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Internet Several previous studies have examined techniques for improving
servers Internet server performance by investigating and improving operating
system support for event-dispatching mechanisms. These studies have

Web servers, been mainly motivated by the commonly held belief that the overhead

performance, incurred in obtaining network 1/0 events using the select system call
select, event was too high to be used in environments with high request loads and
dispatching large numbers of concurrent connections. However, recent work by

Chandra and Mosberger [6] shows that a properly implemented select-
based server can outperform servers that utilize new and improved
event-dispatching mechanisms that are significantly more scalable
than select.

In this work we conduct a detailed investigation into precisely why the
Chandra and Mosberger server performs well. We use our findings to
further improve the performance of select-based servers and provide
insights that we believe are key to understanding and improving the
performance of Internet server applications.

We find that an essential ingredient required to obtaining good performance
in heavily loaded Internet servers is the ability to control the flow of work
into and through the server. By employing controls that enable the server to
both accept new connections at a high rate and make forward progress on
existing connections, we are able to increase peak server throughput by 14 -
21% when compared with the server used by Chandra and Mosberger.
Additionally, the differences in performance obtained using our new
approach increase substantially as the workload intensifies.
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1 Intr oduction

Intemetbasal (or network-centric) applicaions have experienced incredble growth in recent yeas ard
all indicafons are that such applicationswill continue to grow in numbe and in importance. How such
applicationsshould bestructuredand how they should interactwith operating systemsis the sulject of much
adivity in theresarch commurity, whereit is commonly bdieved that existing interfacesare ill -suted to
supporting sud applications[4],[18], [14].

Current approaches to building Internet server software sufer from the problem thatif the demand from
client applications exceals the server’s ahlity to handle the demand, the performarce of the sewver ard
hence the performance seenby the clients degrades dramatcaly. That is, existing severs are not well-
conditioned to load.

In fad, in such sygemsthethroughput of the server approacheszero asthe numberof simultaneus requess
to that sewer continuesto grow. This is reflected in unpredictabde and extremely long wait times, or a
complete lack of respanse for mary of theusersof such sydems It is predsedy during theseperiodsof high
demandwhenbeing able to sevice customers may be mastimportart to those who arerelying on the sewer.
Exampes of such periods occur during shap changesin the stock market, breaking news evens, and the
Christmasshopping seaon

Unfortunately, it is not practical or cog effective to provision a systemin orderto hardle pe& demands
becausethepeak demandon web severs canbe several to hundredsof times higher than theaveregedemand

[1] [17].

Thegoal of this work is to examinetheimpactof variousdesgn considerdionson asimplesel ect -based
web-sewrerto determine how such an applicaion canbe better conditioned to load

2 Background and Related Work

Currentappoachesto implemering highperformane web seners requre special techniquesfor deding
with high levels of concurrency. This pointisill ustratedby first considering thelogical stepstaken by aweb
seaverto handle asingle client request as showvn in Figure 1. Note that nearly all Internet-basedservers and
savicesfollow similar steps.

1. Wait for and accept anincoming network comection.
. Redal the incoming request from the network.
. Parsetherequed.
. For static requeds, checkthe cache ard possbly openand readthefile.
. For dynamic requests compue the reault.
. Serd the repy to therequeding client.

N o o~ WDN

. Closethe network comection.

Figure 1: Logical stepsrequiredto processa client request.



Severd of thesesteps can block becaisethey require interadion with aremde host, the nework, adatabase
or sameother subsydem, or potertially adisk. Corsequenty, in order to provide high levels of performance
the sever must be able to simultaneusly service pattially completed connectons and to quickly and easily
multiplex those connections that are read/ and able to be serviced (i.e., those for which the application
would not have to block and wait). This mayresut in theneedto beable to hande severd thousandsor tens
of thousands of simultaneous connections [4].

Initi al attempts to implement web savers handled concurrerncy issiesby creating asepaate threadof control
for eachnew connedion andrelying on the operating system to automatically block and unblock threads
appropriately. Unfortunatdy, threadsconsumesignificant amouwnts of resources andsewer architedas found
thatit wasneesary to restrict the numbe of exeauting threads [8] [4].

More reent approachesto high-performarce server desgn treat each connedion asa finite stae machne
(FSV) with trangtions betweenstates being triggered by the event being proces®ed Several connections
are managedsimultaneusly by multiplexing betweendifferert comections(FSMs)with the sewverworking
on the comection on which forward progresscan be madewithout invoking an operating systemcal that
would block to wait for aresut. This is accomplished by tracking thefile and socket de<riptors of intereg
and periodically queying the operaing systemfor information about the stateof thesedescriptors (using a
systan call like sel ect or pol | ). The results of thesecdls indicate to the apdication which operations
can beperformedon which desgeiptors without causing the apgication to block. Obtaining this informdion
is thekey componert in providing the ahility to multiplex betwean outstanding connections.

Significant reseach has beenconducted into improving web sewver performarce by improving both operat-
ing systemmecharismsandinterfaces for obtaining information about the state of sacketand file desaiptors
from the opeating systan [3] [12] [2] [4] [13] [14] [6]. Thes studies have been motivated by the belief
that under high loads with a large numbe of concurent connections, the overhead incurred by sel ect

(or similar calls) is prohibitive to implementing high-performarce Intemet servers. As a resut they have
mainly developedimprovementsto sel ect, pol | andsi gwai t i nf o by reducing the amourt of data
that nealsto be copied between user space ard kerrel spaceor by reducing the amount of work required
by the kemel to perform suc operaions (e.g.,by only ddivering one signd per deriptor in the case of
si gwai ti nf o).

