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Abstract

The thesis of this paper is that scheduling decisions in large-scale, shared-
memory, NUMA (Non-Uniform Memory Access) multiprocessors must consider
not only how many processors, but also which processors to allocate to each
application. We call the problem of assigning parallel processes of an
application to processors application placement.

We explore the importance of placement decisions by measuring the execution
time of several parallel applications using different placements on a shared-
memory NUMA multiprocessor. The results of these experiments lead us to
conclude that, as expected, in small-scale mildly NUMA multiprocessors,
placement decisions have only a minor affect on the execution time of parallel
applications. However, the results also show that placement decisions in large-
scale multiprocessors are critical and localization that considers the architectural
clusters inherent in these systems is essential. Our experiments also show that
the importance of placement decisions increases substantialy with the size and
NUMAness of the system and that the placement of individual processes of an
application within the subset of chosen processors also significantly impacts
performance.
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1. Introduction

Small-scale, shared-memory multiprocessors based on a single shared bus have become
prevalent and the number of manufacturers building and selling such systems continues to rise.
The success of such systems can be partially attributed to the simple parallel programming model
they present, relative to strictly non-shared-memory systems. This simple programming model
has alowed many applications to achieve substantial increases in performance by making
effective use of al of the processorsin the system.

The considerable improvements in parallel application performance attained using small-
scale multiprocessors have fueled the desire for even greater performance improvements. One
approach to increasing performance is to simply build larger systems while maintaining the
shared-memory model. Single-bus systems, however, are not scalable because the bandwidth of
the bus limits their sizee As a result research and design efforts in shared-memory
multiprocessors have focused on scalable architectures. These architectures distribute memory
modul es throughout the system in order to optimize access times to some memory locations. The
result is an important class of scalable shared-memory systems known as Non-Uniform Memory
Access (NUMA) multiprocessors. Alternatively, all memory accesses could be made uniform,
but then they would be uniformly slow.

The emergence of large-scale, shared-memory multiprocessors presents a number of new
opportunities and challenges. The opportunities are to solve much larger problems than
previously possible, with applications that use more processors, and to solve many problems
concurrently, by simultaneously executing multiple paralel applications. The challenges are to
effectively utilize the processors while enabling the efficient execution of multiple applications.
The multiprogramming of parallel applications is required because not all applications will be
capable of effectively utilizing all processorsin alarge-scale system.

An obvious but critical difference between scheduling in this new class of NUMA (Non-
Uniform Memory Access) multiprocessors and small-scale UMA (Uniform Memory Access)
multiprocessors, is that in UMA systems all processors can be treated equally (aside from cache
contexts). Thisis becausein a UMA system the time to access any memory location is the same
from any processor. NUMA system designers must, however, consider the time it takes to access
different memory locations from different processors. Therefore, an important aspect of
scheduling in large-scale, shared-memory, NUMA multiprocessors is application placement.
That is, how should the parallel processes of an application be placed in a NUMA
multiprocessor?

This paper shows that in large-scale, shared-memory, NUMA multiprocessors the execution
time of a parallel application is directly related to which processors it executes on. As a result,
efficient and effective placement decisions become critical to processor scheduling and overall
system performance. In fact, it islikely to be a contributing factor in ultimately determining the
success or failure of large-scale NUMA multiprocessors.

The remainder of this paper is organized as follows. Section 2 presents related work.
Section 3 describes three existing shared-memory NUMA multiprocessors along with their
architectural and NUMA characteristics. This is followed in Section 4, by a description and
explanation of the importance of localization during application placement. Section 5 describes
the environment and Section 6 the applications used in the experiments. In Section 7 we present
the results of a series of experiments designed to demonstrate the the importance of localization.
The paper is concluded in Section 8 with a summary of the results, conclusions and a brief
discussion of future work.



2. Related Work

As microprocessor technology continues to improve at a faster rate than memory or
interconnection network technology, the reative increase in communication costs in
multiprocessors has become a topic of increasing importance. A number of recent studies
consider the importance of memory access costs when making scheduling decisions in shared-
memory multiprocessors. An important and common goal of this research is to reduce the
number of cache-misses or remote memory references by co-locating lightweight threads or
kernel processes with the data being accessed, thus reducing the time spent loading data into the
local cache or memory.

