

Exploring the Performance of
Select-based Internet Servers

Tim Brecht, Michal Ostrowski1
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2001-314
November 28th , 2001*

E-mail: brecht@hpl.hp.com, mostrows@us.ibm.com

Internet
servers,
Web servers,
performance,
select, event
dispatching

Several previous studies have examined techniques for improving
Internet server performance by investigating and improving operating
system support for event-dispatching mechanisms. These studies have
been mainly motivated by the commonly held belief that the overhead
incurred in obtaining network I/O events using the select system call
was too high to be used in environments with high request loads and
large numbers of concurrent connections. However, recent work by
Chandra and Mosberger [6] shows that a properly implemented select-
based server can outperform servers that utilize new and improved
event-dispatching mechanisms that are significantly more scalable
than select.

In this work we conduct a detailed investigation into precisely why the
Chandra and Mosberger server performs well. We use our findings to
further improve the performance of select-based servers and provide
insights that we believe are key to understanding and improving the
performance of Internet server applications.

We find that an essential ingredient required to obtaining good performance
in heavily loaded Internet servers is the ability to control the flow of work
into and through the server. By employing controls that enable the server to
both accept new connections at a high rate and make forward progress on
existing connections, we are able to increase peak server throughput by 14 -
21% when compared with the server used by Chandra and Mosberger.
Additionally, the differences in performance obtained using our new
approach increase substantially as the workload intensifies.

* Internal Accession Date Only Approved for External Publication
1 IBM TJ Watson Research Center, Yorktown Heights, NY

 Copyright Hewlett-Packard Company 2001

1 Intr oduction

Internet-based (or network-centric) applications have experienced incredible growth in recent years and
all indications are that such applicationswill continue to grow in number and in importance. How such
applicationsshould bestructuredandhow they should interactwith operatingsystemsis thesubject of much
activity in the research community, whereit is commonly believed that existing interfacesare ill -suited to
supporting such applications[4],[18], [14].

Current approaches to building Internet server software suffer from the problem that if the demand from
client applications exceeds the server’s abili ty to handle the demand, the performance of the server and
hence the performanceseenby the clients degrades dramatically. That is, existing servers arenot well-
conditioned to load.

In fact, in suchsystemsthethroughput of theserver approacheszero asthenumberof simultaneousrequests
to that server continues to grow. This is reflected in unpredictable and extremely long wait times, or a
complete lack of response for many of theusersof such systems. It is precisely during theseperiodsof high
demandwhenbeing able to servicecustomersmay bemost important to thosewhoarerelying on theserver.
Examples of such periods occur during sharp changesin the stock market, breaking news events, and the
Christmasshopping season.

Unfortunately, it is not practical or cost effective to provision a system in order to handle peak demands
becausethepeakdemandon web serverscanbeseveral to hundredsof timeshigher than theaveragedemand
[1] [17].

Thegoal of this work is to examinetheimpactof variousdesignconsiderationson asimpleselect-based
web-server to determine how such an application canbe better conditioned to load.

2 Background and RelatedWork

Current approachesto implementing high-performance web servers require special techniquesfor dealing
with high levelsof concurrency. Thispoint is ill ustratedby firstconsidering thelogical stepstaken by aweb
server to handleasingleclient request, asshown in Figure1. Note thatnearly all Internet-basedserversand
servicesfollow similar steps.

1. Wait for and accept anincoming network connection.

2. Read the incoming request from thenetwork.

3. Parsetherequest.

4. For static requests,checkthecacheand possibly openand readthefile.

5. For dynamic requests, compute the result.

6. Send the reply to therequesting client.

7. Closethe network connection.

Figure 1: Logical stepsrequiredto processa client request.

1

Several of thesestepscan block becausethey require interaction with a remotehost, thenetwork, adatabase
or someother subsystem,or potentially adisk. Consequently, in order to providehigh levels of performance
the server must beable to simultaneously service partially completed connections and to quickly and easily
multiplex those connections that are ready and able to be serviced (i.e., those for which the application
would not haveto block andwait). Thismayresult in theneedto beable to handle several thousandsor tens
of thousands of simultaneous connections [4].

Initi al attemptsto implement web servershandled concurrency issuesby creatingaseparatethreadof control
for eachnew connection andrelying on the operating system to automatically block and unblock threads
appropriately. Unfortunately, threadsconsumesignificant amountsof resources andserver architects found
that it wasnecessary to restrict thenumber of executing threads [8] [4].

More recent approachesto high-performance server design treat each connection asa finite state machine
(FSM) with transitions betweenstates being triggered by the event being processed. Several connections
aremanagedsimultaneously by multiplexing betweendifferent connections(FSMs)with theserverworking
on the connection on which forward progresscan be madewithout invoking an operating systemcall that
would block to wait for a result. This is accomplished by tracking thefile and socket descriptors of interest
and periodically querying theoperating systemfor information about the stateof thesedescriptors (using a
system call like select or poll). The results of thesecalls indicate to theapplication which operations
can beperformedon which descriptorswithout causing theapplication to block. Obtaining this information
is thekey component in providing the abilit y to multiplex between outstanding connections.

Significant research has beenconducted into improving webserver performanceby improving both operat-
ing systemmechanismsandinterfacesfor obtaining information about thestateof socketandfiledescriptors
from the operating system [3] [12] [2] [4] [13] [14] [6]. These studies have been motivated by the belief
that under high loads with a large number of concurrent connections, the overhead incurred by select
(or similar calls) is prohibitive to implementing high-performance Internet servers. As a result they have
mainly developedimprovements to select, poll and sigwaitinfo by reducing the amount of data
that needs to be copied between user space and kernel spaceor by reducing the amount of work required
by the kernel to perform such operations (e.g.,by only delivering one signal per descriptor in the caseof
sigwaitinfo).