Interesingly, recert work by Chandra and Mosbemger [6], in addtion to introdudng operaing system mod
ifications designed to improve application peformance, demorstrates that a rather simple modification to a
sel ect -basdweb-seaver (with astock operating system) providesbetter performarcethanther atemps
and the attemptsof others to improving performarce by modifying the operding system. They refer to this
saver asa “multi-accept” server becauseupon learning of arequest for a new incoming connection, rather
thanacepting asingle connedion, it attemps to acceptasmary incoming connedionsaspossble. Callsto
accept arerepededuntl avaue of ENOULDBLOCK is returned, which indicatesthatthere are currently
no more outstanding connectons that can be edablished The resuts of Chardra and Mosbemger’s exper-
iments were contrary to convertiond wisdom which believed that sel ect -based savers perform poorly
under high loadks.

Ourwork in this pape is largdy mativated by this recentwork by Chandra and Mosbkerger[6]. We believe
thatthar work demorstraesthatevensimple server desgns exhibit awiderangeof variation in pefformance
thatis notwell understood. In this pape we attempt to chaaderize the behaviour of someof thesedesgn
optionsand usethese results to gain insight into same of the issuesaffecting server desgnsin gererd.



Ourwork differsfrom previouswork in that we invedigate a variety of techniquesfor improving the perfor-
marce of web-servers by concentrating mainly on the satware architecture of the server. Spedfically, we
are interegedin determining which aspeds of different server application designs contribute to, or help to
prevert, server meltdown during periods of high load. The focusof much of this pgperis on the interpay
betweenhow the sewer accepts new incoming connecions, obtains information about kernd events, ard
usesthat information to processexisting connecions. We believe that this approachhas provided us with
a beter understandng of tecmiques tha can be deployed within the apgication to significanty improve
performarce.

3 Methodology

In this study, we use as a starting point the micro-severs developed by Chardra and Mosberger [6] to
examine scalable event-dispatching mectansmsin Linux. We focus on ther “multi-accept” serverwhich
providesthe highed performarceof all of thesaversand kernd dispatching mechanismsconsidered in their
study. We use the core of this server to creae a new, highly parameteized micro-server thatis desgnedto
permit us to quickly and easly explore a wide variety of options with regpect to implemering various
agectsof theweb sewer.

This apgroachis both necesaly and important In addition to creding a framevork within which different
options can be explored, it ersuresthat ary differenesin peformane are actudly due to differences in
the softwarearchitecure of the server and not due to other artif acts of the implementationsbeing compared
(e.g., differenasin the caching algorithms or numbes of file desciptors being usal).

While this approachis attradive, it is not withou its drawbads. Perhaps the main drawback is thatit is
not feasible to examine andcompareall comhinations of parametes. Fortunaely we have found that we've
beenabe to apply insights gainedin someexperimerts to eliminate the needto explore same combinations
of options Although we have not done an exhaustive study of all combinationsof options or performed a
completely sydematc elimination of different combinatons, we have beenable to explore combinations of
optionsthat resut in quite significant improvementsin sewer throughput. Interesingly, we've found same
seemingly minor modfications to the server can have a significantinfluence on the resutting pefformance
of the server.

4 Server Implementation

We have desgnead and implemeried our server to permit the exploration of several issuesrelated to the
implemenation of high-peformarce web-servers. Again, our goal is to be able to provide a controlled
ernvironmert in which we can fairly and accurately compare various desgn and implemertation options.
Among same of theisslteswe have examined (not all are repated on in this paper) are how performance
is impactdby: aggressvely accepting new connecions, the orderin which the open sodket deriptors are
proces®d,the size of theli sten queue useal in accepting new connedions, and how that chace interads with
the size of the TCP SYN quetle. We have also exploredhow caching impactsthedesign of high-performance
web-sewrers



Figure 2 shows the badc structure of the server This figure is also usedto provide a context in which we
desaibe the various options andhow they modify the sever's betaviour. The pseudo-code contans sane
amotations regarding commard line options. For example, if the[ - s] optionis used we cdl new conns
which triesto more aggressively acep new connections by adding one or more calls to accept in the
mainsewerloop, prior to eachcall to sel ect .

while(1l) {
if ([-s] server_loop_accepts) {
[l [-m#] controls multi-accept
new conns();

}

r df ds r eadf ds;

wfds = witefds;

// find out which fds won’t bl ock
n = select(...rdfds, wfds...);

/] order based on [-0 order]
while (fd = iterate_over _fds()) {
if (1SSET(fd, rdfds)) {
if (fd = accept_fd) {
[l [-m#] controls multi-accept
new _conns();
} else {
if(r-L 1] |
/1 loop until failure
whi | e socket _readabl e(fd);
} else {
/1 read from socket process request
socket readabl e(fd);

}

if (ISSET(fd, wfds)) {
[l wite response to client socket
socket _writable(fd);

}

} /1 while iterate
} /1 while(l)

Figure 2: The basic structure of the main sever loop.