Using an analytic model of atime-dliced, central ready-queue, scheduling environment and
experimental evaluation on a UNIX based multiprocessor, Squillante and Lazowska [11] [10]
argue and demonstrate that applications can build considerable cache context, or footprints [13].
Recognizing that it may be more efficient to execute a process on a processor that aready
contains relevant datain that processor’ s cache, they design and examine techniques that consider
the affinity a process has for a processor. They observe that the performance of applications,
which release a processor because of quantum expiration, preemption, or 1/O, can be significantly
reduced by making use of processor-cache affinity information.

Subsequent studies have arrived at different conclusions. Gupta, Tucker, and Urushibara
[5] aso consider the importance of cache-affinity techniques but in a space-shared multiprocessor
environment. They simulate a number of scheduling techniques and, using processor utilization
as a performance metric, conclude that improvements due to processor-cache affinity are quite
small, improving mean processor utilization by only 3%. Vaswani and Zahorjan [16] draw
similar conclusions in their study of the importance of cache affinity. They also suggest, using an
analytic model, that even with faster processors and larger caches the benefits due to cache
affinity will be minimal.

The apparent difference between the conclusions drawn in these studiesis largely due to the
difference in the scheduling policies used to multiprogram applications. While Squillante and
Lazowska use time-sharing, the study by Gupta, Tucker, and Urushibara and the study by
Vaswani and Zahorjan both use space-sharing. The time-sharing policy employs a small
reallocation interval. This results in relatively frequent context switches and ensures that
processes do not run long enough to interfere with each other significantly. Vaswani and
Zahorjan found that with space-sharing the frequency of context switches is reduced and that
intervening applications ran long enough to significantly disrupt the cache context of the previous
process, thus greatly reducing the benefits of processor-cache affinity.

While cache affinity studies investigate the benefits of reusing cached data when executing
more than one application on the same processor (across applications), related work at the
University of Rochester concentrates on the benefits of reusing cached data when executing
lightweight threads of the same application on the same processor (within applications). The
Rochester work also extends the notion of locality management to include one more level in the
memory hierarchy by considering systems that may have local-cache, local-memory and remote-
memory, such as the BBN TC2000. Markatos [7] first demonstrates that fine-grain paralel
programs, because of the overhead required to load data into the local cache, or memory,
typically perform much worse than coarse-grain implementations even though the cost of thread
management is negligible. This motivates the need for techniques that consider locality when
scheduling lightweight threads within an application. Markatos then develops a technique called
memory-conscious scheduling which, when used with fine-grain applications, yields execution
times that are comparable to coarse-grained implementations.



Markatos and LeBlanc [8] consider the conflicting requirements for load balancing and
locality management when scheduling lightweight threads of an application. They conclude that
of the two important considerations, locality management should be the primary factor
influencing the assignment of threads to processors. The importance of locality management is
aso explored in their work on loop scheduling [9]. They demonstrate how traditional loop
scheduling techniques incur significant performance penalties on modern shared-memory
multiprocessors. They then propose and compare new loop scheduling algorithms that consider
the requirements of load balancing, minimizing synchronization, and co-locating loop iterations
with the data being referenced. These new agorithms are shown to improve performance by up
to 60% in some cases.

Our work is complementary to processor-cache affinity and lightweight thread scheduling
techniques for improving locality of data references. While these previous studies investigate the
importance of scheduling techniques for reducing the number of non-local memory accesses by
co-locating processes with the data being accessed, our work investigates the importance of
scheduling techniques for reducing the cost of required non-local memory accesses in
environments where processes and data cannot be co-located. We have conducted a preliminary
simulation study [18] which indicates that placement is an important aspect of scheduling in
large-scale, NUMA multiprocessors and has motivated the need for experimentation on a rea
NUMA multiprocessor.

In this paper we experimentally investigate the problem of scheduling parallel processes of
an application that concurrently access shared data in an environment in which there is no a priori
knowledge of sharing or communication patterns. The complexity of the problem isincreased by
the architectural trend to cluster processors and memory elements and to connect clusters together
in a hierarchical fashion in order to build larger systems. This results in systems with a number
of levels in the memory hierarchy and memory access latencies that vary with the number of
levels of the hierarchy that must be traversed. Therefore, the placement problem becomes one of
placing processes of an application onto processors such that the costs of required accesses to
shared data are minimized.

