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Abstract

We study the problem of processor scheduling for parallel
jobs. We prove that, for jobs with a single phase of paral-
lelism, an algorithm can achieve a mean response time within

2
2_n+1

multiple phases of parallelism and to interactive jobs (with

phases during which the job has no CPU requirements) for
4

n+1

with previous work, our assumption that job execution times

times the optimum. This is extended to jobs with

a solution within 4 — times the optimum. Comparing
are unknown prior to their completion is more realistic, our
multi-phased job model is more general, and our approxi-
mation ratio (for jobs with a single phase of parallelism) is
better and cannot be improved.

1 Introduction

The CPU scheduling problem for computer systems dis-
tinguishes itself from general scheduling problems (e.g.,
job shop scheduling) in its variety of requirements of the
system and variety of performance metrics. While min-
imizing makespan is usually a natural objective func-
tion for many general scheduling problems, a number
of different possibilities exist for CPU schedulers in a
general purpose multi-user computing environment [21].
Nevertheless, minimizing mean response time a common
objective used in theoretical, simulation and empirical
studies. Motwani, et al., show that, for uniprocessor
systems, the mean response time of the Round-Robin
policy is 2 — ni—i-l times the optimum and that without a
priori information about job execution time, no policy
can guarantee a better factor [15] (called the competi-
tive ratio [22][8][14]).

For parallel job execution, minimizing mean re-
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sponse time becomes much more difficult. Several re-
cent analytic results have been obtained assuming that
job information is completely known [26] [25] [27] [11].
These results initiated the first (theoretical) step toward
understanding the general problem. Our work takes the
next significant step and is distinguished from these re-
sults in that we remowve the unrealistic assumption that
the job execution time is known. Knowledge of execu-
tion times for some jobs may be obtained, but this is
clearly not a valid assumption for all jobs in general
purpose computing environments. Moreover, our result
cannot be further improved mathematically. We show
that the Dynamic Equipartition policy (DEQ) [24] [29]
produces mean response times that are no more than
2— HL_H times the optimum for any set of parallel jobs,
and that no policy can guarantee a better competi-
tive ratio without a priori knowledge of job execution
times. Although the competitive ratio turns out to be
the same as in the sequential problem (not necessarily
by accident), our result requires a completely different
and rather difficult proof. This provides a theoretical
foundation for analyzing and understanding the perfor-
mance of the DEQ policy which, along with its various
derivatives, has been shown to be superior in recent sim-
ulation and experimental studies [24] [12] [29] [10] [16]
[13] [2] [17]. Furthermore, our results can be extended
to jobs which may change the number of processors re-
quired during their execution, including interactive jobs,
which may block and therefore, need not be assigned to
a CPU while waiting for user input. We also show that
DEQ is robust in presence of faulty jobs.

1.1 Preemptive Scheduling

Schedulers in most general purpose computer sys-
tems are preemptive, for several reasons [21]. First, job
execution times may not be known prior to their comple-
tion. Thus, when non-preemptive scheduling algorithms
are used, short jobs may be penalized by long jobs which
utilize the CPUs for long periods of time. Second, in-
teractive jobs require some processing and preemptive
(time-sharing) scheduling policies allow them to execute
by providing them with a slice of CPU time. Third,
some jobs may execute infinitely, due to programming
errors. If a non-preemptive scheduling policy is used
they may execute forever and exclude other jobs from



being processed. Obviously, the preemptive execution
of jobs incurs some overhead. For multiprocessor sys-
tems, this may become more expensive. However, these
overheads can be absorbed in a time-sharing scheme
by choosing a scheduling quantum that is sufficiently
large or by instead dynamically space-sharing proces-
sors [24] [29] [16]. This is consistent with the trend
towards coarse grained machines for general purpose
parallel computations, as suggested in the LogP model
[1]. Setup costs can then be absorbed by pipeline rout-
ing if the size of a problem is sufficiently large in com-
parison with the number of processors in the system
[28].Independently, there have been extensive empirical
studies on the preemptive cost caused by time/space
sharing scheduling policies [29] [16]. Even for some cases
when the preemption cost is relatively high, simulation
and experimental studies support preemptive over non-
preemptive scheduling policies [29] [16].