Interestingly, recent work by Chandra and Mosberger [6], in addition to introducing operating system mod-
ificationsdesigned to improve application performance,demonstrates that a rather simple modification to a
select-basedweb-server (with a stock operating system)providesbetter performancethantheir attempts
and the attemptsof others to improving performanceby modifying the operating system. They refer to this
server asa “multi-accept” server becauseupon learning of a request for a new incoming connection, rather
thanaccepting asingleconnection, it attempts to acceptasmany incoming connectionsaspossible. Calls to
accept are repeateduntil a value of EWOULDBLOCK is returned, which indicatesthat there are currently
no more outstanding connections that can be established. The results of Chandra and Mosberger’s exper-
iments werecontrary to conventional wisdom which believed that select-based servers perform poorly
under high loads.

Our work in this paper is largely motivatedby this recentwork by Chandra and Mosberger [6]. We believe
thattheir work demonstratesthatevensimpleserver designsexhibit awiderangeof variation in performance
that is not well understood. In this paper we attempt to characterize the behaviour of someof thesedesign
optionsand usethese results to gain insight into some of the issuesaffecting server designs in general.

2

Ourwork differs frompreviouswork in that we investigateavariety of techniquesfor improving theperfor-
manceof web-servers by concentrating mainly on the softwarearchitecture of the server. Specifically, we
are interested in determining which aspects of dif ferent server application designs contribute to, or help to
prevent, server meltdown during periodsof high load. The focusof much of this paper is on the interplay
betweenhow the server accepts new incoming connections, obtains information about kernel events, and
usesthat information to processexisting connections. We believe that this approachhasprovided us with
a better understanding of techniques that can be deployed within the application to significantly improve
performance.

3 Methodology

In this study, we use as a starting point the micro-servers developed by Chandra and Mosberger [6] to
examine scalable event-dispatching mechanismsin Linux. We focus on their “multi-accept” serverwhich
providesthehighest performanceof all of theserversandkernel dispatchingmechanismsconsidered in their
study. We use thecore of this server to create a new, highly parameterized micro-server that is designedto
permit us to quickly and easily explore a wide variety of options with respect to implementing various
aspectsof theweb server.

This approachis both necessary and important. In addition to creating a framework within which different
options can be explored, it ensures that any differences in performance are actually due to differences in
the softwarearchitecture of theserver and not due to other artifactsof the implementationsbeing compared
(e.g., differencesin thecaching algorithmsor numbers of file descriptors being used).

While this approachis attractive, it is not without its drawbacks. Perhaps the main drawback is that it is
not feasible to examine andcompareall combinationsof parameters. Fortunately we have found that we’ve
beenable to apply insights gainedin someexperiments to eliminate theneedto explore some combinations
of options. Although we have not done anexhaustive study of all combinationsof options or performed a
completely systematic elimination of dif ferent combinations,we have beenable to explore combinationsof
options that result in quite significant improvements in server throughput. Interestingly, we’ve found some
seemingly minor modifications to the server can have a significant influence on the resulting performance
of theserver.

4 Server Implementation

We have designed and implemented our server to permit the exploration of several issuesrelated to the
implementation of high-performance web-servers. Again, our goal is to be able to provide a controlled
environment in which we can fairly and accurately compare various design and implementation options.
Among some of the issueswe have examined (not all are reported on in this paper) are how performance
is impactedby: aggressively accepting new connections, theorder in which theopen socket descriptors are
processed,thesizeof theli sten queueused in accepting new connections, and how thatchoiceinteractswith
thesizeof theTCPSYN queue. Wehavealso exploredhow caching impactsthedesignof high-performance
web-servers.

3

Figure 2 shows thebasic structure of theserver. This figure is also used to provide a context in which we
describe thevarious options andhow they modify theserver’s behaviour. Thepseudo-codecontains some
annotations regarding command line options. For example, if the[-s] option is used we call new conns
which tries to moreaggressively accept new connections by adding one or more calls to accept in the
mainserver loop, prior to each call to select.

while(1) {
if ([-s] server_loop_accepts) {

// [-m #] controls multi-accept
new_conns();

}

rdfds = readfds;
wrfds = writefds;
// find out which fds won’t block
n = select(...rdfds, wrfds...);

// order based on [-o order]
while (fd = iterate_over_fds()) {

if (ISSET(fd, rdfds)) {
if (fd = accept_fd) {

// [-m #] controls multi-accept
new_conns();

} else {
if ([-L 1] {

// loop until failure
while socket_readable(fd);

} else {
// read from socket process request
socket_readable(fd);

}
}

}

if (ISSET(fd, wrfds)) {
// write response to client socket
socket_writable(fd);

}

} // while iterate
} // while(1)

Figure 2: The basic structure of themain server loop.

4

4.1 Server Parameters

Wenow provideamorecompletelist of optionsavailablefor controlli nghow theserver operatesandexplain
how they are used to change theserver’s behaviour.

� [-m #] modifies the behaviour of new conns. When this options is used new conns calls
accept repeatedly until it either returns EWOULDBLOCK or until # consecutive calls have resulted
in connections.Without this option new conns makesa single call to accept to attempt to accept
anew connection. The[-m 0] option is usedto mimic themulti-accept behaviour usedin theChandra
and Mosberger [6] study (0 is used to represent no limit).

� [-o order] controls the order of file descriptor (fd) processing, where order is one of the follow-
ing:
up: checks fds from 0 to the maximum fd.
down: checks fds from themaximum fd to 0.
fifo: checks fds in theorder from first accepted to last.
lifo: checks fds in theorder from last accepted to first.
writes-up: checks fds in the order from 0 to the maximum fd but does the write check beforethe
readcheck.
writes-down: checks fds in theorder from the maximum fd to 0 but doesthe write check before
thereadcheck.
Thedefault is[-o down] sincethis waswhat wasdone in theChandraand Mosberger multi -accept
server.