3. Scalable Shared-Memory Multiprocessors

Examples of three existing scalable shared-memory multiprocessors are the KSR1, from
Kendall Square Research [2], DASH, developed at Stanford University [6], and Hector,
developed at the University of Toronto [17]. Each of these systems incorporates a hierarchical
design to build larger systems by using small-scale multiprocessor components as building
blocks. In Hector and DASH the base component is essentially a bus-based multiprocessor
containing a small number of processors (they are called stations and clusters, respectively). In
the KSR1 the base component, called Ring:0, is a unidirectional ring connecting up to 32
processors. Both the KSR1 and Hector use a ring to connect base components together to form
larger systems. The Hector design provides for another level in the hierarchy by connecting a
collection of rings together with what is called a global ring. The DASH system uses a mesh
interconnection network to connect base components together. The processing modules in the
KSR1 and Hector, besides containing a processor and associated cache, also contain local
processor memory, which is used to further optimize access times to some memory locations and
reduce contention for the base component interconnection network. In DASH each cluster is
essentially a Silicon Graphics multiprocessor which does not contain localized processor memory
but instead contains a secondary shared cache. The processor used in the KSR1 is a 20 MHz
RISC processor developed by Kendall Square Research. DASH uses the 33 MHz MIPS R3000
processor while Hector uses the 16.67 MHz Motorola M C81000.



System Memory Memory Processor Approx.
and CPU Level Location Cycles System Size
KSR1 1 Loca Memory 18 1

2 Ring 0 126 32

3 Ring 1 600 32-1088
DASH 1 Secondary Cache 15 1

2 Loca Bus Memory 29 4

3 Remote Cluster Memory 132 16-64
Hector 1 Local Memory 19 1

2 On Station Memory 29 4

3 On Ring Memory 37 16

4 Off Local Ring Memory 46 256

Table 1.1: Memory reference hierarchies and latencies of some NUM A multiprocessor s

Table 1.1 shows some memory latency times in processor cycles for each of these systems.
The times for the KSR1 are in 50 nano-second cycles and are the times required to read one 128
byte cache line [3]. DASH and Hector have 30 and 60 nano-second cycle times respectively and
the latencies shown in Table 1.1 are for loading one 16 byte cache line [6] [12]. This table
illustrates two of the key issues related to the use of shared-memory NUMA multiprocessors:

1) Thetimeto access remote memory can be significant.

2)  Thetime to access remote memory depends on the distance to the location being accessed
(the number of levels of the hierarchy that must be traversed).

It is therefore quite natural to hypothesize that placing the parallel processes of an
application close to each other in order to reduce communication costs will be essentia for their
efficient execution. The degree to which the execution time of an application will benefit from a
localized placement depends on the number, frequency and latency of remote communication.

4. Application Placement for L ocalization

In this section we describe how a scheduler might choose a ‘‘localized’’ subset of
processors on which to execute an application. Fortunately, most scalable shared-memory
architectures adhere to a hierarchical design and as a result determining a *‘localized’’ subset of
processors is not difficult. Note that processes of an application must be placed individualy,
since we are assuming a dynamic scheduling environment in which there is no a priori knowledge
of the number of processors an application will be allocated.

From any one processor, remote memory accesses can have successively higher and higher
costs as the distance from the requesting processor increases. These costs can be thought of as
forming a hierarchy of levels, where the access time from a given processor to any memory
module within the same level is the same. If from each processor we define M, to be the time to
access memory at level | inthe hierarchy and | = 1,2,3,...,L, then:

M1<M2< ...<MI< ...<ML.



One method of building large-scale, shared-memory multiprocessors which is currently
popular isto connect processorsin aclearly hierarchical fashion, asis shownisFigure 1.1a. This
is the type of interconnection scheme used in the DASH and Hector systems. Figure 1.1b is an
example of an alternative interconnection scheme that is not strictly hierarchical by design. Itis
presented as an example of how memory access times can be organized into a hierarchical
structure when viewed from individual processors.