1.2 Competitive Analysis

We make the assumption that job execution times
are not known prior to their completion. This is quite
realistic for modern general purpose multiprocessors.
Since execution times are not known at the time jobs are
scheduled, it is possible that any given scheduling policy
may not perform very well on some specific job set. For
this reason, we use competitive analysis to study poli-
cies that do not deviate, by more than a constant fac-
tor, from the optimal solution (which has and uses com-
plete information about the job set). The competitive
analysis of algorithms is a measurement of algorithms
operating with incomplete information, first introduced
in the study of a system memory management problem
[22][8][14]. Policies for this problem are required to han-
dle future unknown requests. The competitive ratio of
a policy is defined to be the worst case ratio of the cost
of the policy to the optimal cost for the same input se-
quence. In the CPU scheduling problem the situation is
similar, in that the execution time of a job is unknown
until its execution is completed. The competitive ratio
of a scheduling policy S is thus defined as the worst
case ratio of the outcome, S(J), of the policy on a set
of jobs, J, over the minimum outcome OPT(J) on the
same set J: maxqy g %. An algorithm is said to
be f(n)-competitive if S(J) < f(n)OPT(J). The goal
is to find an algorithm which leads to the minimum
competitive ratio. Shmoys, et al., studied the optimal
competitive ratio for the makespan of sequential jobs
being scheduled on parallel machines [23]. For minimiz-
ing the mean response time of sequential jobs, Motwani,
et al. have shown that a preemptive time-sharing pol-
icy, Round-Robin, achieves the optimal competitive ra-
tio. It guarantees a mean response time which is within
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2 — ;25 times optimal and no policy can guarantee a

better competitive ratio [15].

1.3 The Job Model

The most detailed description of a parallel pro-
gram’s execution on a multiprocessor is a data-
dependency DAG, where edges represent data depen-
dencies between the data (nodes). The DAG is re-
vealed as the computation proceeds as a result of data-
dependent conditional statements. Using a delay model
introduced by Papadimitriou and Yannakakis [18], Deng
and Koutsoupias show that given uniform communica-
tion delay, 7, for any scheduler, there exists a DAG
for which the scheduler will produce a schedule whose
execution is at least ; OET times the optimal execution
time of that DAG [3]. The same claim holds for both
the BSP and the LogP models (see journal version of
[3]). That is, with a parallel system of latency L the
competitive ratio of any scheduler is L. This work
eliminates the possibility of a compiler that optimally
(or near-optimally) executes all jobs and calls for the
characterization of parallel jobs and the use of these
characteristics in scheduling policies.

We characterize a parallel job, J;, using two param-
eters: its execution time, h;, and its parallelism, P;. F;
is the number of processors a job is capable of using
during its execution, and h; is the time that the job
needs to complete execution if it is allocated P; proces-
sors. When less than P; processors are allocated to job
Ji, we assume that the job’s execution will be prolonged
proportionally. That is, if p; processors (p; < P;) are
allocated to J;, its actual execution time is %hi. For
a job, (P;, h;), its parallelism P; is known to the sched-
uler but the execution time h; is unknown prior to its
completion.

In general, we can use parallelism profiles to char-
acterize parallel jobs. A parallelism profile is defined
as the number of processors an application is capable
of using at any point in time during its execution [9].
During execution, if the parallelism of an application
varies with time, it is said to have multiple phases of
parallelism. We may also formulate interactive jobs by
introducing phases during which a job does not require
access to a processor, because it is blocked while waiting
for user input.