� [-w] specifiesthat theserver is to call socket writable to write thereply to the client’s socket
as soon asthe request is parsed (i.e., from within socket readable). Theideahere and with the
[-r] option is to attempt to speedtheprocessing of thecurrentconnection by making adirect call to
try to immediately makeforwardprogressrather than waiting for thenext call to select. Thepotential
drawback is that the call might simply return EWOULDBLOCK if the operating system is unable to
immediately process the system call (i.e., write in this caseor read in the case of [-r]).

� [-r] specifies that the server is to call socket readable to read the request as soon as the
connection is accepted (i.e., from within new conns). See[-w] for themotivation for this option.

� [-s] is usedto force an extra new conns call (potentially doing a multi-accept) prior to doing a
select in themain server loop. Theideabehind thisoption is to bemoreaggressiveabout accepting
new connections.

� [-g] tells theserver to try to get new connectionsafter closing anexisting connection.
� [-C] is used to turn caching on. Note that the realpurpose of this option is to be able to eliminate

theeffects of file systemaccessesand to focuson the remaining system calls.
� [-L 1] specifiesthatservershould loopwhencallingsocket readable until thecall fails. This

is included in order to completely recreate the behaviour of the Chandra and Mosberger [6] multi -
accept server. We areuncertain why this wasdone but it might be to more quickly determine when
the socket is closed. Typically the first read returns the requestand the second returns 0 to indicate
thattheendof file hasbeenreached (i.e., that theconnection hasbeenclosedby theclient). Notethat
our design considersalternative modifiers for [-L] but we currently consideronly [-L 1].

5

� [-l #] is used to set the server’s listenqueue length. The default is 128. This option did require us
to modify our version of the Linux kernel to permit this call to work correctly for values larger than
128.

� [-c #] setsthemaximum number of connections permitted. This option needsto takeinto account
the maximum number of file descriptors available and is usedto avoid running out of available file
descriptors (i.e.,no new connectionscanbeaccepted unlessthere arefiledescriptorsavailable). Note
that when caching is not used this may need to be lessthan one half of the maximum number of
available file descriptors (sincepotentially eachsocketcould require anopen file). Thedefault is[-c
15000].

We provide this list of options to identify the range of parameterswe have explored,even though experi-
mental results for several of the options are not presentedhere. We found that thedifferencesin throughput
for someof theoptionswasonly significantwhenusedin conjunction with othercombinations of options
that resulted in relatively poor performance(e.g.,[-o]). Additionally, we found thatalthough system calls
are exercised differently with the[-C] option, the results obtained werenot qualitatively different from
thoseobtained without theoption. As aresult, we felt they would not add to thediscussion and wehave not
included the results here.

5 Envir onment

All experimentsareconductedusing adedicated100MbpsFastEthernetswitch that connectsclienthosts to
the server. The server executes on a 400 MHz Pentium-III baseddual-processorHP NetServer LPr system
running Linux 2.4.0-test7 in uniprocessor mode. The client loadis generatedusing httperf [10] andten
B180 PA-RISC machines running HP-UX 11.0.

For eachdatapoint in thegraphsshown in this paperwestartanew copy of theserver. This is donebecause
the server collects several statistics of importance that we use in analyzing its behaviour and it permits
us to collect gprof [7] statistics from each run. In a number of preliminary experiments comparing the
results obtainedwith and without gprof we found that using gprof did not significantly alter the results
of our experiments. Although gprof is unable to apply accurate accounting techniquesduring interrupts
(it simply addsthe time spent handling the interrupt to the function currently being executed)we found the
output of gprof quite instructive whenviewedat a fairly coursegrain.

Eachexperiment is conducted by having the clientsattemptto provide the desired load for a duration of 2
minutesusing atime-out period of 3 secondsfor eachconnection. The2 minutesis sufficiently longto stress
any of the systemandapplication resourcesthat must be limited,but short enough to permit us to conduct
a reasonable number of experiments. Any request that the server is unable to respond to is recordedby the
client asan error. These errors may occur either because the server is unable to accept the connection or
becauseit isn’t able to provide a responsebefore theclient time-out period is exceeded. Theclient time-out
of 3 seconds is also smallenough to prevent retriesif a connection can’t beestablished. Unless otherwise
noted, all client requests arefor a one-byte file. This is done in order to place asmuch stress aspossible
on the web-server and the underlying operating system. Additionally, because of the high responserates
obtained with theseserversthenetwork would becomea bottleneck with files much larger thanabout 2 KB
(at 4250 repliesper second a 2 KB would consume about 70 Mbps).

6

We have modified the default maximum number of open files permitted to 32768. This is done using
/proc/sys/fs/file-max. To accommodatetheincreasednumber of possible openfiles we have also
increased the size of anfd set by modifying the definition of FD SETSIZE to 32000. Additionally, we
use a default TCP SYN queuesizeof 1024 using /proc/sys/net/ipv4/tcp max syn backlog.

6 Experiments

In this section we conduct a number of experiments to evaluate the performance obtained using our web-
server with several dif ferent options. This permits us to explore a variety of web-server implementation
optionsand to compare their performance.

As mentioned previously, thereis an extremelylarge number of combinationsof parameters that could be
explored. Wehaverun substantially moreexperimentsthan described in thispaperandratherthanpresenting
all of those results we have triedto focuson some of the more interesting aspects of our findings.

Table 1 li ststheserversdiscussed in the upcoming sectionsand providesa quick referencefor optionsused
in each case and how the combination of options changesthebehaviour of the server.

6.1 Basic Configuration Alternatives

Thefirst experiment weconduct is to verify thatwhenusingtheappropriatesetof parametersour server wil l
execute identically to themulti-acceptserver used by Chandraand Mosberger [6] (who werekind enough
to supply us with the source code for the micro-serversused in their study). The options required for this
are[-m 0 -r -w -g -L 1]. We usethis combination of options as a starting point for further explo-
ration becauseChandra and Mosberger [6] have shown that this server configuration outperformsseveral
alternativeoptionsincluding thosethatusekernelmodificationsto support morescalableevent-dispatching.