Figures 1.1a and 1.1b assume that the system is built from processor/memory pairs. The
labels indicate the level of the memory access hierarchy that each processor/memory pair belongs
to. Labels are assigned relative to the specified source processor, which is labelled and belongs to
level 1. If we assume that the first process of an application is placed randomly on the
processor/memory pair labelled 1 a localized placement places the next process of that
application on any one of the processor/memory pairs labelled 2, since they can all be accessed
from the first processor with the same latency. Future placements for the same application
continue to use processor memory/pairs labelled 2, until they are all used, at which point level 3
is used. The levels in Figure 1.1a adhere to the hierarchical structure of the system while the
levels in Figure 1.1b are determined by simply counting the number of hops required to reach
each processor/memory pair from the first processor.
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Figure 1.1: Memory access hierar chy in two multiprocessor designs

A rough classification of memory reference times, such as the hierarchical view just
discussed, provides for localized processor alocations by choosing processors from the lowest
level possible, relative to the first processor chosen, then moving up the hierarchy once al
processors at the current level have been allocated. This is repeated until the number of desired
processors has been obtained.



5. The Experimental Environment

The experiments presented here were conducted using a prototype of a scalable shared-
memory NUMA multiprocessor called Hector, developed at the University of Toronto [17]. Each
processing module in the Hector prototype contains a 16.67 MHz Motorola MC81000 CPU, a 16
Kbyte instruction cache, a 16Kbyte data cache, and 4 Mbytes of globally addressable memory.
The hierarchical design used in Hector connects a number of processing modules with a bus to
comprise a station, several stations are connected with a bit-parallel dotted ring, and rings can be
further connected using a hierarchy of ringsto easily support up to 256 processors. The prototype
used consists of 4 stations, each containing 4 processor modules, for atotal of 16 processors and
64 Mbytes of globally addressable memory. There is no hardware support for cache coherence,
thus permitting a simple and elegant design that has relatively mild NUMA characteristics.
Cache coherence is enforced in software, by the HURRICANE operating system's memory
manager at a 4Kbyte page level of granularity, by permitting only unshared and read-shared
pages to be cacheable [14] [15]. HURRICANE also supports page migration and replication but
these features were disabled in order to conduct these experiments.

The parallel processes comprising each application are placed on processors in the system
by a system scheduler. This is accomplished by having each HURRICANE process or thread
creation first contact a user-level scheduler to determine which processor to execute on. The
scheduler is designed for a dynamic multi-purpose, multiprogrammed environment so it is
assumed that the desired number of processors is not known a priori. As a result processor
requests and placement decisions occur one at a time, at the time of process creation. The
scheduler was configured in such a way that the desired placements were obtained. Applications
were linked with a special library that directs creation calls to the scheduler and notifies the
scheduler whenever a process is finished executing.

6. TheApplications

Since the current Hector system is a prototype, and because much of the work being
conducted on the system consists of operating systems research and performance evaluation,
there is not a large body of regular users. As a result the applications collected for
experimentation consist mainly of applications that were written either to evaluate this type of
research or as part of a course project on parallel programming. Consequently some of the
applications used are really kernels of what would be considered real parallel applications.

All of the applications are of the data parallel or single program multiple data class of
applications, which means that each process executes the same computational kernel on different
portions of the data space. The data access patterns of each application are different, so the
importance of the placement of parallel processes of the application should vary with each
application. Since the placement of each paralel process of an application is important relative
to the data that is being accessed, the HURRICANE operating system permits the application
writer to roughly control where data will be located by specifying the policy to be used when
requesting memory. In the applications used most of the shared data is allocated to memory
according to a first-hit policy. That is, data will be physically located in the memory of the
processor module that first touches the page containing that data. Some applications specify a
round-robin policy for some of the shared data so that frequent access of the data by many
processors reduces the likelihood of hot-spots and al so reduces remote memory access costs when
executing on all 16 processors. Even though we do not use al of the processorsin the system we
have not modified the memory allocation policies used by the applications (currently there is no
policy for allocating memory on a round-robin basis from the subset of processors assigned to the
application).



For each application the main process creates a number of children which act as slaves.
Since each process of the application is allocated to a separate processor and we do not want
processors to be unnecessarily idle, some applications were modified so that the master process
not only controls and synchronizes the children but also performs its share of the computation,
rather than simply waiting for the children to perform the computation.