1.4 Related Results

The problem of minimizing the mean response time
for parallel jobs on multiprocessors becomes much more
difficult than its sequential counterpart. Recently, there
have been several analytic results which assume that job
information is completely known. The first significant

work is that of Turek, et al., who introduce an approx-
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imation algorithm of 32 times the optimum [26]. This
result has been subsequently improved and extended
[25] [27] [11]. A number of different preemptive poli-
cies have been proposed and studied for scheduling par-
allel jobs in multiprocessors [24] [20] [29] [16] [19] [7].
In particular, experimental and simulation studies have
shown that the DEQ yields low mean response times
under a variety of workloads and is reported to pos-
sess desirable properties of a good scheduler [24] [12]
[10] [13]. DEQ is first introduced to parallel schedul-
ing by Tucker, et al. as a process control policy [24],
and modified by McCann, et al. [29]. The main idea
behind this approach is to distribute processors evenly
among jobs, provided they have sufficient parallelism.
Our proof that DEQ is 2— n%rl—competitive uses the no-
tion of a squashed area bound, introduced for the non-
preemptive scheduling of parallel jobs [11] [26] [27] [25].
Turek, et al. show that the minimum response time for
a set of jobs, J = {(P1,h1),(P2,ha), -+, (Pn,hy)}, is
no more than the minimum response time of the job
set jsquash = {(P; %)7 (Pa P21;12)7 ) (Pa %)} [26]
The squashed area bound is the flow time (the product
of the number of jobs and the mean response time) for
Tsquash under the Least Work First (LWF) policy. Sev-
cik shows that the LWF policy is optimal if all jobs have
the same parallelism P [19].

1.5 Outline of the Paper

In Section 2, we give a formal definition of the DEQ
allocation policy. Then we establish a lower bound on
the optimal flow time for parallel jobs which extends
the squashed area bound and the height bound. This
approach is completely different from previous work. In
Section 3, we give a formal proof that the flow time
of DEQ is no more than twice the optimal flow time
for any job set. The mathematical induction used in
this proof requires a delicate balance of the squashed
area and height bounds on the work needed to be
executed by each job. In Section 4, we study jobs
with multiple phases of parallelism and also extend the
results to interactive jobs. In Section 5, we discuss
robust scheduling. We consider the case where there
are faulty jobs which may execute infinitely. We show
that DEQ achieves the optimal competitive ratio for the
makespan. In Section 6, we conclude the paper with
some remarks.

2 Preliminaries

Consider n jobs in a system of P processors. J; is
characterized by the parallelism-time pair (P}, h;), and
the amount of work is w; = P;h;, 1 < i < n. Denote the
job set by J = {J1,J2,--,JJn}. Suppose that under a
scheduler S the actual completion time of job J; is ¢;,

1 < i < n. The flow time of 7, denoted by FTs(7),
is defined as ), t;. Then the mean response time
MRTs(J) is defined as %(‘7) The height bound
H(J) is defined as ., h;. Since J; requires at least
h; execution time, 1 < i < n, H(J) is an obvious lower
bound on the optimal flow time. Let the jobs be ordered
according to their total work w; < we < --- < w,. The
squashed area bound A(.7) is then defined as >, (n—
i+ 1)%. Notice that any preemptive scheduling on the
job set J can be imitated by a preemptive scheduling
on the job set {(*&, P), (%, P),---, (%, P)}. It follows
that OPT(j) > OPT{(%aP)a (%7P)7 T (anaP)}
Since each job has the same parallelism as in the system
for the latter, the short job first strategy gives the
optimal solution for the flow time, easily provable as
in sequential systems (see [26] [19] for details.) This is
exactly the squashed area bound.

Our main result utilizes a nontrivial extension to the
squashed area bound and the height bound. Suppose
each job (P;, h;) is divided into two parts: (P, hs1) and
(Pz', hiz) such that h; = hj1 +hse. Let j(l) = {(Pz, hil) :
1<i<n}and J(2) = {(P;,hi2) : 1 <i<n}. Wehave
the following lemma, for a lower bound on the optimal
flow time of the job set J.