4.1 Server Parametes

We now provide amore complete list of options available for controlli ng how theserver operaesandexplain
how they are useal to change the servers betaviour.

e [-m #] modfies the behaviour of new.conns. When this options is usal new.conns calls
accept repeaedy urtil it either retrns EWOULDBLOCK or until # consecuive calls have resuted
in connedions. Without this option new.conns makesasingle call to accept to attemp to accept
anew connedion. The [-m 0] option is usedto mimic the multi-acept behaviour usedin the Chardra
and Mosbeger [6] study (0 is used to represeat no limit).

e [-0 order] controls the order of file descriptor (fd) processing, where orderis one of the follow-
ing:
up: checksfdsfrom 0 to the maximum fd.
down: checks fds from themaxmumfd to O.
fifo: checksfdsin theorder from first accepted to last
| i fo: checksfdsin theorder from lastaccepted to first.
wri t es- up: checksfdsin the order from 0 to the maximum fd but does the write check before the

readcheck.

wr i t es- down: checks fdsin the order from the maximum fd to O but doesthe write ched before
thereadched.

Thedefaultis[ - 0 down] sincethis waswha wasdonein the Chandaand Mosbherger multi-accept
server,

e [-w specifiesthat theseweristo cal socket _writ abl e to write theregy to the client’s sodket
as som asthe requestis parsd (i.e., from within socket _r eadabl e). Theideahere and with the
[ - r] optionis to attemptto speedthe processing of the currentconnecton by making adirect cal to
try to immedately makeforward progressrather than waiti ng for thenext call to select. The potertial
drawbad is that the call might simply return EWOULDBLOCK if the operating system is unable to
immedately proces the systancdl (i.e., wi t e inthiscaseorr ead inthecasof[-r]).

e [ -r] speifies that the sever is to call socket _r eadabl e to readthe reques as soon as the
connedion is accepted (i.e., from within new.conns). See[ - w] for themotivationfor this option.

e [ -s] is usedto forceanextranew.conns cdl (potentially doing a multi-accept) prior to doing a
sel ect inthemain severloop. Theideabehind thisoption is to be more aggessive abou aceping
new conredions.

e [ - 0] tells theserver to try to get new connedionsafter closing anexisting cormection.

e [ -(C] isusd toturn cacing on. Note thatthereal purpos of this option is to be able to eliminate
the effects of file systemacces®sand to focuson the remaning systam calls.

e [-L 1] specifiesthatservershould loopwhencalingsocket _r eadabl e until thecdl fails. This
isincludal in order to completely recreate the beraviour of the Chardra and Mosbeiger [6] multi -
accept server. We are uncettain why this wasdone but it might be to more quickly determine when
the sacketis closed Typically thefirst read returns the requestand the second retuns O to indicate
thattheend of file hasbeenreachdl (i.e., thatthe conredion has beenclosedby theclient). Notethat
our desgn considersalternative modfiersfor[ - L] butwe currently consideronly [ -L 1] .



e [ -1 #] isusedto sd the server’'slistenquee lengh. The default is 128 This option did require us
to modfy our version of the Linux kernel to permit this cdl to work correctly for values larger than
128.

e [-C #] setsthemaximum number of comections pemitted. This option nealsto takeinto accaunt
the maximum numbe of file desciiptors available and is usedto avoid running out of availabe file
desaiptors (i.e.,no nen conredions canbeacceped unlessthere arefile descaiptors available). Note
that when caching is not used this may need to be lessthan one hdf of the maximum number of
available file descriptors (since potentially eachsacketcould require anopenfile). Thedefaultis| - ¢
15000] .

We provide this list of options to idertify the range of parametrswe have explored, even though experi-
mertal resuts for several of the options are not presentedhere We found that the differencesin throughput
for someof the optionswasonly significantwhenusedin conjunction with other combinations of options
thatresuted in relaively poor performane (e.g.,[ - 0] ). Additiondly, we found that although systam calls
are exerased differently with the[ - C] option, the reailts obtained were not qualitatively differert from
those obtained without the option. As aresut, we felt they would not add to the discussion and we have not
included the reaults here.

5 Environment

All experiments areconductedusing adedicated 100 Mbps FastEthernet switchthat connectsclienthodsto
the saver. The saver executes on a400 MHz Pertium-lll basd dud-procesorHP NetSener LPr system
running Linux 2.4.0-tesf in uniproces®r mode. The client loadis gereraedusng ht t per f [10] andten
B180 PA-RISC machines running HP-UX 11.0.

For eech datapaint in the graphsshown in this paperwe startanew copy of theserver This is donebecaise
the server collects several stdistics of importance that we usein amalyzing its behaviour and it permits
usto collect gpr of [7] statistics from each run. In a numbe of prdiminary expeiimens comparing the
results obtainedwith and without gpr of we found that usng gpr of did not significantly alter the reaults
of our experiments. Although gpr of is unable to apply acairae acmunting techniquesduring interrupts
(it simply addsthe time spert handling the interrupt to the function currenily being exeauted) we found the
output of gpr of quite instructive whenviewedat a fairly coursegrain.