The applications are listed in Table 1.2 aong with the problem size, precision used, the
number of lines of C source code, and the speedup measured using four processors of one station,
S(4). The speedup values shown were computed by comparing the execution times of the parallel
application using one and four processors (since a serial version was not available for all
applications). The number of source code lines may be slightly high due to the large number of
timing, tracing, and debugging calls used when tuning the applications. More detailed
descriptions of each application can befoundin [1].

Name Application / ProblemSize | Precison | LinesofC | S(4)

FFT 2D Fast fourier transform

256x256 Single 1300 29
HOUGH Hough transformation

192x192, density of 90% Double 600 34
MM Matrix multiplication

192x192 Double 500 34
NEURAL Neural network backpropagation

3 layers of 511 units, 4 iterations Single 1100 3.8
PDE Partial differential equation solver using successive over-relaxation

96x96 Double 700 3.7
SIMPLEX Simplex Method for Linear Programming

256 constraints, 512 variables Double 1000 2.4

Table 1.2: Summary of the applications used

The size of the system used is relatively small, and in order to evaluate different application
placements, each application is executed using four processors (four processors was aso chosen
because some applications constrained the number of processors used to a power of two or to a
number that divides evenly by the size of the data set used). Although the size of the data sets
may appear to be small, they were chosen for a number of reasons:

1) They should execute on four processors in a reasonable amount of time since multiple
executions of each application are used to compute means and confidence intervals.

2) The size of the data cache on each processor is relatively small (16 Kbytes). Consequently
cache misses and memory accesses will occur, even with arelatively small sized problem.

3) The amount of memory currently configured per processor is relatively small (4 Mbytes).
If problem sizes are too large data structures that are designed to be allocated to the local
processor (by using the first-hit allocation policy) may have to be alocated to a different
processor, resulting in remote memory references where the application programmer had
not intended. That is, once al of the physical memory of the local processor has been
alocated, the memory manager will allocate memory from a neighbouring but remote
module.



The seemingly poor speedup of some applications is the result of the small data sets used to
perform these experiments, since most of the applications were designed to be used with larger
data sets on more processors (i.e. the parallelism is relatively coarse-grained).

7. Impacts of Placement on Performance

In order to examine the importance of locaization in shared-memory NUMA
multiprocessors we conduct a series of experiments using the Hector multiprocessor and six
paralel applications (or application kernels) each executing on four processors. The main
purpose of these experiments is to determine the importance of application placement. That is,
the importance of localization. The experiments are conducted by running each application in
isolation under different placement strategies. The execution times of the localized placement are
then compared with the non-localized placements.

The prototype Hector system used to conduct the experiments is configured with sixteen
processors. To avoid interference caused by system processes and the workload generator, thus
ensuring that differences in execution times are due solely to different placements, we dedicate
one station (the four processorsin Station 0) to their execution. That is, only stations 1, 2, and 3
are used to execute the applications being tested. Figure 1.2 illustrates a localized and a non-
localized placement of four processes of an application and the notation used to represent these
placements. In the localized placement, the four dashes ‘‘——-—-"" above Stations 0, 1, and 2
indicate that the four processors in each of these stations are not used, while the numbers ‘1234’
above Station 3 indicate where each of the four processes of the application is placed. The first
process (1) being the main (master) process of the program and the remaining three (2, 3 and 4)
being the child (slave) processes. The placement is localized because all four processes of the
application execute within one station and the notation is ‘- ———- ————- ———— 1234, The
non-localized placement spreads the processes across the twelve processors being considered (as
mentioned previoudly, Station O is not used, in order to to avoid interference with system and
workload generating processes which are restricted to that station). The first process executes on
Station 3, the second and fourth on Station 2, and the third on Station 1 and the notation is
e = 3 --42 —--1".

