other. If the processors are associated with local

memory, memory accesses will be non-uniform (being either local or remote). Examples
include the BBN Butterfly [1] and RP3 [18].

Architecture Natural clusters Overhead Sources

classes suitable for pools | 1 | 2 | 3 | 4
hierarchy subhierarchies S |S |S]|S
hierarchy of | subhierarchies WI|S [S|S
shared caches
multi-grid Processor rows S |S |S|S
of buses or columns on

same bus
general subareas of S |S |S|S
network processors
switching none W|W|S|S
network

Table 1: Classification of NUMA architectures.

In each of the architectural classes presented, memory may or may not be associated with
each processor (although processor-memory pairs are used in many of the example systems).
The NUMA architectural classes and the severity of the in-pool overheads are summarized
in Table 1. It is apparent that the in-pool overhead is present in all of them, but to varying
degrees. The degree to which we feel each of the overheads is applicable is indicated by using
an ‘S’ for strongly applicable and an ‘W’ for weakly applicable.

In addition to the architecture, the operating system and the applications (in particular,
their memory sharing and task dependency patterns) all affect the level of in-pool overhead in
a particular system. To remain independent of particular systems (beyond assuming NUMA)
and job characteristics, we consider all the potential sources of overhead related to the pool
size together, by modeling the in-pool overhead with a linear function that is used as an
inflation factor on the parallel thread execution time:

w = 0 if p<po
|l Wx(p—po) ifp>mpo

where W is a parameter that decides the severity of the overhead, and pg determines a
pool size below which no in-pool overhead is incurred. Based on the success of small-
scale multiprocessors, small pools are not likely to introduce significant amounts of in-pool
overhead. A default value of 5-10 for py seems to be reasonable for most of the NUMA
architectural classes identified. For some architectures and jobs the actual function may well

11



be superlinear or sublinear, and may have sudden jumps as the pool size goes beyond the
size of a natural processor cluster in the system (i.e., forming a step function). Nonetheless,
we still feel that a linear function with an offset of pg and varying slope W can capture the
essence of the in-pool overhead.

Given a value of w, each of the parallel threads of a job running in a pool with more than
Po processors requires (1 + w) times as much CPU time as their base values. In the extreme
case of a single 60-processor pool, default values of W = 0.5% and pg = 10 result in an in-pool
overhead of 25%. In other words, if a parallel application randomly spread its threads over a
60-processor system, it would be slowed down by 25% compared to the hypothetical case of
its running in a system with a single, fast bus connecting 60 processors with no contention.
This degree of overhead is consistent with the measurement results reported in [19]. Note
that the in-pool overhead is based on the pool size, rather than the number of threads in
the pool, the reason being that the threads are executed on idle processors and may move
around in the pool, depending on the in-pool scheduling algorithm, thus much of the overhead
remains. For example, over time, a single thread of an application may execute on several
processors within a pool while continuing to reference the same memory locations. The time
to access this memory will be a function of the distance from the thread’s current processor
to the memory (and thus the size of the pool).

Pool-spanning overhead. While in-pool overhead reflects the overhead incurred by
running a job within that pool, similar overheads will result from running a job in more
than one pool, for similar reasons. That is, a larger number of processors are involved and
the localization of execution may be decreased. These overheads have not been charged in
the in-pool overhead and must therefore be reflected in the pool-spanning overhead. Note
that these are not overheads that are being “double-charged” but rather overheads for which
a portion is charged because of in-pool overhead and a portion is charged to pool-spanning
overhead.