LEMMA 2.1. OPT(J) > A(J(1)) + H(J(2)).
Proof of Lemma 2.1: Consider the optimal schedul-
ing algorithm on the input J. Let ¢;; be the time when
the remaining portion of J; is (P;, hi2) and t;2 be the
time when J; completes execution 1 < ¢ < n. Obvi-
ously, t;2 — tj1 > hss. The flow time for the optimal
scheduler is

OPT(I) =3 1o > S ta 43 ho > A(T(V) + HI(2),

where the last inequality is derived from the height
bound and the squashed area bound [26]. [
We formally define the DEQ allocation policy re-
cursively as follows:
1. If P> % for all ¢ : 1 < i < n, each job is assigned
% processors.

2. Otherwise, each job J; with parallelism P; < % is
allocated P; processors. Update n and P. If n > 0,
recursively apply DEQ.

Obviously, this schedule is valid only when £ is an
integer. In practice, if % is a rational number, and
larger than 1, we can take its integer part |£| and
ignore its fraction part £ — [£]. The result will be
affected by a small constant factor. If % is a fractional
number smaller than 1, we view all the parallel jobs as
sequential jobs, and apply the Round-Robin policy so
that in unit time, a fraction % of one processor’s CPU



time is assigned to one job. For the simplicity of our
proof, we allow this fractional number % of processors
assigned to a job as long as it is no bigger than the
parallelism of the job. Let Jpqrq be the set of jobs that
are allocated P; processors, and the rest of the jobs form
the set Jeqyi (Which are each assigned an equal number
of processors, denoted by p).

LEMMA 2.2. If there are no idle processors, then
E.]i Pi + |\76quz|p = P; (VJz S Jpara)-Pz' S D, and

>

para

3
M

Consider the execution of jobs under the DEQ
policy. Each job (P;, h;) is divided into two modes
of execution: It is in the full-parallelism mode, if P;
processors are assigned, and it is in the equipartition
mode, if less than P; processors are assigned. It is not
difficult to see that under the DEQ allocation policy,
once a job enters the full-parallelism mode, it will stay
in that mode until completion. Let h(f) be the length
of the job’s execution in the full-parallelism mode, and
h(e) = h — h(f). Let J(f) = {(Pi, hi(f)) : 1 <i < n}
and J(e) = {(P;,hi(e)) : 1 < i < n}. In the next
section, we prove

FTpeg(J) <
(2 - 29)IAT(e) + H(T (f))]

Combining this with Lemma 2.1, we have
THEOREM 2.1. FTpgq(J) < (2—727)0PT(J) 0

It is not hard to extend the same lower bound for
competitive ratio of sequential jobs by Motwani, et al.,
to this situation [15]. Thus, this competitive ratio is
optimal.

(2.1)
(2.2)

3 Minimizing Mean Response Time

Suppose jobs are divided into Jparq and Jeqqyi initially
according to the above discussion. When one of the
jobs, say Ji, finishes its execution under DEQ, we
will re-allocate processors according to DEQ. Every
job in Jpare will still be assigned the same number
of processors as its parallelism. Let J),,., € Jequi be
the subset of jobs in J,q4; which are assigned the same
number of processors as their parallelism after the re-
allocation of processors. Let J. .. = Jequi — Jpara-
Thus, jobs in J/,,; are now assigned the same number
of processors.

LeMMA 3.1. If there are no idle processors, then

qui

(n + 1)P|\7¢equz| S
(n = 1) P|Tparal + np| Tequil (| Tequi| + 1)

Proof of Lemma 3.1:

RHS =
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P(|Tequil + | Tpara| = 1)| Tparal
NP|Tequil (| Tequi| + 1)

Pljequi||x7pa7‘a| + P(|x7pam| - 1)|jpara|
P|\76qui|(|jequi| + 1)

P|Tequil(|Tparal + | Tequil +1)
P|Tequil(n +1).

v + IV +

In the above, the first inequality follows from
Lemma 2.2, and the second inequality follows from the
fact (|..7pa,ra| - 1)|x7para| Z 0. D

Proof of Equation (2.2): For simplicity of presenta-
tion, let C = 2 — nL-H In order to avoid case-by-case
analysis in the proof, we prove the claim by induction
on the number of jobs which have non-zero execution
time, n.