Eachexperiment is conducted by having the clients attemptto provide the desred load for a duration of 2
minutes using atime-out period of 3 semndsfor each connection. The 2 minutesis suficiently longto stress
ary of the sydem andapgication resaurcesthat mud be limited, but short enough to pemit us to conduct
areasmable numbe of experiments. Any request thatthe sewver is unalle to regpord to is recorded by the
client asan error. These errors may occur either because the sever is unable to acept the comection or
becauseit isn’t able to provide aresmpnsebefore the client time-out period is exceeded The client time-out
of 3 secands is also smallenoughto preventretriesif a connection can't be establishal. Unless otherwise
noted, all client requess arefor a one-byte file. This is dore in order to place asmuch stress aspossble
on the web-server and the undetlying operating sysgem. Additiondly, because of the high respnserates
obtained with theseserversthe network would becomea battleneck with files much larger thanabout 2 KB
(at 4250repliesper second a 2 KB would consume abaut 70 Mbps).



We have modified the defaut maximum number of open files pemitted to 32768. This is done usng
[ proc/sys/fs/fil e-max. Toaccommoditetheincreagdnumbe of possble openfiles we have also
increasal the size of anf d_set by modifying the definition of __ FD_SETSIZE to 32000. Additionally, we
use adefault TCP SYN queuesizeof 1024 using / pr oc/ sys/ net /i pv4/t cp_max_syn_backl og.

6 Experiments

In this sedion we conduct a numbe of experiments to evaluaie the performance obtaned using our web-
saver with seseral differert options. This permits us to explore a variety of web-saver implemertation
optionsand to compare ther perfformarce.

As menfoned previously, thereis an extremelylarge number of combinationsof parametes that could be
explored We haverun substartially more experimentsthan described in this paperandratherthanpresning
all of those reaults we have triedto focus on same of the more intereding agpeds of ourfindings.

Table 1 liststhe sewversdiscussel in the upcoming sedionsand providesa quick referencefor optionsused
in each case and how the combination of options changesthe behaviour of the server.

6.1 Basic Configuration Alternatives

Thefirst expeliment we conduct is to verify thatwhenusing the appropriate setof parametersour server wil
exeaute idertically to the multi-acaptserver used by Chandraand Mosbemger [6] (who werekind enough
to supply uswith the saurce code for the micro-sewversusedin their study). The options required for this
are[-mO0 -r -w -g -L 1] . Weusethis combination of options as a stating point for further explo-
ration becawse Chanda and Mosbeger [6] have shown tha this saver configuraion outperforms severd
altematve optionsincluding thosethatusekemel modificationsto support more scalable evernt-dispatching.

Figure 3 plots the comhined request rate of all of the clients on the x-axis and the server’s responserate
(throughput) on the y-axis. Fromthis graph we seethat the throughput of the original multi-accept server
and our severexecuting withthe[-m 0 -r -w -g -L 1] optionsis nealy idertical.

We also use Figure 3 to examine how somefairly minor modificationsto the sewer’s behaviour impact
the sewer’s throughput This graph also contains resuts that show how the throughput of our baseline
multi-accept equivalent sever is influenced if we remove the setsof options[-L 1],[-9g],and[-L1
- g] to produce serverswe will refertoas[-m O -r -w-g],[-mO -r -w-L 1],and[-m O

-r -w , regectively.

The results show thatremoving the [ - L 1] option has mixed resuts (labdled [-m 0 -r -w -g]).
Recdl that this mears thatthe server will cdl socket _r eadabl e (and hencer ead) only once, ingead
of atemping to call r ead until it fails. Without this option, while therequestrate islessthan 7000 request
per second, throughput is about the sane or a bit worsethan the baseline multi-accept verdon. However,
for higher request ratesthere may be a benefitto performing the loop.

Pertapsmoreinteresing are the resuts obtained by removing the[ - g] optionand by removing the[ - L1
-g] options The reailting throughput of these two versions of the server appeass to be idertical; our
discusdon certers around the verson without the[ - g] option, referredto asthe[-m 0 -r -w] sener.



| Server Options

Sewer Behaviour

[-mO -r -w-g -L 1]

Themulti-accept sever. Thes options provide the belaviour of thesewer
used by Chanda and Mosbeger [6]. When the listenng socketis read/
(readale) accept is cdled repededy until it returns EWOULDBLOCK
([ - m 0] ). Attempt to makeasmuchforward progresson the currert file
de<criptor as possible; socket _readabl e and socket writabl e
are cdled from within new.conns and socket _r eadabl e, respec-
tively ([-r -w]. Attempt to ge acceg new connectons when-
ever an existing comection is closed ([-g]) and loop on cdls to
socket readable ([-L 1]).

[-mO -r -w-q]

Themulti-aceptserver without looping on cdls to socket _r eadabl e.

[-mO -r -w-L 1]

The multi-accept saver without trying to get new connedionswherevera
connedion is closed

[-mO -r -w]

The multi-accept saver without trying to get new connedionswherever a
connedion is closedand without looping on callsto socket _r eadabl e.

[-mO -r -w -5]

Themulti-accept sever without trying to get new connedionswherevera
connedion is closedand without looping on cdls to socket _r eadabl e
but with extra calls to new.conns in the severloop to try to accept new
connedionsmore aggressvely.

[-m 0]

A purely sel ect -driven severwith repeadedattemgsto acept new con-
nedionswhen thelistening socket is ready (readable).

[-mO -5s]

A purely sel ect -driven sewverwith repeaedattempsto acep new con-
nedionswhen the listenng socketis ready (readable) and with extra calls
to new_conns in the saver loop to try to accept new connections more
aggressively.