Localized placement

---- ---- ---- 1234

Station 0 Station 1 Station 2 Station 3

QOO QOO0 QOO0 OOQQ
cee- --23 242 ---1

Non-localized placement

Figure 1.2: Localized and non-localized placements

Figure 1.3 shows the normalized mean execution times of the six applications when
executed using the localized and non-localized placements. This graph along with the detailed
resultsin Table 1.3 show that localized application placement does improve the execution time of
some of the applications examined. The table was constructed by executing the applications
eight times for each placement. The table contains the mean execution time (Mean) and 90
percent confidence intervals (CI), for each of the placements, as well as the improvements
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obtained by using the localized placement (% Impr). Thisis given as the percentage by which the
mean execution time was improved by using the localized placement rather than the non-
localized placement, expressed as a percentage of the mean execution time of the non-localized
placement. Times are measured in seconds.

... ... ... 1234
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FFT HOUGH MM NEURAL PDE SIMPLEX

Figure 1.3: Normalized execution times using localized and non-localized placements

Notice that improvements obtained here are not large. This is due to relatively small-size
and mild NUMA structure of the prototype sixteen processor Hector system. We hypothesized
that, under a heavy multiprogrammed workload, contention for shared-resources such as the
interconnection network (ring) would be reduced under a localized placement, resulting in even
greater benefits. However, preliminary experimental results indicate that, under the
multiprogrammed workloads tested, contention is not significant (further experimentation with
different workloads is ongoing). The remainder of the experiments are therefore conducted in a
uniprogrammed setting.

Appl Localized Non-Localized % Impr
Mean Cl Mean Cl
FFT 4.84 0.00 4.71 0.00 2.7
HOUGH 5.01 0.00 4.94 0.01 14
MM 5.25 0.01 4,93 0.01 6.1
NEURAL 4.83 0.01 4.83 0.00 0.0
PDE 5.45 0.00 5.36 0.01 17
SIMPLEX 19.27 0.06 19.06 0.07 11

Table 1.3: M ean execution times, in seconds, using localized and non-localized placements

The following sections consider larger systems, systems with different architectures, and
future multiprocessors, by studying the effects of NUMAness on the importance of localization.
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7.1. Increasing Memory L atencies

The NUMAness of a system can be thought of as the degree to which memory access
latencies are affected by the distance between the requesting processor and the desired memory
location. It is determined by:

. The differences in memory access times between each of the levels in the memory access
hierarchy.

. The number of processors that can be accessed in the time determined by each level.
° The number of levels.

In order to study the effects of changes in the NUMAnRess of the system, Hector features a
set of switches, called delay switches, that add additional delays to off-station memory reguests.
The range of settings possible are: 0, 1, 2, 4, 8, 16, 32, and 64 cycles. Every packet destined for a
memory module not located on the same station is held up at the requesting processor for the
number of selected cycles. The delay switches are used to emulate and gain insight into the
performance of:

1) Larger systems — since increases in the system size will result in increased memory
latencies.

2)  Systems of different designs — because some systems have larger memory latencies due to
the complexity of the interconnection network or hardware cache coherence techniques.

3) Future systems — because processor speeds continue to increase at a faster rate than
memory and interconnection networks.

32bit 32bit cache cache Delay
load store load writeback
local 10 10 19 19
station 19 9 29 62
ring 27 17 37 42 0
35 21 49 58 4
43 25 61 74 8
59 33 85 106 16
91 49 133 170 32
155 81 229 298 64

Table 1.4: Memory referencetimes, in processor cycles, on a 16 processor Hector system

Table 1.4 shows latencies for local, on-station, and off-station (or ring) memory accessesin
units of 60 nano-second cycles. Off-station requests, or those requiring the use of the ring are
shown for 0, 4, 8, 16, 32 and 64 cycle delays. The values shown are pessimistic values in the
sense that the true values depend on the relative positions of the source and destination stations,
and the values shown represent worst case relative positioning. This is because even though the
system is symmetric, asymmetry is introduced, since cache line reads consist of one request
packet but two reply packets (in order to return the entire 16 byte cache line). Note that the delay
switches have no affect on local or on-station requests. For more detailed descriptions of the
Hector see [4] [17] [12].
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To provide insight into the importance of localization on a dightly larger system and in
other shared-memory multiprocessors we set the delay switches to 16 and conduct the same
localized versus non-localized placement experiment. The results of this experiment are shown
in Figure 1.4. Note that with a delay of 16 cycles the sixteen processor Hector system used has

memory access latencies that are roughly equivalent to other existing shared-memory
multiprocessors.