Figure 3 plots the combined request rate of all of the clients on the x-axis and the server’s responserate
(throughput) on they-axis. Fromthis graph we seethat the throughput of the original multi-accept server
and our server executing with the[-m 0 -r -w -g -L 1] optionsis nearly identical.

We also use Figure 3 to examine how somefairly minor modifications to the server’s behaviour impacts
the server’s throughput. This graph also contains results that show how the throughput of our base-line
multi-accept equivalent server is influenced if we remove the setsof options[-L 1], [-g], and [-L1
-g] to produce serverswe wil l refer to as [-m 0 -r -w -g], [-m 0 -r -w -L 1], and[-m 0
-r -w], respectively.

The results show that removing the [-L 1] option has mixed results (labelled [-m 0 -r -w -g]).
Recall that this means that the server wil l call socket readable (and henceread) only once, instead
of attempting to call read until it fails. Without thisoption, while therequestrate is lessthan7000requests
per second, throughput is about thesame or a bit worsethan the base-linemulti -accept version. However,
for higher request ratesthere maybe a benefit to performing the loop.

Perhapsmoreinteresting are the results obtained by removing the[-g] option and by removing the[-L1
-g] options. The resulting throughput of these two versions of the server appears to be identical; our
discussion centers around the version without the[-g] option, referredto asthe[-m 0 -r -w] server.

7

Server Options Server Behaviour

[-m 0 -r -w -g -L 1] Themulti -accept server. Theseoptionsprovide thebehaviour of theserver
used by Chandra and Mosberger [6]. When the listening socket is ready
(readable) accept is called repeatedly until it returns EWOULDBLOCK
([-m 0]). Attempt to makeasmuchforward progresson the current file
descriptor as possible; socket readable and socket writable
are called from within new conns and socket readable, respec-
tively ([-r -w]. Attempt to get accept new connections when-
ever an existing connection is closed ([-g]) and loop on calls to
socket readable ([-L 1]).

[-m 0 -r -w -g] Themulti-acceptserver without looping on calls to socket readable.
[-m 0 -r -w -L 1] Themulti-accept server without trying to get new connectionswhenever a

connection is closed.
[-m 0 -r -w] Themulti-accept server without trying to get new connectionswhenever a

connection is closedand without looping oncallstosocket readable.
[-m 0 -r -w -s] Themulti-accept server without trying to get new connectionswhenever a

connection is closedand without looping on calls to socket readable
but with extra calls to new conns in theserver loop to try to accept new
connectionsmore aggressively.

[-m 0] A purelyselect-driven serverwith repeatedattempts to accept new con-
nectionswhen thelistening socket is ready(readable).

[-m 0 -s] A purelyselect-driven serverwith repeatedattempts to accept new con-
nectionswhen the listening socket is ready (readable) and with extra calls
to new conns in the server loop to try to accept new connections more
aggressively.

[-m 25] A purelyselect-driven serverwith repeatedattempts to accept new con-
nectionswhen theli stening socketisready(readable)but with alimit of 25
consecutive connections acceptedeachtime the listening socket is ready.

[-m 75] A purelyselect-driven serverwith repeatedattempts to accept new con-
nectionswhen theli stening socketisready(readable)but with alimit of 75
consecutive connections acceptedeachtime the listening socket is ready.

Table 1: List of servers tested, optionsusedto createthem, and how the optionsaffecttheir behaviour.

With the [-m 0 -r -w] server there is no longer a check for new connections whenconnections are
closed. Note that when[-g] is enabledsuch checks areonly performedif thereare file descriptorsavail-
able. Theremoval of the[-g] option results in aslight increase(6.7%)in peakthroughput whencompared
with the multi -accept version. This comparative increase in throughput is maintaineduntil the request rate
reachesabout 5500 requestspersecond. Then from5500 to 6000 requestspersecond throughput is slightly
degraded(by about 6.5% at 5750 requests per second). However, as the request rate increases,significant
benefits are obtained and the throughput is better than the multi-accept version by more than a factor of 3
for request ratesbetween 7000 and10000 requests per second.

8

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000 8000 10000

R
ep

lie
s/

s

�

Requests/s

multi-accept
-m 0 -r -w -g -L 1

-m 0 -r -w -L 1
-m 0 -r -w -g

-m 0 -r -w

Figure 3: Comparing themulti-acceptserver with slightly different options.

To more closely examine some of the differencesbetween how this version of the server and the baseline
multi-accept version operatewe look at the results obtained by various systemcalls when the requestrate
is 7000 requests per second. In the multi-accept version 20385 of the calls to accept (or 6.1%) return
EWOULDBLOCK compared with 4152 calls (or 1.3%) in the[-m 0 -r -w -L 1] version.

More importantly, becausethereis anupper bound on the number of openfile descriptors the server must
carefully manage the useof this limitedresource. As a result, it must stop accepting incoming requestsfor
connections when that limit has been reached. In our select-based server implementation this is easily
accomplishedby simply excluding thefile descriptor that is being usedto acceptincomingconnections (the
li stening socket) from thefd set being used to determinewhich descriptorscanbereadwithoutblocking.
Oncea requesthas been completed and the associated socket is closed new connections can be accepted
again by simply including theli stening socketin theappropriatefd set.

The multi-accept version of the server entersinto a realm of execution where it is required to turn on and
off theaccepting of new connections, asit repeatedly bumps up against the file descriptor limit. This does
not happento the[-m 0 -r -w] server becauseit more actively makesforward progresson and closes
existingconnections. Consequently, themulti -accept server is unable to keepitspipelinefull of connections
to work on and throughput dropsoff significantly.