[-m 25]

A purely sel ect -driven sewverwith repeaedattempsto acept new con-
nedionswhen theli stening sacketisready (readale) but with alimit of 25
conseaitive comections acepted eachtime the listening socket is ready.

[-m 75]

A purely sel ect -driven sewverwith repeaedattempsto acept new con-
nedionswhen theli stening sacketisready (readale) but with alimit of 75
conseaitive comections acepted eachtime the listening socket is ready.

Table 1: List of severstestad, optionsusedto create them, and how the options affectther behaviour.

Withthe[-m O -r -w] seaverthereis no longer a chedk for new connedions when connedions are
closal. Notethatwhen[ - g] is emabled such checks areonly performedif thereare file desciiptors avail-
able. Theremoval of the[ - g] optionreailtsin aslight increase(6.7%)in peakthroughput whencompared
with the multi-accept verdon. This compaative increa® in throughput is mantained until the request rate
reachesabaut 5500 requeds per secand. Then from 5500 to 6000 request per secand throughput is slightly
degraded (by about 6.5% at 5750 requess per secand). However, as the requed rate increa®s, significant
bendfits are obtaned and the throughput is better than the multi-accept vergon by more than a factor of 3
for request ratesbetwea 7000 and 10000 requeds per second.
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Figure 3: Comparing the muli-acceptserver with slightly different options.

To more closely examine same of the differenesbetwee how this version of the sewver and the basdine
multi-accept verson operatewe look at the reaults obtained by various system cdls whenthe requestrate
is 7000 requeds pe second In the multi-accept version 20385 of the calls to accept (or 6.1%) return
EWOUL DBLOCK compared with 4152 cdls (or 1.3%) inthe[-m O -r -w -L 1] verdon.

More importartly, beausethereis an upper bound on the number of openfile desciptors the sever mug
caefully manage the useof this limitedresairce. As areault, it must stop acceging incoming requestsfor
connecfions when that limit has beenreached In our sel ect -basal saver implementation thisis easily
accomplishedby simply excluding thefile desaiptor tha is being usedto aceptincoming comections (the
listening sodket) fromthef d_set being usal to deermine which desaiptors canbereadwithoutblocking.
Oncea requesthas been comgeted and the as®diated socketis closed new connections can be accepted
agan by simply including theli stening sacketin the appropriate f d_set .

The multi-accept version of the server entersinto a realm of exeaution where it is required to turn on and
off the accepting of new connedions, asit repeatedly bumps up against the file decriptor limit. This does
not hgppentothe[-m 0 -r -w server beauseit more actively makesforward progresson and closes
existing connecions. Conseguenty, the multi-accept seweris unable to keepits pipelinefull of connections
to work on and throughput drops off significantly.

When thefile desaiptor limit is reachedthis situaion might be improvedby not permitting new connections
to beacacepted until aspecified numbe of file de<riptors becomes availalde. In fact, our sewverimplemens
this option as[ -t #] , where # specffiesthe threshold for the number of availabe desciiptors requred.
However, we bdievethat alternative approachesthatare presented in theremainderof thepagerare preferred
to thisappoach



When we examinedthegpr of output for the multi-accept server for reques ratesbetwea 7000 and10000
request per secand we obsewvedthatit spendslessthan0.5% of its execution time in sel ect and about
13% of its exeautiontimeinaccept . Onthe other hand over thesamerequegratesthe[-m 0 -r -w
saver spends about 8% of its exeautiontimein accept andfrom 5% (at 7000 requestsper secand) to 10%
(at 10000requestsper second) in sel ect.

Compaedwiththe[-m 0 -r -w] server the multi-acce sever spendsproportiondly more of its time
attemping to accept connections (a greaer percentage of which fail). The end result is that there are an
insufficient number of connedions to multi plex amorg andthis is reflededin the relatively little time the
multi-accept server spendsin sel ect .

Figure 4 compaes the throughput obtained using the basedine multi-acept sever, the comhnation of
optionsthat resuts in the best throughput in our previousexperiment ((-m 0 -w -r] in Figure 3), ard
the resuts from some of the best combinations of optionsthat we've explored. We also include a server
thatusestheoptions[-m 0 -r -w -s] becauseit will beusedand discussedin more detal in the next
section.

7000 — ‘
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-M O -r -W -8 =%
6000 -mO -r -w - Keenen
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5000 | mo ---m--
0
B 4000 -
Q
5
@ 3000 [
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Figure 4. Compaing the multi-accept sever with someof the bestobserved combirations of options.

As can be sea in Figure 4 the simple combinations of options[-m 0] and[-m O -s] obtain quite
good reaults. Ther peakthroughput (or sauration point) is significantly highe thanthat of the multi-accept
saver. Anincrea® in throughput of 21%, from 3500 to 4250 replies per second is obtained. Unfortunaely,
bath of these sewverssuffer from a considerable degradation in throughput (a drop of abaut 35%) whenthe
load only slightly exceels the seauration point. This brings the throughput to a point below that obtained
using the sever with options[-m 0 -w -r] but closeto or above the throughput obtained using the
multi-accept saver. It is both interesting and trouding that such a smal percertage increasein load reaults
in such alarge percentage decreas in throughput.
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Toseewheethe[ - m 0 - s] saveris spending itstime we examinethe output from gpr of for thisserver
asafunction of theload. Figure 5 graphsthegpr of output for eachof the mainsourcesof exeautiontime.
The pereentagesare labded on they-axis on theleft and the requeds per secand arelabelled on the x-axs.
Thethroughput obtainedis also shown usng lineswith pointsandthey-axis on the right.
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Figure 5. Examining where the fraction of execution timeis spentin the[-m 0 - s] sewe astheload
increases.