Besides the four main sources already outlined for in-pool overhead, a job that executes in
more than one pool will also be subject to other types of overhead. These overheads include
the maintenance of the pools and their loads, as well as accessing that information. However,
the main source of overhead will be the coordination required between pools. For example,
if the threads of a job execute on processors belonging to more than one pool, multiple
scheduling and memory management modules of the operating system may be involved. It
is therefore reasonable to expect that the overhead of spanning & pools of p processors each
would incur greater overhead than executing in a single pool containing kp processors. The
overhead incurred by spanning pools is also positively correlated with the pool size for two
reasons. First, it is believed that (as in the in-pool case) the amount of overhead incurred
will be greater in larger pools because the possibilities and costs of accessing memories or
caches over greater distances will increase with the size of the pools as will contention for
the interconnect and software servers and the amount of effort involved in maintaining cache
coherency. Second, if coordination between pools is required, the cost associated with that
coordination may depend on the size of the pools (larger pools may require more information).
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As is the case of in-pool overhead, we assume a very simple form for pool-spanning overhead:
s=Sx(k—-1)p,

where S is a parameter controlling the severity of spanning overhead. Like in-pool overhead,
this overhead is represented as an inflation factor on the threads’ CPU demand. For example,
suppose a job spans six pools of five processors each, then, with a default value of S = 1.0%,
the job incurs a 25% pool-spanning overhead. Note that the values of W and S should be
chosen such that the combined overhead of a job running on a fixed number of processors
increases with the number of pools into which these processors are divided. The factor & — 1
is used instead of k& because there is no spanning overhead when £ = 1 (i.e., a job uses a single
pool).

The in-pool and pool-spanning overheads have a direct impact on the performance of
pool-based scheduling algorithms, because these algorithms are based on the success of using
smaller pools to reduce the in-pool overhead, and spanning pools only if there are performance
advantages.

Run queue contention overhead. When the executing thread on a processor changes,
it is necessary to exclusively access the shared run queue. This may result in contention
overhead, which grows with the number of processors sharing the queue [16, 15]. We do not
model such contention explicitly, but rather approximate it using the following formula:

0 if p<po

contention cost = .
{ T X (p—po) ifp>po

where r is the slope of the line that reflects the severity of run queue contention, and pg is as
used for in-pool overhead. Such a function tends to underestimate the amount of overhead for
larger pool sizes, since contention for a shared resource tends to grow superlinearly. Unlike
the percentage overheads associated with processor pools, this and the cache loading overhead
described below are absolute (in units of time), and are incurred at context switching time.

Cache loading overhead. Modern multiprocessor systems employ large caches in order
to keep the processor busy doing useful computation. When a thread is started /resumed, its
cache context needs to be loaded. This may slow down applications significantly. Although
the performance degradation due to cache loading is dependent on the particular jobs and
threads involved, we choose to model this overhead very crudely by charging a constant cost
of ¢ time units for each context switch if the new thread belongs to a different job from that
of the previously running thread. Otherwise, the overhead is a fraction ¢ of the above, as part
of the cache context of one thread may be usable by another thread of the same job. Also,
threads of the same job execute within the same address space and therefore do not incur the
additional overhead of switching address spaces as would a thread from a different job.
Other overheads incurred during a context switch (in addition to cache loading), are the
basic cost of saving and loading the registers and swapping other process context information,
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as well as actually making the scheduling decision. Although we expect such costs to be low
compared to the cache loading cost, we simply include them in what we call the cache loading
overhead. The default ¢ value used in simulation is 0.005 time units.

Par | Meaning Def
P number of processors in the system 60
L system load level 60%
D average desired parallelism 20
T | time slice (units of time) 10
F level control for degree of pool spanning 0.8
G level control for actual parallelism 0.5
po | pool size threshold for overheads 10
t fraction of cache load cost for thread 0.25
W | factor for in-pool overhead 0.5%
S factor for pool-spanning overhead 1.0%
T factor for run queue contention overhead | 0.003
c factor for cache loading overhead 0.005

Table 2: Simulation parameters and their default values.

In addition to the above four overheads, accessing the pool load information and executing
the job placement algorithm also incur certain overhead. Given the relatively low frequency
of parallel thread placement, and the fact that most accesses to the pool load information are
reads, we expect such overheads to be low compared to the ones we have discussed, hence,
we chose to not model them.

The parameters used in the experiments, described in the next section, are listed in Table 2
together with their default values. The default values for F' and G are chosen to produce
optimal performance. Our experiments are typically conducted by using all of the default
values and varying a few of the parameters being studied.