When thefile descriptor limit is reachedthissituation might beimprovedby not permittingnew connections
to beaccepted until a specified number of file descriptors becomesavailable. In fact, our server implements
this option as[-t #], where # specifies the threshold for the number of available descriptors required.
However, webelievethat alternativeapproachesthatarepresented in theremainderof thepaperarepreferred
to this approach.

9

When weexaminedthegprof output for themulti-accept server for request ratesbetween 7000and10000
requests persecond we observed that it spendslessthan0.5%of its execution time in select and about
13% of its execution timeinaccept. On theother hand, over thesamerequest rates, the[-m 0 -r -w]
serverspendsabout 8%of itsexecution time in accept andfrom 5% (at7000requestspersecond) to 10%
(at 10000requestsper second) in select.

Comparedwith the[-m 0 -r -w] server themulti -accept server spendsproportionally more of its time
attempting to accept connections (a greater percentage of which fail). The end result is that thereare an
insufficient number of connections to multiplex among andthis is reflected in the relatively li ttle time the
multi-accept server spends in select.

Figure 4 compares the throughput obtained using the base-line multi-accept server, the combination of
options that results in the best throughput in our previousexperiment ([-m 0 -w -r] in Figure 3), and
the results from someof the best combinations of options that we’ve explored. We also include a server
that usesthe options[-m 0 -r -w -s] becauseit wil l beusedand discussedin more detail in the next
section.

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000 8000 10000

R
ep

lie
s/

s

�

Requests/s

multi-accept
-m 0 -r -w -s

-m 0 -r -w
-m 0 -s

-m 0

Figure 4: Comparing the multi-accept server with someof thebestobservedcombinations of options.

As can be seen in Figure 4 the simple combinations of options [-m 0] and [-m 0 -s] obtain quite
good results. Their peakthroughput (or saturationpoint) is significantly higher thanthatof themulti -accept
server. An increase in throughput of 21%, from 3500 to 4250 repliesper second is obtained.Unfortunately,
both of these serverssuffer from a considerable degradation in throughput (a drop of about 35%) whenthe
load only slightly exceeds the saturation point. This brings the throughput to a point below that obtained
using the server with options [-m 0 -w -r] but close to or above the throughput obtained using the
multi-accept server. It is both interesting and troubling that such a small percentage increasein load results
in such a large percentagedecrease in throughput.

10

To seewherethe[-m 0 -s] server is spending itstimeweexaminetheoutput fromgprof for thisserver
asa function of theload. Figure5 graphsthegprof output for eachof themainsourcesof execution time.
Thepercentagesare labeled on they-axis on theleft and therequests per second arelabelledon the x-axis.
Thethroughput obtainedis alsoshown using lineswith pointsandthey-axis on the right.

0

20

40

60

80

100

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

P
er

ce
nt

ag
e

of
 e

xe
cu

tio
n

tim
e

(g
pr

of
)

�

R
ep

lie
s/

s

�

Requests/s

accept
select

server_loop
read/write/open/close

Replies/s

Figure 5: Examining where the fraction of execution time is spent in the [-m 0 -s] server as the load
increases.

By comparing the dip in throughput when the load increases from 4250 to 4500 requestsper second with
the percentage of time spent in the major portions of the server, we see that there is a significant spike in
the amount of time theserver spends in select. This also correspondsto a dip in the percentage of time
spent in read, write, open, and close. At 4250 requests per secondthis server is spending only about
2% of its execution time obtaining event information (i.e., in select) and 59% of its time processing
requests (i.e., executing read, write, open, and close). At 4500 requests per second significantly
moretime (11%) is spentobtaining event information fromselect anda significantly smaller fraction of
the execution time (50% comparedwith 59%) is now spentprocessing the requests.

Someof the details of the differencesbetween the behaviour of the[-m 0 -s] server prior to and after
saturation are shown in Table 2. We seethat when the request rate increases from 4250 to 4500 requests
per second the maximum number of consecutive connections accepted increases from 73 to 325. This
increases the number of active file descriptors or simultaneousconnections the server is multiplexing. This
can be seenby the increasein the average maximum file descriptor passed into select, from 208 to
1074. This increasesthework requiredby andoverheadincurredby select. At 4250 requestsper second
the maximum number of ready file descriptors returned fromselect is 162, compared with 783 at 4500
requestsper second. As noted previously this accounts for thesharpincreasein thepercentageof timespent
in select.

11

Request/s 4250 4500

Callsto new conns 48715 47445
Successful accepts 510000 358199
Max Consecutive accepts 73 325

Successful selects 38915 41497
Avg max fd into select 208 1074
Max fdsfrom select 162 783
Avg fdsfrom select 40 26

Table 2: Comparing thedetails of accept and select calls.

Although morework is being doneby select, the averagenumberof events (file descriptors) returnedby
select actually decreasesfrom 40 at 4250 requestsper second to 26 at 4500 requestsper second. So even
though more time is being spent calling select the average number of file descriptors that it is able to
return as ready hasactually decreased. The combination of more time being spent in select andits on
average returning fewer ready file descriptors per call accounts for the decrease in the percentage of time
the server spendsmaking forward progresson existing connections(i.e., the time spend in read, write,
open, andclose). This is the main causeof the significant drop in the reply rate and demonstratesthe
needfor a mechanism to ensurethat theserver is able to make forward progress on existing connections.