Since 2 — nL+1 is an increasing function of n and
jobs of zero length would change neither the squashed
area bound nor the height bound, the claim would also
hold when we allow n to be the number of total jobs,
including jobs of zero length. Therefore, we can simply
prove the claim for the case when all jobs have non-
zero lengths while allowing the inductive hypothesis to
include the case when jobs of zero length are present.

For the base case n = 1, if the parallelism, P;, of
job Ji is less than or equal to P (Py < P), it is assigned
Py processors (hi(f) = hi1). Otherwise, P processors
are assigned to the job (hi(e) = h) and its execution
ends in time £ }fl, which is the same as the squashed
area bound.

Assume the claim holds when the number of jobs
of non-zero lengths is less than n. Consider the case
of n jobs, all of non-zero lengths, J = {(P;,h;) : 1 <
i < n}. If there are idle processors, the claims follows
immediately. So we assume there are no idle processors.
Without loss of generality, let J1 = (Pi,h1) be the
first to finish and let 7 denote its completion time.
Therefore, the remaining portion of jobs J; € Jequi
is (Pi,h; — %’j), and the remaining portion of jobs
Ji € Tpara is (P;, by — 7). Therefore, the flow time is

(3.3) FTpeg(J) =

(3.4) nr+ FTpeqo({(P;, h; — %’j) 21 € Jequi}
(3.5) U{(Ps, hi = 7) : i € Tparal),

where the first term is the completion time of J; plus
the time that the other n — 1 jobs have been in the
system so far, and the second term is needed in recursion
for the remaining portion of the n — 1 jobs. By the
inductive hypothesis, the second term in Equation (3.3)
is bounded by

(36) C- A({(P;, hile) — %’) L0 € Tequi}) +
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C-H{(Pi, hi(f)) : i € Tequi}) +

C- Z (h,'—’T),

1€Jpara

where h;(e) > %’;’ for each i € Joqui- DEQ will
redistribute processors among jobs in Jeq.u; after the
departure of J;. Let ‘71;(17'11 C Jequi be the subset of
Jequi such that for each ¢ € jljam, J; is assigned P;
processors after the redistribution. Let [J! . be the

equi
rest of the jobs in Jequi.

(3.9)
(3.10)

Vi€ Tigui hile) > E
Vi e j}iara hi(e) = %Ij

From Equation (3.10), we have

APy hile) = 2) 1 € Togui)}) =

P;
AP hile) — ) 1 € Tl

Let the jobs in J,,; be ordered as ji,ja," ", jk,
k = |J.4uil, according to the increasing order of the
amount, of remaining work P;j(hi(e) — 1), i € J.pui;
which is the same as the increasing order of P;h;(e),
i€ Je'qm-. Then,

(3.11)
(3.12)

(3.13) A({(P;, hi(e) —

k
1 D
(319 = ;w i P (h(e) = )
L
(315) = 3 ;(k — i+ 1)Pj,hj,(e) —
L
(3.16) B 2 (k—i+1)mp
(3.17) = A{(P;, hi(e)) i € Tpgui})
k(k+1) _
(3.18) TP
We also have
(3.19) H(Tequi()) + Y, (hi—7)
i€Tpara
(3.20) = H(J(f)) = |TparalT.
Combining (3.3), (3.8), (3.12), (3.18),and (3.20),
we obtain an upper bound on FTprg(J):
k(k+1)mp
nr—C - % —C - |TparalT

+C - A(Tyui) + C - H(T(£))-

Since
, e (k4 1T paral = i + D7p
A(jequi (6)) = A(jequi(e))+ Z P
=1

the above upper bound is equal to
k(k+1)p
2P

k + |\71§ara|

nr—C - —C - |TparalT

[Tparal
—C - Z
: (A(Jeqm( )+ H(T()))-

In order to show that this is no more than C- A(J (e)) +

i+ 1)1H

C-H(IJ(f) = C- A(Tequi(e)) + C - H(T(f)), it is
sufficient to show that

co B oo Bl i+ 1
n= T+ | para|+ . lzzl P .