By comparing the dip in throughput when the load increases from 4250 to 4500 requests per secand with
the percentage of time spent in the major portions of the server, we see that there is a significart spke in
the amount of time the sewver spendsin sel ect . Thisalso correspndsto adip in the percertage of time
spertinread,wite,open,andcl ose. At 4250 requeds per secondthis server is spending only about
2% of its exeaution time obtaining evert informaton (i.e., in sel ect) and 59% of its time processng
requess (i.e., execuing read, wit e, open, and cl ose). At 4500 requess pe second significantly
moretime (11%) is spentobtaining eventinformationfromsel ect anda significantly smalker fraction of
the exeautiontime (50% compaedwith 59%) is now spentprocesing the requests

Someof the detdls of the differencesbetweenthe betaviour of the[ - m 0 - s] sewer prior to and after
sduration are shown in Talde 2. We seetha when the requed rate increases from 4250 to 4500 request
per seond the maxmum numbe of consecutive connections acepted increaes from 73 to 325. This
increases the numbe of active file descaiptors or simultaneaus comections the sever is multiplexing. This
can be seenby the increasein the average maxmum file desciptor passal into sel ect, from 208 to
1074. This increagsthework requiredby andoverheadincurredby sel ect . At 4250 requeds per semnd
the maximum numbe of ready file desaiptors retuned from sel ect is 162, compared with 783 at 4500
request per se@nd. As noted previoudy this accaunts for the sharpincreasein the percertage of time spent
insel ect .

11



Reqed/s | 4250] 4500 |

Callstonew.conns 48715 | 47445
Succesdul accepts 510000 | 358199
Max Consecutive accefds 73 325
Succesdul selects 38915 | 41497
Avg max fd into select 208 1074
Max fdsfrom select 162 783
Avg fdsfrom sekect 40 26

Table 2: Comparingthedetals of accep and sdect calls.

Although morework is being doneby sel ect , the average numberof evens (file desciiptors) returnedby
sdect actually decreagsfrom 40 at 4250 requests per second to 26 at 4500 requests per secand. So even
though more time is being spert cdling sel ect the average numbe of file desciptors that it is alde to
return as ready hasactualy deadessed The comhnation of more time being spert in sel ect andits on
avergge returning fewer ready file descriptors per call accaunts for the decrea® in the percentage of time
the sewver spends making forward progresson existing connedions(i.e., thetime sperdin r ead, wri t e,
open, andcl ose). Thisisthe main cause of the significantdrop in the reply rate and demongdratesthe
needfor amediarism to ensuretha the server is able to make forward progress on existing connections.

Thereis only arelatively minor differencebetweenthis[ - m 0 - s] serverandthe[-m O -r -w -S]
saver. The[-m 0 -r -w -s] seaver by virtue of the addition of the[ -r -w] options attemps to
makeasmuch forward progress on each connecion aspossble. Therefore, whena connecion is acceped
the saver immediatdy tries to readfrom the socket or when the requed is readand parsal the server
immedatdy tries to write the reault to the client sodket. The results of theseefforts can be seenin its
gpr of output which is shown in Figure 6. If we compae thegpr of outputof the[-m 0 -r -w -]
saver at its sauration point (3750 requeg per seond) with tha of the[-m 0 -s] seaver at the same
requestrate, we seetha the[-m 0 -r -w -s] seweris sperding 55% of its execution time working
on existing connedions (i.e., performing r ead, wr i t e, open, andcl ose calls) compared with 45% for
the[-m O -s] sewer. Thisshowsthatthe[-m 0 -r -w -s] seweris spendng comparaively more
of itstime processng existing connections. In this casethe server is attempting to ensure forward progress
on existing comections at the expenseof accefing new comections. This reaultsin a lower response rate
becauseit isn't acceping comectionsasfastasthe[ - m 0 - s] saver.

6.2 Limiting New Connections

Neitherthe[-m O -r -w -s] sewernorthe[-m 0 -s] saverdiscussa in detail in the previous
section is very satisfying. The[-m 0 -r -w -s] seaver suffersfrom lower peak throughput in favour
of a much smaler drop in performance once the sauration point is readed. On the other hard, the[ - m
0 -s] seversuffersfrom asignificant drop in throughput onceits sauration point is reached but bendits
from a much higher saturation point. In this sedion we examine a tecmique for trying to amelorete the
severity of this drop in throughput while still maintaining high pesk throughput. In a serse,we attempt to
devise aseverthatis a compromisebetweenthesetwo approaches.
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Figure 6: Examinng wheethefraction of exeautiontimeis spentinthe[-m 0 -r -w - s] sewer asthe
loadincreases.

Our approachis to usethe[ - m 0 - s] sewerbut to limit the numbe of conseative connections that are
acceped. As afirst approximation of alimit we note that when the throughput peaksat 4250 requests per
second the maximum numbe of conseautive connections accepted by the serverwas 73. We conducted
a seies of experiments with limits of 25, 50, 75, 100, and 125. Additionally, we conducted experiments
with and without the[ - s] option becausethe point of this seriesof expearimerts is to reduce and limit the
numberof new connedions. We did find thatin this casethe[ - s] option degradesthroughpu slightly. We
alsofoundthatthe[ - m 25] seaverresultedin quite good pea throughput and did a slightly better job of
avoiding the drop in throughpu that othersexperienced whenthe request rate slightly exceealsthe sever’s
sduration point.