There is only a relatively minor differencebetweenthis[-m 0 -s] serverand the[-m 0 -r -w -s]
server. The [-m 0 -r -w -s] server by virtue of the addition of the [-r -w] options attempts to
makeasmuch forward progress on each connection aspossible. Therefore, whena connection is accepted
the server immediately tries to read from the socket or when the request is readand parsed the server
immediately tries to write the result to the client socket. The results of theseefforts can be seen in its
gprof output which is shown in Figure6. If we compare thegprof output of the[-m 0 -r -w -s]
server at its saturation point (3750 request per second) with that of the [-m 0 -s] server at the same
requestrate, we seethat the [-m 0 -r -w -s] server is spending 55% of its execution time working
on existing connections(i.e., performing read, write, open, andclose calls) comparedwith 45% for
the[-m 0 -s] server. This shows that the[-m 0 -r -w -s] server is spending comparatively more
of its time processing existing connections. In this casethe server is attempting to ensureforwardprogress
on existing connections at theexpenseof accepting new connections. This results in a lower response rate
becauseit isn’t accepting connectionsasfast asthe[-m 0 -s] server.

6.2 L imiting NewConnections

Neither the [-m 0 -r -w -s] server nor the [-m 0 -s] server discussed in detail in the previous
section is very satisfying. The[-m 0 -r -w -s] server suffersfrom lower peak throughput in favour
of a much smaller drop in performance once the saturation point is reached. On the other hand, the[-m
0 -s] server suffersfrom a significant drop in throughput onceits saturation point is reachedbut benefits
from a much higher saturation point. In this section we examine a technique for trying to ameliorate the
severity of this drop in throughput while still maintaining high peak throughput. In a sense,we attempt to
devise a server thatis a compromisebetweenthesetwo approaches.

12

0

20

40

60

80

100

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

P
er

ce
nt

ag
e

of
 e

xe
cu

tio
n

tim
e

(g
pr

of
)

�

R
ep

lie
s/

s

�

Requests/s

accept
select

server_loop
read/write/open/close

Replies/s

Figure6: Examining where thefraction of execution time is spent in the[-m 0 -r -w -s] server as the
load increases.

Our approach is to usethe[-m 0 -s] server but to limit thenumber of consecutive connections that are
accepted. As a first approximation of a limit we note that when the throughput peaksat 4250 requestsper
second the maximum number of consecutive connections accepted by the serverwas73. We conducted
a series of experiments with limits of 25, 50, 75, 100, and 125. Additionally, we conducted experiments
with and without the[-s] option becausethe point of this seriesof experiments is to reduce and limit the
numberof new connections.Wedid find that in this casethe[-s] optiondegradesthroughput slightly. We
alsofoundthat the[-m 25] server resultedin quite good peak throughput and did a slightly better job of
avoiding the drop in throughput that othersexperienced whenthe request rate slightly exceedsthe server’s
saturation point.

Thegraph in Figure 7 comparesthe throughput of the[-m 25], [-m 75], [-m 0 -s], and themulti -
accept servers. Theseexperimentsshow that if oneis willing to give up a minor amount of peakthroughput
the drawbacks resulting from the excessive emphasis on obtaining new connections by the [-m 0 -s]
server canbeamelioratedby limiting thenumberof new connectionsusing the[-m #] option. As aresult
throughput improved significantly whentherequest rate is justslightly higher than thesaturation point. One
can also seethat the[-m 75] server obtains slightly lower throughput thanthe[-m 25] server at 4250
and 4500requestspersecond. This is becauseit is more aggressively accepting connections thanthe[-m
25] server and isn’ t expending enough resourcesin making forwardprogresson existing connections.

Figure 8 shows another view of how eachof thedifferent options influences theserver’s abili ty to success-
fully acceptincoming requestsfor new connections. In this casethegraphshowsboth theresponserateand
the rateat which thekernel drops incoming TCPSYN packets (QDrops/s). A TCPSYN packet is the first
packet from a client initiating the three-way handshakerequired to establisha TCPconnection. When the
queue is full the kernel dropsincoming packets. As mentionedpreviously, the sizeof the queueused in our
experiments is 1024.

13

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000 8000 10000

R
ep

lie
s/

s

�

Requests/s

multi-accept
-m 0 -s
-m 75
-m 25

Figure 7: Limiting thenumber of consecutive connections the server permits during a multi-acceptand the
influence on server throughput.

By comparing wherethereply ratedropswith wheretheTCPSYN queuedroprateincreaseswecan seethat
for someof theseserversthere is quite a large differencein thenumber of incoming TCPSYN packetsthat
are dropped. All serversare able to avoid dropping TCPSYN packets until the saturation point is reached.
But ascanbe seenin thegraph this point is reached at different pointsfor dif ferent servers.

With this comparisonof reply ratesand TCP SYN queuedrop rates we are also able to see another reason
that although the[-m 0 -s] version of the server aggressively accepts new connections its throughput
suffers. As mentionedpreviously whenthe server is more aggressive about accepting new connections the
period betweensuccessive calls to select is longer. As a result the number of file descriptors andevents
thatmustbehandledby select is largerandtheamount of work to processbeforereturning to accept new
connections increases. The result is that when the period betweendoing multi-accepts becomes too large,
the TCP SYN queue quickly fills and the kernel must drop incoming TCPSYN packets. When using the
[-m 0 -s] version of the server the kernel is forced to drop significantly more TCP SYN packets than
whenusing other serversat the samerequest rate. This is another view of what causesthe serious drop in
throughput for the[-m 0 -s] version of theserver.

Notethat the time thekernel spendshandling interrupts for packetsthat will be discardedbecausethe TCP
SYN queue is full also decreases the amount of time that the application can spend doing its work. We
believe that this is oneof themain reasonsthat noneof theservers is able to sustain its peak response rate
after the saturation point is reached. Note thatthe rateat which TCPSYN packetsare droppedis very high
relative to therequest rate. We believe this is causedby httperf attempting to achieve the target request
rate becauseit must bemoreaggressivewhen attempting to establish new connectionswhen thefailure rate
is high.