This inequality is the same as

c _
nP S C ° |\7para|P + Eljequi|(|jequi| + ]-)p-

Equivalently,
c _
|t7equi|P < (C - 1)'\7para|P + E|\7equi|(|‘7€qui| + 1)p-
Since C' = 2 — +1, the above inequality follows from
Lemma 3.1.]

4 Multi-phased Parallelism and Interactive
Jobs

At any point in time some jobs are assigned a number
of processors equal to their parallelism (those in full-
parallelism mode) and others are assigned p processors
(those in equipartition mode). Both the parallelism of
the jobs and p may change over time. We continue to
use the notation J(f) for the portion of jobs in J in
full-parallelism mode, and J(e) for the portion of jobs
in equipartition mode.

THEOREM 4.1. For jobs with multiple phases of
parallelism, we have

(4.21) FTppe(J) < (2 - — i 1)AT (€)) +
(422) (2 - —H(T ()

Therefore, DEQ is 4 —
response time.

g competitive for mean job



Proof: Omitted and see the appendix. []

Since we formulate interactive jobs as alternating
between periods of being blocked while waiting for input
from a user and periods of processing, the above result
also applies to interactive jobs.

COROLLARY 4.1. DEQ is 4 — HL_H competitive for
the mean turnaround time of interactive jobs. []

This would immediately carry over to sequential
job scheduling problems and show the same competitive
ratio for the Round-Robin Policy. However, in this case
we have a better result.

THEOREM 4.2. Round-Robin is 3— %H competitive
for the mean turnaround time of interactive jobs on
sequential machines.

Proof: Omitted and see appendix. []

5 Robustness of DEQ

The competitive ratio approach has been successfully
applied to minimize the makespan [23]. There are, how-
ever, some objections to using makespan as the only
computer system performance objective. One of them
is that makespan does not distinguish one policy from
another. Under our model, any work-conserving policy
(i-e., no processors are idle as long as there are jobs avail-
able for execution [5]), has a competitive ratio of two,
which is asymptotically optimal. On the other hand,
using mean response time as the performance objective,
Motwani, et al. [15] have shown that no scheduling
policy can achieve a performance ratio that is better
than n'/3 when there are new arrivals and the scheduler
has no a prior: information about the execution time.
The mean response time is a performance metric that
is too difficult to minimize in this case. As a compro-
mise, we use the makespan as the performance objective
and consider competitive scheduling policies which are
robust in the presence of faulty jobs. More precisely,
we assume that there are up to K faulty/infinite jobs
in the system but the scheduler does not know which
they are. Let T4(J) be the completion time of the last
finished non-faulty/finite job under the scheduling pol-
icy A. Let OPT(J) be the optimal completion time
of non-faulty/finite jobs (with full information.) From
now on, OPT(J) refers to the optimal makespan. Ob-
viously, faulty/infinite jobs are not executed under the

optimal scheduler. The competitive ratio is defined as
Ta(J)
max .y OI;T(J) -

Since the same issue arises in uniprocessor systems,
we first consider this case.

THEOREM 5.1. In a system with K faulty/infinite
jobs, when there are new arrivals, the competitive ratio
of the makespan of the Round-Robin policy is K + 1,
which is optimal.

X. Deng, N. Gu, T. Brecht, K. Lu

Proof: Omitted and see appendix. []

Now consider parallel job scheduling on multipro-
Cessors.

THEOREM 5.2. In o multiprocessor system with
new arrivals and K faulty/infinite jobs, the competitive
ratio for the makespan of DEQ is K + 1, which is the
best possible competitive ratio.