.. .. ... 1234
N --e- ---3 --42 ---1
(0]
r 14 ]
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M
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R
T 0.2
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FFT HOUGH MM NEURAL PDE SIMPLEX

Figure 1.4: Normalized response times, localized and non-localized placements, delay = 16

The experimental results of Figure 1.4 show substantial improvements in execution times
as aresult of localization. The matrix multiplication application (MM) isimproved by more than
50%, while the fast fourier transformation (FFT) is improved by more than 25%, the partial
differential equation solver (PDE) more than 20%, and the hough transformation (HOUGH) by
more than 15%. Only the neural network application is not significantly improved. The reason
for thisis an unusually large number of system calls (a more detailed explanation is provided in a
subsequent section).

7.2. NUMAnNess

Figure 1.5 illustrates the affects that the NUMAnNess of the system has on the execution of
these applications under non-localized and localized placements. The graphs show the
normalized execution times of each application obtained with delay settings of 0, 4, 8, 16, 32 and
64. The delay setting is shown just below the pair of bars representing the localized and non-
localized execution times.

These graphs demonstrate that as the latencies in the system increase the performance
benefits achieved through localization increase for al applications except NEURAL. If the
communication and memory references within an application are completely localized then the
increase in latencies should have no affect on the execution times when the localized placement is
used. The results show this to be true for MM and PDE. Note however, that this is not the case
for FFT, HOUGH, SIMPLEX and especially NEURAL.
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Figure 1.5: Theimportance of localization using different degrees of NUM Aness

There are a number of reasons why, under a localized placement, some of these applications are
more affected by increased latencies than others.

1)

The data being accessed is not entirely localized. That is, some data is located on memory
associated with processors outside of those the application is executing on. Thisistrue, for
example, of FFT. Because normally the computation is dominated by sine and cosine
computations pre-computed lookup tables of sine and cosine values are created. For each
of these tables, the memory allocation scheme used assigns pages to physical memory on a
round-robin basis starting with processor 0 on station 0. In this case, because 64 bit double
precision variables are used with a problem size of 256, two 4Kbyte pages will be allocated
for each table and references to these tables may require remote memory accesses. The
round-robin allocation of these tables was done by the original author in order to achieve
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good performance, by reducing hot spots, when using all 16 processors. For the same
reasons HOUGH aso uses pre-computed lookup tables for sine and cosine values, which
along with the input image, are allocated in a using a round-robin page allocation policy.

2) Thereareardatively high number of system calls.

a) Some system calls are performed by communicating, via message passing, with a
server process that is executing on Station 0, thus incurring delays because of remote
communication. Thisisreflected in increases in execution time as the delays increase
because communication with Station O requires using the interconnection ring which
means incurring the delays. Thisisthe case with the SIMPLEX application.

b)  Some system calls are handled by a server process that is migrated to the processor of
the calling process (handoff-scheduling). The server may then access system data
structures, many of which have been allocated on Station 0, thus requiring off-station
memory requests which increase execution times as latencies are increased. The
application NEURAL performs a large number of such system calls which is the
reason that the performance is not improved by using alocalized placement. In fact,
localization actually degrades performance in this case because the algorithm used
executes synchronously, with each of the processes requiring access to shared
resources at the same time. The non-localized placement decreases the degree to
which the processes are synchronized and decreases the contention for shared
resources, thus dightly improving the execution times.

7.3. System Size

Another way to view the importance of application placement is to consider possible
increases in system size and the different application placements possible, given a fixed number
of required processors. For example, if an application requires four processors and it is executed
on a system with four processors a localization strategy is not required since any placement is
localized. The potential benefits of localization increase in an eight processor system but are not
as large as the benefits that can be obtained in much larger systems. That is, if the number of
processors allocated to an application is fixed and different sized system are considered, the
potential benefits from localization and therefore the importance of localization increase with the
size of the system. Thisisillustrated in Figure 1.6. The different placements used correspond to
considering localized versus non-localized placements in systems of 4, 8 and 12 processors. The

localized placement, ‘'~ ——— ———— ———— 1234’ is the same for each system size, while the
placement ''-—-—-— ———— —— 43 ——-21"" represents a non-localized placement in a system of 8
processors, because only the 8 processors of Stations 2 and 3 are considered, and the placement
o === 3 —-42 ——-1" represents a non-localized placement in a system of 12

processors. Therefore, each of the bars of the graphs in Figure 1.6 represent a non-localized
pI acement in systems of size 4, 8 and 12 and should be compared with the localized placement

———————————— 1234"" to determine the improvements possible due to localization for a
system of that size.