14

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000 8000 10000
0

5000

10000

15000

20000

25000

30000

35000

40000

R
ep

lie
s/

s

�

Q
D

ro
ps

/s

�

Requests/s

multi-accept Replies/s
multi-accept QDrops/s

-m 0 -s Replies/s
-m 0 -s QDrops/s
-m 75 Replies/s
-m 75 QDrops/s
-m 25 Replies/s
-m 25 QDrops/s

Figure 8: Limiting thenumber of consecutive connections the server permits during a multi-acceptand the
influence on throughput and TCP SYNqueue drop rates. The lines representing QDrops/sare thosethat
start at zero on theright y-axisand risebetween3500and4500requestsper second. The linesrepresenting
Replies/s start at 500 on theleft y-axis and drop between3500 and 4500 requests per second.

Figure 9 shows thegprof output for the[-m 25] server. This graph shows that ashoped, theproportion
of time the[-m 25] server spends processing select calls avoids the sharp increase seen in the[-m
0 -s] server in Figure 5. This helps the[-m 25] server to avoid the drop in throughput that is seenby
the[-m 0 -s] server whenthe load is slightly beyond theserver’s saturation point. We also seethat the
proportion of time spent in accept is reducedin the[-m 25] server (Figure 9) whencompared with the
[-m 0 -r -w -s] server (Figure 6) thuspermitting the[-m 25] server to spend a greater portion of
its execution time processing existing connections, making more forward progresson existing connections,
and improving throughput.

Figure 10 shows the meanresponsetimesobserved using the servers discussed in this section as a function
of the request rate. Note that the mean recordedresponse times are only accurateto one millisecond. This
graph is shown mainly to show that theincreasesin throughput areobtained without significant sacrificesin
meanresponsetimes.

Themeanresponse time providedby each server significantly degradeswhen that server reaches its satura-
tion point. However, the multi-accept serverattempts to makeasmuch forward progresson new incoming
connections as possible and maintains lower mean responsetimes right up until reaching the saturation
point. The other servers make forwardprogress on existing connections only following each call to select.
Sinceforwardprogressisbeing madein whatareessentially batches,theresponsetimes increaseslightly as
the saturation point is approached.Becausethenumber of consecutive connections permittedwith the[-m
75] option is slightly larger than with the[-m 25] option,itsbatchesare larger and its responsetimesare
slightly higher just prior to reaching thesaturation point thanwhen using the[-m 25] option.

15

0

20

40

60

80

100

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

P
er

ce
nt

ag
e

of
 e

xe
cu

tio
n

tim
e

(g
pr

of
)

�

R
ep

lie
s/

s

�

Requests/s

accept
select

server_loop
read/write/open/close

Replies/s

Figure 9: Examining where execution time is being spent in the[-m 25] server astheload increases.

0.1

1

10

100

1000

10000

0 2000 4000 6000 8000 10000

R
es

po
ns

e
T

im
e

(m
se

c)

�

Requests/s

multi-accept
-m 0 -s
-m 75
-m 25

Figure 10: Comparing themean responsetimesfor different server options while increasing the load.

7 Discussion

There is a similarity betweentheobservationswemake in this paperandobservationsmadein work related
to “ receive livelock” [15] [9]. Receive livelock is referred to [15] asa condition whereno useful progress

16

is being made in a system becausea required resource is entirely consumedby the processing of receiver
interrupts. Mogul and Ramakrishnan [9] demonstrate how this situation can be eliminated by carefully
scheduling how work is performed. A fundamental difference between receive livelock and the problems
we observe with not being able to makeforward progress on existing connections is that receive livelock is
a result of the kernel implementation (i.e., it is causedby the kernel) while our lack of forward progressis
causedby theapplication itself. Therefore, thetechniquesused to improveperformancein our casemustbe
differentfrom thoseused to eliminatereceive livelock.

More recently, Provos et al. [14] observed a similar problem while studying the performanceof their im-
provedevent-dispatch mechanism, sigtimedwait4. They found thatwhile trying to reducetheoverhead
incurred in obtaining event information from the kernel that no noticeable improvement in performance
could beseen when comparedwith theoriginal approach. They wereableto improveperformanceby modi-
fying theapplication to observethenumberof signals obtainedoneachcall tosigtimedwait4 andwhen
theweightedaverageof thenumber of signalsreturnedwastoohigh (indicating an overloadcondition) they
resetincomingconnections insteadof processing therequest. In their environment, this is another method
for improving thebalancebetweenaccepting new andprocessing existingconnections. Themain difference
betweentheir work and our work in this paper is that they concentrateon trying to improve performance
by reducing theamount of time required to obtain events from thekernel, while our work takes a different
approach by trying to determinehow a server should bestapportion its time (insteadof trying to reducethe
time spent in individual elementsof the server).

Other studies [5] [16] have also reset incoming connections in order to devote more time to processing
existing connections. Theseand other studiescenteredaround providing differentiated or improvedqualit y
of service areconcerned with providing quality of service to some connections to the detriment of others.
Unfortunately such approachesdo not provide significant insights into improving the performance for all
connections.

While we have examined techniquesfor managing theflow of work through anInternetserver application,
it is not our intent to determine an optimal strategy; our experience leads us to speculate that there is no
silver bullet. Rather, our intent is to raiseawareness of these issues; it is up to individual programmers to
determinethe best strategy for controlling theflow of work through their unique application. Our results in
this paper demonstrate thatevenrelatively simple server applications canexperience significant changes in
overloadbehavior with minor alterations. We also believe and emphasize that thereis littl e to begained in
havinghighly efficient andscalable event management mechanismsin aserver application if theapplication
doesn’t spend a sufficient, but not excessive, portion of its time making forward progressin servicing client
requests.

8 Conclusions

In thispaper weinvestigatetheperformanceof asimpleInternetserverapplication built aroundtheselect
system call. This isdonein thecontext of aweb-serverapplication specifically implementedto permit usto
study softwarearchitectures designedto avoid server meltdown during periodsof high load.