Proof: Omitted and see appendix. []

6 Remarks and Discussion

We started our work on competitive analysis for the par-
allel scheduling problem by facing two obstacles with
this approach: the lower bound of Deng and Koutsou-
pias on scheduling an arbitrary DAG [3], and the lower
bound of Motwani, et al. for scheduling new job arrivals.
While the former points out that it is impossible to ob-
tain a general on-line strategy that schedules arbitrary
jobs on parallel machines (with a given communication
latency) optimally /near-optimally, the latter points out
that it is impossible to obtain a general on-line preemp-
tive strategy that schedules sequential jobs on a unipro-
cessor if job arrivals are unpredictable[15]. (This result
can also be extended to parallel jobs.) These two results
raise serious doubts about the possibility of obtaining a
near-optimal scheduling strategy in realistic computing
environments for parallel/real time schedulings.

We avoid the first difficulty by focusing on a special
class of parallel jobs. It would be interesting to extend
our positive result to larger classes of parallel jobs.
The explicit definition of interactive jobs introduced
in this paper and the related constant competitive
ratio result resolves the second difficulty; we can treat
newly arriving jobs as interactive jobs with an initial
sleep state not requiring CPU processing. The DEQ
policy also stands out among other parallel scheduling
policies in the presence of faulty/infinite jobs in that
it achieves the optimal competitive ratio for makespan.
This presents an alternative approach to handling the
second difficulty.

A central question that must be considered when
developing and comparing scheduling algorithms for
multiprocessors is: what is the object function being
used to determine how well the algorithm is performing.
For example, is it more desirable to minimize mean
response time, than minimizing makespan, or should
maximizing throughput or system utilization be the
main goals of the scheduler. As well, real systems
must also be careful to provide quick turnaround time
to interactive programs. Additional consideration must
also be given to the the fact that in some cases knowing
or deriving a competitive ratio for an algorithm does not
mean that the complexity of the algorithm is acceptable
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or that an algorithm can be easily constructed [4].
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7 Appendix

Proof of Theorem 4.1: The conclusion of 4 — P
competitiveness follows immediately from the fact that
both the squashed area bound and the height bound
are lower bounds on the optimal flow time. Our focus
is thus on Equation (2.2). We consider an inductive
proof using the result for single-phased jobs as the
base case. A difficulty in this case is that the order
of jobs in the squashed area bound may change as
execution of the jobs (according to DEQ) proceed. To
deal with this problem, we divide the execution time
of the jobs into intervals such that in each interval, the
parallelism of all jobs does not change; and the order,
according to which the squashed area bound is applied,
of the total remaining work to be executed under
the equipartition mode of all jobs does not change.
Thus between two consecutive intervals, either some
job changes its parallelism or two jobs have the same
amount of remaining work to be executed under the
equipartition mode. We prove our claim by induction
on the number of such intervals. For the base case,
the parallelism of all jobs is the same and the claim
follows from our result on jobs with a single phase of
parallelism.

To apply the inductive proof, consider the execution
of all jobs for 7 time units in the first such interval. The
case with idle processors is trivial. So we assume there
are no idle processors. For jobs in full-parallelism mode
during this period of time (denoted by Jpere), their
height decreases by 7. For jobs in equipartition mode
during this period of time (denoted by Jequ:), their work
decreases by pr. Applying the inductive hypothesis to
the remaining portions after the first time interval, we
have

FTpeq(J) <
nt+C-[AT(€) — Ties,., PP
+C[HIT() - e, 7

X. Deng, N. Gu, T. Brecht, K. Lu

where C' = 2— 25 The condition that the order of total
work in J(e) does not change is crucial in the above
formulation. At the end of the interval, it is possible
that two jobs may be tied in the remaining portion of
J(e). We can exchange their order without changing
the squashed area bound. The new order would be then
be used for the next interval. To obtain our proof, it is

sufficient to show:

nt <C - Z (n=i+lrp + C - |TparalT-
1€ Tequi
This holds if we have
| Tequil irp
nr<C- Zl 5 +C | TparalT,
=
which is equivalent to
. . 1 n
TLP S C - |jequz|(|u7equz| + )p + C - |\7para|P.