4 Simulation Experiments

4.1 The Benefits of Pool-Based Scheduling

To assess the benefits of pool-based scheduling, we simulated the operation of a 60-processor
system employing the limited-spanning algorithm with user-level parallelism restriction
activated.? All of the default values for the parameters shown in Table 2 are used, except that
the value of the average desired parallelism, D, is varied. The results are shown in Figure 3.

*The system size of 60 is chosen to be large enough to expose the potentials of processor pools, yet small
enough to enable us to perform a large variety of experiments and obtain reasonably tight confidence intervals.
Later in the paper, we examine a 120-processor system.
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Figure 3: Benefits of pool-based scheduling.

In this and all of the subsequent figures, the vertical line segments at the data points show
the 90% confidence intervals.5

With D = 20 and at a moderate load level of 60%, the average job response time is reduced
from 342 (time units) when one pool is used to 265 when two pools of 30 processors are used,
whereas the absolute minimum (non-achievable) response time is about 127 (which is the
sum of the execution times of the three phases in the absence of overheads). The significant
performance improvements when processor pools are used substantiate our hypothesis that
pool-based scheduling can improve the average job response time. At the large-pool-size
extreme, where the entire system is treated as a single pool, performance degrades because
the parallel threads of the jobs are scheduled on the processors irrespective of their relative
positions in the system. The poor locality, low cache affinity and high contention for the ready
queue cause high in-pool overhead, resulting in poor performance. At the small pool extreme,
jobs are forced to span pools to take advantage of the idle processors in a number of pools.
Consequently, the pool-spanning overhead increases, again resulting in poor performance.
Using intermediate pool sizes and limiting the number of pools a job is allowed to span
according to its desired parallelism and the current load, allows most jobs (with the exception
of the very large ones) to run efficiently within a single pool. Such execution only incurs
moderate in-pool overhead.

Comparing the shapes of the curves, we notice that the performance advantage gained
by using processor pools increases with the average parallelism, suggesting that pool-based
scheduling is increasingly desirable for workloads consisting of larger parallel jobs. Comparing
the positions of the curves, we observe that, with a constant load level (at 60% in Figure 3),
performance degrades as the parallelism in the jobs increases. This is intuitive for several
reasons:

5Some of the 90% confidence intervals we obtained are very narrow, and are invisible in the figures.
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1. The workload becomes more bursty as a larger number of parallel threads are created
at the start of a job’s PARA phase and the probability of pool spanning also increases.

2. The difference between the number of desired threads and the number of actual threads
increases as the load increases. So fewer threads are executing a larger amount of work.

3. The response time of a job is dependent upon the completion of all of the parallel
threads. The probability of one of the threads being delayed increases with the degree
of parallelism.

The pool size resulting in the best performance is positively correlated with the mean
parallelism of the jobs. The results indicate that it is desirable to use larger pools for larger
parallel jobs.

From Figure 3, we can also observe that, at a load level of 60%, the average actual
parallelism, A, is significantly smaller than the average desired parallelism, D, especially for
the larger values of D.® Such effective restriction of parallelism is desirable under moderate
to heavy load conditions since it reduces the run queue contention and cache overheads, thus
improving performance.

It may be argued that, when relatively large pools are used, the parallel threads of a small
job should be placed onto processors close to each other to exploit locality within a pool and
reduce in-pool overhead. This complicates the scheduling of the threads, however, since the
threads would be restricted to a subset of the pool’s processors. Load imbalance could also
become a significant problem. Using smaller pools would achieve similar effects without these
complications. Another possibility is to divide the system into pools of non-equal sizes and
select pool(s) for a job’s execution based on its parallelism as well as the current load. We
intend to explore this possibility in our future work.

4.2 Overhead Sensitivity

While the results obtained are encouraging, we hasten to add that they depend on the
overhead assumptions made. The values of the overheads, in turn, depend on the system
and the workload. We therefore conducted a sequence of sensitivity studies.