We have constructed a parameterized micro web-server that permits us to explore a variety of server im-
plementation options. This new server enablesus to conduct fair and valid comparisons of dif ferent server

17

implementation options and ensures that any differences in performance areactually due to differencesin
thesoftwarearchitectureof theserver and not dueto other artifactsof theimplementationsbeing compared.

Wehave closely examined theperformanceof theselect-basedmulti -accept server usedby Chandraand
Mosberger [6] andfound that although its performance was better than methods that use alternate event-
dispatch mechanisms,considerable improvements could still be made. First, significant improvements in
peak throughput were obtained (14 – 21%) by more aggresively accepting incoming connections. We then
show thatservers that are overly aggressive in obtaining new connections can suffer from significant drops
in performance after the saturation point of the server is reached. This is becauseinsufficient resources
are being applied toward making forward progress on existing connections. By limiting the number of
consecutive connections accepted, we are able to strike a balancebetweenrapidly accepting new incoming
connections andmaking forwardprogress on existing connections. Theresulting server not only improves
peak throughputbut alsodemonstratesamoregradual and stable deterioration of performancein thefaceof
overloadsituations.

We believe that theseresults provide strong evidencethat irrespective of thekernel event-dispatch method
used, a balancemust bemaintainedbetweenaccepting new connections, obtaining event information, and
using that information to makeforward progresson existing connections. Whenthis balanceis not main-
tained server throughput can degradeand in somecases this degradation canbe substantial.

In the future we hopeto cleanup our code, improve the ease with which modifications canbemade, and to
makeit available for others to use. We also hope to use it to study approachesto automatically controlling
the flow of work through the server, to reexamine our results in thecontext of dif ferent and more realistic
workloads, andto examine other techniques for providing kernel mechanisms that better support Internet-
based server applications[11].

9 Acknowledgments

Wewishto thank AbhishekChandraand David Mosberger for providing uswith themicro-servercodeused
in their study [6]. Wealso wishto thank David Mosberger and Tai Jin for creatinghttperf [10], aswell as
Martin Arlit t for his updates andimprovements and for numerous discussionsrelatedto improving Internet
server performance. Thanks also to Todd Poynor and Brian Lynn of Hewlett Packard Research Labs for
helpful comments on an earlier draft of this paper.

The authors also wish to thank the University of Waterloo (wheremuch of this work got its start) and the
Natural Sciencesand Engineering Research Council of Canada for partial support for this research.

References

[1] M. Arli tt and T. Jin. Workload characterization of the 1998 world cup web site. IEEE Network,
14(3):30–37, May/June2000.

[2] G. Banga,P. Druschel, andJ.C.Mogul. Resourcecontainers: A new facilit y for resourcemanagement
in server systems. In Operating Systems Design andImplementation, pages45–58, 1999.

18

[3] G. BangaandJ.C.Mogul. Scalable kernel performance for Internet servers under realistic loads. In
Proceedings of the1998 USENIX Annual Technical Conference, New Orleans, LA, 1998.

[4] G. Banga,J.C. Mogul, and P. Druschel. A scalable and explicit event delivery mechanism for UNIX.
In Proceedingsof the 1999 USENIXAnnual Technical Conference, Monterey, CA, June 1999.

[5] P. Bhoj, S Ramanathan, and S.Singhal. Web2K: Bringing QoSto webservers. Technical report, HP
Laboratories,HPL-2000-61, May 2000.

[6] A. ChandraandD. Mosberger. Scalability of Linux event-dispatch mechanisms.In Proceedingsof the
USENIX Annual Technical Conference, Boston,MA, 2001.

[7] S.L. Graham,P.B. Kessler, and M.K. McKusick. gprof: acall graphexecutionprofiler. In Proceedings
of theSIGPlan ’82 Symposium on Compiler Construction, pages120–126, Boston, MA, 1982.

[8] J.Hu, I. Pyarali, and D. Schmidt. Measuring theimpact of event dispatching and concurrency models
on web server performance over high-speed networks. In Proceedings of the 2nd Global Internet
Conference. IEEE, November 1997.

[9] J. Mogul and K. Ramakrishnan. Eliminating receiver livelock in an interrupt-driven kernel. In Pro-
ceedings of the USENIX Annual Technical Conference, pages 99–111, San Diego, CA, 1996.

[10] D. Mosberger and T. Jin. httperf: A tool for measuring webserverperformance. In First Workshop on
InternetServer Performance, pages59—67, Madison, WI, June 1998. ACM.

[11] M. Ostrowski. A mechanism for scalable event notification anddelivery in Linux. Master’s thesis,
Department of Computer Science,University of Waterloo, November2000.

[12] V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient andportable web server. In Proceedings
of theUSENIX Annual Technical Conference, Monterey, CA, June 1999.

[13] N. Provos and C. Lever. Scalable network I/O in Linux. In Proceedings of the USENIX Annual
Technical Conference, FREENIXTrack, June 2000.

[14] N. Provos, C. Lever, andS. Tweedie. Analyzing the overloadbehavior of a simple web server. In
Proceedings of theFourth Annual Linux Showcaseand Conference, October 2000.

[15] K.K. Ramakrishnan. Scheduling issuesfor interfacing to high speednetworks. In Proceedingsof the
IEEE Global Telecommunications Conference, pages622–626, Orlando, FL, 1992.

[16] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel mechanismsfor service differentiation in
overloaded web servers. In Proceedings of the USENIX Annual Technical Conference, Boston, June
2001.

[17] L.A. Wald and S. Schwarz. The 1999 Southern Califo rnia seismic network bulletin. Seismological
Research Letters, 71(4), July/August 2000.

[18] M. Welshand D. Culler. Virtualization considered harmful: OSdesigndirectionsfor well-conditioned
services. In Proceedings of the 8th Workshop on Hot Topics in Operating Systems(HotOS VII I),
SchlossElmau, Germany, May 2001.

19