2

This can be shown in the same way as in the proof of
Theorem 2.1 by applying Lemma 3.1. []

Proof of Theorem 4.2: Let W(J) = > I (n—i+1)t;
for a job set J = {Ji,Ja, -,Jn}, where t; is the
accumulative time job J; requires CPU processing, 1 <
i<mn,and t; <ty < --- <t,. Let H(J) = Y1, hi,
where h; is the accumulative time job J; does not require
CPU processing, i.e., when it is blocked. Then, we show

(7.23FTrr(J) < (2-— 2

YW(JT)+ H(T).

The theorem follows from Inequality 7.23 since both
W(J) and H(J) are lower bounds for the optimal flow
time.

Similar to the above proof for parallel jobs, we
divide execution by the Round-Robin policy into a finite
number of intervals in which the order of remaining
accumulative CPU times of jobs does not change and
each job is in the same phase (ready to execute or
blocked). We apply inductive proof to the number of
such intervals. The base case follows from the result
of Motwani, et al.[15]. Consider one such interval of
length 7, let K be the set of jobs ready to execute,
k = |K|. The case k = 0 is trivial and we thus assume
k > 1. Each such job is executed for 7 time units.
The accumulative blocked time for each of other jobs
decrease by 7. Thus we have

FTrr(J) <
T+ (2 - ZDW(T) - Tiex(n

+H(J) — (n = k)T,

—i+1)7]
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which is less than or equal to (2 — 37)W(J) + H(J)
if

2

<
= n+1

(2-

)Z(n—i+1)%+(n—k).

iEK

This last inequality holds even for the worst choice of
set K. []

Proof of Theorem 5.1: Without loss of generality,
assume that all K faulty jobs are present in the system
at time to, and there are NV other jobs, whose execution
time is 21, 2, ..., TN, arriving at the system at time ¢,
ta, ..., tn respectively. We consider the following two
cases:

If new jobs always arrive before the last good job in
the system has finished execution, the optimal scheduler
will leave no processor idle. The optimal makespan
will be Efilw, A Round-Robin scheduler will always

execute at least g of the good jobs, and all of the

good jobs will complete by time ﬁzf\;ﬂ'z Therefore,
the competitive ratio is bounded above by K +1 in this
case.

In case new jobs arrive some time after the last
good job in the system has finished execution, we first
consider the optimal solution with complete informa-
tion. Let m be the maximum index when a job arrives
at time t,, and finds no remaining jobs in the system
(all previous jobs have completed their execution). Let
t* = t,,. In this case, the optimal completion time will
be OPT = t* + Zi\;mm, Using the Round-Robin pol-
icy, at the point in time ¢* the total amount of time
remained for good jobs 1, 2, ---, Tm—_1 tO execute
is at most KLHt*. From then on, the processor will
always devote a fraction (at least ﬁ) of its time to
good jobs. Therefore, Round-Robin will finish all the
good jobs within at most (K + 1)(KL_Ht* + Zi\;m t;)
time units after ¢t*. Thus the completion time of all
good jobs will be at most (K + 1)(¢* + Ei\;m t;), which
s (K + 1)OPT. Therefore, the Round-Robin policy
achieves a competitive ratio of K + 1.[]

Proof of Theorem 5.2: We examine the last finished
job J; according to the DEQ policy. Let 7 be its arrival
time. Again, we divide the execution of this job J;
into two parts: let t,.., be total of the time during
which the number of processors allocated to it is equal
to its parallelism, and let t.4,; be the total total time
during which it is assigned its fair share of processors
according to DEQ. Let Weqy; be the total amount of
work executed by J; during t.4,;. Since there are at
most K faulty/infinite jobs, the total amount of work
performed during t.g4,; on the faulty/infinite jobs is no
more than KWg,;. Let W' be the total work performed
on good jobs during t.q,;. Then the completion time of

DEQ is bounded by to + tpara + M On the
other hand, for the optimal completion time, we have
to + tpara + 2egei < OPT, EWeani < (K _ 1)OPT,
and W?’ < OPT. This concludes our proof that DEQ
has competitive ratio of K +1 when the system has new
job arrivals. []