Thegraphin Figure 7 compaesthe throughput of the[ -m 25] ,[-m 75] ,[-m O -s], and themulti-
accept servers Theseexperimentsshow thatif oneis willin g to give up aminor amaunt of peakthroughput
the drawbadks restting from the excessive emplags on obtaning new connecions by the[-m 0 - s]
saver canbeamelioratedby li miting the number of new connections using the[ - m #] option. As aresult
throughput improved significantly whenthe requestrateis justslightly higherthan the saturation point. One
can also seetha the[ - m 75] sewer obtains slightly lower throughput thanthe [ - m 25] server at 4250
and 4500 requestspersecond This is becauseit is more aggressvely acepting connectons thanthe[ - m
25] server ard isn't expending enaugh resoucesin making forward progresson existing connedions.

Figure 8 shows ancther view of how eachof the different options influences the server’s ahili ty to success
fully aceeptincoming requestsfor new cormections In this casethe graph shows both thereponserate ard
the rateat which the kernd dropsincoming TCP SYN packets (QDropgs). A TCP SYN padket is the first
packetfrom a client initiating the threeway handshakerequired to esteblisha TCP connedion. Whenthe
guele is full the kerrel dropsincoming packets As mentioned previously, the size of the queue used in our
experimentsis 1024.
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Figure 7: Limiting the numker of consecutive connections the sever permits during a mutti-acceptand the
influence on server throughput.

By compaing where thereply rate dropswith wherethe TCPSYN queuedroprate increagswe can seethat
for some of thesesewersthereis quite alarge differencein the numbe of incoming TCPSYN packetsthat
are dropped. All seversare alde to avoid dropping TCP SYN padkets until the sauration point is reached.
But ascanbe seenin the graph this point is reated at differert pointsfor different severs

With this comparisonof repy ratesand TCP SYN queue drop rates we are also able to see andher resson
that although the[ - m O - s] version of the saver aggressvely accepts new connections its throughput
suffers. As mertionedpreviously whenthe sewver is more aggessive about accepting new connedionsthe
period betweensuccessive cdls to sel ect islonger. As areault the number of file desaiptors andevents
thatmustbehandled by sel ect islargerandtheamouwnt of work to processbefore returning to accept new
connecfons increaes. The reallt is thatwhenthe period baweendoing multi-accepts becomes too large,
the TCP SYN queue quickly fills and the kemd must drop incoming TCP SYN packets When using the
[-m O -s] version of the sewver the kerrel is forced to drop significanly more TCP SYN padkets than
whenusing other seversat the samerequest rate This is anaher view of wha causesthe serious drop in
throughput for the[ - m 0 - s] version of the server.

Notethat the time the kernd spends harndling interrupts for packetstha will be discarded beausethe TCP
SYN quete is full also decreagsthe amourt of time tha the application can spend doing its work. We
beieve tha this is oneof the main reasans that none of the severs is able to sustin its peak response rate
after the saturation point is reached. Note thatthe rateat which TCP SYN packetsare droppedis very high
relative to therequed rate We believe thisis causedby ht t per f attemping to achieve the target requed
rate be@useit must be moreaggressve when attempting to egahlish new connectons when thefailure rate
is high.
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Figure 8: Limiting the numker of consecutive connections the sever permits during a mutti-acceptand the
influence on throughput and TCP SYNqueue drop rates The lines representing QDrops/s are those that
start at zeo on theright y-axis and ri sebetwveen 3500 and 4500 requestsper second. The lines representing
Repleds start at 500 on thelefty-axis and drop between 3500 and 4500 requessk per se@nd.

Figure 9 shows the gpr of output for the[ - m 25] sever. This graph shows thatashoped the proportion
of timethe[ - m 25] server spends procesing sel ect calls avoids the sharpincrease seen in the[ - m
0 -s] serwerin Figure 5. This hdpsthe[ - m 25] sewerto avoid the drop in throughput thatis seen by
the[ -m O -s] seaverwhentheload is slightly beyond the saver's sauration point. We also seethat the
proportion of time spert in accept isreducedin the[ - m 25] sever (Figure 9) whencompared with the
[-mO -r -w -s] seaver(Figure 6) thus permitting the [ - m 25] server to spend a greater portion of
its execution time processing existing connections, making more forward progresson existing connectons,
and improving throughpu.

Figure 10 shows the meanregorsetimesobserved usng the servers discussel in this section as a function
of therequed rate Note that the mean recaded reponse times are only acairateto one millisecand. This
graph is shavn mainly to show tha theincreagsin throughpu areobtained without significant saaificesin
meanregponsetimes.