Figure 4 shows the impact of the in-pool and pool-spanning overheads on performance.
It is clear that the desirability of processor pools increases with these overheads, as might be
expected. Significant performance improvements are seen over a relatively wide range of pool
overheads. Only results for a few pairs of values of W and S are shown in Figure 4; however,
since the performance with very small and very large pool sizes is largely influenced by pool-
spanning and in-pool overheads, respectively, the performance curve with any combination
of the W and S values shown in Figure 4 may be approximated by combining the respective
halves of the relevant curves shown.

We also examined the effects of the time slice as well as the run queue contention and
cache loading overheads on our results by running the same experiments as shown in Figure 3,
except we varied the quantum sizes instead of the load (varying the time slice produces the

Larger pool sizes yield slightly higher values of A; the values of A shown in Figure 3 are the averages over
all the pool sizes simulated.
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Figure 4: Performance sensitivity to pool overheads.

same effects on the mean job response time as varying the run queue contention and cache
loading overhead since there is a direct correlation between the size of a time slice and the
number of context switches). Figure 5 shows that, with relatively large quantum sizes, the
impact of the run queue contention and cache loading overheads is not significant, thus the
desirability of processor pools is prominent. With very small quantum sizes (e.g., T = 1),
performance degrades due to the run queue contention contention. One could argue, however,
that it is undesirable to use very small quantum sizes and pay such high run queue contention
and cache overheads.

4.3 Degree of Pool Spanning

In Section 3, we pointed out that the degree to which jobs are allowed to span processor pools
represents a tradeoff between localization of parallel jobs and load balancing. The parameter
F controls the degree of pool spanning (see Section 3.2). All of the previous experiments were
conducted using the limited-spanning algorithm with the default value of /' = 0.8. Figure 6
shows the performance of the system with varying values of F.

We can see that the default value of F = 0.8 yields near-optimal performance for all
pool sizes. Figure 6 also highlights the importance of an appropriate level of pool spanning.
The unlimited-spanning algorithm performs poorly with intermediate pool sizes because of
too much spanning. Although idle processors in the entire system can be used, resulting
in larger actual parallelism and good load balancing, the decreased locality in the parallel
threads more than offsets any performance gain from spanning. In the other extreme, the
no-spanning algorithm with intermediate pool sizes performs very well on a workload with
an average desired parallelism of 20. Although a few large parallel jobs are forced to execute
within a single pool, they do not seem to have a substantial impact on the average response
time. Such a strict limitation on large parallel jobs, however, may be unacceptable, as one
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Figure 5: Performance sensitivity to CPU quantum size.

advantage of a large parallel system (i.e., being able to run large parallel jobs) is completely
sacrificed to improve overall system performance. With very small pools (e.g., five-processor
pools), the performance of the no-spanning algorithm degrades rapidly.

4.4 Performance with Various Load Levels

Figure 7 shows that the benefits of pool-based scheduling increase with the system load, as
does the importance of the pool size. Under heavier loads the pool overheads have a stronger
impact on performance. Pool-based scheduling is most desirable under moderate to heavy
system load. The values for U in the figure are the measured average processor utilizations,
and are higher than the load levels, L.

4.5 System Size

Figure 8 shows the performance of processor pools in a system of 120 processors. Our
observations in Section 4.1 for a 60-processor system also hold for this larger system. Pool-
based scheduling becomes even more desirable, since larger systems make the consideration
of locality imperative; scheduling the jobs in the entire system with no regard for locality
may result in intolerable performance. We again observe a positive correlation between the
average parallelism and desirable pool sizes.

To allow comparison, Figure 8 also includes two curves taken from Figure 3 for a 60-
processor system with an average desired parallelism of 10 and 20 (shown with dotted lines).
Comparing these two curves to their corresponding curves for a 120-processor system, we
notice that, using pool-based scheduling, the system performance, with a workload of fixed
average desired parallelism and load level, improves as the system size increases. Thus, the
capacity of the system in supporting a particular class of workload is truly scalable. With
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Figure 6: Performance sensitivity to pool spanning.

increasing system size, but constant pool size, the number of pools increases, providing greater
opportunities for load balancing. Thus, an incoming job is more likely to be able to find a pool
with a relatively large number of idle processors, and is able to use a larger number of actual
parallel threads. This reasoning is supported by the increased average actual parallelism, A,
for the 120-processor system shown in Figure 8 (as compared to that for the 60-processor
system). For instance, with D = 20, A increases from 12.4 in a 60-processor system to 14.9
in an 120-processor system.