The results of these experiments demonstrate that, for all applications except NEURAL, the
benefits obtained from using alocalized placement increase as the size of the system isincreased,
thus demonstrating the need for and increased importance of localization in larger and larger
systems. Note also that the prototype system being used is relatively small and as a result the
performance of each placement is also affected by the number of processors being used by the
application (four). This can be seen by the small difference between the non-localized
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Figure 1.6: Theimportance of localization with varying system sizes, delay = 16

placements of four processes on two stations (8 processors) and three stations (12 processors).
We expect that in larger and larger systems that the difference in performance between the non-
localized placements would likely increase as the size of the systems tested were increased.

7.4. Placement of Processes within the Application

All of the applications used in these experiments consist of a parent (main) process and
three children. Each application operates in a master/dave fashion, with the parent process
creating the children, notifying the children of the functions they are to perform aong with the
sub-section of the data the functions are to be performed on, and controlling the synchronization.
The child and the master processes each perform the same work on different subsets of the
problem. However, because the master process is created first, it may be responsible for the
initialization of some data which may cause that data to be located on the same processor as the
master process. This may be as innocuous as a few variables, for example, the number of
processes used and the size of the problem, but if these variables are not cached and are
referenced often the cumulative cost of the remote memory accesses can affect execution times.
The graph in Figure 1.7 is the result of an experiment that was conducted in order to study how
the execution time of each application is affected by the location of the child processes relative to
the parent. This study can be thought of as examining the following question:

° Once alocalized subset of processors has been chosen for an application’s execution, is the
execution time affected by the location of its parallel processes within that subset of
processors?

Intuitively this will depend on the symmetry, communication, and remote memory access
patterns of the application.

The experiment performed considers two non-localized placements, one in which none of
the child processes are placed in the same station as the parent * ‘' ————- ——— 3 --42 ---1"
and one in which one of the child processes is placed in the same station as the parent
oo ——— 3 —-41 ——--2". We seein Figure 1.7 that the performance of each application
is affected by the placement of the child processes relative to the parent since exactly the same
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Figure 1.7: Importance of the placement of children relativeto the parent, delay = 16

subset of processorsis used in each case and the only difference is that the location of processes 1
(the master) and 2 (the first child) have been switched. A delay setting of 16 cycles was used and
the results show that in two cases, MM and PDE the execution times differ by 15%. These
results are significant enough to indicate that the location of parallel processes of an application
within a subset of localized processors is important for some applications and that the child
processes should be placed as close to the main process as possible.

8. Conclusions and Future Work

In this paper we have demonstrated that, in large-scale, NUMA multiprocessors, preserving
the locality of parallel applications by placing processes close to each other in order to minimize
the costs of accessing shared-data is essential to achieving good performance. In particular the
experiments conducted in this paper have shown:

° As expected, in small-scale mildly NUMA multiprocessors, placement decisions have only
aminor affect on the execution time of parallel applications.

. Application placement that considers the architectural grouping of processor and memory
modules inherent in NUMA multiprocessors is essentia and improves performance
significantly.

° The importance of placement decisions increases with the size and NUMAness of the
system and will continue to increase as the gap between processor speeds and memory
access times (including interconnection schemes) continues to widen.

° Placement of the children relative to the parent (main) process affects application
performance significantly. Specifically, frequently referenced data is often located on or
near the processor that the parent is placed on. Thus, placing children as close as possible
to the parent process reduces execution time.
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Besides continuing to study the hypothesis that localization will reduce contention in a
multiprogrammed environment, we are currently conducting an experimental evaluation of a
technique, called processor pool-based scheduling, designed to automatically ensure that the
locality of an application is preserved by the scheduler [1]. Preliminary simulation studies show
that this technique does preserve locality and improve execution times of paralel applications
[18].
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