Themeanresponse time provided by each sever significantly degradeswhen that server readesits saura
tion point. However, the multi-accept serverattemps to makeasmuch forward progresson new incoming
connecfons as possible and mairntains lower mean reponsetimes right up until reachng the saturation
point. The other servers make forward progress on existing connections only following each call to select.
Since forwardprogressis being madein what are essantially baiches,therespmpnsetimesincreaseslightly as
the saturation point is approached. Becausethe number of consecuive comections permittedwith the[ - m
75] optionis slightly larger thanwiththe[ - m 25] option,itsbachesare larger andits regponsetimesare
slightly higher just prior to reaching the sauration point thanwhen using the[ - m 25] option.
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Figure 9: Examiningwheae exeautiontime is being spentin the[ - m 25] saver astheload increases
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Figure 10: Comparingthe mean reporsetimesfor differernt sewver options while increasing the load.
7 Discussion

Thereis asimilarity betweenthe obsewvations we make in this paper and observationsmadein work related
to “receive livelock” [15] [9]. Recéve livelock is referred to [15] asa condition whereno uselul progress

16



is being made in a system becalse a required resource is entirely consumedby the procesing of receiver
interupts. Mogul and Ramakishnan [9] demastrate how this situaion can be eliminated by carefully
scheduling how work is performed A fundamenal difference between receive livelock and the problems
we obsewne with not being able to makeforward progress on existing comections is thatreceie livelock is
aresul of the kemd implementdion (i.e., it is causedby the kemd) while our lack of forward progressis
causedby theapplication itsef. Therefore thetechniques useal to improve performarcein our cage must be
differentfrom thoseuse to eliminatereceave livelock.

More recently, Provos et al. [14] obsewned a similar problem while studying the performance of thar im-
provedeven-dispatch medarism, si gt i medwai t 4. They found thatwhile tryingto redwcetheoverhead
incurred in obtaining event informaion from the kernd that no noticeale improvement in performance
could be seen when compaedwith the original apgroach They were able to improve perfformarceby modi
fying theapplication to obseve the numberof signds obtainedoneachcall tosi gt i nedwai t 4 andwhen
the weighted average of the numbe of signalsreturnedwastoo high (indicating an overloadcondition) they
resetincoming connections instead of processing therequed. In ther ervironmernt, this is another metod
for improving the balance betweenaccepting new andprocessing existing connecions. Themain difference
betweentheir work and our work in this pgper is that they concentrate on trying to improve performance
by redwcing the amount of time requiredto obtain events from the kerrel, while our work takes a differert
approad by trying to detamine how a server should bestapportion its time (instead of trying to redwcethe
time spentin individud elements of the sever).

Othe studies[5] [16] have also resetincoming comections in order to devote more time to processng
existing connections. Theseand other studies certered around providing differentiated or improved qudlity
of savice areconcened with providing quality of service to same connectons to the detiment of others.
Unfortunately such approachesdo not provide significant insights into improving the performane for all
connections.

While we have examined techniquesfor maragng the flow of work through anIntemetsever application,
it is not our intent to determine an optimal strategy; our experiene lead us to specuate that there is no
silver bullet. Rater, our intentis to raise awareness of these issues; it is up to individud programmers to
deteminethe beg strategy for controlling the flow of work through therr unique apgdication. Our resuts in
this paper demongrate thatevenrelatively simple sewver apgications can experience significant chargesin
overload behavior with minor alterations. We also bdieve and emphasze that thereis little to begained in
having highly efficient and scalable event managemen mectansmsin aserver apgdication if theapplication
doesn’'t sperd a sufficient, but not excessive, portion of its time making forward progressin savicing client
requess.

8 Conclusions

In this papea we investigatethe peformane of asimple Internetserverapplication built aroundthesel ect
systam call. Thisisdonein the context of aweb-saver application specifically implementdto pemit usto
study sdftwarearditectures designedto avoid server meltdown during periods of high load

We have condructed a parameteized micro web-sever tha permits usto explore a variety of sever im-
plemeration options. This new server enaldes usto conduct fair and valid comparisors of different server
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implemenation options ard ensures that ary differences in peformane areactually due to differencesin
the saitware architecture of the se'ver and not dueto other artifacts of theimplementtionsbeng compared.

We have closely examinead the performance of the sel ect -based multi-accep saver usedby Chardraand
Mosbemer [6] andfound that although its performarte was better than methods that use alternate event
dispatch mechanisms,condderable improvemerts could still be made First, significantimprovementsin
peak throughput were obtained (14 — 21%) by more aggresively accepting incoming connectons. We then
show that servers that are overly aggressve in obtaining new connecions can suffer from significant drops
in performarce after the sauration point of the server is reeched. This is becauseinsuficient resources
are being applied toward making forward progress on existing connecions. By limiting the numbe of
consecuive connections accepted, we are able to strike a bdance betweenrapdly aceping new incoming
connecfions andmaking forward progress on existing connedions. The reaulting saver not only improves
peak throughput but also demongratesamore gradud and stable deterioration of performarcein theface of
overloadsitudions

We believe that theseresuts provide strong evidencethat irrespecive of the kernel eventdispatch metod
used, a bdance mug be maintainedbetween accefting nen connections, obtaining event information, and
using that information to makeforward progresson existing comections Whenthis balanceis not main
tained saverthroughput can degrade and in somecases this degradation canbe substartial.

In the future we hopeto cleanup our code, improve the ease with which modfications canbe made and to
makeit available for others to use. We also hope to use it to study approachesto auomatically controlling
the flow of work through the sever, to reexamine our resuts in the context of different and more realistic
workloads andto examire other techniques for providing kerrnel mechanisms that better support Intemet
based sewver applications[11].
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