The improved performance with intermediate pool sizes in a larger system is in sharp
contrast with the much poorer performance of the same type of workload (e.g., D = 20 and
L = 60%) in the same system not using processor pools. Although our linear assumption
about the in-pool overhead may be too high in a very large system (because applications
that are able to employ a large number of processors effectively must be able to exploit
locality to a greater extent than we have modeled), it is clear that scheduling parallel threads
in a large system with no regard for locality is likely to produce high overhead and hence
poor performance. We therefore conclude that pool-based scheduling is not only a technique
for achieving better performance in a system of a particular size, but also of importance in
building scalable systems.

4.6 Revisit: Model, Algorithms, and Overheads

To focus on the key issue of pool-based scheduling, we used a simple system model, a set of
simple workloads, and a class of scheduling algorithms that are tailored to large-scale NUMA
systems but lack many features that one would expect to find in an optimal scheduling
algorithm. Owur overhead assumptions are also simplistic. It is therefore necessary, after
presenting our experimental results, to assess the potential influences of these simplifications
upon our conclusions.
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Figure 7: Performance sensitivity to load levels.

The scheduling policy for each pool uses a single run queue, and treats the threads
from various jobs independently. While better performance may result if features such
as coscheduling [17] (for those jobs executing within a single pool) and per-processor run
queues [7] are included, we feel that the scheduling policy used within the pools are largely
orthogonal to the concept of pool-based scheduling. Had a better in-pool policy been adopted
in our simulation, the curves in Figure 3 would have decreased uniformly, but their shapes
and relative positions would likely be similar. We tested this hypothesis by running the
experiments shown in Figure 3 with the cache loading and thread scheduling overheads turned
off (not shown); without these overheads, the policy based on a single run queue per pool
achieves maximum load balancing. The results are as expected. However, if coscheduling
proves to be desirable for jobs that span pools, then the use of processor pools would results
in extra overhead in coscheduling.

User-level scheduling has been shown to be effective in reducing cache and scheduling
overheads [22, 12, 21]. We included a simplified version of user-level scheduling in our
algorithms in the form of limiting the number of parallel threads created depending on the
desired parallelism and the system load. However, no dynamic adjustments to the number of
threads a job may have are allowed (the adjustment would typically result from a change in
the load). Since we observed that cache and scheduling overheads are insignificant with large
quantum size, we do not expect that further refinement of user-level scheduling would change
our conclusions.

We assume that the pool and run queue contention overheads are present only when the
pool size is greater than py. All the preceding experiments are based on a default value of
10 for pg. Owur experiments using values between 5 and 10 showed little variation in the
effectiveness of processor pools.

Our simple job model does not include I/O and paging, and only a token representation
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Figure 8: Performance of processor pools in a larger system.

of synchronization. We feel that the I/O and paging activities are relatively independent of
the placement of the threads, unless the locations of the I/O devices or memory contention
are considered in the placement and therefore expect that our results would not be changed
significantly. However, if such activities cause very frequent context switching, thus making
the cache and scheduling overheads more important, then the benefits of pool-based scheduling
may become obscured and insignificant.

For most of our experiments we used a simple correlated workload. To examine the
workload model’s impact on our algorithms we also ran experiments using a workload
consisting of jobs whose total CPU demand and degree of parallelism are uncorrelated. Such
a workload contains much more variability in that there are jobs with a few parallel threads
that require substantial CPU time, and highly parallel jobs with little CPU demand. The
simulation results based on such a workload also determined that processor pools significantly
improve performance.

5 Related Work

The multiprogrammed use of multiprocessors started to attract attention of researchers only
a few years ago, but has since become a very active area of research. Qusterhout proposed
the idea of coscheduling in his 1982 paper [17] as a way to coordinate the scheduling of
a group of communicating processes. Majumdar, Eager and Bunt first examined dynamic,
static, and semi-static approaches to global scheduling in multiprogrammed multiprocessor
systems [14]. Eager, Lazowska, and Zahorjan proposed the use of average parallelism as a job
characterization that is important for scheduling purposes [8]. Sevcik pointed out that a small
number of improved job characterization parameters may substantially improve the quality
of scheduling decisions [20]. In a recent simulation study, Zahorjan and McCann concluded
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that dynamically changing the number of processors allocated to a job in response to its
changes in parallelism performs better than static policies over a range of workloads [24].
Leutenegger and Vernon undertook a comparison study of scheduling algorithms to identify
the most significant characteristics of scheduling algorithms [13].

The idea of user-level, application-initiated methods for limiting the number of a job’s
threads in order to reduce scheduling and context switching overheads was introduced by
Vandevoorde and Roberts [22], and refined by Junkin and Wortman [12]. Tucker and Gupta
studied the dynamic adjustment of the number of threads each job may have in order to
distribute the processing resources evenly among the jobs, as well as to reduce overhead [21].

The idea of partitioning the processors of a system among jobs is not a new one. Tucker
and Gupta suggested implementing a number of processor groups primarily for the support
of individual parallel and sequential jobs [21]. Black also proposed the use of processor sets
for individual applications [4]. Our concept of processor pool, however, is different from the
above in that they are not used to partition the processors among the jobs, but rather, are
used as a scheduling unit, with possibly multiple jobs running in a single pool, and jobs
spanning multiple pools (thus the use of the word “pool”).

Almost all of the previous research has been concerned with small to medium UMA
multiprocessors. Little research has been performed on scheduling of large-scale NUMA
multiprocessors for multiprogrammed use. Ni and Wu addressed the issue of run queue
contention by proposing the use of multiple run queues in a system [16]. Nelson and Squillante
studied the same problem, and suggested methods that allow a processor to dequeue multiple
threads or schedule threads onto other processors [15]. In a recent study, Feitelson and
Rudolph study a scalable distributed hierarchical control structure for gang scheduling in a
large-scale multiprogrammed environment [9].

6 Conclusion

In this paper, we proposed a class of scheduling algorithms based on processor pools for large-
scale NUMA multiprocessors. Our simulation experiments use a set of simple workloads and
a simple system model to show that parallel application scheduling based on processor pools
may effectively reduce the average job response time. The performance improvements attained
by using processor pools increase with the average parallelism of the jobs, the load level of the
system, the scale of the system, the differentials in memory access costs, and the likelihood of
having system bottlenecks. While allowing large parallel jobs to span multiple pools may
improve the overall performance, such pool spanning should be carefully controlled. As
the system size increases while maintaining workload composition and intensity we observed
significant performance improvements when processor pools are used. We therefore conclude
that processor pool-based scheduling may form an essential component of a scalable system.

It is important to observe that we have treated processor pools as an abstract concept
based on the large scale and NUMA characteristics of a system, and not on any particular
architecture. However, in actually implementing processor pools on a specific system, its
NUMA characteristics should be fully exploited, as illustrated with example systems in the
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discussion of in-pool overhead (see Section 3.3). The values of the pool overhead factors, W
and S, capture the benefits of localization, or, in other words, the penalty for ignoring the
NUMA characteristics of the system. In the tradeoff between localization and load balancing,
the pool-based scheduling algorithms capitalize on localization, while apparently sacrificing
little load balancing.

In future work, we plan to look into the performance potential of processor pools of
unequal sizes, of pools that dynamically split and merge in response to workload changes and
of using pools for running different classes of jobs. We also plan to incorporate I/O activities
into our model and study their impact. In coordination with our simulation and modeling
work, we will use our prototype large-scale NUMA system, Hector [23], to obtain a better
understanding of pool-based scheduling, and better characterizations of the overhead costs.
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